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Abstract: Using a setting in which the input is communicated among neighbors (without
exchanging any distributed observer variables), the problem of synchronizing an acyclic network
of linear uncertain agents has been formulated recently as a distributed model reference adaptive
control (MRAC) where each agent tries to converge to the model defined by its neighbors. In
this work we show how to parametrize the distributed MRAC in cyclic and undirected graphs.
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1. INTRODUCTION

In recent years, cooperative control of multiagent systems
has received increasing attention, due to its impact in
formation flying, smart energy, traffic, and other areas
(Ren et al. (2007); Bullo et al. (2012)). An important pro-
blem in cooperative control is to achieve in a distributed
way (i.e. using local information) a common behavior for
the entire network: this is the so-called synchronization
problem (Dorfler and Bullo (2014); Turci et al. (2014);
Gibson (2016); Casadei and Astolfi (2017)).
Synchronization has been studied for: uncertain but homo-
geneous agents (Li and Ding (2015); Ding and Li (2016)),
or heterogeneous agents with limited uncertainty (Seyboth
et al. (2016, 2015); Li et al. (2014); Mei et al. (2016)). It re-
sults that synchronization for agents that are concurrently
heterogeneous and uncertain is still a major problem.
Recently, to handle heterogeneity and uncertainty, it has
been proposed to formulate the synchronization problem
as a special model reference adaptive control (MRAC) in
which each agents tries to converge to the model defined
by its neighbors (Baldi and Frasca (2018); Harfouch et al.
(2017a)). This formulation is based on ‘feedback matching
gains’ (used to match each agent to the reference model, or
leader) and ‘coupling matching gains’ (used to match each
agent with its neighbors). Adaptive laws for both feedback
and coupling gains are derived via Lyapunov analysis.
The distributed MRAC exploits a communication setting
in which the input is communicated among neighbors (dis-
tributed input approach). This is alternative to another po-
pular approach to synchronization, the distributed observer
approach (Cai et al. (2017); Lu and Liu (2017); Baldi
(2018)) where, in place of the input, an observation of the
leader state is communicated among neighbors. Both the
distributed input and the distributed observer approaches
include a feedforward action and need to communicate
auxiliary variables to the neighbors (inputs and obser-
vations, respectively) to reconstruct the reference signal.

Despite these similarities, the distributed observer scheme
can handle cyclic graphs and undirected graphs, while
the distributed input with MRAC can be applied only
to acyclic directed graphs. For this reason it finds main
application in platooning, where no cyclic communication
occurs Harfouch et al. (2017b).
Even if the distributed observer approach can be used in
a larger number of cases, the distributed input approach
is relevant because the dimension of the input vector is
typically smaller than the dimension of the leader state
vector, and thus communication with distributed inputs
is less cumbersome. While hierarchical architectures have
been proposed to remove cycles in the distributed input
approach (Wang et al. (2016)), the open question that
motivates this work is: is it possible to design MRAC
algorithms based on distributed input with the ability to
handle cyclic and undirected graphs? This work gives a
positive answer by showing that the same MRAC parame-
trization derived for the acyclic graph case can be extended
to cyclic and undirected graphs.
Notation: The transpose of a matrix or of a vector is
indicated with X ′ and x′ respectively. A directed graph
(digraph) is indicated with the pair (N , E), where N is a
finite nonempty set of nodes, and E ∈ N × N is a set of
ordered pair of nodes, called edges. The adjacency matrix
A = [aij ] of an unweighted digraph is defined as aii = 0
and aij > 0 if (j, i) ∈ E , where i 6= j.

2. THE ACYCLIC CASE

Fig. 1. A simple acyclic network



To recall the synchronization results in the acyclic case, let
us consider the network in Fig. 1. Three agents, denoted
with indices 1, 2 and 3, have uncertain dynamics

ẋ1 =A1x1 + b1u1

ẋ2 =A2x2 + b2u2

ẋ3 =A3x3 + b3u3 (1)

where x1, x2, x3 ∈ R
n is the state, u1, u2, u3 ∈ R is the

input, and A1, A2, A3 and b1, b2, b3 are unknown matrices
of appropriate dimensions, with possibly A1 6= A2 6= A3

and b1 6= b2 6= b3. Time index will be omitted whenever
obvious. Consider the reference model

ẋm = Amxm + bmr (2)

where xm ∈ R
n is the state of the reference model, r ∈ R

is its reference input, and Am and bm are known matrices
of appropriate dimensions, with Am being Hurwitz so as
to have bounded state trajectories xm.

The synchronization task is achieved when x1, x2, x3 →
xm for t → ∞. Being the system matrices in (1) unknown,
the synchronization task has to be achieved in an adaptive
fashion. In order to have a well-posed adaptive control
problem, the following assumptions should be verified.

Assumption 1. [Feedback matching conditions] There ex-
ist vectors k∗

1
, k∗

2
, k∗

3
and scalars l∗

1
, l∗

2
, l∗

3
such that

Am = A1 + b1k
∗′

1
, bm = b1l

∗

1

Am = A2 + b2k
∗′

2
, bm = b2l

∗

2

Am = A3 + b3k
∗′

3
, bm = b3l

∗

3
. (3)

Assumption 2. The signs of the input vector fields, i.e. the
signs of l∗

1
, l∗

2
, l∗

3
, are known.

Assumptions 1 and 2 are classical conditions mutuated
from MRAC (Tao (2003); Ioannou and Sun (2012)). We
deal with the single-input case, although extension to the
multi-input is possible following the related multivariable
adaptive control theory. A consequence of Assumption 1
is the existence of coupling gains between neighboring
agents.

Proposition 1. [Coupling matching conditions] There exist
vectors k∗

21
, k∗

31
, k∗

32
and scalars l∗

21
, l∗

31
, l∗

32
such that

A1 = A2 + b2k
∗′

21
, b1 = b2l

∗

21

A1 = A3 + b3k
∗′

31
, b1 = b3l

∗

31

A2 = A3 + b3k
∗′

32
, b2 = b3l

∗

32
. (4)

Proof. To derive (4), we find from (3)

b1 = b2
l∗
2

l∗
1

, A1 −A2 = b2k
∗′

2
− b1k

∗′

1
(5)

which gives k∗′
21

= k∗′
2

− l∗
2

l∗
1

k∗′
1

and l∗
21

=
l∗
2

l∗
1

. Similar

calculations hold for k∗
31
, k∗

32
, l∗

31
, l∗

32
. �

The synchronization of agent 1 to the reference model
is the well-known model reference adaptive control (Tao,
2003, Chap. 4): it amounts to the controller

u1(t) = k′
1
(t)x1(t) + l1(t)r(t) (6)

with k1, l1 the estimates of k∗
1
, l∗

1
, and to the adaptive laws

k̇′
1
=−sgn(l∗

1
)γkb

′

mPe1x
′

1

l̇1 =−sgn(l∗
1
)γlb

′

mPe1r (7)

where e1 = x1 − xm, the scalars γk, γl > 0 are adaptive
gains, and P is a positive definite matrix satisfying

PAm +A′

mP = −Q, Q > 0. (8)

Proving synchronization exploits the Lyapunov function

V1(e1, k̃1, l̃1) = e′
1
Pe1 + tr

(

k̃′ik̃i

γk |l∗i |

)

+
l̃2i

γl |l∗i |
(9)

and the error dynamics

ė1 = Ame21 + b1(k̃
′

1
x1 + l̃1r). (10)

The details are well known, cf. (Tao, 2003, Chap. 4).

The synchronization of agent 2 to agent 1 should avoid the
use of r. This is possible via the controller

u2(t) = k′
21
(t)x1(t)+k′

2
(t)(x2(t)−x1(t))+l21(t)u1(t) (11)

and the adaptive laws

k̇′
21

=−sgn(l∗
2
)γkb

′

mP (x2 − x1)x
′

1

k̇′
2
=−sgn(l∗

2
)γkb

′

mP (x2 − x1)(x2 − x1)
′

l̇21 =−sgn(l∗
2
)γlb

′

mP (x2 − x1)u1 (12)

where k21, k2, l21 are the estimates of k∗
21
, k∗

2
, l∗

21
respecti-

vely. The scalar l∗
2
does not need to be estimated, only its

sign is needed. The adaptation law in (12) is derived via
the dynamics of the error e21 = x2 − x1

ė21 = Ame21 + b2(k̃
′

21
x1 + k̃′

2
e21 + l̃21u1) (13)

with k̃21 = k21 − k∗
21
, k̃2 = k2 − k∗

2
, l̃21 = l21 − l∗

21
. By

taking the Lyapunov function

V21 = e′
21
Pe21+tr

(

k̃′
21
k̃21

γk |l∗2|

)

+tr

(

k̃′
2
k̃2

γk |l∗2|

)

+
l̃2
21

γl |l∗2|
(14)

we can calculate the time derivative of (14) along (13)

V̇21 =−e′
21
Qe21 + 2(sgn(l∗

2
)b′mPe21x

′

1
+ γ−1

k

˙̃
k′
21
)
k̃′
21

|l∗
2
|

+2(sgn(l∗
2
)b′mPe21e

′

21
+ γ−1

k

˙̃
k′
2
)
k̃2

|l∗
2
|

+2(sgn(l∗
2
)b′mPe21u1 + γ−1

l

˙̃
l21)

l̃′
21

|l∗
2
|

=−e′
21
Qe21 (15)

where we have used (12). Using standard Lyapunov ar-

guments and Barbalat’s lemma we can show V̇21 → 0 as
t → ∞ and hence e21 → 0.

To synchronize agent 3 to agents 1 and 2, let us derive the
dynamics of the error e31 = x3 − x1 and e32 = x3 − x2

ė31 =Ame31 + b3(u3 − k∗′
31
x1 − k∗′

3
e31 − l∗

31
u1)

ė32 =Ame32 + b3(u3 − k∗′
32
x2 − k∗′

3
e32 − l∗

32
u2) (16)

which leads us to the controller

u3(t) = k′
31
(t)

x1(t)

2
+ k′

32
(t)

x2(t)

2
+ k′

3
(t)

e31(t) + e32(t)

2

+l31(t)
u1(t)

2
+ l32(t)

u2(t)

2
(17)

and the adaptive laws



k̇′
31

=−sgn(l∗
3
)γkb

′

mP (e31 + e32)x
′

1

k̇′
32

=−sgn(l∗
3
)γkb

′

mP (e31 + e32)x
′

2

k̇′
3
=−sgn(l∗

3
)γkb

′

mP (e31 + e32)(e31 + e32)
′

l̇31 =−sgn(l∗
3
)γlb

′

mP (e31 + e32)u1

l̇32 =−sgn(l∗
3
)γlb

′

mP (e31 + e32)u2 (18)

where k31, k32, k3, l31, l32 are the estimates of k∗
31
, k∗

32
,

k∗
3
, l∗

31
, l∗

32
respectively. We derive the adaptation law in

(18) via the dynamics of the error e321 = e31+e32 and the
Lyapunov function

V321 = e′
321

Pe321 + tr

(

k̃′
31
k̃31

γk |l∗3|

)

+ tr

(

k̃′
32
k̃32

γk |l∗3|

)

+tr

(

k̃′
3
k̃3

γk |l∗3|

)

+
l̃2
31

γl |l∗3|
+

l̃2
32

γl |l∗3|
. (19)

It is possible to verify V̇321 = −e′
321

Qe321 and e321 → 0
using similar Lyapunov arguments as before. This shows
that the state of agent 3 converges to the average of the
states of agents 1 and 2. Since the states of agents 1 and
2 converge to the state xm of the reference model, then
the state of agent 3 will converge to xm as well (cf. Rosa
(2018) for the full details). Overall synchronization can be
proved via the Lyapunov function V1 + V21 + V321.

Remark 1. The adaptation laws (12) and (18) reminds the
setting of systems stabilizing each other through adapta-
tion (Narendra and Harshangi (2014)), with the peculiar
difference that the directed path to the leader makes our
adaptation always stable. On the other hand, (Narendra
and Harshangi (2015)) discusses instability due to the
absence of such leader.

2.1 General acyclic case

Extending from Fig. 1, let us consider a set of N agents

ẋi = Aixi + biui, i ∈ {1, . . . , N} (20)

where agent 1 is the one that can access the reference r in
(2). Assumptions 1 and 2 are generalized to

Am = Ai + bik
∗′

i , bm = bil
∗

i (21)

with known signs of l∗i .

Remark 2. Similarly to Proposition 1, one can verify the
existence, for every pair of agents (i, j), of a constant
vector k∗ji and a scalar l∗ji such that

Ai = Aj + bjk
∗′

ji, bj = b2l
∗

ji. (22)

For convenience of notation, let us rewrite (2) as

ẋ0 = A0 + x0 + b0u0 (23)

with x0 = xm, Am = A0 + b0k
∗′

0
, b0l

∗

10
= bm, u0 =

k∗′
0
x0 + l∗

0
r, where k∗

0
, l∗

0
are known and do not need to

be estimated. This gives the controller (equivalent to (6))

Fig. 2. Simple undirected (left) and cyclic (right) networks

u1(t) = k′
10
(t)x1(t) + k′

1
(t)(x1(t)− x0(t)) + l10(t)u1(t).

(24)
Under the following assumption a synchronization result
holds.

Assumption 3. The directed communication graph is acy-
clic. In addition, the graph contains a directed spanning
tree with the leader as the root node.

Theorem 1. Under Assumptions 1-3, consider the linear
systems (20), with reference model (23), controllers

uj(t) =

∑N

i=0
aijk

′

ji(t)xi(t)
∑N

i=0
aij

+ k′j(t)

∑N

i=0
aij(xj(t)− xi(t))
∑N

i=0
aij

+

∑N

i=0
aij lji(t)ui(t)
∑N

i=0
aij

(25)

with the index i = 0 used for the reference model (i.e.
aj0 6= 0 only for the root node), and update laws

k̇′ji =−sgn(l∗j )γkb
′

mP

[

N
∑

i=0

aijeji

]

x′

i

k̇′j =−sgn(l∗j )γkb
′

mP

[

N
∑

i=0

aijeji

][

N
∑

i=0

aijeji

]′

l̇ji =−sgn(l∗j )γlb
′

mP

[

N
∑

i=0

aijeji

]

ui (26)

where eji = xj − xi, and kji, ki, lji are the estimates of
k∗ji, k

∗

i , l
∗

ji respectively. Then, all closed-loop signals are
bounded and ei = xi − xm, eji = xj − xi, with i, j such
that aij 6= 0, converge asymptotically to zero.

Proof 1. The proof uses the Lyapunov function

V =

N
∑

j=1

[

N
∑

i=0

aijeji

]′

P

[

N
∑

i=0

aijeji

]

+

N
∑

j=1

tr

[

k̃′j k̃j

γk
∣

∣l∗j
∣

∣

]

+

N
∑

j=1

N
∑

i=0

aijtr

[

k̃′jik̃ji

γk
∣

∣l∗j
∣

∣

]

+

N
∑

j=1

N
∑

i=0

aij
l̃2ji

γl
∣

∣l∗j
∣

∣

(27)

Stability tools are similar as before and left to the reader.
�

3. THE CYCLIC AND UNDIRECTED CASE

To understand the effect of cycles and undirected links, let
us consider the undirected network of Fig. 2 (left). Let us
assume we can calculate the inputs using the same method
of Theorem 1. The ideal control actions are

2u1 = k∗′
1
x1 + l∗

1
r + k∗′

1
(x1 − x2) + k∗′

12
x2 + l∗

12
u2

u2 = k∗′
2
(x2 − x1) + k∗′

21
x1 + l∗

21
u1. (28)

In order to unequivocally determine u1 and u2, the follo-
wing equation should have a unique solution

[

2 −l∗
12

−l∗
21

1

] [

u1

u2

]

=

[

k∗′
1
(2x1 − x2) + l∗

1
r + k∗′

12
x2

k∗′
2
(x2 − x1) + k∗′

21
x1

]

.

From Proposition 1 we have l∗
12
l∗
21

= 1, so the determinant
of the square matrix above is 2 − l∗

12
l∗
21

= 1, and the



ideal inputs u1 and u2 are well defined. In addition, the
synchronization error dynamics with the ideal gains is

ė1 + ė12 = 2A1x1 + b1k
∗′

1
x1 + b1l

∗

1
r −Amxm − bmr

−b1k
∗′

1
x2 + k∗′

12
x2 + l∗

12
u2 −A2x2 − b2u2

ė21 =A2x2 + b2k
∗′

2
(x2 − x1) + b2k

∗′

21
x1 + b2l

∗

21
u1

−A1x1 − b1u1 (29)

which leads to

ė1 + ė12 = Am(e1 + e12), ė21 = Ame21. (30)

Let us now consider the directed cyclic network of Fig.
2 (right) and calculate the inputs using the method of
Theorem 1

2u1 = k∗′
1
x1 + l∗

1
r + k∗′

1
(x1 − x3) + k∗′

13
x3 + l∗

13
u3

u2 = k∗′
2
(x2 − x1) + k∗′

21
x1 + l∗

21
u1

u3 = k∗′
3
(x3 − x2) + k∗′

32
x2 + l∗

32
u2. (31)

In order to unequivocally determine u1, u2 and u3, the
following equation should have a unique solution

[

2 0 −l∗
13

−l∗
21

1 0
0 −l∗

32
1

][

u1

u2

u3

]

=

[

2k∗′
1
x1 + l∗

1
r − (k∗

1
− k∗

13
)′x3

k∗′
2
(x2 − x1) + k∗′

21
x1

k∗′
3
(x3 − x2) + k∗′

32
x2

]

.

The determinant of the square matrix above is 2 −
l∗
13
l∗
21
l∗
32

= 1, so even in this case the ideal inputs u1, u2 and
u3 are well defined. In addition, using similar calculations
as in the previous case, it is possible to show that

ė1 + ė13 =Am(e1 + e13)

ė21 = Ame21, ė32 = Ame32. (32)

Moving beyond the analysis with ideal input, we have that
in the presence of parametric uncertainties, the following
result, which extends the parametrization in (Baldi and
Frasca (2018)) to general graphs, holds.

Theorem 2. Under Assumptions 1 and 2, for any pair of
agents (j, i), the dynamics of the synchronization error

N
∑

i=0

aij ėji =Am

N
∑

i=0

aijeji + bj · (33)

[

N
∑

i=0

aij k̃
′

jixi + k̃′j

N
∑

i=0

aijeji +
N
∑

i=0

aij l̃jiui

]

holds independently of the network connection.

Proof 2. The parametrization (33) turns out to be inde-
pendent on the network connection thanks to the fact that
all error dynamics can be homogenized to the reference
model (Am, bm) via appropriate control gains. Therefore,
the dynamics can be summed (cf. (29) or (32)) even in the
presence of cycles and undirected links. �

Given the parametrization (33), one might be tempted to
say that the algorithm in Theorem 1 can be used straig-
htforwardly with the Lyapunov function (27). However,
some attention must be paid when doing this: in fact,
the actual input uj may be not well defined for all time
instants on general graphs. To explain this point, let us

collect all inputs in (25) on the left-hand side, leading to

U [u1 · · · uN ]
T
= [β1 · · · βN ]

T
for an appropriate square

matrix U depending on the estimates lji. On directed acy-
clic graphs, U can be made upper triangular, with positive
weights in its main diagonal, thus U is always invertible.
On general graphs, the invertibility of U depends on lji

1 .
Despite this difficult analytic aspect, the simulations in
the next section show that the algorithm in Theorem 1
can handle networks beyond Assumption 3, and U turns
out to be invertible at all time instants.

Remark 3. The expression after (31) reveals that the agent
are ‘fictitiously’ inverting the matrix U by only using
neighbors’ information. How such inversion is robust to
delays is an open problem worth of future investigation.

4. SIMULATIONS

Fig. 3. Acyclic, cyclic and undirected networks

The simulations are carried out on a directed acyclic net-
work, on a directed cyclic network, and on an undirected
network, as shown in Fig. 3. Node 1 acts as the leader node
and the reference model is indicated as agent 0. The agents
are second-order linear agents in the canonical form

ẋi =

[

0 1
a1i a2i

]

xi +

[

0
b1i

]

ui (34)

with coefficients and initial conditions as in Table 1. The
matrices are given in terms of ẋ0 = Amx0 + bmr for the
reference model and ẋi = Aixi + biui, i ∈ {1, . . . , N} for
the other agents. The other design parameters are taken
as: γk = 3, γl = 0.3, Q = diag(1, 3), and all estimated
gains are initialized to 0. Also note that sgn(l∗i ) = 1, ∀i.
The simulations are carried out for a sinusoidal reference
r of frequency 0.2 rad/s and amplitude 1. For the acyclic
network, the resulting synchronization is shown in Figs. 4
and 7. All states converge asymptotically to the state of
the reference model.

Table 1. Coefficients and initial conditions of agents

a1 a2 b1 x0

agent #0 -0.5 -1 1 [1 − 1]′

agent #1 -1 2 1 [1 1]′

agent #2 -0.75 2.5 0.5 [−1 − 1]′

agent #3 -1.25 2 1.25 [−1 0]′

agent #4 -0.5 1 0.75 [0 1]′

agent #5 -0.75 1 1.5 [1 0]′

agent #6 -1.5 2.5 1 [−1 1]′

In the directed cyclic graph, two cycles are present (2-3-4
and 4-5-6). Using the same parameters as in the previous
simulations, the resulting synchronization is shown in Figs.
5 and 8. It can be seen that synchronization is slightly fas-
ter, at the price of a larger magnitude of the input. Finally,
for the undirected graph the synchronization is shown in
Figs. 6 and 9). It is observed that having bidirectional
connections does not necessarily help synchronization: sy-
nchronization is slower than in the previous cases.
1 A companion paper (Baldi et al. (2018)) shows that appropriate
parameter projection can guarantee invertibility of U .
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Fig. 4. Acyclic network: state/input for reference model
(dashed) and agents (solid)
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Fig. 5. Cyclic network: state/input for reference model
(dashed) and agents (solid)
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Fig. 7. Acyclic network: state synchronization errors for
all agents
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Fig. 8. Cyclic network: state synchronization errors for all
agents
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Fig. 9. Undirected network: state synchronization errors
for all agents



5. CONCLUSIONS

We studied synchronization of uncertain agents via a
MRAC formulation with distributed input. We showed
that the parametrization derived for the acyclic case (Baldi
and Frasca (2018)) can be extended to more general
graphs. Despite a suitable Lyapunov function exists and
ideal inputs (with ideal gains) might be well defined, it
is difficult to prove that the actual inputs (with estimated
gains) are well defined for all time instant. Simulations sug-
gest so. Future work will include considering unmatched
uncertainties (Lymperopoulos and Ioannou (2016)) and
switching topologies by using adaptive switching strategies
(Sang and Tao (2012); Yuan et al. (2017)).
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