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Recently, adaptive platooning strategies to cope with uncertain vehicle parameters have been proposed. However, in line with most platooning literature, only acyclic graphs have been considered. This work addresses the merging maneuver in the presence uncertain vehicle parameters: during this maneuver, a cyclic communication graph is instantiated, which must be handled in a suitable way. Ideas used to handle this situation and corresponding results are illustrated using a platoon of three vehicles implementing a merging maneuver.

INTRODUCTION

In automated driving research, a recognized approach for improving road throughput is grouping vehicles into platoons controlled by one leading vehicle [START_REF] Günther | Platooning at traffic lights[END_REF]). In Cooperative Adaptive Cruise Control (CACC) platooning is enabled by inter-vehicle communication in addition to on-board sensors [START_REF] Marsden | Towards an understanding of adaptive cruise control[END_REF]; [START_REF] Li | Dsrc based vehicular platoon control considering the realistic V2V/V2I communications[END_REF]). Several studies have been conducted to develop CACC strategies that guarantee synchronized behavior of vehicle platoons. Under the assumption of vehicle-independent driveline dynamics (homogeneous platoon), [START_REF] Ploeg | l p string stability of cascaded systems: Application to vehicle platooning[END_REF] synthesized a one-vehicle only look-ahead CACC; [START_REF] Hafez | Effect of leader information broadcasted throughout vehicle platoon in a constant spacing policy[END_REF] developed a longitudinal controller based on broadcasting the leading vehicle's acceleration and velocity to all vehicles in the platoon; [START_REF] Kianfar | A control matching model predictive control approach to string stable vehicle platooning[END_REF] integrated safety and physical constraints in CACC by a model predictive controller. Recently, communication failures have been addressed in [START_REF] Acciani | Cooperative adaptive cruise control over unreliable networks: an observerbased approach to increase robustness to packet loss[END_REF], while heterogeneity and uncertainty have been handled adaptively in Harfouch et al. (2017a). Reviews on the practical challenges of CACC were conducted by [START_REF] Dey | A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control (cacc)[END_REF]; [START_REF] Larsson | The vehicle platooning problem: Computational complexity and heuristics[END_REF]. Among the challenges, a relevant one is how to include merging maneuvers in the synchronization protocol: in fact, most works consider operating a platoon under acyclic graphs [START_REF] Harfouch | An adaptive switched control approach to heterogeneous platooning with inter-vehicle communication losses[END_REF]). However, if a vehicle wants to
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merge in the middle of a platoon, a gap must be created for it, so that the merging vehicle needs bidirectional (and thus cyclic) communication for improved safety. Handling cycles in platooning protocols is difficult, because the input of a vehicle turns out to depend on the input of the neighbors (Baldi and Frasca (2018)): this creates algebraic loops that can make the input not well posed, and that is usually solved by assigning priorities to remove the cycles [START_REF] Wang | Hierarchical decomposition based consensus tracking for uncertain interconnected systems via distributed adaptive output feedback control[END_REF]). We remark that, differently from consensus/cooperative internal model frameworks [START_REF] Qu | Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles[END_REF]; [START_REF] Azzollini | Adaptive Synchronization over Uncertain Multi-Agent Systems: A distributed homogenization-based approach[END_REF], we are focusing on a distributed input CACC protocol mutuated from [START_REF] Ploeg | l p string stability of cascaded systems: Application to vehicle platooning[END_REF], for which all aforementioned issues are open. Works considering merging maneuvers include [START_REF] Amoozadeh | Platoon management with cooperative adaptive cruise control enabled by VANET[END_REF]; [START_REF] Maiti | A conceptualization of vehicle platoons and platoon operations[END_REF] (vehicle entry and leaving via finite state machines); [START_REF] Scarinci | Definition of a merging assistant strategy using intelligent vehicles[END_REF] (creating merging gaps for on-ramp vehicles); [START_REF] Chien | Regulation layer controller design for automated highway system: Platoon merge and split controller design[END_REF] (platoon merge and split); [START_REF] Rai | Real and virtual leader-follower strategies in lane changing, merging and overtaking maneuvers[END_REF]; [START_REF] Bengtsson | Interaction protocol for highway platoon merge[END_REF]; [START_REF] Goli | Evaluation of lateral trajectories with different controllers for multi-vehicle merging in platoon[END_REF] (lane changing, merging and overtaking). Heterogeneity and uncertainty are often overlooked in the aforementioned works, and the merging maneuver is not embedded in any synchronization protocol: in this work we want to tackle these issues by showing that synchronization can be extended to the merging manuevers. In addition, we show how to exploit the graph structure to guarantee well posedness of the actual inputs at every time instant.

CACC SYSTEM STRUCTURE

Consider a heterogeneous platoon with M vehicles (Fig. 1), where v i and d i represent the velocity (m/s) of vehicle i, and the distance (m) between vehicle i and its preceding vehicle i -1, respectively. Let us define S M = {i ∈ N| 1 ≤ i ≤ M } with i = 0 reserved for the platoon's desired behavior (virtual leading vehicle). In line with most CACC literature, we will focus on the longitudinal dynamics only, while for the lateral dynamics a separate steering controller is assumed to be in place. The following longitudinal model, derived by Ploeg et al. (2011), is used

  ḋi vi ȧi   =   0 1 0 0 0 1 0 0 -1 τi   Ai d i v i a i xi +   0 0 1 τi   bi u i , i ∈ S M (1)
where a i and u i are respectively the acceleration (m/s 2 ) and external input (m/s 2 ) of the i th vehicle, τ i (s) represents each vehicle's driveline time constant. Furthermore, the virtual leading vehicle is defined as

  ḋ0 v0 ȧ0   =   0 1 0 0 0 1 0 0 -1 τ0   d 0 v 0 a 0 +   0 0 1 τ0   u 0   ḋ0 v0 ȧ0   = 0 1 0 0 0 1 a 01 a 02 a 03 Am d 0 v 0 a 0 xm + 0 0 b 00 bm r (2) 
where the second equation has been obtained assuming that the lead vehicle is controlled by a state-feedback controller u 0 = k * 0 x m + l * 0 r that makes its dynamic stable: therefore a 01 , a 02 , a 03 are design parameters selected such that the matrix A m is Hurwitz. Note that, under the assumption of a homogeneous platoon, we have τ i = τ 0 , ∀i ∈ S M . In this work, we remove the homogeneous assumption by considering that ∀i ∈ S M , τ i is an unknown parameters. The motivation is that, in practice, τ i sensibly changes according to vehicle and road conditions.

The main goal of every vehicle, except the leading vehicle, is to maintain a desired distance between itself and its preceding vehicle. To this purpose, a constant distance headway (CDH) spacing policy defines the desired distance r ij (t) between vehicles i and j (r ij depends on time because it can change during the merging manuever). Then, it is possible to define the state error (spacing distance, the relative velocity, and relative acceleration) between the j th and the i th vehicle as:

e ji (t) = d j (t) v j (t) a j (t) - d i (t) v i (t) a i (t) + r ji (t) 0 0 . ( 3 
)
The error (3) includes the spacing distance, the relative velocity, and relative acceleration. Because we consider platoon formations during merging maneuvers, (3) will be defined among two adiacent vehicles for which a communication link is instantiated. The control objective is to regulate e ji to zero for all such adjacent vehicles. In the next section, we present how r ij and the network topology itself change during the merging manuever.

THE SYNCHRONIZATION PROTOCOL

Fig. 2. Communication graph before/during/after merging

To describe the merging manuever, let us consider the networks in Fig. 2. Three vehicles, denoted with indices 1, 2 and 3, have uncertain dynamics

ẋ1 = A 1 x 1 + b 1 u 1 ẋ3 = A 3 x 3 + b 3 u 3 ẋ2 = A 2 x 2 + b 2 u 2 (4) where A 1 , A 2 , A 3 and b 1 , b 2 , b 3 are
unknown matrices in the form of (1). Vehicle 3 is indicated before vehicle 2 because we aim at merging vehicle 3 in between vehicles 1 and 2. Consider the virtual leader ẋm = A m x m + b m r (5) where A m and b m are known matrices in the form of (2). Fig. 2 shows that, before attempting to merge, vehicle 3 aligns to vehicle 2 (network 1). When the merging starts (network 2), a cyclic graph appears (bidirectional link between vehicles 2 and 3) and vehicle 2 increases its distance from vehicle 1. The bidirectional link between vehicle 2 and vehicle 3 is used for safety reasons by vehicle 2 to watch the behavior of vehicle 3 and vice versa (as it happens in merging manuevers operated by humans). Finally, in network 3, the merging is complete and a new acyclic directed network is established between the three vehicles. The following CDH spacing policies are considered:

• Network 1: r 32 = 0 and r 21 = ρ for a certain design parameter ρ; • Network 2: r 21 increases linearly from ρ to 2ρ, r 32 decreases linearly from 0 to -ρ, and r 31 = ρ; • Network 3: r 31 = ρ and r 23 = ρ.

Being the system matrices in (4) unknown, the synchronization task has to be achieved in an adaptive fashion. The following result, mutuated from (Baldi and Frasca (2018)), justifies that the adaptive problem is well posed in the sense of [START_REF] Tao | Adaptive Control Design and Analysis[END_REF]; [START_REF] Ioannou | Robust Adaptive Control[END_REF]). Proposition 1. [Distributed matching conditions] For dynamics in the form (1) and (2), there exist vectors k

* 1 , k * 2 , k * 3 and scalars l * 1 , l * 2 , l * 3 such that A m = A 1 + b 1 k * 1 , b m = b 1 l * 1 A m = A 2 + b 2 k * 2 , b m = b 2 l * 2 A m = A 3 + b 3 k * 3 , b m = b 3 l * 3 . (6) 
In addition, the signs of l * 1 , l * 2 , l * 3 are positive, and there exist vectors

k * 21 = k * 2 -k * 1 l * 2 /l * 1 , k * 31 = k * 3 -k * 1 l * 3 /l * 1 , k * 32 = k * 3 -k * 2 l * 3 /l * 2 , k * 23 = k * 2 -k * 3 l * 2 /l * 3 and scalars l * 21 = l * 2 /l * 1 , l * 31 = l * 3 /l * 1 , l * 32 = l * 3 /l * 2 , l * 23 = l * 2 /l * 3 such that A 1 = A 2 + b 2 k * 21 , b 1 = b 2 l * 21 A 1 = A 3 + b 3 k * 31 , b 1 = b 3 l * 31 A 2 = A 3 + b 3 k * 32 , b 2 = b 3 l * 32 A 3 = A 2 + b 2 k * 23 , b 3 = b 2 l * 23 . (7) 
The adaptive controller is now presented: because the controller for the acyclic networks 1 and 3 can be easily derived using the approach in (Baldi and Frasca (2018)), in the following we will focus on the cyclic network 2.

The adaptive controller

The synchronization of vehicle 1 to the reference model is the well-known model reference adaptive control (Tao, 2003, Chap. 4): it amounts to the controller u 1 (t) = k 1 (t)x 1 (t) + l 1 (t)r(t) (8) and to the adaptive laws

k 1 (t) = -γ k b m P e 1 (t)x 1 (t) l1 (t) = -γ l b m P e 1 (t)r(t) (9 
) where e 1 = e 10 = x 1 -x m , k 1 , l 1 are the estimates of k * 1 , l * 1 , the scalars γ k , γ l > 0 are adaptive gains, and P is a positive definite matrix satisfying 32 respectively. Then, provided that the inputs are well defined at very time instant, vehicle 2 synchronizes to vehicles 1 and 3, while vehicle 3 synchronizes to vehicles 1 and 2 (i.e. merging is achieved in network 2). Proof 1. Proving synchronization exploits the Lyapunov function

P A m + A m P = -Q, Q > 0. ( 10 
u 3 (t) = k 31 (t) x 1 (t) 2 + k 32 (t) x 2 (t) 2 + k 3 (t)
V 1 + V 231 + V 321 , where V 1 = e 1 P e 1 + tr k i ki γ k |l * i | + l2 i γ l |l * i | V 231 = e 231 P e 231 + tr k 21 k21 γ k |l * 2 | + tr k 23 k23 γ k |l * 2 | +tr k 2 k2 γ k |l * 2 | + l2 21 γ l |l * 2 | + l2 23 γ l |l * 2 |
V 321 = e 321 P e 321 + tr

k 31 k31 γ k |l * 3 | + tr k 32 k32 γ k |l * 3 | +tr k 3 k3 γ k |l * 3 | + l2 31 γ l |l * 3 | + l2 32 γ l |l * 3 | . ( 15 
)
and the error dynamics, as depicted in Fig. 3 are 16) where e 231 = e 21 +e 23 and e 321 = e 31 +e 32 . Using standard Lyapunov arguments and the Barbalat's lemma we can show V1 + V231 + V321 → 0 as t → ∞ and hence all errors go to zero.

ė1 = A m e 21 + b 1 ( k 1 x 1 + l1 r) ė231 = A m e 231 + b 2 ( k 21 x 1 + k 2 e 21 + l21 u 1 ) +b 2 ( k 23 x 3 + k 2 e 23 + l23 u 3 ) ė321 = A m e 321 + b 3 ( k 31 x 1 + k 3 e 31 + l31 u 1 ) +b 3 ( k 32 x 2 + k 3 e 32 + l32 u 2 ) (

Fig. 3. The synchronization errors

Theorem 1 assumes that the inputs are well defined at very time instant. Therefore, the presence of a cycle in network 2 requires us to find some well-posedness conditions on the input, as discussed in next section.

WELL-POSEDNESS OF THE INPUT

By considering network 2 in Fig. 2, the inputs to the three vehicles can be written as or, in a more compact matrix form

u 1 (t) = k 1 (t)x 1 (t) + l 1 (t)r(t) 2u 2 (t) = k 21 (t)x 1 (t) + k 2 (t)(x 2 (t) -x 1 (t)) + l 21 (t)u 1 (t) + k 31 (t)x 3 (t) + k 2 (t)(x 2 (t) -x 3 (t)) + l 23 (t)u 3 (t) 2u 3 (t) = k 31 (t)x 1 (t) + k 3 (t)(x 3 (t) -x 1 (t)) + l 31 (t)u 1 (t) + k 32 (t)x 2 (t) + k 3 (t)(x 3 (t) -x 2 (t)) + l 32 (t)u 2 (t). ( 17 
1 0 0 -l 21 2 -l 23 -l 31 -l 32 2 U u 1 u 2 u 3 = k 1 x 1 + l 1 r (k 21 -k 2 )x 1 + 2k 2 x 2 + (k 31 -k 2 )x 3 (k 31 -k 3 )x 1 + (k 32 -k 3 )x 2 + 2k 3 x 3 .
Even though the vehicles do not need to invert U to obtain their inputs, if we want to guarantee that u 1 , u 2 , and u 3 are well posed at all time steps, we need the matrix U to be invertible. To this purpose, let us calculate the determinant of U , so as to obtain det

1 0 0 -l 21 2 -l 23 -l 31 -l 32 2 = 4 -l 23 l 32 . (18) 
In the ideal case (with the actual parameters from Proposition 1) l * 23 l * 32 = 1, giving an ideal determinant equal to 3. However, in the actual case with the estimated parameters, the determinant of U can take arbitrary values and even result equal to 0. This would make the inputs u 1 , u 2 , and u 3 not well posed at all time steps. A simple approach to guarantee well posedness of the inputs at all time steps is to allow vehicle 2 and vehicle 3 to exchange their estimates l 23 (t) and l 32 (t). This way it is possible to project the estimates in such way that l 23 (t)l 32 (t) = 4 and the matrix U is always invertible. The following assumption is made. Assumption 1. The actual parameters l * 23 and l * 32 are known to reside in a convex compact set (call it Ω l ) that does not contain the set l * 23 l * 32 = 4.

An example of Ω l (among infinite other choices) is l * 23 ≥ 0, l * 32 ≥ 0, l * 23 ≤ -l * 32 + 3.99 as represented in Fig. 4. In general, the set Ω l can be written as Ω l = {l 23 , l 32 | g(l 23 , l 32 ) ≤ 0} (19) for some appropriate vector function g(l 23 , l 32 ). The following main result follows. Theorem 2. Consider the merging phase described by network 2 in Fig. 2. Under Assumption 1, consider the three vehicles described by (4) and the leading vehicle described by (5), the controllers (8), ( 11), ( 13) and the adaptive laws (9), ( 12), ( 14) with the following modifications

l23 (t) = P Ω l [-γ l b m P (e 21 (t) + e 23 (t))u 3 (t) δ l23 (t) ] (20) = δ l23 (t) if l 23 (t) ∈ Ω l , or l 32 (t) ∈ δ(Ω l ) with δ l23 ∇g ≤ 0 0 otherwise l32 (t) = P Ω l [-γ l b m P (e 31 (t) + e 32 (t))u 2 (t) δ l32 (t) ] = δ l32 (t) if l 32 (t) ∈ Ω l , or
l 32 (t) ∈ δ(Ω l ) with δ l32 ∇g ≤ 0 0 otherwise where P Ω l has been defined as a projection operator in the set Ω l . In particular, δ(Ω l ) is the border of Ω l and ∇g is the derivative of g with respect to l 23 or l 32 . Then, merging is achieved in network 2, i.e. e 1 , e 21 , e 23 , e 31 , e 32 → 0. Proof 2. The proof exploits again the Lyapunov function ( 15), and it follows the same lines as adaptive control designs with parameter projection (Ioannou and Sun, 2012, Sects. 6.6 and 8.5). In fact, we have V1 + V231 + V321 ≤ -e 1 Qe 1 -e 231 Qe 231 -e 321 Qe 321 + V p where

V p (t)      = 0 if l 23 (t), l 32 (t) ∈ Ω l , or
l 23 (t) ∈ δ(Ω l ) with δ l23 ∇g ≤ 0, or l 32 (t) ∈ δ(Ω l ) with δ l32 ∇g ≤ 0 ≤ 0 otherwise i.e. V p is a term that due to the convexity of the projection set Ω l verifies V p ≤ 0. Therefore, V p can only make the derivative of the Lyapunov function more negative (Ioannou and Sun, 2012, Sects. 6.6 and 8.5). Hence, V1 + V231 + V321 ≤ -e 1 Qe 1 -e 231 Qe 231 -e 321 Qe 321 and stability follows from Barbalat's lemma as in Theorem 1. The details are left to the reader for lack of space.

Remark 1. Theorem 2 basically states that the structure of the network can be exploited to implement appropriate projection laws (cf. (21)) that make the input well posed at every time instant, even in the presence of cycles. The parameters of the reference model are taken as: a 01 = -4, a 02 = -6, a 03 = -4, and b 00 = 1, while the dynamics of the vehicles in (1) are unknown. Table 1 shows the parameter used to simulate each vehicle i, together with their initial conditions. The reference signal r is taken to be a ramp. The simulations are carried out at low speed (around 2.5m/s) only to better visualize the gaps between vehicles : we have verified that the proposed approach works also at higher speeds. The design parameter are taken as: Q = diag(1, 1, 5), ρ = 7m, the adaptive gains γ k = 0.005, γ l = 0.001, and all coupling gains, k i , k ij , l i , l ij , are initialized to 0. The maneuver is organized as:

NUMERICAL EXAMPLE

-0-30 s: vehicle 3 aligns with vehicle 2, while vehicles 1 and 2 achieve the initial formation. -30-50s: vehicle 2 creates an increasing gap for vehicle 3, while vehicle 3 starts the merging. -50-60s: the final formation is achieved.

Theorems 1 and 2 do not consider switching topologies (cf. Fig. 2). During the different merging phases changes, vehicles 2 and 3 end up having a different number of neighbors, which require to implement a different controller, one for each different topology. Therefore, a switching controller scheme, shown in Fig. 5, and resembling the multiple model control architecture [START_REF] Hespanha | Hysteresis-based switching algorithms for supervisory control of uncertain systems[END_REF]; [START_REF] Baldi | Multi-model unfalsified adaptive switching supervisory control[END_REF]) will be used in this work. Note that vehicles 2 and 3 have: one neighbor in network 1 (vehicle 1 and vehicle 3, respectively); two neighbors in network 2 (vehicles 1 and 3 and vehicles 1 and 2, respectively); one neighbor in network 3 (vehicle 3 and vehicle 2, respectively). Therefore, three adaptive controllers are possible for vehicle 2 and vehicle 3, whose activation depends on the active communication graph during the merging phase (cf. Fig. 2). It was demonstrated that each standalone networked adaptive controller (the two ones derived from (Baldi and Frasca (2018)) for the acyclic networks 1 and 3, and the one derived from Theorem 2 for the cyclic network 2) is stable. The stability of the resulting controller in the presence of switching will be the subject of further studies, using tools from adaptive switched control [START_REF] Sang | Adaptive control of piecewise linear systems: the state tracking case[END_REF]; [START_REF] Yuan | Adaptive asymptotic tracking control of uncertain time-driven switched linear systems[END_REF]). Such literature has shown that when switching among stable adaptive systems occurs, there exists a dwell time for which stability can be derived. The simulation in the next section are performed to show the stability of such switched architecture: note that the proposed merging maneuver has a dwell time of 20 s. . 6, 7, 8, and 9 show the response of p i , v i , a i , and u i , respectively. In Fig. 6, we can observe, in the interval 0-30 seconds (network 1), that vehicles 2 and 3 are at a distance ρ from vehicle 1, at the same time vehicle 1 synchronize to reference model. Then, in the interval 30-50 seconds (network 2), vehicle 2 makes a gap by increasing the distance with vehicle 1 in order to allow vehicle 3 to merge in between vehicle 1 and vehicle 2. Finally, in the interval 50-60 seconds (network 3), vehicle 3 is located at 

CONCLUSIONS

While most platooning literature has focused on acyclic graphs, the merging maneuver requires to handle a cyclic graph. This makes synchronization more difficult, because the input of a vehicle depends on the input of the neighbors which might create not well-defined inputs. In this work we have shown that it is possible to exploit the graph structure to implement appropriate parameter projection and guarantee well posedness of the actual inputs. Future work will include considering unmatched uncertainties [START_REF] Lymperopoulos | Adaptive control of networked distributed systems with unknown interconnections[END_REF]; [START_REF] Romagnuolo | Estimating uncertainties in cooperative networks[END_REF]). Furthermore, to overcome the technical issues that come from switching (Section 5), it might be interesting to consider smoothing/mixing mechanisms [START_REF] Kuipers | Multiple model adaptive control with mixing[END_REF]; [START_REF] Baldi | Stability margins in adaptive mixing control via a Lyapunov-based switching criterion[END_REF]).

Fig. 1 .
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 5 Fig. 5. The switching adaptive control for vehicle k
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 6 Fig. 6. The position response
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 7 Fig. 7. The velocity response
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	+l 31 (t) and the adaptive laws u 1 (t) 2 k 31 (t) = -γ k b m P (e 31 (t) + e 32 (t))x 1 (t) + l 32 (t) u 2 (t) 2 k 32 (t) = -γ 31 , k * (13) 32 , k * 3 , l * 31 , l *

e 31 (t) + e 32 (t) 2 k b m P (e 31 (t) + e 32 (t))x 2 (t) k 3 (t) = -γ k b m P (e 31 (t) + e 32 (t))(e 31 (t) + e 32 (t)) l31 (t) = -γ l b m P (e 31 (t) + e 32 (t))u 1 (t) l32 (t) = -γ l b m P (e 31 (t) + e 32 (t))u 2 (t) (14)

where k

Table 1 .

 1 Vehicles parameters and initial conditions

	Vehicle i	τ i	x i (0)
	Vehicle 1	0.5	[-2,1,0]
	Vehicle 2 0.33 [-15,2,1]
	Vehicle 3	0.2	[-20,2,1]