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ABSTRACT
Sixteen actinobacterial strains isolated from various ecological
niches in the Algerian Sahara were screened for their biocontrol
potential in root rot disease caused by Fusarium culmorum and
their promotion of durum wheat growth. All actinobacteria were
studied for in vitro antagonistic activity and plant-growth-
promotion traits, for the production of cyanhydric acid,
siderophores, chitinases and indole-3-acetic acid, and for the
solubilisation of inorganic phosphate. Strongly antagonistic
actinobacteria were selected for the biocontrol of F. culmorum in
vivo and for the growth promotion of durum wheat plants in
autoclaved and non-autoclaved soils. The Streptosporangium
becharense strain SG1 exhibited remarkable positive results in all
trials. Compared to untreated wheat seeds, the root rot severity
index was decreased significantly (P < 0.05) by all seed
bacterization treatments. However, the highest protective effect
was obtained by the strain SG1, which reduced the disease
severity index from 77.8% to 16%, whereas it was only reduced to
24.2% by chemical seed treatment with Dividend®. Moreover,
strain SG1 led to significant increases in the shoot length, root
length and dry weight of plants, thus opening up interesting
perspectives for possible exploration in crop enhancement.
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Introduction

Chemical products are commonly used as pesticides or fertilisers to improve crop pro-
duction. However, the abusive use of agrochemical compounds often causes problems
such as contamination of the soil, high toxicity on native microbial communities, pesti-
cide resistance and other adverse effects on the environment (Huang, Zhang, Yong,
Yang, & Shen, 2012) as well as the potential harmful effects on human health (Ippolito
& Nigro, 2000).
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Root rot and damping-off of seedlings is a common disease caused by Fusarium species
in a variety of crop cereals, such as corn, rice, barley and wheat. In Algeria, Fusarium cul-
morum is considered to be a serious problem for the cereal crops, as it causes significant
losses, particularly at the seedling stage (Yekkour et al., 2012). Various fungicides are fre-
quently used to manage the Fusarium diseases and to prevent crop losses. Nevertheless,
the majority of them are not ideally effective to eradicate these phytopathogenic fungi
(Huang et al., 2012). Because of these preoccupations, there is a rising demand for biocon-
trol methods that are applicable in sustainable agriculture in order to protect the environ-
ment by reducing chemical pesticide use (Shimizu, 2011).

Actinobacteria are considered as potential biocontrol agents of plant diseases. De-Oli-
veira, Da Silva, and Van Der Sand (2010) reported that Streptomyces sp. strain R18 could
colonise the plant rhizosphere soil and produce active molecules such as antibiotics,
hydrolytic enzymes, hydrogen cyanide, and siderophores. El-Tarabily, Nassar, and Siva-
sithamparam (2008), reported the efficacy of Micromonospora endolithica in phosphate
solubilisation, and Cao, Qiu, You, Tan, and Zhou (2005) reported that the endophytic
Streptomyces sp. strain S 96, isolated from tissues of banana roots, produced siderophores
and was effective to protect banana plantlets against F. oxysporum f. sp. cubense.

Actinobacteria of the genus Streptomyces are also known to develop symbiotic associ-
ations with crop plants, colonising their internal tissues without causing disease symptoms
and producing phytohormones such as gibberellic acid and indole-3-acetic acid (IAA)
(Goudjal et al., 2013). In addition, several researchers have reported the potential of
plant-associated actinobacteria as agents to manage various soil-borne phytopathogenic
fungi and/or to stimulate plant growth. Costa, Zucchi, and De Melo (2013) reported
the efficacy of endophytic Streptomyces strains to reduce the incidence of damping-off
caused by Pythium aphanidermatum in cucumber (Cucumis sativa L.) El-Tarabily,
Hardy, and Sivasithamparam (2010) highlighted the growth promotion effect of endophy-
tic Streptomyces spiralis, Actinoplanes campanulatus andMicromonospora chalcea, indivi-
dually and in combination, on cucumber seedlings.

In this context, we aimed to evaluate the potential of actinobacterial strains from sandy
soils or native plants that had successfully adapted to the harsh cultural conditions of the
Algerian Sahara, as biocontrol agents of F. culmorum root rot disease in vivo and for pro-
moting the growth of durum wheat plants.

Materials and methods

Actinobacterial strains

Sixteen rhizospheric or endophytic actinobacteria (Table 1), isolated by our research team
in the Laboratory of Biology of Microbial Systems (LBSM), ENS – Kouba, Algiers, Algeria,
were tested for their in vivo biocontrol efficacy on Fusarium culmorum root rot disease and
in the growth promotion of wheat plants. Actinobacteria were selected based on their
effectiveness in the biocontrol of soil-borne phytopathogenic fungi such as Rhizoctonia
solani (Goudjal et al., 2014) and F. oxysporum f. sp. radicis-lycopersici (Zamoum et al.,
2015), on their promotion effect on cropped plants (Goudjal et al., 2013) and on the
fact that they were assigned as novel species of actinobacteria (Chaabane Chaouch
et al., 2016a, 2016b; Lahoum et al., 2016).



Table 1. Ecological niches of actinobacterial strains and their antagonistic activities towards soil-borne phytopathogenic fungi.

Isolate

Ecological niche
(Rhizospheric soil or host

plant)

Antagonistic activity (zone of inhibition in mm)a

Fusarium
culmorum
(LF18)

F. graminearum
(LF21)

F. oxysporum f. sp.
radicis-lycopersici

(LF30)
Rhizoctonia
solani (LAG3)

Bipolaris
sorokiniana
(LB12)

Rhizospheric
isolates

Saccharothrix longispora strain MB29* Saharan soil from
Ghardaïa

27 ± 0.8 5 ± 0.49 16 ± 0.7 15 ± 0.2 10 ± 0.7

Actinomadura algeriensis strain ACD1
(Lahoum et al., 2016)

Saharan soil from Hoggar 10 ± 0.14 7 ± 0.6 00 00 7 ± 0.2

Streptomyces sp. strain ZS1* Saharan soil from
Laghouat

13 ± 0.5 10 ± 0.25 10 ± 0.7 12 ± 0.6 9 ± 0.79

Streptosporangium becharense strain SG1
(Chaabane Chaouch et al., 2016b)

Saharan soil from Béchar 28 ± 0.1 22 ± 0.5 28 ± 0.1 27 ± 0.2 23 ± 0.7

Streptosporangium sp. strain SG10* Saharan soil from Béchar 18 ± 0.3 1 ± 0.5 / / 00
Streptosporangium saharense strain SG20
(Chaabane Chaouch et al., 2016a)

Saharan soil from
Ghardaïa

12 ± 0.1 9 ± 0.3 00 00 15 ± 0.4

Endophytic
isolates

Streptomyces sp. strain APU4* Aristida pungens 00 00 00 40 ± 0.2 00
Streptomyces cyaneofuscatus strain ARR2
(Goudjal et al., 2014)

Astragalus armatus 00 00 00 40 ± 0.2 00

Streptomyces mutabilis strain CAR2
(Goudjal et al., 2014)

Cleome arabica 25 ± 0.2 8 ± 0.1 58 ± 0.3 20 ± 0.1 10 ± 0.1

Streptomyces sp. strain DNT4* Phoenix dactylifera 24 ± 0.3 10 ± 0.2 00 20 ± 0.3 00
Streptomyces sp. strain MLA2* Medicago laciniata 17 ± 0.8 21 ± 0.2 25 ± 0.1 20 ± 0.1 16 ± 01
Streptomyces rochei strain PTU2 (Goudjal
et al., 2013)

Panicum turgidum 16 ± 0.2 26 ± 0.1 30 ± 0.3 59 ± 0.1 15 ± 0.2

Streptomyces sp. Strain SNI6* Solanum nigrum 00 10 ± 0.4 00 15 ± 0.1 00
Streptomyces sp. strain TLE4* Terfezia leonis 20 ± 0.7 27 ± 0.8 18 ± 1.7 24 ± 0.9 00
Streptomyces neopeptinius strain TLE8
(Goudjal, Zamoum, & Meklat, et al.,
2016)

Terfezia leonis 23 ± 0.7 7 ± 0.12 18 ± 0.2 12 ± 0.9 00

Streptomyces caeruleatus strain ZLT2
(Zamoum et al., 2015)

Ziziphus lotus 27 ± 0.3 25 ± 0.2 60 ± 0.4 20 ± 0.1 19 ± 0.5

a = Standard deviation from three replicates.
/ =Test not performed.
*Strain from the actinobacterial collection of the Laboratory of Biology of Microbial Systems (LBSM), ENS – Kouba, Algiers, Algeria.



Antagonistic activity of endophytic actinobacteria

The streak method was used to estimate the antagonistic activities of actinobacteria against
five soil-borne pathogenic fungi (Fusarium culmorum (LF18), F. graminearum (LF21), F.
oxysporum f sp. radicis-lycopersici (LF30), Rhizoctonia solani (LAG3), and Bipolaris soro-
kiniana (LB12)) from the microbial collection of our laboratory. The actinobacterial
strains were cultivated separately in straight lines on International Streptomyces Project
(ISP) 2 medium (BD-DIOFOTM) plates, which were incubated for 8 days at 30°C. After
that, target fungi were seeded in lines perpendicular to those of actinobacteria cultivation.
After incubation at 25°C for 5 days, the distance of inhibition between target fungus and
actinobacteria colony margins was measured (Toumatia et al., 2015).

Determination of biocontrol and plant-growth-promotion traits

Hydrogen cyanide (HCN) production
Actinobacteria were grown in Bennett agar (HiMedia) amended with 4.4 g l−1 of glycine to
study their ability to produce HCN. A Whatman filter paper grade 1 (125 mm diameter;
medium porosity) was soaked with 0.5% picric acid in 2% sodium carbonate for one
minute and attached under the Petri dish lid. The plates were then sealed with parafilm
and incubated for 7 days at 30°C. The filter paper took on an orange colour when
HCN was produced (Passari et al., 2015).

Siderophore production
The method described by Sadeghi et al. (2012) was used to evaluate the production of side-
rophores. Six millimetre disks from actinobacteria cultures were placed on chrome azurol
S (Fluka) plates and incubated at 30°C for 7 days. The apparition of orange haloes around
colonies was indicative of siderophore production.

Chitinolytic activity
The actinobacteria were spot inoculated on colloidal chitin agar medium (Gonzalez-
Franco, Deobald, Spivak, & Crawford, 2003) to test for chitinase production. Cultures
were incubated at 30°C for 5 days. Chitinolytic activity was estimated by measuring the
diameter of the hydrolytic halo surrounding the actinobacterial colonies (Zamoum,
Goudjal, Sabaou, Mathieu, & Zitouni, 2017).

Indole-3-acetic acid production (IAA)
To assess IAA synthesis, actinobacterial strains were inoculated into Erlenmeyer flasks
containing 50 ml of yeast extract-tryptone (YT) broth (HiMedia), supplemented with
5 mg ml−1 of L-tryptophan, and kept in an incubated shaker (200 rpm, 30°C, 5 days).
The flasks containing the culture broth were then centrifuged at 4000 rpm for 30 min.
An equimolar concentration of Salkowski reagent (1 ml 0.5 M FeCl3 dissolved in 50 ml
35% HClO4) was added to 2 ml of supernatant. The mixture was incubated in the dark
for 30 min and the appearance of pink colour indicated the production of indole com-
pounds. The production of IAA was then confirmed by thin layer chromatography
(TLC) as used by Ahmad, Ahmad, and Khan (2005). Ethyl acetate fractions (10–20)
were spotted on TLC plates (silica gel GF254, thickness 0.25 mm, Merck, Germany)



and developed in ethyl acetate: chloroform: formic acid (55:35:10, by vol.). Spots with Rf

values identical to authentic IAA were identified under UV light after the plates had been
revealed with Ehmann’s reagent. The absorbance was measured in a spectrophotometer at
530 nm and the IAA concentration was calculated using a pure IAA standard curve
(Goudjal et al., 2013).

Phosphate solubilisation
The assays were conducted in 500 ml Erlenmeyer flasks containing 100 ml of Pikovskaya
broth (HiMedia) amended with 5 g l−1 of Ca3(PO4)2, AlPO4 or FePO4 as insoluble phos-
phate sources. Flasks were inoculated with 1 ml aliquot (≈ 106 CFU ml−1) of the actino-
bacterial spore suspensions and incubated on a rotary shaker (200 rpm, 30°C) for 7 days.
The cultures were then centrifuged for 10 min at 10000 rpm and the culture supernatants
were collected and used to determine the amount of dissolved phosphorus using the mol-
ybdenum blue colorimetric method (Liu et al., 2014).

In vivo biocontrol of Fusarium culmorum

The efficacy of the strong antagonistic actinobacteria in the in vivo biocontrol of F. cul-
morum (LF18) and their ability to promote the growth of durum wheat (cv. vitron) seed-
lings were investigated in an infested soil sampled from a cereal field in the Algerian
Sahara (33° 62’ N, 2° 91’ E). Trials were performed both in autoclaved (120°C for
20 min) and non-autoclaved soils.

Surface-sterilization of seeds was performed by sequential dipping in 70% (v/v) ethanol
solution for 3 min and 0.9% (v/v) NaClO solution for 4 min, followed by washing three
times in sterile distilled water. The surface-sterilized seeds were then separately bacterized
by dipping in the actinobacterial spore suspension (≈ 106 CFU ml−1) for 30 min. They
were dried under a laminar flow hood before being sown the same day. Actinobacteria
spores on the bacterized seeds were counted by the plate dilution method. Decimal
dilutions of actinobacterial spore suspensions were prepared using physiological saline
before isolation on ISP2 medium. Actinobacterial colonies were counted after incubation
at 30°C for 7 days. Bacterized seeds yielded ≈ 4 × 106 CFU g−1 seeds.

Autoclaved and non-autoclaved soils were infested with the F. culmorum spore suspen-
sion (≈ 103 CFU ml−1). For this purpose, plastic pots (10 cm in diameter × 12 cm high)
filled with soil were irrigated with 100 ml of the F. culmorum spore suspension. The
density of F. culmorum in the infested soil was evaluated using the plate count method
on PDA plates as described above. The Fusarium density was approximately 1.11 × 104

CFU g−1.
Four treatments were conducted in the biocontrol assay: (1) untreated seeds were sown

in non-infested pots (negative control); (2) untreated seeds were sown in infested soils to
highlight the virulence of F. culmorum (LF18) (positive control); (3) bacterized seeds were
sown in pots with infested soil to evaluate the biocontrol potential of each antagonistic
actinobacteria strain; (4) surface-sterilized seeds were treated with a commercial chemical
fungicide [Dividend® 030 FS (Difenoconazole)] by dipping in the fungicide solution for
3 min and drying under a laminar flow hood for 2 h, before being cultivated in infested
soils.



Five seeds were sown per pot with 10 replicates for each treatment. In vivo biocontrol
trials were conducted twice to ensure reproducibility. Pots were then placed in a fully ran-
domised complete block design in a greenhouse (24‒28°C, 14 h light/10 h dark). Cultures
were irrigated daily with tap water (10 ml per pot) for 6 weeks.

The F. culmorum root rot symptoms were evaluated using the following scale (Dhana-
sekaran et al., 2005): 0 = no symptom, 1 = 0‒25% of root browning, 2 = 26‒50% of root
browning, 3 = 51‒75% of root browning, 4 = 76‒100% of root browning and 5 = plant
death. The Digimizer image analysis software was used to evaluate the area of root brown-
ing. For each seed treatment, the disease severity index (DSI) was calculated using the fol-
lowing formula:

DSI(%) =
[∑

(R× N)
]
× 100 /(H × T)

R = the disease rating, N = number of plants with this rating, H = highest rating category,
T = total number of plants counted for each treatment.

The effect of each seed treatment on the growth of wheat plants was also evaluated by
measuring the shoot and root lengths, again using the Digimizer image analysis software.
The healthy seedlings were then dried at 80°C until their weight became constant.

Statistical analysis

Three replications were performed for each experiment (10 replicates for in vivo trials) and
values represent the mean ± standard deviation. Data were subjected to an analysis of var-
iance (ANOVA). When the F-statistic was significant, Tukey’s post hoc test (P = 0.05) was
used to separate means. A principal component analysis (PCA) was carried out using the
XLStat software to highlight the biocontrol potential and plant-growth-promoting activity
of each actinobacterial strain.

Results

Antagonistic activities

Of the 16 actinobacterial strains tested, seven (43.8%) showed positive antagonistic activi-
ties against all targeted fungi. Ten strains (62.5%) showed antagonistic effects against at
least three of the five soil-borne phytopathogenic fungi tested (Table 1), the most striking
antagonistic activity being against Fusarium oxysporum f. sp. radicis-lycopersici and Rhi-
zoctonia solani. Mycelial growth of F. culmorum was inhibited by only four (25%) actino-
bacterial strains. Strong antifungal activities (inhibition zone >20 mm) were noted in
seven strains (Streptomyces neopeptinius TLE8, Streptomyces sp. TLE4, Streptomyces mut-
abilis CAR2, Streptomyces sp. DNT4, Saccharothrix longispora MB29, Streptosporangium
becharense SG1 and Streptomyces caeruleatus ZLT2),the largest inhibition zone being
observed for S. becharense SG1.

Hydrogen cyanide, siderophore production and chitinolytic activity

Results for HCN and siderophore production, and chitinolytic activity shown by the
strongly antagonistic actinobacterial strains (Streptomyces neopeptinius TLE8,



Streptomyces sp. TLE4, Streptomyces mutabilis CAR2, Streptomyces sp. DNT4, Saccharo-
thrix longispora MB29, Streptosporangium becharense SG1 and Streptomyces caeruleatus
ZLT2)are given in Table 2. All strains produced HCN, which was confirmed by an
orange colour on the filter paper. In addition, it was found that three strains (Streptomyces
mutabilis CAR2, Streptosporangium becharense SG1 and Streptomyces caeruleatus ZLT2)
were able to grow on CAS-blue agar and to produce siderophores. The seven actinobac-
teria grew well on colloidal chitin medium and were qualified with positive chitinolytic
activity.

Indole-3-acetic acid production

The seven selected actinobacterial strains were studied for IAA production in YT broth
amended with L-Tryptophan. All culture supernatants were used for extraction of
indole compounds, which were revealed by the Salkowski reagent. Among the seven
selected actinobacterial strains, three (Streptomyces mutabilis CAR2, Streptosporangium
becharense SG1 and Streptomyces caeruleatus ZLT2) produced IAA. The TLC analysis
demonstrated that IAA was the sole indole compound present in the culture supernatants
and the same Rf values were obtained by chromatograms of authentic IAA developed with
Ehmann’s reagent. The amount of IAA produced varied in the range of 21–141 µg ml−1

and the strain S. becharense SG1 reached the highest level of IAA production (Table 2).

Phosphate solubilisation ability

Pikovskaya’s broth amended with Ca3(PO4)2, FePO4 or AlPO4 as sources of inorganic
phosphate was used to highlight the phosphate solubilisation abilities of selected strains.
Results given in Table 2 show that all the actinobacteria tested grew well on the three
Pikovskaya media and they dissolved phosphorus from tricalcium phosphate and alu-
minium phosphate sources. The amount of phosphorus dissolved from Ca3(PO4)2 in
the supernatant cultures varied from 480 to 720 mg l−1 and the highest amount was
achieved by the strain S. becharense SG1. The amount of phosphorus dissolved from
AlPO4 varied from 55 to 329 mg l−1, with the strain Streptomyces mutabilis CAR2 attain-
ing the highest phosphate solubilisation activity. Except for the strains Saccharothrix long-
ispora MB29 and Streptomyces neopeptinius TLE8, all other actinobacteria dissolved
phosphorus from iron phosphate.

In vivo biocontrol of Fusarium culmorum

Untreated seeds sown in infested soils (positive control) showed the highest disease sever-
ity indexes (DSI) of F. culmorum root rot in wheat seedlings, in both autoclaved and non-
autoclaved soils (Figures 1A and 2B,C). This proves the virulence of the pathogen and the
high sensitivity of the vitron variety of durum wheat.

Bacterization of wheat seeds with spores of antagonistic actinobacteria and chemical
treatment with Dividend® decreased significantly (P < 0.05) the disease incidence, which
was more noticeable in non-autoclaved than in autoclaved soil (Figures 1A and 2A). Com-
pared to the positive control (untreated seeds in infested soils) and with reference to their
antagonistic activities, the seven actinobacteria selected (Streptomyces neopeptinius TLE8,



Table 2. In vitro biocontrol and plant-growth-promoting traits of antagonistic actinobacteria.

Strain

Hydrogen
cyanide

production

Halo diameter (mm)a

IAA production
(µg ml−1)a

Amount of dissolved phosphorus in Pikovskaya
media (mg l−1)a

Chitinolytic
activity

Siderophore
production Ca3(PO4)2 AlPO4 FePO4

Streptomyces sp. strain TLE4 + 10 ± 0.7 00 00 472 ± 0.4 95 ± 0.7 80 ± 1.4
Streptomyces neopeptinius strain TLE8 + 11 ± 0.4 00 00 480 ± 0.4 110 ± 0.1 00
Streptomyces mutabilis strain CAR2 + 17 ± 0.4 20 ± 0.9 21 ± 3.1 670 ± 1.3 329 ± 3.2 220 ± 1.2
Streptomyces strain DNT4 + 08 ± 0.1 00 00 510 ± 0.3 55 ± 0.3 107 ± 0.2
Streptosporangium becharense strain
SG1

+ 18 ± 1.2 24 ± 0.2 141 ± 4.3 720 ± 1.3 78 ± 1.01 100 ± 0.1

Streptomyces caeruleatus strain ZLT2 + 18 ± 0.1 20 ± 0.1 38 ± 1.3 692 ± 5.1 207 ± 4.3 225 ± 0.3
Saccharothrix longispora strain MB29 + 12 ± 0.5 00 00 542 ± 0.23 221 ± 1.2 00
a = Standard deviation from three replicates.



Figure 1. Effect of seed treatment with Dividend® and spore suspensions of antagonistic actinobacteria
(TLE4, TLE8, CAR2, DNT4, SG1, ZLT2 and MB29) on the disease severity index (A), shoot length (B), root
length (C) and seedling dry weight (D) in non-autoclaved (white bars) and autoclaved (grey bars) soils.
Evaluation was made 4 weeks after planting. Bars labelled with the same letters are not significantly
different according to Tukey’s test at P = 0.05.



Streptomyces sp. TLE4, Streptomyces mutabilis CAR2, Streptomyces sp. DNT4, Saccharo-
thrix longispora MB29, Streptosporangium becharense SG1 and Streptomyces caeruleatus
ZLT2) showed biocontrol effects on F. culmorum root rot in vivo. Bacterization of
wheat seeds significantly (P < 0.05) reduced the disease severity index and the strain S.
becharense SG1 reached the highest biocontrol potential (Figure 2A).

Compared to untreated wheat seeds in non-infected soils (negative control), the strain
S. becharense SG1 achieved the higher effect in promoting the growth of wheat seedlings. It
significantly (P < 0.05) increased: the shoot length, from 15.88 to 21.58 cm in non-auto-
claved soil and from 15.2 to 18.5 cm in autoclaved soil (Figure 1B); the root length,
from 7.11 to 12.62 cm in non-autoclaved soil and from 7.4 to 9.86 cm in autoclaved
soil (Figure 1C); and the dry weight, from 0.26 to 0.7 g in non-autoclaved soil and from
0.185 to 0.524 g in autoclaved soil (Figure 1D).

Results of the PCA of data recorded in the in vivo assay provided a general view of bio-
control efficiency against F. culmorum root rot for the actinobacterial strains tested (Figure
3). The first axis (PC1) and second axis (PC2) explained 97.26% of the differences between
treatments (93.84% for PC1 and 3.41% for PC2). As shown by the ANOVA results, PCA
clearly divided strains into three groups. Group (A) comprised strains Streptosporangium

Figure 2. Healthy seedlings of wheat (cv. vitron) from seeds bacterized with spores of Streptosporan-
gium becharense SG1 and grown in non-autoclaved soil infested with F. culmorum (LF18) (A), root rot of
wheat seedlings grown in non-autoclaved soil infested with F. culmorum (B), and rotten seeds with
mycelial growth of the fungus on the seed surface (C). Pictures were taken 10 days after planting.



becharense SG1 and Streptomyces mutabilis CAR2, which expressed the best biocontrol
performance. Group (B) comprised MB29 (Saccharothrix longispora) and ZLT2 (Strepto-
myces caeruleatus). These strains showed high biocontrol performance. Group (C) com-
prised Streptomyces sp. TLE4, Streptomyces neopeptinius TLE8 and Streptomyces sp.
DNT4, which were characterised by low performance in controlling F. culmorum root rot.

Among strains of group (A), S. becharense SG1 treatment exhibited the PCA values
closest to the control, thus expressing the best biocontrol performance. However,
strains of group (C) appeared to be unsuitable for biocontrol purposes.

Discussion

Several studies have already reported that antagonist Streptomyces species can be con-
sidered as active against numerous phytopathogenic fungi, such as F. oxysporum f. sp.
radicis-lycopersici, F. culmorum and R. solani (Yekkour et al., 2012; Zamoum et al.,
2017), and have suggested their use as biocontrol agents, or their involvement in the in
vivo biocontrol of wheat root rot caused by F. culmorum (Toumatia et al., 2015). The
study by El-Tarabily, Hardy GES, Sivasithamparam, Hussein, and Kurtboöke (1997)
was the first to provide evidence of the utility of Streptosporangium albidum in the biocon-
trol of Pythium coloratum. They reported that the mechanism involved in disease
reduction can be explained by the production of non-volatile antifungal compounds.

Figure 3. Principal component (PC) analysis plots (PC1 and PC2) to show the efficacy of actinobacterial
strains (TLE4, TLE8, CAR2, DNT4, SG1, ZLT2 and MB29) tested for biocontrol of Fusarium culmorum and
plant-growth-promoting effect. The control treatments correspond to untreated seeds sown in non-
infested soil (negative control) or in infested soil (positive control).



These molecules from actinobacteria may facilitate the biocontrol of plant diseases but this
is not the only mechanism by which biocontrol occurs (El-Tarabily et al., 1997; Franco-
Correa et al., 2010).

Our results show that all strains can produce HCN. This volatile antifungal compound
can inhibit the growth of F. culmorum and reduce root rot disease, as noted by Aydi-Benab-
dallah, Jabnoun-Khireddine, Nefzi, Mokni-Tlili, and Daami-Remadi (2016). Our findings
have shown that S. becharense SG1 isolated from Saharan soil (Chaabane Chaouch et al.,
2016b) produces HCN and significantly reduces the F. culmorum root rot of durum
wheat. Furthermore, Defago et al. (1990) suggested that HCN production worked by indu-
cing resistance in host plants. However, results by El-Tarabily et al. (1997) showed that
Streptosporangium albidum Furumai, Ogawa &Okuda (isolate 154) was unable to synthesise
volatile antifungal compounds. However, to the best of our knowledge, this is the first report
showing HCN production by a species belonging to the genus Streptosporangium.

Siderophores were produced by three actinobacterial strains. These low molecular
weight compounds can solubilise and sequester iron from the soil (Sadeghi et al., 2012).
Secretion of siderophores as a biocontrol mechanism has been reported for numerous acti-
nobacterial genera such as Streptomyces and Streptosporangium (Jogaiah et al., 2016;
Sadeghi et al., 2012). Siderophores permit the acquisition of ferric ion, thus inhibiting
the growth of phytopathogens by competition for iron (Ramadan, AbdelHafez, Hassan,
& Saber, 2016). The possible association of siderophore production with the biocontrol
ability of actinobacteria has been reported by Cao, Qiu, You, Tan, and Zhou (2005).
Our findings showing siderophore production by S. becharense SG1 are consistent with
those of Jogaiah et al. (2016), who reported siderophore production by Streptosporangium
roseum SJ_UOM‒18‒09.

All strains showed positive results for chitinolytic activity, which can be involved in the
cell wall degradation of several phytopathogenic fungi. However, many authors have
reported the potential of actinobacteria producing chitinase for the biocontrol of F. oxy-
sporum f. sp. radicis-lycopersici, F. oxysporum f. sp. lini, F. culmorum and Botrytis
cinerea in situ (Das, Kumar, Kumar, Solanki, & Kapur, 2017; Goudjal, Zamoum,
Sabaou, Mathieu, & Zitouni, 2016).

According to our results, the strain S. becharense SG1 shows the best production of
IAA. This phytohormone improves the growth of plants by enhancing seedling
elongation, seed germination rate and dry weight (Goudjal et al., 2014). Several actinobac-
terial species have already been reported to produce IAA but this is the first report high-
lighting IAA production by a species of the genus Streptosporangium.

As reported by Khan et al. (2016), the solubilisation of inorganic phosphate is another
mechanism by which actinobacteria play an important role in the promotion of plant
growth. The overall growth of plants is affected by the availability of essential plant nutri-
ents, such as phosphorus (P) (Hamdali, Hafidi, Virolle, & Ouhdouch, 2008). Several bac-
terial, fungal and actinobacterial strains have been found to be phosphate solubilising
organisms (Khan, Zaidi, & Ahmad, 2014). They convert insoluble forms of phosphate,
such as tricalcium phosphate (Ca3(PO4)2), aluminium phosphate (AlPO4) and iron phos-
phate (FePO4), to soluble forms of phosphorus (Khan et al., 2014).

The strain S. becharense SG1 led to the highest rate of dissolved phosphorus from tri-
calcium phosphate. These findings are in agreement with results of Franco-Correa et al.
(2010), who reported high activities of actinobacteria in the solubilisation of tricalcium



phosphate. Furthermore, Mba (1997) reported similar results for the solubilisation of inor-
ganic phosphate by Streptosporangium species.

Our findings demonstrated that the surface treatment of seeds with the control chemi-
cal agent provided a marked protective effect against F. culmorum root rot. Toumatia et al.
(2015) obtained similar results, indicating that seed treatment of wheat with a chemical
fungicide, Tebuconazole, was effective in controlling F. culmorum disease. However, the
massive use of such chemical compounds can lead to environmental pollution, which is
a major worry in agricultural production (Ippolito & Nigro, 2000; Shimizu, 2011).

The strongest biocontrol potential in vivo was obtained by S. becharense SG1. This
suggests that antibiosis is a factor that can be involved in biocontrol in situ, and that
the production of HCN, chitinases and siderophores may also be effective mechanisms
for controlling F. culmorum root rot (Franco-Correa et al., 2010). In addition, biocontrol
of root rot in vivo may be affected by many factors besides nutrient availability, water
status, soil temperature, soil morphology, pH value, and interactions with indigenous
soil microbes (Dhanasekaran et al., 2005).

Our findings show that the biocontrol effect on F. culmorum is more marked in non-
autoclaved soil, which suggests the presence of a synergic effect between our antagonistic
actinobacterial strains and soil indigenous microflora. Similar results have been found by
Errakhi, Bouteau, Lebrihi, and Barakate (2007), who highlighted the effect of soil microfl-
ora in controlling Fusarium root rot of sugar beet.

Biocontrol of plant diseases is often associated with promotion of plant growth
(Franco-Correa & Chavarro-Anzalo, 2016; Shimizu, 2011). The strain S. becharense
SG1 presented the highest growth-promoting effect in wheat seedlings. It increased the
shoot length, root length and dry weight. Our results are consistent with those of
Zamoum et al. (2015), who reported the efficacy of various actinobacterial strains in con-
trolling F. oxysporum f.sp radicis-lycopersici. Furthermore, the effectiveness of species from
the genus Streptosporangium in the biocontrol of Pythium coloratum and Sclerospora gra-
minicola has been reported by El-Tarabily et al. (1997) and Jogaiah et al. (2016). However,
as far as we know, this is the first work reporting the efficacy of S. becharense SG1 in the
biocontrol of F. culmorum root rot disease. S. becharense is a new species of Streptospor-
angium discovered very recently by Chaabane Chaouch et al. at our laboratory (2016b)
and no study of its efficacy in biocontrol has previously been carried out.

The strain Streptosporangium becharense SG1 showed the best results for all in vitro
biocontrol and plant-growth-promoting attributes determined in our study. Thus, it
showed the greatest effect in the biocontrol of F. culmorum in vivo and the highest
plant-growth-promoting activities on durum wheat (cv. vitron). This is the first report
highlighting such properties for the rhizospheric actinobacterium S. becharense SG1
and its promising perspectives for possible application in crop enhancement.
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