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Abstract. Facing the urgent need to decrease data centers’ energy con-
sumption, Cloud providers resort to on-site renewable energy production.
Solar energy can thus be used to power data centers. Yet this energy
production is intrinsically fluctuating over time and depending on the
geographical location. In this paper, we propose a stochastic modeling
for optimizing solar energy consumption in distributed clouds. Our ap-
proach, named SAGITTA (Stochastic Approach for Green consumption
In disTributed daTA centers), is shown to produce a virtual machine
scheduling close to the optimal algorithm in terms of energy savings
and to outperform classical round-robin approaches over varying Cloud
workloads and real solar energy generation traces.

Keywords: Data centers, distributed clouds, energy efficiency, renew-
able energy, scheduling, on/off techniques.

1 Introduction

The rapid increase of demand for Internet services leads Cloud providers to
build more and more data centers for hosting these services. The data centers
that constitute the Cloud infrastructures are usually geographically distributed
for security reasons or to offer lower latency for their clients. This infrastructure
increase comes with a dramatic growth of the power consumption globally drawn
by data centers. As an example, in 2014, data centers in the U.S. consumed
an estimated 70 billion kWh, representing about 1.8% of total U.S. electricity
consumption [17].

To reduce this impact, Cloud providers resort to renewable energy sources
which are either on-site or off-site [21]. Such energy sources are mostly inter-
mittent by nature (wind, sun, etc.) with high variations, and periods of time
without any production (during night for instance for photovoltaic panels). En-
ergy storage devices can help to overcome this issue. But, they constitute a costly
investment and they intrinsically lose part of the energy stored [22]. Thus, with-
out storage, renewable energy has to be consumed upon production or it is
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wasted. In this context, optimizing renewable energy consumption requires to
know local availability for the distributed cloud infrastructure, in order to ade-
quately allocate computing resources to incoming user requests. The goal is to
geographically distribute the workload among the data centers so that, it fits at
best the on-site renewable energy production that is variable and not known.

Here, we consider the problem of scheduling workload across multiple data
centers for minimizing renewable energy loss. To solve this issue, we propose
SAGITTA: a Stochastic Approach for Green consumption In disTributed daTA
centers. SAGITTA uses a stochastic approach for estimating renewable energy
production, and greedy heuristics for allocating resources to the incoming user
requests and switching off unused servers. While SAGITTA was first introduced
in [3], the original SAGITTA algorithm did not take into account the switching
on and off energy costs. Here these costs are integrated in SAGITTA’s algo-
rithm and all the simulations have been redone. This chapter extends the first
SAGITTA study [3] with the following contributions:

— modification of SAGITTA’s original version to take into account the switch-
ing on and off energy costs;

— proof of local optimality of SAGITTA;

— proposition of an optimal algorithm based on dynamic programming to solve
the problem;

— simulation results exploring the influence of green energy forecast and green
energy production on SAGITTA and study of its scalability;

— performance comparison between SAGITTA and the optimal algorithm;

— study on the exactness of our green power production forecast.

Our simulation-based results show the efficiency of SAGITTA compared
to classical allocation approaches. Indeed, compared to the optimal solution,
SAGITTA consumes 5.2% more energy overall, while a classical round-robin
solution consumes 12.9% more energy overall than optimum.

The remainder of the paper is structured as follows. Related work is presented
in Section 2. A formal definition of the problem is given in Section 3. Section 4
details the SAGITTA approach. Section 5 exhibits an optimal algorithm for
the considered problem. A simulation-based evaluation is conducted, simulation
conditions are described in Section 6 and results are provided in Section 7. Future
work is discussed in Section 8.

2 Related work

Cloud infrastructures consist in geographically distributed data centers which are
linked through communication networks [23]. With the emergence of the Future
Internet and the dawning of new I'T models such as cloud computing, the usage of
data centers, and consequently their power consumption, increases dramatically.
As an example, for 2010, Google used 900,000 servers which consumed 1.9 billion
kWh of electricity [11]. Other major Cloud companies present similar figures and
similar issues [10].



Virtualization technology and its ability to pool resources through transpar-
ent sharing should have minimized worldwide data center consumption. But, the
energy consumption of state-of-the-art servers grows inexorably as they embed
more and more powerful cores and advanced features and technologies. Conse-
quently, the global data center consumption keeps increasing rapidly [17]. This
situation raises major environmental, economic and social concerns.

The first way to save energy at a data center level consists in locating it close
to where the electricity is generated, hence minimizing transmission losses. For
example, Western North Carolina, USA, attracts data centers with its low elec-
tricity prices due to abundant capacity of coal and nuclear power following the
departure of the region’s textile and furniture manufacturing [9]. This region has
three super-size data centers from Google, Apple and Facebook with respective
power demands of 60 to 100 MW, 100 MW and 40 MW [9].

Other companies opt for greener sources of energy. For example, Quincy
(Washington, USA) supplies electricity to data facilities from Yahoo, Microsoft,
Dell and Amazon with its low-cost hydro-electrics left behind following the
shutting down of the region’s aluminum industry [9]. Several renewable energy
sources like wind power, solar energy, hydro-power, bio-energy, geothermal power
and marine power can be considered to power up super-sized facilities.

In spite of these approaches, numerous data facilities have already been built
and cannot be moved. Cloud infrastructures, on the other hand, can still take
advantage of multiple locations to use green sources of energy with approaches
such as follow-the-sun and follow-the-wind [8]. As sun and wind provide renew-
able sources of energy whose capacity fluctuates over time, the rationale is to
place computing jobs on resources using renewable energy, and migrate jobs as
renewable energy becomes available on resources in other locations. However, the
migration cost, in terms of both energy and performance, may be prohibitive [2].

Within the data center itself, a range of technologies can be utilized to make
cloud computing infrastructures more energy efficient, including better cooling
technologies, temperature-aware scheduling [7], Dynamic Voltage and Frequency
Scaling (DVFS) [18], and resource virtualization [19]. The use of Virtual Ma-
chines [1] brings several benefits including environment and performance iso-
lation; improved resource utilization by enabling workload consolidation; and
resource provisioning on demand. Nevertheless, such technologies should be an-
alyzed and used carefully for actually improving the energy-efficiency of com-
puting infrastructures [13].

One of the most efficient techniques for saving energy in not fully utilized
data centers consists in shutting down unused resources as switched off resources
consumes less power than idle ones [14]. The number of switched off resources
can be increased by consolidation techniques [14]. However, switching on and
off resources consumes time and energy and these costs need to be taken into
account in order to effectively ensure energy savings [15].

Concerning green energy integration, Ren et al. have proposed an online
scheduling algorithm which optimizes the energy cost and fairness among differ-
ent data centers subject to queuing delay constraints [16]. While their work is



based on a distributed Cloud model similar to ours, they aim at minimizing the
cost of the consumed electricity, instead of the wasted renewable energy in our
case. Tripathi et al. have presented a mixed integer linear programming formu-
lation for capacity planning while minimizing the total cost of ownership [21].
Their model schedules demand considering the availability of green energy and
its price variation to lower the total cost of ownership. Finally, a literature review
of renewable energy integration in data centers can be found in [6].

3 Problem

First, the Cloud model and assumptions are described in Section 3.1 similarly
to [3]. Then, Section 3.2 proposes the problem formulation.

3.1 Cloud model

We consider a distributed Cloud infrastructure comprising several data centers
geographically distributed and powered by the regular electrical grid on one side
and on-site photovoltaic panels (PV) on the other side. The user management of
the Cloud is assumed to be centralized. This Cloud model is shown on Figure 1.

Incoming users requests can arrive at any time. Each request requires to be
computed by a virtual machine (VM) located on any of the data centers. Each
data center hosts a given amount of homogeneous servers.

3.2 Problem formulation

We consider a system of M data centers spread over a large area. A data center
DC}; is characterized by its number S; of servers. Servers are considered homo-
geneous over the different data centers, in term of computing capabilities and
energy consumption.

As for the application model, we consider identical VMs submitted at unpre-
dictable rate. The VMs are supposed to be executable in less than one time slot.
We can thus describe both computing and memory requirement of VMs by the
number C' of VMs that a server can complete in a single time slot. We consider
that a server consumes at full capacity a power of Ps.

The main difference with previous paper [3] concern the energy consumption
model. In [3], the model only considered the processing cost, that is the con-
sumption of servers during the processing time. The switching ON/OFF costs
were only used to evaluate the performance of resulting algorithms. In this pa-
per, we take into account the switching ON/OFF costs in the basis model. More
precisely, we consider that the switches are done at beginning of the time slots,
and that the switching time is negligible compared to the time slot duration. For
example, the duration to turn on will not impact the number of VM executed in
the remaining time. We compute in this paper the energy at the scale of the time
slots, and we do not evaluate if the energy is used mostly at beginning or at the
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Fig. 1. Considered cloud model from [3].

end on a time slot. Therefore, in our model, the energy consumption, likewise
the energy production, is smoothed on the time slot.

Consequently, the energy consumption of DC; has three possible component.
The first part is the power consumption of each server, and is proportional to
the number of servers ON at current time slot ¢ on DC;, U;(t). The second
part is the costs of switching on servers, proportional to the number of servers
turned on Ut (t) = max(0,U;(t) — U;(t — 1)) and the last on the cost of shutting
down servers, proportional to U, (t) = max(0,U;(t—1) —U;(t)). The total power
consumed by the system is thus

M
ZPS x Ui(t) + Pon x U (t) + Porr x U; (t).
i=1

This power requirement is to be compared with the green power produced at
each data center. We model the green power available at time slot ¢ in data center
DC; as a random variable G;(t) that follows a truncated normal distribution of
mean Fg;(t) and standard deviation p;(t), with lower limit 0. Thus, the brown
power consumed at time slot ¢ in DCj is equal to

mam(07PS X Ul(t) +PON X Uj(t) + POFF X U;(t) — Gl(t))

Our problem consists in allocating VMs to data centers, in order to minimize
the consumption of brown energy. VMs are allocated by time slots. Then, our



objective is to turn ON the adequate number of servers on the best locations
for this criteria. We denote N(t) the number of waiting VMs at time slot t.
We thus need to have enough servers ON for all waiting VMs at time slot t:
Z?il Ui(t) > N(t)/C. All these notations are summarized in Table 1.

Table 1. Table of Notations

Notation‘ Definition
Constants
M Number of data centers
DC; Data center number ¢
S Number of servers in data center ¢
C Maximum number of VMs in parallel on a server
P, Maximum power consumption of a server
Variables
N(t) Number of incoming VMs for time slot t (input)
Ui(t) Number of machines ON at current time slot on data center ¢ (output)
Gi(t) Random variable of the green power produced at time slot ¢
Eg;(t) |Expected green power generation at data center ¢ during time slot ¢ (input)
pi(t) Standard deviation of green power generation on data center ¢ (input)
w Workload portion (number of VM): 0 < w < N(¢) (input)
Ec;(P,t)| Expected brown consumption of data center ¢ with power P at time slot ¢

4 SAGITTA

In this section, we present our approach named SAGITTA: a Stochastic Ap-
proach for Green consumption In disTributed daTA centers. The details for com-
puting the expected green and brown consumption are provided in Section 4.1.
SAGITTA’s algorithms are presented in Section 4.2 and its local optimality is
demonstrated in Section 4.3.

4.1 Expected green and brown consumption

We now evaluate the expected brown power consumption of data center DC; at
time ¢, consuming power P, Ec;(P,t). We first evaluate the density function of
the random variable of the green power generation of DC; at time t G;(¢).
Let X be a random variable following a normal distribution of parameters
Eg;(t) and p;(t), density function
1 _%(f*Egﬁt))Q

p; ()



and distributive function
t— Egi(t)
P(t) = <1 + erf ()) .
pi(t)V2

PO< X <x)
P(X >0)

N |

Then, for x > 0,
PGi(t) <z)=P(X <z|X >0) =

and the density function of G;(t) equals ¢;(t) = %.

Let B;(t) be the random variable of the brown consumption of DC; at time
slot ¢. Then, as shown in [3], we have:

®(P) — &(0) 20(0) — ¢(P)
Ec;(P,t) = (P — Egi(t))w —pi(t) T 1-9(0)
with ¢(z) = me*%(%&gm)z and &(z) = 3 (1 +erf (%)g\/%)))

In the following, if the considered time slot is clear, we simply note Ec;(P)
for the expected brown power consumption.

4.2 Algorithms description

Our SAGITTA approach uses several algorithms to take decisions and allocate
VMs to physical servers. These algorithms are designed to determine at any
time slot on which data center to turn ON and OFF servers. At each time slot,
our constraint is to turn ON the minimum number of servers that allows for
executing all requested VMs, that is [N (t)/C].

Algorithm 1: General algorithm
if Y Ui(t) < [M2] then

1<i<M
Switch on decision; (Algorithm 2)
elseif > Ui(t) > [%1 then
1<i<M
Switch off decision; (Algorithm 3)
end if
Transfer decision; (Algorithm 4)

for 1 <i< M do
Let U;(t) servers on and fill them, switch off the rest;
end for

The general algorithm (Algorithm 1) is designed as follows. It first determines
if the number of servers available is under or over the requested number. If
there is not enough servers ON, Algorithm 2 determines the location of servers



to switch on. If some servers are unnecessary, Algorithm 3 determines where
servers should be shut down. These decisions are done regarding the expected
green energy production in the different data centers. More precisely, Algorithm 2
compares the expected extra cost in brown energy consumption ¢; induced by
an additional server ON on any data centers, and selects the data center with
minimum expected extra cost. The variable U;(t) is then incremented, but the
servers are only switched on at end of Algorithm 1, when all decisions are taken
on any data centers. The same way, Algorithm 3 selects one by one the servers
to switch OFF to maximize the expected gain.

Algorithm 2: Switch on decision

for 1 <i< M do
P, = Ui(t — 1) X Py
Us(t) = U;i(t — 1)
if U;(t) < S; then
Compute ¢; = Ec;(P; + Pon + Ps) — Ec;(Py);
else
¢; = +00;
end if
end for
while Y Ui(t) < [Y2] do
1<i< M
Find j such that ¢; = glin Ci;

1<i<M
Uj (t) + +;
P]+ = PON + Ps
Recompute c;;
end while

Finally, Algorithm 4 evaluates if the brown power consumption could be
reduced by transferring the available processing power from one data center to
another. More precisely, the algorithm determines some location where a fixed
number of servers is turned off, and a new location where the same number of
servers is turned on. One server is selected for switch OFF on the data center of
maximum gain and another one to switch ON on the data center of minimum
cost, if the gain on the first data center exceed the cost on the second one.
The costs and gain are computing with respects to previous preallocation. For
example, the cost of turning a server on is not the same if Algorithm 3 has
decided to turn off a server at previous step, that is if U;(t) < U;(t — 1) or
not. If no such decision was taken, the cost ¢; is the same as in Algorithm 2,
¢i = Ec;(P; + Pon + Ps) — Ec;(P;), that includes the cost to turn on and the
cost of processing. In the other case, turning on a server correspond to cancel a
decision to turn off a server, that is ¢; = E¢;(P; — Porr + Ps) — Ec;(P;). The
same holds for gain g; to turn off a server.



Algorithm 3: Switch off decision
for 1 <7< M do
P =U(t—1)x P,
if U;(t) > 0 then
Compute ¢g; = Ec¢;(P;) — Eci(P; + Porr — Ps);
else
gi = -1
end if
end for
while Y Ui(t) > [Y2] do
1<i<M
Find j such that g; = 1max gi;

<i<M
U;(t) — =
Pj+ = Porr — Ps
Recompute gj;
end while

After running Algorithm 4, general Algorithm 1 applies all these decisions.
The selected number of servers are turned ON and OFF and all VMs are allo-
cated to available servers.

4.3 SAGITTA local optimality

We demonstrate in this section, that Algorithms 2, 3 and 4 are locally optimal.
More precisely, at time slot ¢, with respect to the normal laws (N (Eg;, p;)?))1<i<n,
these algorithms select the best servers to turn on or off, to minimize the expect
brown power consumption. We first consider Algorithm 2.

Theorem 1. Algorithm 2 is locally optimal with respect (N (Egi, pi)?))1<i<m -

Proof. We are studying the execution of SAGITTA during one unique time slot,
so we do not precise ¢ in this proof. For sake of simplicity, we denote in this proof
¢i(P) = Ec;(P+ Pon + Ps) — Ec;(P). We compare Algorithm 2 to any selection
of servers to turn on. We do not compare to a configuration where some servers
are turned on and others turned off.

We first prove that the function ¢;(P) is increasing, and then that this prop-
erty induces the local optimality of Algorithm 2.

L 8(P) - 9(0) [y we(x)dx
Bei(P) =P x =55 — = &(0)




Algorithm 4: Transfer decision

for 1 <7< M do
if Ul(t) > Uz'(t — 1) then
gi = Eci(P;) — Eci(P; — Ps — Pon);
else
g9i = Eci(P;) — Eci(P; + Porr — Ps);
end if
if Ul(t) < Uz‘(t — 1) then
¢; = Ec;(Py — Porr + Ps) — Eci(P);
else
¢i = Ec;(P; + Pon + Ps) — Eci(P;);
end if
end for
while max g; > min c¢; do
1<i<M 1<j<M
Find £ such that g, = max g;;
1<i<M

Find ! such that ¢; = min ¢j;
1<j

<M
Uk(t) — —;
Ui(t) + +;
Recompute g, and Py;
Recompute ¢; and P

end while

z—FEg;

2
with ¢(z) = pi\l/ﬂe_% Pi ) and P(x) = %(1+erf (%ﬂ};)) Let first

evaluate the derivative function of F¢;(P).

_ ®(P)—9(0 4 &(P) P zp(z)de
apEei(P) = (13¢(o§ L+ P x T=a0) ap T=5(0)

&(P)—d(0 4 &(P) [F ap(x)dx
= (1j¢(0§ L4 P x 1250) — ap =5(0)
_ 2P 20) | p oP) _ Po(p)
1-%(0) 1-3(0) ~ 1-2(0)
_ 2(P)—9(0)
= T1-3(0)
Then,

d D(P + P, P,)—®d(P

4 )= (P + Pon + Ps) — 9(P)

apr 1— &(0)

The function @ is strictly increasing, as it is the cumulative distributive
function of law N (Eg;, p;)?). Then, the derivative of function ¢;(U) is strictly
positive, and ¢;(U) is strictly increasing. Intuitively, the more servers are turned
on on a data center, the higher is the ratio of brown power consumption of
this data center.For sake of simplicity, we denote P;(U), the power consumption
corresponding to U servers on on data center DC;. Function P; is clearly strictly
increasing.

We demonstrate now that the local optimality of Algorithm 2 can be deduced
from this property. We consider here the location of servers to turn on, and not



the possible transfers. Let (Ufp t)lgig m be the optimal choice for total brown

power production, and (U™?);<;<as the decision of Algorithm 2.
First denote that by hypothesis, we have 37, ;.\, Ut = di<i<u UM,
Suppose that for some i and j, U?" > UMY and U;’pt < U;llg_

Consider the step of Algorithm 2 at which the last server was decided to be
turned on on DC);. Let U; be the number of servers this algorithm had decided

to turn on on DCj at this step. By definition of Algorithm 2, ¢; (Pj(U]‘-llg -1)) <

¢i(Py(U;)). As proven earlier, ¢;(Py(U;)) < ¢i(Pi(UM9) < ¢;(P(UP" —1)). As
(UP")1<i<as is optimal, then ¢;(P;(U;)) = ci(Py(UM9)) = ¢;(Py(U* — 1)) and

K2 K2 K3

as ¢; and P; are strictly increasing, U™Y = U?"" — 1. Thus, cj(Pj(U]’-llg -1)) =

3 K2

ci(P;(UPY — 1)) and so, the decision to turn on a last server on DC; or DC,

does not impact the expected brown power consumption.
As this property holds for all possible differences between (U;? t)lgig »m and

?

U g )i<i<m, we can conclude that both selections have the same expected

brown power consumption and that (Uialg Ji<i<m is optimal.

O
Theorem 2. Algorithm 8 is locally optimal with respect (N'(Egi,pi)?))1<i<m-

Proof. This demonstration is very similar to the previous one, so we use similar

intermediate results. Let g;(P) = Ec¢;(P)—Ec;(P+Popp—Ps). Then, {59;(P) =

P(P)—P(P+Porr—Ps)
1=9(0)

Now, let (U t)lgig m be the optimal choice for total brown power produc-

, gi(P) is strictly increasing.

tion, and (U; tg )1<i<m the decision of Algorithm 3. Suppose that for some ¢ and
3, Ut > Uflg and U;pt < Uj(-llg. As in previous proof, we denote P;(U) the
power consumption on data center DC; corresponding to U servers on.

Consider the step of Algorithm 3 at which the last server was decided to be
turned off on DC;. Let U; be the number of servers the algorithm had decided
to turn on on DCj at this step. By definition of Algorithm 3, gj(Pj(U;ng +1)) >
g:(P(UL)). We have g:(P,(U3)) = gi(Pi(U)) > g:(P,(U™ +1)). By optimality,
we obtain g;(P;(U;)) = gi(Pi(U")) = gi(P,(U{™ +1)). As gi(P;(P)) is strictly
increasing, U™ = U + 1 and the decision to turn off a last server on DC; or
DC; does not impact the expected brown power consumption.

As in the previous proof, we obtain that (U.alg)lgigM is optimal. O

(2

Theorem 3. Algorithm 4 is locally optimal with respect (N'(Egi,pi)?))1<i<m -

Proof. Let (U? t)lgig m be the optimal choice for total brown power production,

and (Uialg)lgigM the decision of Algorithm 4. Suppose that for some ¢ and j,
Ut > Uialg and Ujopt < Uflg. As previously, P;(U) is the power consumption
on data center DC; for U servers on.

By definition of Algorithm 4, ¢;(P;(U™9)) > g;(P;(U9)). Moreover, we

1 J

know g;i(P(U{™)) = ei(P(Uf™ = 1)) = ¢;(Ri(U")) and g;(P;(U7™ + 1)) <



g5 (P;(U§*9)). Thus, g;(Py(U)) > ¢;(P(UP), U =1 = U and UP' +1 =
U Ja !9 The decision to turn on a last server on DC; and DC; does not impact
the expected brown power consumption.

By induction, we obtain that (U-alg)lgiSM is optimal.

K2

O

We have proven that our algorithms are locally optimal, it means that there
are optimal only regarding the current time slot. It is clear that the only point
in the model that impacts this locality is the switching ON/OFF costs. Without
these costs, the power consumption on current time slot does not depend on
previous time slot. Thus, we obtain the following theorems.

Theorem 4. Algorithm 2 is optimal without switching ON/OFF costs, with re-
spect (N (Egi, pi)?))1<i<nr-

Theorem 5. Algorithm 8 is optimal without switching ON/OFF costs, with re-
spect (N (Egi,pi)?))1<i<m -

Theorem 6. Algorithm j is optimal without switching ON/OFF costs, with re-
spect (N (Egi, pi)?))1<i<u-

5 Computing the optimal

We propose in this section an optimal algorithm that allows to compute the min-
imal power consumption for the whole experiment, knowing the workload trace
and the green power production. This algorithm is then employed to evaluate
the performance of our algorithms in the simulations. Obviously it cannot be
used to allocate VMs, as it is based on complete data knowledge.

This algorithm (Algorithm 5) is a dynamic programming algorithm based on
the concept of configurations. We consider as a configuration, a possible state of
the platform, described by the number of servers on on each data center. More
formally, configuration ¢ at time slot ¢ is defined as ¢ = (kq, ..., kar), where k; is
the number of servers on at time slot ¢ on data center DC; We defined as P(c, )
the minimal power consumption of a schedule for the ¢ first time slots, with k;
servers on on DC; for each 7 at time slot ¢.

We denote L(t) the set of pairs (¢, P(c,t)), for all the possible configurations
for time slot ¢. Notice that the total number of servers on during a time slot
is directly related to the workload, thus >, k; = [N(t)/C]. As the complexity
of this algorithm directly depends on the size of L(¢), this property permits to
strongly reduce the execution time of experiments simulating this algorithm.

This algorithm computes recursively the set L(t) for each time slot ¢, based on
L(t—1). More precisely, it first computes the possible configurations, that is the
set of tuples ¢ = (ki, ..., kar) such that for all 4, k; < S; and ), k; = [N(t)/C].
Then, for each of these tuples, it computes P(c,t) using L(t — 1). To that end,
it considers each possible configuration ¢’ at time slot ¢ — 1 and computes the
power consumption at time slot ¢, based on the number of servers to turn on



Algorithm 5: Optimal algorithm

L(t): list of values (k1, ..., kn, P) where k; is the number of servers ON on
DC; at current time slot and P the lowest brown power consumed with this
final configuration;

for 1 <t < tmnaz do

forall ji, j2,--- ,jm such that Vk,0 < j; < S; and ). ji = [N;/C] do

P = +4o0;
forall (kh et k]u,Ptfl) S L(t — 1) do
if P,_; < P’ then
P =0
for 1 <7< M do
Pi = 0;
if k; > ]7, then
‘ P+ = (ki — ji) X Eorr;
else
‘ P+ = (js — ki) X Eon;
end
P+ = ji X Ps;
P+ = max(0, P, — GP(t))
end
P+= Pi_q;
if P’ < P then
| P=P,
end
end
end
Add (j1,-..,4m, P) in L(t);
end
end

and off during this time slot and the power consumption for the servers on.
When adding to P(c¢/,t — 1), we obtain the minimum power consumption for
t time slots with configuration ¢’ at time ¢t — 1 and ¢ at time . We can then
take the minimum for all (¢/, P(¢/,t — 1)) € L(t — 1) and we obtain P(c,t). L(0)
is initialized with one unique tuple in the configuration ¢, k; = 0 for all ¢ and
P(c,0) = 0, this means all servers off, and no power consumed yet.

6 Validation framework

We evaluate our algorithm through a modeling and simulation (M&S) process.
In the following, we first give an overview of the whole cloud implementation
model (Section 6.1). We then detail our implementation of the data centers
(Section 6.2), of the green power production (Section 6.3), of the cloud workload
(Section 6.4), of the algorithm implementation (Section 6.5), and the different
simulations performed (Section 6.6).



6.1 Simulation overview

The whole cloud implementation model is described in Figure 2. We simulate
data centers using the DCSim (Data Center Simulator) discrete-event M&S
tool [20]. This simulator provides the power consumption of each data center
as a function of time.

We implement our algorithm in an ad-hoc way using the Java language into
a simulated cloud controller. This simulator receives as inputs the green power
production for each data center as well as the cloud workload (i.e. the number
of VMs to deploy on the cloud for each time slot). Based on these inputs and
on SAGITTA’s algorithms, the controller generates for each server the VM allo-
cation and the instructions which are directly sent to the simulated data center
manager.

Note that we do not explicitly model the brown power production as we
assume it to be infinite (at the scale of the cloud). We also ignore the telecom-
munication network as we assume it to have negligible impact on the system
functioning (we assume network to be oversized for our scenario), and an al-
most constant power consumption over time if no energy-saving technique is
applied [14]. Finally, we do not take into account here the energy consumed by
the data centers’ cooling systems.

In order to perform the simulations, we connect all these heterogeneous mod-
els using the MECSYCO (Multi-agent Environment for Complex-SYstem-CO-
simulation) M&S platform [4, 5] which is based on the DEVS (Discrete-EVent
System specification) formalism [24]. We have defined a DEVS interface for DC-
Sim, and implemented it in MECSYCO.
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Fig. 2. Bloc diagram view of the cloud model from [3].



6.2 Data center simulation

Our cloud consists in five homogeneous data centers composed of five clusters.
Each of these clusters contains 80 homogeneous nodes, so overall, the cloud
comprises a total of 400 servers. The characteristics of each server are based
on the Taurus servers of the French experimental testbed Grid’5000%. These
Taurus servers are equipped with 2 Intel Xeon E5-2630 CPU with 6 cores each,
32GB memory, 598GB storage and a 10 Gigabit Ethernet interface. In order to
determine the power consumption of each node, we implement the power model
of [12], which is based on real measurements made on Taurus nodes. These
measurements notably state that a Taurus server consumes 8W when powered
OFF, 97W when idle, and 220W at 100% CPU load (i.e. Ps = 220W for our
algorithm).

Within this cloud, we deploy homogeneous VMs that are equivalent to the
Amazon EC2 ”large” flavor® - i.e. each VM requires 4 CPU cores, SGB memory
and 80GB storage. Hence, three VMs can be simultaneously running on one
node. For the sake of simplicity, we assume that, when deployed, a VM always
works at full capacity. In the same way, we neglect the delays for the VM to
start /stop. All the VMs are automatically deleted at the end of each time slot.
A time slot lasts five minutes in our simulations.

6.3 Green power production

In order to feed the controller during the simulation, we use real recordings of
green power production and real workload traces. We get the former from the
Photovolta project® of the University of Nantes. These recordings correspond
to the power produced by a single Sanyo HIP-240-HDE4 photovoltaic panel
updated every five minutes over one week. In order to have heterogeneous tra-
jectories between data centers (and thus to represent solar irradiance differences
between sites spread across a country), we select recordings starting at different
dates, namely: 4th of September 2016, 2nd of February 2014, 8th of June 2014,
22nd of June 2015 and 21st of December 2014. We consider here that 30 photo-
voltaic panels (for a surface of 165.6m?) are installed at each data center. Then
we scale these photovoltaic signals accordingly.

6.4 Workload input

We use the normalized ClarkNet HTTP trace of [20] for our cloud workload,
shown in Figure 3. This workload trace spans over one week. We scale this
workload to 98% of the cloud total capacity (i.e. the maximal workload peak
represents 98% of the total computing capacity of the cloud). The trace peaks
are synchronized with the photovoltaic signal ones to have proper day-night
cycles in our simulation.

* https://www.grid5000.fr
® https://aws.amazon.com/ec2/
S http://photovolta2.univ-nantes.fr
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Fig. 3. The input workload used in the experiments from [3].

6.5 Algorithm implementation

The controller implementing our SAGITTA approach is run at each time slot (i.e.
each five minutes). It saves all the data received from the green power sources
during the current day. The controller computes at each time slot the standard
deviations p;(t) using this history. It computes each expected green power pro-
duction Eg;(t) by averaging a reference green power production trajectory (the
Photovolta project recording of the 20th of August 2013 in our case which is
the day with the best yield) scaled according to the last green power production
received from i. More precisely, we denote P,..f(t) the green power production at
corresponding hour the day of reference (see Figure 4). We obtain the following
formula:

Eg;(t) = max <O,PVi(t 1)+ Preg(t) — 2ref(t - 1)> .

A — reference
: — actual
—_ d ' - - - estimated
3 : : — Bg(t+D)
5 P
3 e
O e
a, e
=) \ g
Q ]
8 i
&
t 1 >
time (sec)

Fig. 4. Expected green power production computation for a time slot from ¢ to ¢ + 1
from [3].



Note that we consider with this formula that Fg;(t) is equal to the average
between the green power production received at ¢ — 1 and the one estimated at
t. Thus, we take into account that the green power trajectory changes during
the time slot, and not only at its beginning.

In order to minimize the number of ON/OFF cycles for the servers, the
controller fills in priority the hosts already ON. Therefore, from a time slot to
the next one, the controller keeps trace of the employed servers.

6.6 Simulated approaches

We compare SAGITTA performance against two Round-Robin inspired algo-
rithms:

— Round-Robin-VM distributes the VMs fairly between the data centers
regardless their green power production.

— Round-Robin-DC starts filling with VMs the first data center (in an arbi-
trary predefined order). If this data center becomes full, the algorithm starts
using the next one, and so on.

Like SAGITTA, these two algorithms employ in priority the nodes already ON.

As the performance of Round-Robin-DC strongly depends on the order of the
data centers, we test two opposite configurations corresponding to the best and
the worst possible contexts. To define these contexts, we sort the photovoltaic
traces according to the total amount of green energy they provide. We assign then
the traces to the data centers following this order. The best context corresponds
to the case where the photovoltaic traces are sorted in a decreasing order. Thus,
the first data center (i.e. the one filled in priority) will be supplied by the best
photovoltaic power trajectory. The worst context corresponds then to the case
where the traces are sorted in an increasing order (i.e. the data center with the
worst green power supply will always be filled first).

7 Results

Based on the simulation framework described in the previous section, several
experiments were run to validate our proposed approach. The simulations are
performed in order to compare SAGITTA against state-of-the-art approaches
(Section 7.1). The influence of the green energy forecast is analyzed (Section 7.2).
Various green production scenarios are studied to estimate the impact of green
energy location on SAGITTA’s performance (Section 7.3). The scalability of
SAGITTA is evaluated by increasing the number of data centers (Section 7.4).
SAGITTA is compared to the optimal approach (Section 7.5). Finally, we study
the exactness of the green power production forecast (Section 7.6).



7.1 Energy consumption with SAGITTA vs. round-robin
approaches

The second set of simulation integrates the switching ON/OFF costs and esti-
mates their impact on the algorithms’ energy consumption to reflect this point.
Following the data collected by [15] on the Taurus cluster, we add a static energy
consumption penalty of 5.28 Wh (consumed in 150 seconds) for each switch-ON
command, and 0.56 Wh (consumed in 10 seconds) for each switch-OFF command
sent. As shown in Table 2, even when considering these penalties, simulations
show that SAGITTA performs better than the other solutions with a difference
of at least 10%.

Table 2. Total cumulative brown energy consumption.

SAGITTA Round-Robin-VM Round-Robin-DC
Best 2.77 MWh 3.38 MWh 3.02 MWh
Worst 2.77 MWh 3.38 MWh 4.4 MWh

Figure 5 shows the power consumption over time of each data center in the
simulated cloud using SAGITTA. This figure also shows the number of transfers
made by Algorithm 4 - a negative (respectively positive) value meaning that the
algorithm switches off (respectively on) hosts. This plot highlights the usefulness
of the transfer algorithm. For instance, at time 173,700 s. which corresponds to
early morning, DC 2 starts producing green energy slightly earlier than DC 0.
SAGITTA takes then advantage of this situation by performing 19 transfers from
DC 0 to DC 2. Transfers are highly correlated with discontinuities in the green
power production trajectories. Thus, the transfer decision may enable adapt-
ing the VM allocation, and consequently the energy consumption, to unforeseen
increases and decreases of the green power production. In the absence of trans-
fer, the switch on and off decisions enable adapting the DC workload to their
green power production - i.e. the data centers with higher power production are
generally more used than the others.

For the sake of simplicity, in the following, we will consider the best case
for the Round-Robin-DC algorithm (with data centers ranked by their overall
green energy production). All the simulations in the next sections also include
the switching ON/OFF costs.

7.2 Influence of the green energy forecast

One basis of the SAGITTA approach is the green energy production forecast.
The value Eg;(t), namely the expected PV production in DC; at time slot ¢ is
computed regarding the electricity production at time slot ¢ — 1. This approach
permits a simple computation for the value Eg;(t) to parametrize the probability
law of green energy production. However, this formula estimates the electricity
production regarding only the previous time slot, despite of the high volatility of
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Fig. 5. Power consumption per data center with SAGITTA and transfer decisions.

solar energy. We experiment in this section an evaluation of Eg;(t) on a sliding
window of PV production values. We target here the optimal size of the window,
and the weight to give to the values of the different time slots of the window.

We propose several solutions to determine Fg;(t) on a sliding window of size
s. For the sake of simplicity, we denote g;(t) = PV;(t) — Prey(t), with P s(t) the
daily production at same hour, the day of reference. We then make a weighted
average value of values g¢;(t), with weight p;:

P‘/Z(t _ 1) + Ei:1(gi(t*k)><?s—k) + P’ref(t)

22:1 Pr

2

Eg;(t) = maz | 0,

The first variant CST1 uses constant weigths p, = 1 for recent and old values.
In the second variant ADD1, the values of pj increase linearly: pr = k + 1.
Finally, the values of p; are multiplied by 2 at each step in PROD1: p;, = 2*. In
these variants, the computation includes values corresponding to the night, when
PVi(t) and P,y (t) are both null. This impacts the estimation with useless values.
Then, in variants CST2, ADD2 and PROD?2, all values g;(t) corresponding to
Prcf(t) = 0 are removed from the computation. Results of these computations
are detailed in Figure 6.

The first unexpected result is the very low values of the optimal size of the
sliding window. Regardless of the variant, the best size of the window is always
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Fig. 6. Influence of Eg; estimation from [3].

2, with a slight reduction of the brown energy consumed. The good performance
of algorithms PROD1 and PROD2 can be related to the large weight given to
the earliest production values in the computation. The weight given to early
values has indeed a large impact on the variants’ performance.

7.3 Influence of green energy production

Cloud providers need to adequately dimension their on-site photovoltaic panels
(PVs). This issue involves a trade-off between the financial cost of installing and
operating PVs, and the financial gains they are bringing in terms of green energy
produced and thus, electricity that has not to be bought from the regular grid.
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Fig. 7. Influence of green energy production on brown energy consumption from [3].

We perform a set of experiments to determine the influence of green energy
production on SAGITTA performance. As shown in Figure 7, the number of



PVs varies per data center and the total brown power consumption is recorded
over one week. We can see that, as soon as green energy is available, SAGITTA
consumes clearly less brown energy than the other approaches.

Figure 7 also shows that up to about 25 photovoltaic panels, the brown
energy consumption curves have a steeper slope, leading to higher gains per
photovoltaic panels. For more than 25 photovoltaic panels, the energy gains are
lower per added panel. When reaching 45 panels, the green energy production
exceeds the total energy consumption of the data center (represented by the case
with 0 panel). However, this production is concentrated during the day (as shown
in Figure 5), whereas the workload, and consequently the energy consumption,
spans over the day and the night. Thus, when reaching a number of photovoltaic
panels whose production covers most of the Cloud energy consumption during
daylight, adding panels can only save the energy consumption peaks at the be-
ginning and the end of the day (when panels produce less energy), and their
buying cost can thus exceed the monetary gains they generate.

Table 3. The considered cloud scenarios with increasing number of data centers.

Number of data centers 5 10 15 20 25 30 35 40
Total number of nodes 400 400 400 400 400 400 400 400
Number of PV per data centers 30 14 9 7 6 5 4 3

7.4 Scalability of SAGITTA

In order to check if the SAGITTA’s energy savings scale up, we simulate the
power consumption of distributed clouds with a larger number of data centers.
For these different clouds, we progressively increase the number of data cen-
ters, and so the number of green power sources (still taken from the Photovolta
project), while maintaining the same total number of nodes (and so an unchanged
input workload). The total photovoltaic energy production is also kept as steady
as possible by progressively decreasing the number of photovoltaic panels per
data centers. Yet we decided not to consider fractions of panels, so the num-
ber of panels slightly varies between the scenarios to keep whole numbers. The
compositions of these clouds are summed up in Table 3.

As shown in Figure 8, the simulation results discloses that SAGITTA scales
up: it maintains its energy gains in larger clouds, and always consumes less brown
energy than the other approaches. From a computing time point of view, in our
simulation environment, it takes 9 seconds to execute SAGITTA over the whole
workload trace (representing one week) for the case with 5 data centers, and 28
seconds for the case with 40 data centers. While this computing time is increased
by a factor of 3 (when increasing the data center number by a factor of 8), it
still remains inconsequential for the scalability of SAGITTA.
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7.5 Comparison with the optimal

We compare SAGITTA with the optimal solution when considering ON/OFF
switches penalties. In order to compute this optimal solution, we implement the
algorithm 5 in python. Due to the high level of computing resources required,
we parallelize and distribute the first forall loop of the algorithm. For each time
slot, we use 30 hosts of the Grid’5000 platform to run in parallel the algorithm.
Even with this optimization, we only were able to compute the optimal solution
for a cloud composed of 5 data-centers of 20 hosts. The algorithm took about 2
weeks to perform 1 week of simulation.
The results are shown in Tables 4 and 5. We can see that:

— SAGITTA is very close to the optimal solution although it requires way
lesser computing resources than the optimal algorithm.
— SAGITTA still performs better than the other two algorithms.

Table 4. Total cumulative energy consumptions over one week when considering
ON/OFF penalties.

optimal SAGITTA Round-Robin-VM Round-Robin-DC
Best 649,259Wh 666,238Wh 822,204Wh 733,304Wh
Worst 649,259Wh 666,238Wh 822,204Wh 1,086,626 Wh

7.6 Exactness of the green power production forecast

The Table 6 shows the difference between the green power production predicted
by SAGITTA and the actual ones. The Root-Mean-Square Deviation (RMSD)
and the Normalized RMSD (NRMSD) are given in order to allow comparing
SAGITTA with other future green power prediction models. We can see that



Table 5. Percentage of cumulative energy consumptions over the optimal when con-
sidering ON/OFF penalties.

SAGITTA Round-Robin-VM Round-Robin-DC
Best 5.2% 26.6% 12.9%
Worst 5.2% 26.6% 67.4%

SAGITTA makes an average error of only 311.3W, which corresponds by com-
parison to the power consumed by 1.4 working hosts. This is a relatively small
error when considering that the green production of each DC ranges from ap-
proximately OW to 25,000W. This demonstrate that the prediction model of
SAGITTA is accurate.

Table 6. Differences between the green power production predicted by SAGITTA and
the actual ones.

DC1 DC2 DC3 DC4 DC5 Average

Average 243.22W 332.96W 602.51W 303.71 74.44W 311.37TW
Standard deviation 618.96W 884.74W 1456.11W 863.1W 270.21W 921.97TW

RMSD 665.03W 945.32W 1575.84W 914.97W 280.27W 973.13W

NRMSD 2.66% 3.712% 6.22% 4.66% 2.14%  3.83%

8 Conclusion

In this chapter, we consider the problem of optimizing the green energy consump-
tion of a geographically distributed cloud equipped with on-site photovoltaic
panels. We tackle this challenge by distributing the cloud workload (composed
of virtual machines) among the different data-centers.

We propose here a new version of the SAGITTA (a Stochastic Approach for
Green consumption In disTributed daTA centers) approach which is based on
this strategy. SAGITTA relies on a stochastic modeling of the expected green
energy production in order to adequately allocate virtual machines to the data
centers. The approach also switches off unused servers to save energy. In the new
version, SAGITTA now natively takes into account of the energy costs arising
from these on/off switches. This extension of SAGITTA is more robust and offers
slightly better results.

We have proven in this paper that SAGITTA is locally optimal -i.e. that
SAGITTA is optimal regarding the current time slot. In order to evaluate the
performance of SAGITTA when considering the on/off switches costs, we also
proposed a dynamic programming algorithm for computing the optimal energy
consumption of the whole experiment. We conducted a simulation-based evalua-
tion using real workload traces, wattmeter measurements on testbed servers, and
real production traces from photovoltaic panels. We compared SAGITTA with



two round-robin algorithms which do not consider the green energy production
for allocating virtual machines in the cloud. The results show that SAGITTA
can allocate virtual machines in a more energy-efficient way than these tradi-
tional approaches. Moreover, SAGITTA exhibits good results in term of brown
energy consumption with a difference of only 5.2% with the optimal solution
computed by our dynamic programming algorithm. The simulations also show
that SAGITTA can adapt to different green energy production patterns as it
outperforms traditional approaches in all these cases. Finally, we shown that
SAGITTA can smoothly scale with the number of data centers belonging to the
cloud.

In future work, we plan to extend SAGITTA by integrating the ability to
dynamically migrate virtual machines and the energy production from one site to
another. We also want to adapt SAGITTA to continuous (i.e. non time-slotted)
workloads. Finally we want to integrate in our simulation the impact of network
devices on the energy consumption.
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