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ABSTRACT
One major drawback of Reinforcement Learning (RL) Spoken Di-

alogue Systems is that they inherit from the general exploration

requirements of RL which makes them hard to deploy from an

industry perspective. On the other hand, industrial systems rely on

human expertise and hand written rules so as to avoid irrelevant

behavior to happen and maintain acceptable experience from the

user point of view. In this paper, we attempt to bridge the gap be-

tween those two worlds by providing an easy way to incorporate all

kinds of human expertise in the training phase of a Reinforcement

Learning Dialogue System. Our approach, based on the TAMER

framework, enables safe and efficient policy learning by combin-

ing the traditional Reinforcement Learning reward signal with an

additional reward, encoding expert advice. Experimental results

show that our method leads to substantial improvements over more

traditional Reinforcement Learning methods.
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1 INTRODUCTION
Over the past few years, statistical methods have achieved several

success in the dialogue domain: for dialogue simulation [9], nat-

ural language generation [49], generative dialogue systems [33]...

The recent combination of Neural Networks with Reinforcement

Learning for training goal-oriented dialogue systems led to great

improvements in their capabilities and performance [12, 45]. Learn-

ing from raw data only, those models are attractive due to their

efficiency and their generality, i.e. one architecture may address a

wide variety of tasks with almost no human intervention.

While such systems have achieve many academic accomplish-

ments, many challenges have yet to be overcome for their indus-

trial release. First, data sparsity has to be efficiently managed. Deep

learning is indeed known to need a lot of data to achieve its best per-

formance. In those conditions, it is often impossible for a dialogue

system to learn an accurate model of the conversation through

only interactions with humans. Attempts have been made [8, 13]

to make on-line learning of dialogue strategies as data-efficient
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as possible, but those methods have been largely surpassed in the

meantime by Deep Learning algorithms [12], which do not solve

the scalability issues arising when trying to learn an accurate model

of their environment, e.g. the user of the dialogue system [30].

One way to address this problem is to first train a policy on a user

simulator [3, 9, 43] together with error modeling [37, 48] in order

to model the imperfections of the recognition and understanding

modules, and then to bootstrap the learned strategywith real human

interaction. This method presents the advantage of allowing the

dialogue system to be trained on millions of dialogues before being

released into the real world. However, the resulted strategy strongly

depends on the quality of the simulated user and a perfect user

model is not realizable in practice. For instance, in the beginning

of the Reinforcement Learning phase, it is probable that the non

conventional actions taken by the system will lead the user to

unknown states, leading it to execute non accurate behaviors [42]

and thus biasing the learning phase of the dialogue system.

Batch Reinforcement Learning [27, 29] provides an alternative

to this on-line approach. The main idea behind this framework

is to exploit the generalization performances of Approximate Dy-

namic Programming to get the most effective policy out of a set

of transitions. This approach provides numerous advantages over

learning a strategy by interactions. First, the batch of transitions is

known and no assumptions have to be made on the way it has been

collected. A different set of data may thus merge to provide a batch

as exhaustive as possible. Second, Batch Reinforcement Learning is

proven to be extremely data efficient, taking advantage of the gen-

eralization of supervised learning methods such as Deep Learning

and needing no stochastic approximation techniques commonly

used in on-line Reinforcement Learning. Finally, the asynchronous

updates of the Q-function in on-line Reinforcement Learning with

function approximation are known to cause stability issues [14].

Conversely, Batch Reinforcement Learning algorithms update all

Q-values synchronously, and directly avoids those stability issues.

For those reasons, Batch Reinforcement Learning methods such as

LSPI [32] or Fitted-Q iteration [36] have been shown to be more

effective than their on-line counterparts.

Another problem for the industrial release of statistical spoken

dialogue systems is the need to ensure safe behaviors and ban

dangerous or illegal actions. Quality-of-service is indeed in this

case a key feature. A bad user experience, even only during the

release of the product, may negatively affect its expansion. Human

supervision is often the most adequate way to ensure this safety.

Many studies have focused on the integration of human guidance

for Reinforcement Learning Spoken Dialogue System [4, 28, 51], or

more generally any Reinforcement Learning agent [34]. Typically,

these studies address the problem by constraining the actions avail-

able to the system in some states specified by a human, or make it

follow some rules in those states. Once robust behaviors have been



learned through Reinforcement Learning, handcrafted behaviors

are replaced bit by bit by learned ones.

An alternative to this approach is provided by Reward Shaping

[35] and the TAMER+RL framework [24]. Both of those frame-

works address the problem by encoding the supervision into an

additional reward function. While the former acts by biasing the

reward function during learning (and thus the Q-values) to match

the expert recommendations, the latter directly acts on the policy of

the learner. An advantage of those methods over the previous ones

is that they provide a guarantee to converge towards a solution of

the initial problem. They are thus in the end able to overcome the

human bias that would lead to suboptimal behaviors [41]. However,

contrary to TAMER+RL, Reward Shaping imposes to make strong

assumptions on the form of the additional reward function to guar-

antee this optimal policy invariance. Providing the right additional

reward function in those conditions is a difficult problem in itself.

However, all of the previous methods present the drawback

of being designed to work with on-line Reinforcement Learning

algorithms. This is why in this work, we introduce an alternative

method based on the TAMER+RL framework and LSPI combining

the data-efficiency and stability advantages of Batch Reinforcement

Learning with the safety provided by expert supervision.

This paper is structured as follows. Section 2 recalls Reinforce-

ment Learning preliminaries to introduce the framework. Section

3 provides the state of the art on designing reinforcement learn-

ing agents able to learn from advice and introduces TAMER-LSPI,

our method to integrate human advice on a Batch Reinforcement

Learning task. Finally the efficiency of our approach is outlined

in Section 4 on an experimental protocol based on a simulated

restaurant booking dialogue management task based on the DSTC

2 dataset.

2 PRELIMINARIES
2.1 Reinforcement Learning Dialogue Systems
Since [31, 44], automatic strategy learning for goal-oriented Spoken

Dialogue Systems (SDS) is mainly addressed with the Reinforce-

ment Learning (RL) framework [47]. Within this framework, one

considers a user and a Dialogue Manager interacting through a

noisy channel consisting of Automatic Speech Recognition (ASR)

and Spoken Language Understanding (SLU).

Picking the right action, i.e. selecting the right thing to say, is

cast as a Markov Decision Process (MDP) problem. Formally, an

MDP is a tuple ⟨S,A,R,T ,γ ⟩ where S is the state space, A is the

action space, R : S × A → R is the reward function, implicitly

defining the task objective,T : S ×A ×S → [0, 1] is the transition
function, representing the environment dynamics, and γ ∈ [0, 1) is
the discount factor. At each time step t , given a state s ∈ S called

dialogue context, the dialogue manager takes an action a ∈ A.

Taking this action leads to another state s ′ ∈ S drawn according to

the transition functionT . While transitioning, the dialoguemanager

will also receive a scalar immediate reward r . The discounted return∑
t γ

t rt assesses the success (or failure) of the dialogue.
The goal of the Reinforcement Learning based DialogueManager

is to find a mapping π : S → A, called policy that maximizes the

expectation of the discounted returns, called value:

V π (s) = E
[ ∞∑
t=0

γ t r (st ,π (st ))
]
. (1)

Similarly, one defines another function, the Q-function as the

value of taking an action in a given state:

Qπ (s,a) = r (s,a) + γ
∑
s ′∈[S ]

T (s,a, s ′)π (s), s ′)V (s ′). (2)

An order relationmay then be defined on values andQ-functions:

Q1 > Q2 if and only if ∀s ∈ S, ∀a ∈ A, Q1(s,a) > Q2(s,a). The
optimal Q-function Q∗

(resp. value V ∗
) is the Q-function maximal

in each state. It may be proven that such a Q-function exists and is

unique in every MDP. It is thus possible to define the optimal policy

π∗
such that: ∀s ∈ S, π∗(s) = argmaxa Q

∗(s,a). For an on-line

Reinforcement Learning agent, a common way to find the optimal

policy is to approximate the optimalQ-function by repeatedly sam-

pling through interactions with its environment, i.e. a user (which
may be either real or simulated) in a dialogue domain.

In the Spoken Dialogue System case, the state space is the set of

all possible dialogue contexts and the action space is the set of all

dialogue acts the system is able to utter. In the case of task-oriented

Spoken Dialogue system, the reward function is often a binary

function assessing the success of the dialogue.

2.2 Least Square Policy Iteration
2.2.1 Batch Reinforcement Learning. The Batch Reinforcement

Learning problem may be defined as the task of learning the best

policy from a set of transitions collected a priori. In that setting, the

learner is not allowed to interact with its environment. As described

on figure 1, the Batch Reinforcement Learning setting consists of

three steps. First, a set of transition D = [(si ,ai , s ′i , ri )]
N
i=1 is gath-

ered. Since Batch Reinforcement Learning algorithms are off-policy

algorithms, no assumption has to be made on the policy collecting

the data. In the case of Spoken Dialogue Systems, to ensure that

the transition function sampling the transitions will be similar to

the one which will be used in practice, data may be gathered by

a Wizard-of-Oz [52]. Second, a Batch Reinforcement Learning al-

gorithm is computed over the set of transitions to derive the most

effective policy out of it. Finally, the Reinforcement Learning agent

applies the policy derived during the previous step into the real

world.

This task is extremely convenient in an industrial context. Letting

indeed a dialogue agent to take random, non-optimal actions with

customers badly affects the quality of the service provided by the

company. It is therefore often preferable to collect a large amount of

data with a safe policy and then, punctually, once that the learned

policy has been correctly evaluated, to update and release it.

2.2.2 Policy Iteration. The Policy Iteration algorithm is an al-

gorithm from the Dynamic Programming literature which relies

at the heart of a whole branch of Batch Reinforcement Learning

algorithms. To use this algorithm, one needs first to assume that the

MDP is known (i.e. the reward and transition functions are known).

The Policy Iteration algorithm is then based on the following theo-

rem ([39], p.175):
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Figure 1: The three steps of Batch Reinforcement Learning :
1. Data Gathering with exploration 2. Application of a Batch
Reinforcement Learning Algorithm 3. Application of the
policy in the real world.

Theorem 2.1. Given the value function V π1 of some policy π1,
every policy π2 such that ∀s ∈ S, π2(s) ∈ argmaxπ ′{r (π ′(s) +
γ
∑
s ′∈S T (s,π ′(s), s ′)V π1 (s)} ( i.e every policy greedy with respect

to that value function) has a greater (or equal) value function V π2 . If
V π1 = V π2 , then π1 is the optimal policy π∗.

Proof. rπ2 + γT π2V pi1 ≥ V π1
(in matrix form). Rearranging

the terms, rπ
2
>= (I − γTpi2)V π

1
. The result is then obtained by

multiplying by (I − γT π
2
)−1 and by taking advantage of the fact

that by definition, V π2 = rπ2 + γT π2rπ2 + γ 2T π22rπ
2
+ ... = (I −

γT π2 )−1rπ2 □

Thanks to this result, it is guaranteed that iteratively repeat-

ing a sequence of policy evaluation and policy improvement (by

acting greedily with respect to that policy) leads to a sequence of

improving policies converging towards the optimal one. The Policy

Iteration algorithm is thus described by Algorithm 1:

Input :An initial policy π0
Output :The optimal policy π∗

repeat
1. Compute the value Qπn

of πn
2. Set ∀s ∈ S, πn+1(s) = argmaxa∈A Qπn (s,a)

until πn+1 = πn ;

Algorithm 1: Policy Iteration algorithm

2.2.3 Least Square Policy Iteration. Least-Square Policy Itera-

tion (LSPI, [26]) is an algorithm designed to solve the Batch Rein-

forcement Learning problem. It has been successfully applied for

dialogue systems [32]. First, it is assumed that from each state, one

can extract a set of n features characterizing this state. At each state

s there is a corresponding feature vector Φ(s) = [Φ1(s), ...,Φn (s)].
LSPI also assumes that given a policy, the Q-function may be ex-

pressed as the inner product between these features and a set a of pa-

rameters θ to will be optimized by the algorithm:Qπ (s) = ⟨Φ(s),θ⟩.
This assumption is common for Reinforcement Learning with large

or continuous state spaces. In section 4, we will present a way to

extract features from dialogue contexts.

LSPI follows the same scheme of policy evaluation/policy im-

provement that Policy Iteration. However, Since reward and transi-

tion functions are not known in the Batch Reinforcement Learning

setting, one needs to estimate theQ-function during the evaluation

step. As it has already been assumed that the Q-function could be

represented as a linear combination of the state-action features, its

estimations will be computed with linear regressions. It is proven

[26] that the parameter θπ of the Q-function evaluating the policy

π , Qπ (s) = ⟨Φ,θπ ⟩ is the solution of the linear equation :

(A + βI )θπn = b, (3)

where πn is the policy being evaluated at the nth policy iteration,

where the ℓ2 regularization parameter β has been added, as sug-

gested in [25] to avoid overfitting issues. Here, I the identity matrix,

and A and b are computed from the samples:

A =
N∑
i=1

Φ(si ,ai )(Φ(si ,ai ) − γΦ(s ′i ,πn (s
′
i )))

T

b =
N∑
i=1

Φ(si ,ai )ri

LSPI is thus described by Algorithm 2.

Input :An initial policy π0,
A batch D = [(si ,ai , s ′i , ri )]

N
i=1

Output :The optimal policy π∗

repeat
1. Estimates Q̂πn = ⟨θn ,Φ⟩ where θn is the solution of the

equation (A + βI )θn = b where A and b are computed

from the samples:

A =
∑N
i=1 Φ(si ,ai )(Φ(si ,ai ) − γΦ(s ′i ,πn (s

′
i )))

T
,

b =
∑N
i=1 Φ(si ,ai )ri , β is a regularizing constant and I

the identity matrix

2.Set ∀s ∈ S, πn+1(s) = argmaxa∈A Q̂πn (s,a)
until πn+1 = πn ;

Algorithm 2: LSPI algorithm

It is important to notice that the LSPI algorithm is a Policy

Iteration-based algorithm, and so it is easy to construct variations

of this algorithm to incorporate policy changes, as long as an im-

provement is made during the policy improvement step. As we

will see in the next section, this is a key feature in our method for

constructing agents receiving advice.

3 ADVISING AGENTS
3.1 State Of The Art
The problem of integrating advice in order to speed up learning

for Reinforcement Learning agents and to provide safe behaviors

has been addressed for a long time. First frameworks consisted in

forgetting what has previously been learned in some states with

Reinforcement Learning and instead applying a safe action provided

by either the expert [7] or a set of rules, like for instance the RATLE

algorithm [34]. Following this line of work, [28, 40] propose a

modification of this process by first handcrafting a general high-

level safe strategy, which is optimized at a finer grain on-line with

Reinforcement Learning when enough data has been gathered.

An alternative way to mix safe handcrafted rules with robust

ones learned with Reinforcement Learning is provided by [51]. In



this work, the authors suggest to use an on-line learningmechanism

which first selects a set of safe actions with handcrafted rules and

selects among those actions with Reinforcement Learning.

Reward shaping [35] provides an alternative way to incorporate

advice for speeding up the learning of an RL agent with a more sub-

tle approach.Within this framework, an additional human-designed

reward F is added to the traditional reward r . The idea behind this

second reward is that sometimes, propagating the reward signal

through the whole MDP may take a large number of time steps.

The agent may have therefore difficulties to distinguish which ac-

tions lead to the success of the task or its failure. To overcome this,

the human-designed reward may explicitly encourage the agent to

take good actions and avoid bad ones. However, [35] prove that a

sufficient and necessary condition to have a final optimal policy

identical to the optimal policy in the MDP without the shaping re-

ward, one needs to derive the shaping reward from state potentials,

i.e. F (s, s ′) = γΦ(s ′) − Φ(s). [50] extended this result by showing

that it was also possible to design a shaping function from state-

action potentials. Deriving the shaping function from potentials

is however a strong limitation of reward shaping. A Reinforce-

ment Learning agent takes indeed its actions with respect to the

Q-function. The shaping reward must thus respect the potential

property while leading during learning to aQ-function correspond-

ing to the human advice. [16] showed that designing such a function

leads to a problem as hard as the Reinforcement Learning one. This

paradigm has been applied on a variety of dialogue problems. For

instance [10] speed-up the learning phase of a dialogue manager by

using returns as shaping potentials, while [46] use returns derived

from a dialogue simulator to speed-up learning while interacting

with real users.

An alternative approach to incorporate advice while training a

Reinforcement Learning agent is given by policy shaping [15]. In

this work, the authors first learn a model of the advising human

policy and use it to predict what should be his/her action in the

situation of the agent. Then, this policy is mixed with the learned

one in order to derive a final policy taking the advice into account.

Deriving the policy of the expert from his/her advice is however a

challenging problem in its own and to solve this problem, one has

to restrict ourselves to very basic human advice models.

Recently, [4] introduced a method to incorporate direct demon-

strations from experts to bias policy learning towards a safe and

efficient human policy. In this work, authors suggest to pick the

action provided by the expert when available. Otherwise, by intro-

ducing an additional reward signal, they incite the system to take

the action the expert would have probably taken. However, this

method suffers from the fact that the learner may not be able to

overcome human bias. Furthermore, determining what may be the

human action on unknown states is a difficult task [42].

The Reinforcement Learning with Expert Demonstrations prob-

lem [18, 22, 38] also addresses the task of adding expert information

to the traditional reward signal. In that case, this additional infor-

mation are demonstrations of optimal (or near-optimal) actions

in some states. This problem is generally solved by constraining

the learned Q-functions to have higher values for demonstrated

samples. This framework may however not be applied in our case

since, by definitions, demonstrations of the experts are optimal and

it is not possible to incorporate "negative" feedbacks, i.e. telling the

agent that its chosen action was not a particularly good one.

Finally, an alternative approach on the integration of human

advice for Reinforcement Learning agents focus on ways to request

assistance to a human expert when the agent encounters specific

situations where it has not enough information to act properly.

This problem was first addressed in [6] and answered with the

AskForHelp system, where the Reinforcement Learning agent asks

for help when given all the Q-values in a state are too similar too

decide which action is the correct one. Following this line of work,

[5] proposes to ask for a rollout from the expert when the agent is

not confident about which action is safe.

3.2 The TAMER+RL framework
The TAMER (Training an Agent Manually via Evaluative Rein-

forcement) framework [23] was introduced in order to train agents

directly from on-line human feedback, without "traditional" RL

reward. A TAMER agent evolves as an RL agent in a environment

given by a set of states and moves from states to states by taking

actions. Like an RL agent, the TAMER agent receives a reward

H (s,a) after executing action a in state s . However, contrary to the

RL agent, the reward is not previously handcrafted, it is instead

directly given by the adviser. This leads to the main difference be-

tween the TAMER and RL frameworks, in the former case the agent

does not try to optimize its cumulative rewards but acts greedily

in order to maximize its immediate reward. The idea behind this

paradigm is that when a human judges the action of an agent, s/he

somehow considers and takes into account the future consequences

of the action. The goal of the TAMER agent in a state s is first to cor-
rectly predict H (s,a) for all actions a ∈ A and then acting greedily

according to its estimation Ĥ (s,a). Results of the experiments led

in [23] show that for the same task, a TAMER agent was learning

faster than a traditional RL agent. This can be easily explained by

the fact that the signal given to the TAMER agent is much richer

than the traditional Reinforcement Learning reward signal.

However, human signals may be flawed since the human, al-

though good at solving tasks are not perfect and may under- or

over-estimate the consequences of each action. Extensions of the

TAMER algorithm have therefore been introduced in order to be

able to combine the manual TAMER feedbacks with Reinforcement

Learning in a TAMER+RL framework and take the best of both

worlds. In [24], several ways of mixing both reward signals and

TAMER signals were investigated. Of all the investigated meth-

ods, it is shown experimentally that the most effective one is to

directly act on policy, without biasing the Q-function approxima-

tion, and at each time step t , to take in state s the action a given by

a = argmaxa′[Q(s,a′) + αH (s,a′)], where α is a parameter of the

algorithm emphasizing the weights of the advice.

In the following section, we extend this work by providing a

way of integrating TAMER feedback via policy biasing in a batch

fashion.

3.3 The TAMER-LSPI algorithm
A Batch TAMER+RL procedure may be decomposed into the four

steps presented in figure 2. First, a batch of dataD = [(si ,ai , s ′i , ri )]
N
i=1

is collected. In a second step, this batch is analyzed and annotated



by the human expert. Annotations take the form of an additional

reward function, leading to a batch D ′ = [(si ,ai , s ′i , ri ,Hi )]Ni=1, a
positive reward is provided to safe and efficient behaviors, while a

negative reward is associated with bad ones. A Batch TAMER+RL

algorithm is then applied on the batch D ′
to get the most efficient

policy out of this set. It is important to emphasize that such an

algorithm must be data-efficient with respect to the human annota-

tions. Human guidance is indeed very costly and the annotations

provided by the expert are thus likely to be sparse. Finally, once that

a policy has been outputed by the Batch TAMER+RL algorithm,

the agent is released to the real world where its policy remains

unchanged.

Providing the expert advice in a batch setting is particularly inter-

esting from a practical point of view. It is indeed easier to determine

a posteriori, i.e. when the whole trajectory is given, which were

the action which led to the success (or failure) of this trajectory.

Conversely, when the feedback is given in an on-line fashion, it

is not always obvious to consider the long-term consequences of

the action taken by the machine. Furthermore, in a batch fashion,

it is also easier to observe good tendencies from what has been

observed and thus derive more a more general reward function

based on heuristics emphasizing those tendencies.

Environment

Exploration

Human Labelling

Batch TAMER+RL

Algorithm

Application

Batch D

Batch D’

Policy π

Figure 2: The four steps of a Batch TAMER+RL procedure: 1)
Data Gathering with exploration 2) Annotations of the data
by the human expert 3) Application of a Batch Reinforce-
ment Learning Algorithm 4) Application of the policy in the
real world.

As [24] show, the more an algorithm affects theQ-function with

additional reward (as is the case for Reward Shaping), the worse

it does. Conversely, the more it affects the policy, the better it

does. We therefore designed our Batch TAMER+RL algorithm in

order to bias the action selection mechanism of the agent with the

additional reward, while learning the accurate values of its policy.

As an algorithm working with two independent steps of Policy

Evaluation/Policy Improvement, LSPI is the candidate of choice for

such framework. Indeed, modifications in the Policy Improvement

step do not affect the values learned during the Policy Evaluation.

In order to deal with the sparsity of the advice provided by

the human advice and to be able to generalize those advice to

unseen states, H is also approximated with a linear regression:

Ĥ (s,a) = ⟨w,ϕ(s,a)⟩, . The weight vector w is computed by min-

imizing the loss:

∑N
i=1(Hi − ϕ(si ,ai )w) + λ | |w | |2, where λ is a ℓ2

regularization parameter, via Ridge regression. In the same way

that Batch Reinforcement Learning provides a major stability im-

provement over online methods, regressing the H -function over

the whole set of data in a synchronous fashion also leads to more

stable estimates of the H -values.

As recalled in theorem 2.1, the key of learning a good policy

with LSPI is to provide during the Policy Improvement phase each

epoch of the algorithm, a policy better than the previous one. In

our case, following [24] and assuming that human advice is good,
we know that, at each time step t , following the action a greedy

with respect to Qπt−1 (s,a′) + αH (s,a′) will likely lead to a global

policy improvement, bigger than the one provided while being only

greedy with respect to the learned value function. H (s,a) making

up for the approximation errors obtained while estimatingQπ (s,a).
All of those modifications lead to Algorithm 3:

Input :An initial policy π0,
A batch D = [(si ,ai , s ′i , ri ,Hi )]Ni=1
Parameter α

Output :The optimal policy π∗

Regress the H -function by minimizing the following loss,

l2-regularised with the λ parameter∑N
i=1(Hi − ϕ(si ,ai )w) + λ | |w | |2

repeat
1. Estimates Q̂πn = ⟨θn ,Φ⟩ where θn is the solution of the

equation (A + βI )θn = b where where A and b are

computed from the samples:

A =
∑N
i=1 Φ(si ,ai )(Φ(si ,ai ) − γΦ(s ′i ,πn (s

′
i )))

T
,

b =
∑N
i=1 Φ(si ,ai )ri , β is a regularizing constant and I

the identity matrix

2.Set ∀s ∈ S, πn+1(s) = argmaxa∈A Q̂πn (s,a) + αĤ (s,a)
with Ĥ (s,a) = wTΦ(s,a)

until πn+1 = πn ;

Algorithm 3: TAMER-LSPI algorithm

By decreasing the parameter α at each epoch, the impact of the

human bias also decreases and asymptotically, the Reinforcement

Learning agent learns the optimal policy.

It is important to notice that the additional reward is not nec-

essarily a label given by the human expert at each sample. It can

encode every kind of shaping rewards without taking care of deriv-

ing it from a potential function. For instance, it may correspond to

different scores encoding user feedbacks [11], an estimate of the

Q-function computed on a simulated user [46]... In section 4, a set

of rules encoded into a reward form are used as the TAMER shaping

function.

4 EXPERIMENTAL SETTING
4.1 Task
Experiments are led on a restaurant booking dialogue management

task. In this task, a human, called user, needs to use its dialogue

system in order to look for a restaurant suiting his/her personal

tastes. In our setting, the human is modeled by a user simulator

described in section 4.3. In this work, we address the problem of

learning the strategy of the dialogue system in order to respond to

the needs of its user in the most effective way.



4.2 The DSTC2 dataset
To make the experiment as realistic as possible, we trained all of

our models on the Dialogue State Tracking Challenge 2 (DSTC2)

dataset [17]. This dataset consists of 3000 dialogues extracted from

a Restaurant Booking system. One key feature of this dataset is that

all utterances are annotated as dialogue acts. Furthermore, at each

dialogue turns, user goals are explicitly given. In this dataset, the

aim of the Dialogue Manager is to help the user to find a restaurant

matching his/her constraints and then providing him/her all infor-

mations s/he might request, such as address, telephone number...

Figure 3 illustrates the kind of dialogues which are found in the

DSTC2.

In this dataset, the Dialogue Manager is replaced by a Wizard-

of-Oz, allowing thus the gathering of expert ’system’ data and

providing a user behavior as consistent as possible.

4.3 User Simulator
We constructed the user simulator according to the methodology

provided by [9]. Within this framework, the user is modeled with an

LSTM which takes as input the entire history of dialogue contexts

and outputs the most probable user act.

LSTM [19] are recurrent neural networks able to deal with long-

term temporal dependencies. The architecture of the LSTM cell is

depicted on figure 4. The LSTM cell consists of different blocks,

called cell state, output and gates. Each block has a precise function.

The cell stateCt is the main component of the LSTM. It is supposed

to represent the past in the most relevant way possible. Only linear

modifications are done to the cell state. Those modifications may be

a removal of irrelevant past information, which is controlled by the

forget gate ft . But relevant present information may also be added

to the cell state, the input gate it is in charge of this operation. The

output ht is a filtered form of the cell state, which is transformed

in order to fulfill the objectives of the designer.

The LSTM cell is implemented using the following equations:

it = σ (Wict +Uiht−1)
ft = σ (Wf ct +Uf ht−1)
Ct = it ∗ tanh(Wcct +Ucht−1) + ft ∗Ct−1
ot = σ (Woxt +Uoht−1)
ht = ot ∗ tanh(Ct )

with it the input gate, σ the sigmoid function, ft the forget gate,
ot the output gate, Ct the cell gate and ht the hidden state.

To construct the simulator, in the beginning of each dialogue,

a goal G = (C,R) is randomly sampled. This goal contains the

constraints C and the requests R of the user. Constraints are the

values that have to be given to the dialogue system, while requests

are the values the user has to receive from the system. The user has

at most three constraints to give to the system and may request

three informations from it.

A dialogue context ct at time t is defined by the following com-

ponents: the last dialogue act at given by the dialogue manager, an

inconsistency vector it tracking the inconsistencies between the

informations given by the machine and the user goal, a constraint

vector ct and a request vector rt tracking the informations of the

user goal given to the machine.

The machine act vector at is a vector of nma components, with

nma being the number of machine acts. This vector has ones for

each dialogue act outputed by the machine in the previous turn

and zeros otherwise.

The inconsistency vector it is given by two vectors of size nc ,
where nc is the number of possible user constraints. When the

system proposes a restaurant to the user, the first vector verifies

that all of the user constraints have been respected. The second

vector tracks the inconsistencies of the dialogue manager when

it mentions a slot in every other situation (e.g. in a confirmation).

Both of these vectors have ones for every violated constraints and

zeros everywhere else. These vectors are reseted after each turn.

Constraint and request vectors ct and rt track what are the

values of the user goal which have already been given to the system

and correctly understood by it. In the beginning of each dialogue,

those vectors have zeros for every constraints and requests in the

user goal and ones everywhere else. If a constraint is set to zero in

the inconsistency vector, it is reset to one in the constraint vector.

The request vector is reset after each proposition of the machine.

Those context vectors are used as inputs in order to feed an

LSTM neural network with 64 units.

We add to this LSTM a softmax layer in order to output proba-

bilities over the possible actions of the user. This neural network is

then trained on the DSTC2 dataset. Actions of the user are finally

drawn according to the probabilities given by the softmax layer.

Finally, a set of rules overcoming the action chosen by the LSTM

are handwritten in order to ensure a coherent behavior. First, since

the most important advice that we will provide to the system are

mostly rules concerning when and how to ask for a confirmation,

we imposed to the user to repeat its last sentence when the system

asks for it, and to acknowledge or to deny if the system asks for

a confirmation. Second, to ensure that the dialogue will end, with

a probability p = 0.02 or if the user has given/received all the

informations that s/he needed, s/he ends the dialogue.

4.4 Dialogue system state space and ASR model
In order to apply reinforcement learning methods to train the dia-

logue system, a markovian state space has to be designed. In the

following experiments, a neural-based Reinforcement Learning

method [2] has been chosen to learn one. The main idea behind our

approach is to consider an LSTM similar to the user simulator but

learning to output the dialogue acts of the system in the DSTC2

dataset. Since the cell state of this LSTM contains enough informa-

tion to predict the future, it respects the Markov property and may

be used as the state of the dialogue manager.

More precisely, we first implemented an LSTM to output themost

probable action of the system given the entire history of dialogue

contexts. Those contexts consist of three vectors, the user act vector

a′t , the constraint vector c
′
t and the request vector r ′t . The user act

vector a′t has nua components, where nua is the number of possible

system dialogue acts. This vector has ones for each dialogue act

given by the user in the previous turn and zeros everywhere else.

Constraint and request vectors c ′t and r
′
t have ones for each of the

constraints given by the user to the system and zeros everywhere



System Hello, welcome to the Cambridge restaurant system. You can ask for restaurants by

area, price range or food type. How may I help you?

welcomemsg

User Moderately priced swedish food inform[Swedish]
System Sorry there is no swedish restaurant in the moderate price range canthelp
User How about asian oriental? inform[Asian oriental]

System Yippee noodle bar is a great restaurant serving asian oriental food and it is in the

moderate price range

offer[Yippee noodle

bar]

User Could i have the address and phone number? request[phone,address]
System Sure , yippee noodle bar is on 40428 King Street City Centre offer[address]
System The phone number of yippee noodle bar is 01223 518111 offer[phone]
User Thank you good bye bye

Figure 3: Dialogue example - The first column corresponds the locutor, the second is the transcription of the utterance and
the third is the dialogue acts outputed by the Spoken Language Understanding Module

x

x x

+

tanh

σ σ tanh σ
ht−1

Ct
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Figure 4: LSTM cell

else. In the case of an ASR error, a random slot is set to one in the

constraint vector.

Similarly to the user simulator, a softmax layer is added to the

LSTM, outputs of this layer corresponding to probabilities of the

different actions of the system.

Experimentally, we found that such a representation was prone

to Internal Covariate Shift [20], which led to bad Q-function repre-

sentations. This issue is overcome by stabilizing the hidden state

dynamics with Layer Normalization [1].

It is also assumed in this work that the ASR module of the dia-

logue system is not perfect and that misunderstandingsmay happen.

When the user gives one of his/her constraints to the system, with

probability p = 0.3, the system understands something else. An

ASR score is then computed following the methodology of [21]. A

random number x is first drawn according to a normal distribution

centered in +1 in the case of correct understanding and centered

in -1 in the case of a misunderstanding. The final score is then

computed by passing x through a sigmoid function : score = 1

1−ex .
We assumed that all other user acts are always correctly under-

stood by the system. In that case, the ASR score is 1.

Since this information about the ASR score is not present in the

LSTM, we constructed the state space of the dialogue system by

concatenating the cell state vector c ′t of this LSTM with the ASR

score and the time step t .

4.5 Dialogue system action space
The action space of the system contains all the different machine

dialogue acts present in the corpus. To keep things simple, when

the system suggests a restaurant, we assumed that there is always a

restaurant satisfying all of the constraints understood by the system.

For the same reason, if the system answers a request of the user,

one assumes that it can always provide an answer to this request.

4.6 Reward function
In the experiments, we used a traditional reward scheme for DSTC2.

If the dialogue finishes successfully (i.e. a restaurant satisfying all
of the constraints of the user and if all of his/her requests have been

answered), a reward of +1 is given to the system. However, if the

user (or the system) hangs up before realizing all of his/her goals,

no reward is given to the system.

To ensure that the system will try to make the dialogue as short

as possible, the discount factor γ is set to 0.9.

4.7 TAMER rewards
To provide good human advice, a simple effective policy is hand-

crafted. At each time step t , taking in state s the action a prescribed

by the rules leads to a TAMER reward H (s,a) of +1, while taking
another action leads to no additional reward.

The handwritten rules take only into account the last user di-

alogue act and the ASR score. At the beginning of the dialogue,

the system welcomes the user. If the ASR score is smaller than 0.3,

it asks the user to repeat what has been said; if it is between 0.3

and 0.7, it asks for a confirmation; and if it is greater than 0.7, it

requests a slot from the user. If the user asks to repeat, the system

repeats. when s/he requests something about a slot, the system

Inform her/him about it. Finally, otherwise, the system requests a

slot from the user.

Finally, in order to avoid an early end induced by the system, we

added a -1 TAMER reward if the system ends the dialogue.



Figure 5: Average Discounted returns

Figure 6: Dialogue Lengths

5 RESULTS
Performances of the TAMER-LSPI algorithm are compared with

LSPI as a pure Batch Reinforcement Learning algorithm, a mix-

ture of rules with LSPI, and the generative policy provided by the

LSTM simulating the system. In all the experiments, the LSPI reg-

ularization parameter β is set to 2 and the TAMER regularization

parameter λ is set to 1. In every case, a batch of 200 dialogues is

first collected by following the handwritten strategy defined in the

previous section. Each learning algorithm is then train on those

data. The obtained policy is then used to gather more data, 50 di-

alogues with this policy and 50 dialogues following an ϵ-greedy
exploration strategy, with ϵ set to 0.1. This process of policy learn-

ing/data gathering is redone for 20 epochs, until 2000 dialogues

have been gathered.

At each epoch k , the parameter α of the TAMER-LSPI algorithm

is set to 1/k . The rule-based/RL mixture is done by applying the

RL policy and picking the action prescribed by the rules with a

probability 1 − 0.1 ∗ (k − 1): in the beginning, the policy is fully

rule-based and in the end, RL based. In order to model the incom-

pleteness of the rules provided in a real world dialogue scenario,

we introduced stochasticity in them. Thus, when the system has

to follow the rules, with a probability p = 0.25, it takes a random

action not prescribed by the rules.

Figure 5 shows the performances of the four policies at each

epoch in terms of discounted returns, while figure 6 shows the

average dialogue lengths. Results are computed by averaging the

performances of 20 runs, with each one trained from scratch.

On both figures, one sees that with a small number of samples,

the performance of the rule-based/RL policy outperforms the poli-

cies provided by the LSTM, LSPI and TAMER-LSPI. This is easily

explained by the fact that the handcrafted policy is almost optimal

and that no learning algorithm may learn such a good policy with

as few samples.

On the other hand, while TAMER+RL is worse than the Rule-

Based policy on the first epochs, it always performs better than

pure Reinforcement Learning. Not surprisingly, in the beginning,

the extra information provided by advice allows TAMER-LSPI to

outperform RL, whose policies suffer from a lack of samples. In-

terestingly, it also seems to perform better than RL asymptotically.

This phenomenon could be explained by the fact that TAMER-LSPI

was able to explore more interesting regions of the state space

during the data gathering phase.

Furthermore, figure 6 shows that in the beginning, the average

dialogue length of TAMER-LSPI is longer than the others, but this

dialogue length drastically also diminishes around 300 training

dialogues. This means that even systems learned in the beginning

not to use the end action thanks to advice, it then learns to go

beyond those advice and takes them into account only when they

are beneficial, which shows robustness against bad human bias (i.e.
non-pertinent advice).

6 CONCLUSION
In this paper, we introduced a novel method to incorporate human

advice during the training phase of statistical dialogue systems in

order to provide safe behavior. It relies on the TAMER+RL frame-

work. Experimental results show that the use of such advice signals

may beneficially affect the performance of Reinforcement Learning

algorithms for all stages of the training phase, in the beginning,

where the lack of training samples often leads to bad and unsafe RL

policies, but also asymptotically. Results also show that TAMER+RL

is robust against bad human bias. Our method finally presents the

advantage of being completely statistical. It is therefore compatible

with more complex Deep Learning models which should be able

to deal with real world situations where no efficient hand-crafted

policy may be designed and where advice may be sparse (i.e. only
a few rules accompanied with labeled samples). A natural future

direction of this work would be to confront our framework with

such situations.
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