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Proportional Dynamic Consensus in Open Multi-Agent Systems

Mauro Franceschelli‡ and Paolo Frasca†

Abstract— In this paper we investigate a dynamic consensus
problem for an open multi-agent system. Open multi-agent
systems are characterized by a time-varying set of agents
connected by a network: agents may leave and new agents
may join the network at any time, thus the term “open”. The
dynamic consensus problem consists in achieving agreement
about the time-varying average of a set of reference signals
that are assumed to be the agents’ inputs. Dynamic consensus
has recently found application in the context of distributed
estimation for electric demand-side management, where a large
population of connected domestic appliances needs to estimate
its future average power consumption. Since the considered
network of devices changes as new appliances log in and
out, there is a need to develop and characterize dynamic
consensus algorithms for these open scenarios. In this paper
we give several initial contributions both to a general theory
of open multi-agent systems and to the specific problem of
dynamic consensus within this context. On the theoretical side,
we propose a formal definition of open multi-agent system,
a suitable notion of stability, and some sufficient conditions to
establish it. On the applied side, we design a novel dynamic con-
sensus algorithm, the Open Proportional Dynamic Consensus
algorithm. We characterize some of its convergence properties
in the proposed open-multi-agent systems framework and we
illustrate its evolution by numerical simulations.

I. INTRODUCTION

A multi-agent system is a dynamical model for the behav-
ior of a possibly large group of agents, e.g., robots, devices,
sensors, oscillators etc., whose pattern of interactions due to
sensing, communication or physical coupling is modeled by
a graph that represents the network structure of the system.
Most literature on multi-agent systems considers networks of
fixed size, i.e., number of agents, and then considers several
kinds of scenarios such as time-varying network topologies.
In this paper we explicitly consider a more radical scenario
of open multi-agent system where the set of agents is time-
varying, i.e., agents may join and leave the network at any
time.

Similar notions of “open” systems can be found in the
computer science literature [1], [2] when referring to soft-
ware agents and the problem of evaluating reputation in
open environments. Similar open systems have also been
considered in game theory [3]. Despite the abundance of
works in multi-agent systems from the systems and con-
trol community, openness is rarely explicitly included in
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a rigorous analysis, but rather explored by simulations as
in [4]. Indeed, openness implies some conceptual difficulties
in adapting control-theoretic notions such as state or stability.
For this reason, some authors have recently proposed to
circumvent the mathematical hurdles by embedding the time-
varying agent set in a time-invariant finite superset [5]. In a
different perspective, others have aimed to describe the open
system through significant statistical properties: encouraging
results have been presented in [6], where the authors study
a max-consensus problem in open multi-agent systems, and
in [7], [8], where the authors study the problem of average-
consensus by gossiping.

Our attempt to formalize open dynamical systems is mo-
tivated by modern power networks, where smart appliances
that are endowed with communication and computation capa-
bilities can arrive or depart at any time. In these applications,
the appliances aim to estimate in a distributed fashion the
current and future power consumption of the network they
belong to: this information is then used locally to optimize
the power consumption of the appliances [9], [10]. The use
of dynamic consensus algorithms for distributed estimation is
thus a key enabler for the development of distributed control
protocols among appliances that do not require centralized
supervision nor centralized data aggregation that could vi-
olate the privacy of the users. Lead by this application,
we concentrate on one specific kind of open multi-agent
dynamics, which generalizes to the open context the well-
know Proportional Dynamic Consensus dynamics. In this
dynamics, each of the nodes receives an input signal and
is tasked to track the average of all inputs over the network.
In the smart grid scenario, the object of the distributed
estimation is the time-varying average power consumption
by the network. Thus, by considering the planned power
consumption of each device as an external reference signal
for each agent, a dynamic consensus algorithm can be used
to estimate the time-varying average value of this potentially
large set of reference signals. Since devices login and logout
from the network without notice, the set of reference signals
is, in general, time-varying.

The dynamic consensus problem has received significant
attention, as demonstrated by the forthcoming tutorial [11].
Since the early work in [12], a fundamental idea to render
consensus protocols “dynamic” has been adding the deriva-
tive of each agents’ own reference signal to a consensus
filter that would thus track the time-varying average of the
references. Several algorithms that exploit this mechanism
have been proposed [4], [13], [14]: their main advantages
are convergence speed and accuracy (which can be perfect
for constant reference signals), while their main drawback is



their lack of robustness with respect to errors in their ini-
tialization and, consequently, with respect to changes in the
network composition. If the number of agents changes, these
algorithms accumulate estimation errors that can severely
deteriorate the estimation performance. Some algorithms, for
instance those in [15] and [16], [17], [18], have instead
shown superior robustness properties that can be useful to
allow for the addition or removal of agents, even though
their analysis has been so far limited to networks of fixed
size. We take note that the main drawback of proportional
dynamic consensus, as illustrated in [16], consists in a trade-
off between steady-state error for constant reference signals,
tracking error and convergence rate. In the recent work [19],
the authors propose and characterize the so-called multi-stage
dynamic consensus algorithm, which consists in a cascade
of proportional consensus filters and has been proved to
guarantee small steady-state and tracking error for a given
convergence rate, thanks to exchanging a larger quantity
of local information between the agents. Furthermore, the
strategy proposed in [19] has been shown to be imple-
mentable with asynchronous and randomized (gossip-based)
local interactions.

a) Contribution: The main contributions of this paper
are: i) new definitions of equilibrium and stability, suitable
for open-multi-agent systems, together with a sufficient con-
dition to assess such stability; ii) a modified proportional
dynamic consensus algorithm, presented in discrete time,
which has been augmented with a mechanism to deal with
agents joining and leaving the network: we thus refer to
it as the Open Proportional Dynamic Consensus algorithm.
The OPDC is the first dynamic consensus algorithms that is
designed for open multi-agent systems.

b) Paper structure: In Section II we introduce both our
general model of open multi-agent system and the specific
Open Proportional Dynamic Consensus algorithm: the latter
is a modified version of the proportional dynamic consensus
algorithm, suitable to be executed by an open multi-agent
system. Section III proposes the new definition of stability
for the considered open multi-agent system, together with
some sufficient conditions. These tools are then applied
to the Open Proportional Dynamic Consensus algorithm.
In Section IV the case study of distributed estimation in
electric demand side management is presented to show a
real case of application and numerical simulations are shown
to corroborate the theoretical analysis. Finally, in Section V
concluding remarks are given.

II. OPEN DYNAMICAL SYSTEMS

For all t ∈ Z≥0, let G(t) = (V (t), E(t)) be a time-
varying directed graph with time-varying set of agents V (t)
and time-varying set of edges E(t) ⊆ (V (t)× V (t)). Set
V (t) contains the labels corresponding to the agents that are
active at time t: we may think of V (t) as a subset of U , an
infinite universe set of possible labels. The cardinality of set
V (t), that is, the number of agents that belong to the network
at time t, is denoted as n(t) = |V (t)|. Two agents i and j
are said to be neighbors at time t if they share an edge at

time t, i.e., (i, j) ∈ E(t). Let Ni(t) be the set of neighbors
of node i at time t, i.e., Ni(t) = {j ∈ V (t) : (i, j) ∈ E(t)}.

For each time t and each agent v ∈ V (t), we associate a
“state” variable xv(t) ∈ R and an “input” variable uv(t) ∈ R.
Note that these variables are defined only at time instants
such that v ∈ V (t). With these ingredients we can define
laws that describe how the sequence [x(t)]t∈Z≥0

evolves.
Note that we will not be able to write x(t + 1) as a
function of x(t), so that the evolution of x(t) does not
constitute a “closed” dynamical system. Instead, we shall
take as given the sequences [V (t)]t∈Z≥0

, [E(t)]t∈Z≥0
, and

[u(t)]t∈Z≥0
(with the consistency conditions that E(t) ⊆

(V (t)× V (t)) and u(t) ∈ RV (t) for all t) and define the
evolution law of x by

x(t+1) = f(x(t), V (t), V (t+1), E(t), E(t+1), u(t)). (1)

Such update rule f should distinguish three kinds of nodes
v, respectively belonging to the sets:

• R(t) = V (t)∩ V (t+ 1), i.e., remaining nodes that that
belong both to V (t) and to V (t+ 1);

• D(t) = V (t)\V (t+1), i.e., departing nodes that belong
to V (t) but not to V (t+ 1);

• J(t) = V (t+ 1) \ V (t), i.e., joining nodes that belong
to V (t+ 1) but not to V (t).

Since all x(s) takes values in RV (s), the components corre-
sponding to D(t) are simply left out from x(t+ 1). Instead,
components in J(t) need to be “initialized” according to
some rule. Finally, for all v ∈ R(t) there shall be a causal
evolution law in the form

xv(t+ 1) = fv(x(t), V (t), E(t), u(t)).

For concreteness, we now describe one such map f which
we call the Open Proportional Dynamic Consensus (OPDC)
algorithm.

Definition 2.1 (Open Proportional Dynamic Consensus)
Let ε > 0 and α ∈ (0, 1). At each time t ∈ Z≥0, the generic
agent v ∈ V (t) updates its state according to the rules:

If v ∈ R(t), then

xv(t+ 1) =xv(t)− α(xv(t)− uv(t))

− ε
∑

w∈Nv(t)

(xv(t)− xw(t)). (2a)

If v ∈ J(t), then

xv(t+ 1) =
1

|Nv(t+ 1)|
∑

w∈Nv(t+1)

xw(t). (2b)

Under the assumption that V (t+1) = V (t), i.e., the set of
agents does not change, the OPDC reduces to what is called
Proportional Dynamic Consensus. Namely, it reduces to the
update (2a), which can be written in matrix form as

x(t+ 1) = x(t)− α(x(t)− u(t))− L(t)x(t)
=
(
(1− α)I − εL(t)

)
x+ αu(t)

= P (t)x(t) + αu(t)
(3)



where matrix P (t) = (1 − α)I − εL(t) in RV (t)×V (t)

is a non-negative substochastic matrix with row sum and
column sum equal to (1 − α) and spectral radius ρ =
max {|1− α− ελ| : λ is eigenvalue of L(t)}. In what fol-
lows, we shall assume that for all t the directed graph G(t) is
strongly connected and that the parameter ε is small enough
to ensure that the spectral radius of P (t) is 1− α.

III. STABILITY ANALYSIS

We now define the concept of trajectory of points of
interest which will be useful in the considered scenario of
open multi-agent system.

Definition 3.1 (Trajectory of points of interest) Consider
an open system (1). Assume that for every t, the equation

y = f(y, V (t), V (t), E(t), E(t), u(t))

has a unique solution and denote that solution as xe(t).
Then, the sequence [xe(t)]t∈Z≥0

is called trajectory of points
of interest of the open multi-agent system.

Observe that xe(t0) ∈ RV (t0) represents the hypothetical
equilibrium of the dynamics followed by x(t) if the three
given sequences V (t), E(t) and u(t) would be kept constant
for all t ≥ t0. Consequently, xe(t0) is determined only by
information at time t0: the time-variance of V (t), E(t) and
u(t) does not imply any ambiguity in the definition of the
sequence xe(t).

As an example, consider system (2). Under our standing
assumptions on P (t), the solution xe(t) is unique for every
t and can be computed as

xe(t) =(I − P (t))−1αu(t) =
(
I +

ε

α
L(t)

)−1

u(t).

Next, we define a so-called “open” distance function which
is used to evaluate the distance between two points with
labeled elements that belong to Euclidean spaces of different
dimensions. In the particular case in which the two points
have elements with the same labels, i.e., the same agents, the
open distance function reduces to the Euclidean distance.

Definition 3.2 (Open distance function) Let V1 and V2 be
two finite sets of node indices. Let d : RV1 ×RV2 → R≥0 be
defined as

d(x, y) =

√ ∑
v∈V1∩V2

(xv − yv)2 +
∑

v∈V1\V2

x2
v +

∑
v∈V2\V1

y2
v

(4)
for any x ∈ RV1 and y ∈ RV2 .

The open distance (4) satisfies several natural properties,
which we summarize in the next statement.

Proposition 3.3 (Open distance function) Function d(x, y)
in (4) is such that for any vectors x, y, and z:

1) d(x, y) ≥ 0;
2) d(x, y) = d(y, x);

3) If x = y, then d(x, y) = 0;
4) d(x, z) ≤ d(x, y) + d(y, z)

Note that the converse of the third implication does not
hold. Indeed, consider x ∈ R{1,2} to be x = [1, 0] and y ∈
R{1} to be [1]. Then, d(x, y) = 0 despite the two vectors
being different.

Having this open distance available, we can naturally use
it on the trajectories of points of interest.

Definition 3.4 (Trajectory of points of interest of bounded
variation) A trajectory of points of interest xe(t) is said to
have bounded variation if there exists a constant B ≥ 0 such
that d(xe(t+ 1), xe(t)) ≤ B for all t ∈ Z≥0 where d(·, ·) is
the open distance function in (4).

The next definition introduces a notion akin to a weak
form of Lyapunov stability for open multi-agent systems.

Definition 3.5 (Stability of a trajectory of points of
interest) Let x(t) be the evolution of an open system. A
trajectory of points of interest xe(t) with bounded variation
is said to be stable if there exists R ≥ 0 such that for every
ε > R, there exists δ > 0 such that if d(x(0), xe(0)) < δ
then d(x(t), xe(t)) < ε for every t ≥ 0.

The next result is a very simple sufficient condition to
ensure stability in the above sense.

Theorem 3.6 (Stability of Open Multi-agent Systems)
Consider an open multi-agent system with state trajectory
x(t) and having xe(t) as trajectory of points of interest of
bounded variation B. If there exist γ ∈ (0, 1) and Γ ≥ 0
such that

d(x(t+ 1), xe(t+ 1)) ≤ γd(x(t), xe(t)) + Γ,

then the open multi-agent system is stable according to
Definition 3.5 with R ≥ B+Γ

1−γ .
Proof: By hypothesis, the trajectory of points of interest

has bounded variations as per Definition 3.4, thus it holds
d(xe(t + 1), xe(t)) < B for any t ≥ 0. By the assumptions
of the theorem, it holds

d(x(t+ 1), xe(t+ 1)) ≤ d(x(t+ 1), xe(t))

+ d(xe(t+ 1), xe(t))

≤ γd(x(t), xe(t)) + Γ +B.

This last quantity is smaller than d(x(t), xe(t)) if

d(x(t), xe(t)) > R ≥ B + Γ

1− γ
. (5)

We then conclude that, as long as d(x(t), xe(t)) > R,

d(x(t+ 1), xe(t+ 1)) < d(x(t), xe(t)). (6)

Now, for any ε > R, we can simply choose δ < ε, so
that by (5) it holds d(x(t), xe(t)) < ε for all t ≥ t0. This
proves the stability of the considered open system according
to Definition 3.5. �

In order to apply this general result to OPDC algorithm,
we need to make some assumptions about the impact of



leaving and joining nodes. A simple such assumption would
be the existence of Γ > 0 such that for all t

Γ2 ≥
∑

v∈D(t)

x2
e,v(t) +

∑
v∈J(t)

x2
v(t+ 1). (7)

We believe that this assumption is not overly restrictive.
For the OPDC algorithm, if both the input signals and the
number of agents that join and leave at each instant of time
are bounded, then it is easy to find such a bound Γ. For
instance, consider the case in which initial conditions and
input signals are bounded in the interval [0, 1] and the number
of agents that may join or leave is limited to one at each
instant of time. Then, one can choose Γ =

√
2.

Proposition 3.7 (Stability of Open Proportional Dynamic
Consensus) The Open Proportional Dynamic Consensus is
stable with R = B+Γ

α if its trajectory of points of interest has
bounded variation B and there exists Γ > 0 that satisfies (7).

Proof: Let us define for all t the vector y(t + 1) =
P (t)x(t): note that y(t+1) ∈ RV (t) and that the restrictions
to R(t) of x(t+ 1) and y(t+ 1) coincide. We then observe
that

d
(
x(t+ 1),xe(t+ 1)

)
≤ d
(
x(t+ 1), xe(t)

)
+ d
(
xe(t+ 1), xe(t)

)
≤
√ ∑
v∈R(t)

(
xv(t+ 1)− xe,v(t)

)2
+
∑

v∈D(t)

x2
e,v(t) +

∑
v∈J(t)

x2
v(t+ 1) +B

≤
√ ∑
v∈R(t)

⋃
D(t)

(
yv(t+ 1)− xe,v(t)

)2
+

√ ∑
v∈D(t)

x2
e,v(t) +

∑
v∈J(t)

x2
v(t+ 1) +B

≤ ‖P (t)x(t) + αu(t)− xe(t)‖2 + Γ +B

= ‖P (t)x(t)− P (t)xe(t)‖2 + Γ +B

≤ ‖P (t)‖2‖x(t)− xe(t)‖2 + Γ +B

≤ (1− α)‖x(t)− xe(t)‖2 + Γ +B

= γd(x(t), xe(t)) + Γ +B,

where we used (7) and γ = 1− α. By assumption, we have
d(xe(t + 1), xe(t)) ≤ B for all t ≥ 0 and the conditions in
Theorem 3.6 are satisfied. �

IV. NUMERICAL SIMULATIONS

In this section we simulate numerically the open propor-
tional dynamic consensus protocol with tuning parameter
α = 0.01. We consider the problem of estimating the time-
varying average of the power consumption by a network of
smart appliances at a given time of the day. We consider
a network composed at time t = 0 by 200 agents, each
with constant input ui(t) chosen uniformly at random in the
interval [0, 1], representing the power consumption of device
i at a given hour of the day. We numerically simulate two

scenarios. In the first, called Scenario A, at each instant of
time t one agent leaves the network with probability pl =
0.05 and one joins the network with probability pj = 0.1,
thus resulting in a network which, in expectation, increases
in size. In the second, called Scenario B, at each instant of
time t one agent leaves the network with probability pl = 0.1
and one joins the network with probability pj = 0.1, thus
resulting in a network which, in expectation, does not change
size. In both scenarios at each instant of time the network
topology is that of a random graph with probability of edge
existence between any two nodes equal to p = 0.1.

We now discuss the numerical simulation of Scenario A
where an agent is more likely to join than to leave. In
Figure 1 it is shown the time-varying number of agents.
In Figure 2 it is shown the average of the inputs ū(t) =

1

n(t)

∑
v∈V (t)

uv(t), which is time-varying due to joining and

leaving agents. In Figure 3 it is shown the evolution of
the open distance function d(x(t), xe(t)), i.e., the distance
between the state of the network at time t and the point of
interest xe at time t. Finally, in Figure 4 it is shown the
evolution of d(x(t), ū(t)), which is a natural measure of the
estimation error in dynamic consensus algorithms. From the
simulations it can be seen that the distance functions are
monotonically decreasing despite the time-varying number
of agents up to threshold value which is determined by the
join/leave dynamics of the agents.

We now discuss the numerical simulation of Scenario B
where agents are equally likely to join or leave. In Figure 5
it is shown the time-varying number of agents. In Figure 6
it is shown the evolution of the open distance function
d(x(t), xe(t)), i.e., the distance between the state of the
network at time t and the point of interest xe at time t.
Finally, in Figure 7 it is shown the evolution of d(x(t), ū(t)).
It can be seen that also in this scenario the distance functions
are monotonically decreasing up to threshold value which is
determined by join/leave dynamics of the agents.
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Fig. 1. Scenario A: Time-varying number of agents |V (t)|

V. CONCLUSIONS

In this paper, we have proposed a mathematical framework
for open multi-agent systems, i.e., multi-agent systems that
are characterized by a time-varying number of agents that
join and leave the network. This generality is motivated by
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Fig. 2. Scenario A: Average of input reference signals ū(t)

0 200 400 600 800 1000
Iteration number

10-2

100

102

104

O
pe

n 
di

st
an

ce
 

fu
nc

tio
n 

va
lu

e

Fig. 3. Scenario A: Evolution of open distance function d(x(t), xe(t)).
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Fig. 4. Scenario A: Evolution of open distance function d(x(t), ū(t))
(estimation error).
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Fig. 5. Scenario B: Time-varying number of agents |V (t)|
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Fig. 6. Scenario B: Evolution of open distance function d(x(t), xe(t)).
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Fig. 7. Scenario B: Evolution of open distance function d(x(t), ū(t))
(estimation error).

a distributed estimation problem in the context of electric
demand-side management, where a large population of smart
appliances interconnected via a peer-to-peer network over
the internet needs to estimate the average of the future
planned power consumption in an environment where devices
may log-in and log-out without notice. Thus motivated, we
proposed a novel definition of stability for open multi-agent
systems and proposed a dynamic consensus algorithm, the
Open Proportional Dynamic Consensus algorithm, which
enables the agents to estimate in distributed fashion the time-
varying average of a time-varying set of reference signals.
Preliminary results on the characterization of the stability
of the proposed algorithm have been provided. Numerical
simulations show that the proposed algorithm is robust to
time-varying number of agents.

This paper opens several research avenues. On the theo-
retical side, we have only scratched the surface of a possible
theory of open dynamical systems. On the practical side,
other dynamic consensus protocols can be envisioned and
tested in concrete estimation problems.
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