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    Adaptive state-feedback synchronization with distributed input: the cyclic case

INTRODUCTION

In recent years, cooperative control of multiagent systems has received increasing attention, due to its impact in formation flying, smart energy, traffic, and other areas [START_REF] Ren | Information consensus in multivehicle cooperative control[END_REF]; [START_REF] Bullo | Gossip coverage control for robotic networks: Dynamical systems on the space of partitions[END_REF]). An important problem in cooperative control is to achieve in a distributed way (i.e. using local information) a common behavior for the entire network: this is the so-called synchronization problem [START_REF] Dorfler | Synchronization in complex networks of phase oscillators: A survey[END_REF]; [START_REF] Turci | Adaptive pinning control: A review of the fully decentralized strategy and its extensions[END_REF]; [START_REF] Gibson | Adaptation and synchronization over a network: Asymptotic error convergence and pinning[END_REF]; [START_REF] Casadei | Multi-pattern output consensus in networks of heterogeneous nonlinear agents with uncertain leader: a nonlinear regression approach[END_REF]). Synchronization has been studied for: uncertain but homogeneous agents [START_REF] Li | Distributed adaptive consensus and output tracking of unknown linear systems on directed graphs[END_REF]; [START_REF] Ding | Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs[END_REF]), or heterogeneous agents with limited uncertainty [START_REF] Seyboth | Cooperative control of linear multi-agent systems via distributed output regulation and transient synchronization[END_REF][START_REF] Seyboth | On robust synchronization of heterogeneous linear multi-agent systems with static couplings[END_REF]; [START_REF] Li | Distributed robust consensus control of multi-agent systems with heterogeneous matching uncertainties[END_REF]; [START_REF] Mei | Distributed consensus of second-order multi-agent systems with heterogeneous unknown inertias and control gains under a directed graph[END_REF]). It results that synchronization for agents that are concurrently heterogeneous and uncertain is still a major problem. Recently, to handle heterogeneity and uncertainty, it has been proposed to formulate the synchronization problem as a special model reference adaptive control (MRAC) in which each agents tries to converge to the model defined by its neighbors (Baldi and Frasca (2018); Harfouch et al. (2017a)). This formulation is based on 'feedback matching gains' (used to match each agent to the reference model, or leader) and 'coupling matching gains' (used to match each agent with its neighbors). Adaptive laws for both feedback and coupling gains are derived via Lyapunov analysis. The distributed MRAC exploits a communication setting in which the input is communicated among neighbors (distributed input approach). This is alternative to another popular approach to synchronization, the distributed observer approach [START_REF] Cai | The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems[END_REF]; [START_REF] Lu | Cooperative output regulation of linear multi-agent systems by a novel distributed dynamic compensator[END_REF]; [START_REF] Baldi | Cooperative output regulation of heterogeneous unknown systems via passification-based adaptation[END_REF]) where, in place of the input, an observation of the leader state is communicated among neighbors. Both the distributed input and the distributed observer approaches include a feedforward action and need to communicate auxiliary variables to the neighbors (inputs and observations, respectively) to reconstruct the reference signal. Despite these similarities, the distributed observer scheme can handle cyclic graphs and undirected graphs, while the distributed input with MRAC can be applied only to acyclic directed graphs. For this reason it finds main application in platooning, where no cyclic communication occurs [START_REF] Harfouch | An adaptive switched control approach to heterogeneous platooning with inter-vehicle communication losses[END_REF]. Even if the distributed observer approach can be used in a larger number of cases, the distributed input approach is relevant because the dimension of the input vector is typically smaller than the dimension of the leader state vector, and thus communication with distributed inputs is less cumbersome. While hierarchical architectures have been proposed to remove cycles in the distributed input approach [START_REF] Wang | Hierarchical decomposition based consensus tracking for uncertain interconnected systems via distributed adaptive output feedback control[END_REF]), the open question that motivates this work is: is it possible to design MRAC algorithms based on distributed input with the ability to handle cyclic and undirected graphs? This work gives a positive answer by showing that the same MRAC parametrization derived for the acyclic graph case can be extended to cyclic and undirected graphs. Notation: The transpose of a matrix or of a vector is indicated with X ′ and x ′ respectively. A directed graph (digraph) is indicated with the pair (N , E), where N is a finite nonempty set of nodes, and E ∈ N × N is a set of ordered pair of nodes, called edges. The adjacency matrix A = [a ij ] of an unweighted digraph is defined as a ii = 0 and a ij > 0 if (j, i) ∈ E, where i = j.

THE ACYCLIC CASE

Fig. 1. A simple acyclic network

To recall the synchronization results in the acyclic case, let us consider the network in Fig. 1. Three agents, denoted with indices 1, 2 and 3, have uncertain dynamics

ẋ1 = A 1 x 1 + b 1 u 1 ẋ2 = A 2 x 2 + b 2 u 2 ẋ3 = A 3 x 3 + b 3 u 3 (1)
where The synchronization task is achieved when x 1 , x 2 , x 3 → x m for t → ∞. Being the system matrices in (1) unknown, the synchronization task has to be achieved in an adaptive fashion. In order to have a well-posed adaptive control problem, the following assumptions should be verified. Assumption 1. [Feedback matching conditions] There ex-

x 1 , x 2 , x 3 ∈ R n is the state, u 1 , u 2 , u 3 ∈ R
ist vectors k * 1 , k * 2 , k * 3 and scalars l * 1 , l * 2 , l * 3 such that A m = A 1 + b 1 k * ′ 1 , b m = b 1 l * 1 A m = A 2 + b 2 k * ′ 2 , b m = b 2 l * 2 A m = A 3 + b 3 k * ′ 3 , b m = b 3 l * 3 . (3) 
Assumption 2. The signs of the input vector fields, i.e. the signs of l * 1 , l * 2 , l * 3 , are known. Assumptions 1 and 2 are classical conditions mutuated from MRAC [START_REF] Tao | Adaptive Control Design and Analysis[END_REF]; [START_REF] Ioannou | Robust Adaptive Control[END_REF]). We deal with the single-input case, although extension to the multi-input is possible following the related multivariable adaptive control theory. A consequence of Assumption 1 is the existence of coupling gains between neighboring agents. 

A 1 = A 2 + b 2 k * ′ 21 , b 1 = b 2 l * 21 A 1 = A 3 + b 3 k * ′ 31 , b 1 = b 3 l * 31 A 2 = A 3 + b 3 k * ′ 32 , b 2 = b 3 l * 32 . (4) 
Proof. To derive (4), we find from ( 3)

b 1 = b 2 l * 2 l * 1 , A 1 -A 2 = b 2 k * ′ 2 -b 1 k * ′ 1 (5) which gives k * ′ 21 = k * ′ 2 - l * 2 l * 1 k * ′ 1 and l * 21 = l * 2 l * 1 . Similar calculations hold for k * 31 , k * 32 , l * 31 , l * 32 .
The synchronization of agent 1 to the reference model is the well-known model reference adaptive control (Tao, 2003, Chap. 4): it amounts to the controller

u 1 (t) = k ′ 1 (t)x 1 (t) + l 1 (t)r(t) (6) with k 1 , l 1 the estimates of k * 1 , l * 1
, and to the adaptive laws

k′ 1 = -sgn(l * 1 )γ k b ′ m P e 1 x ′ 1 l1 = -sgn(l * 1 )γ l b ′ m P e 1 r (7 
) where e 1 = x 1x m , the scalars γ k , γ l > 0 are adaptive gains, and P is a positive definite matrix satisfying

P A m + A ′ m P = -Q, Q > 0. (8) Proving synchronization exploits the Lyapunov function V 1 (e 1 , k1 , l1 ) = e ′ 1 P e 1 + tr k′ i ki γ k |l * i | + l2 i γ l |l * i | (9) 
and the error dynamics ė1 = A m e 21 + b 1 ( k′ 1 x 1 + l1 r).

(10) The details are well known, cf. (Tao, 2003, Chap. 4).

The synchronization of agent 2 to agent 1 should avoid the use of r. This is possible via the controller 11) and the adaptive laws we can calculate the time derivative of ( 14) along ( 13)

u 2 (t) = k ′ 21 (t)x 1 (t)+k ′ 2 (t)(x 2 (t)-x 1 (t))+l 21 (t)u 1 (t) (
k′ 21 = -sgn(l * 2 )γ k b ′ m P (x 2 -x 1 )x ′ 1 k′ 2 = -sgn(l * 2 )γ k b ′ m P (x 2 -x 1 )(x 2 -x 1 ) ′ l21 = -sgn(l * 2 )γ l b ′ m P (x 2 -x 1 )
V21 = -e ′ 21 Qe 21 + 2(sgn(l * 2 )b ′ m P e 21 x ′ 1 + γ -1 k k′ 21 ) k′ 21 |l * 2 | +2(sgn(l * 2 )b ′ m P e 21 e ′ 21 + γ -1 k k′ 2 ) k2 |l * 2 | +2(sgn(l * 2 )b ′ m P e 21 u 1 + γ -1 l l21 ) l′ 21 |l * 2 | = -e ′
21 Qe 21 (15) where we have used (12). Using standard Lyapunov arguments and Barbalat's lemma we can show V21 → 0 as t → ∞ and hence e 21 → 0.

To synchronize agent 3 to agents 1 and 2, let us derive the dynamics of the error e 31 = x 3x 1 and e 32 = x 3 - 16) which leads us to the controller 

x 2 ė31 = A m e 31 + b 3 (u 3 -k * ′ 31 x 1 -k * ′ 3 e 31 -l * 31 u 1 ) ė32 = A m e 32 + b 3 (u 3 -k * ′ 32 x 2 -k * ′ 3 e 32 -l * 32 u 2 ) (
u 3 (t) = k ′ 31 (t) x 1 (t) 2 + k ′ 32 (t) x 2 (t) 2 + k ′ 3 (t)
k′ 31 k31 γ k |l * 3 | + tr k′ 32 k32 γ k |l * 3 | +tr k′ 3 k3 γ k |l * 3 | + l2 31 γ l |l * 3 | + l2 32 γ l |l * 3 | . ( 19 
)
It is possible to verify V321 = -e ′ 321 Qe 321 and e 321 → 0 using similar Lyapunov arguments as before. This shows that the state of agent 3 converges to the average of the states of agents 1 and 2. Since the states of agents 1 and 2 converge to the state x m of the reference model, then the state of agent 3 will converge to x m as well (cf. [START_REF] Rosa | Synchronization of uncertain heterogeneous agents: an adaptive virtual model reference approach[END_REF] for the full details). Overall synchronization can be proved via the Lyapunov function

V 1 + V 21 + V 321 .
Remark 1. The adaptation laws (12) and (18) reminds the setting of systems stabilizing each other through adaptation [START_REF] Narendra | Unstable systems stabilizing each other through adaptation[END_REF]), with the peculiar difference that the directed path to the leader makes our adaptation always stable. On the other hand, [START_REF] Narendra | Unstable systems stabilizing each other through adaptation -part ii[END_REF]) discusses instability due to the absence of such leader.

General acyclic case

Extending from Fig. 1, let us consider a set of N agents ẋi = A i x i + b i u i , i ∈ {1, . . . , N } (20) where agent 1 is the one that can access the reference r in (2). Assumptions 1 and 2 are generalized to

A m = A i + b i k * ′ i , b m = b i l * i (21
) with known signs of l * i . Remark 2. Similarly to Proposition 1, one can verify the existence, for every pair of agents (i, j), of a constant vector k * ji and a scalar l * ji such that

A i = A j + b j k * ′ ji , b j = b 2 l * ji . ( 22 
)
For convenience of notation, let us rewrite (2) as ẋ0

= A 0 + x 0 + b 0 u 0 (23) with x 0 = x m , A m = A 0 + b 0 k * ′ 0 , b 0 l * 10 = b m , u 0 = k * ′ 0 x 0 + l * 0 r,
where k * 0 , l * 0 are known and do not need to be estimated. This gives the controller (equivalent to (6)) Fig. 2. Simple undirected (left) and cyclic (right) networks

u 1 (t) = k ′ 10 (t)x 1 (t) + k ′ 1 (t)(x 1 (t) -x 0 (t)) + l 10 (t)u 1 (t).
(24) Under the following assumption a synchronization result holds. Assumption 3. The directed communication graph is acyclic. In addition, the graph contains a directed spanning tree with the leader as the root node. Theorem 1. Under Assumptions 1-3, consider the linear systems ( 20), with reference model ( 23), controllers

u j (t) = N i=0 a ij k ′ ji (t)x i (t) N i=0 a ij + k ′ j (t) N i=0 a ij (x j (t) -x i (t)) N i=0 a ij + N i=0 a ij l ji (t)u i (t) N i=0 a ij (25) 
with the index i = 0 used for the reference model (i.e. a j0 = 0 only for the root node), and update laws

k′ ji = -sgn(l * j )γ k b ′ m P N i=0 a ij e ji x ′ i k′ j = -sgn(l * j )γ k b ′ m P N i=0 a ij e ji N i=0 a ij e ji ′ lji = -sgn(l * j )γ l b ′ m P N i=0 a ij e ji u i (26) 
where e ji = x jx i , and k ji , k i , l ji are the estimates of k * ji , k * i , l * ji respectively. Then, all closed-loop signals are bounded and e i = x ix m , e ji = x jx i , with i, j such that a ij = 0, converge asymptotically to zero. Proof 1. The proof uses the Lyapunov function

V = N j=1 N i=0 a ij e ji ′ P N i=0 a ij e ji + N j=1 tr k′ j kj γ k l * j + N j=1 N i=0 a ij tr k′ ji kji γ k l * j + N j=1 N i=0 a ij l2 ji γ l l * j (27)
Stability tools are similar as before and left to the reader.

THE CYCLIC AND UNDIRECTED CASE

To understand the effect of cycles and undirected links, let us consider the undirected network of Fig. 2 (left). Let us assume we can calculate the inputs using the same method of Theorem 1. The ideal control actions are

2u 1 = k * ′ 1 x 1 + l * 1 r + k * ′ 1 (x 1 -x 2 ) + k * ′ 12 x 2 + l * 12 u 2 u 2 = k * ′ 2 (x 2 -x 1 ) + k * ′ 21 x 1 + l * 21 u 1 . ( 28 
)
In order to unequivocally determine u 1 and u 2 , the following equation should have a unique solution

2 -l * 12 -l * 21 1 u 1 u 2 = k * ′ 1 (2x 1 -x 2 ) + l * 1 r + k * ′ 12 x 2 k * ′ 2 (x 2 -x 1 ) + k * ′ 21 x 1 .
From Proposition 1 we have l * 12 l * 21 = 1, so the determinant of the square matrix above is 2l * 12 l * 21 = 1, and the ideal inputs u 1 and u 2 are well defined. In addition, the synchronization error dynamics with the ideal gains is

ė1 + ė12 = 2A 1 x 1 + b 1 k * ′ 1 x 1 + b 1 l * 1 r -A m x m -b m r -b 1 k * ′ 1 x 2 + k * ′ 12 x 2 + l * 12 u 2 -A 2 x 2 -b 2 u 2 ė21 = A 2 x 2 + b 2 k * ′ 2 (x 2 -x 1 ) + b 2 k * ′ 21 x 1 + b 2 l * 21 u 1 -A 1 x 1 -b 1 u 1
(29) which leads to ė1 + ė12 = A m (e 1 + e 12 ), ė21 = A m e 21 .

(30)

Let us now consider the directed cyclic network of Fig. 2 (right) and calculate the inputs using the method of Theorem 1

2u 1 = k * ′ 1 x 1 + l * 1 r + k * ′ 1 (x 1 -x 3 ) + k * ′ 13 x 3 + l * 13 u 3 u 2 = k * ′ 2 (x 2 -x 1 ) + k * ′ 21 x 1 + l * 21 u 1 u 3 = k * ′ 3 (x 3 -x 2 ) + k * ′ 32 x 2 + l * 32 u 2 .
(31) In order to unequivocally determine u 1 , u 2 and u 3 , the following equation should have a unique solution

2 0 -l * 13 -l * 21 1 0 0 -l * 32 1 u 1 u 2 u 3 = 2k * ′ 1 x 1 + l * 1 r -(k * 1 -k * 13 ) ′ x 3 k * ′ 2 (x 2 -x 1 ) + k * ′ 21 x 1 k * ′ 3 (x 3 -x 2 ) + k * ′ 32 x 2 .
The determinant of the square matrix above is 2l * 13 l * 21 l * 32 = 1, so even in this case the ideal inputs u 1 , u 2 and u 3 are well defined. In addition, using similar calculations as in the previous case, it is possible to show that ė1 + ė13 = A m (e 1 + e 13 ) ė21 = A m e 21 , ė32 = A m e 32 .

Moving beyond the analysis with ideal input, we have that in the presence of parametric uncertainties, the following result, which extends the parametrization in (Baldi and Frasca (2018)) to general graphs, holds. Theorem 2. Under Assumptions 1 and 2, for any pair of agents (j, i), the dynamics of the synchronization error

N i=0 a ij ėji = A m N i=0 a ij e ji + b j • (33) N i=0 a ij k′ ji x i + k′ j N i=0 a ij e ji + N i=0 a ij lji u i
holds independently of the network connection.

Proof 2. The parametrization (33) turns out to be independent on the network connection thanks to the fact that all error dynamics can be homogenized to the reference model (A m , b m ) via appropriate control gains. Therefore, the dynamics can be summed (cf. ( 29) or (32)) even in the presence of cycles and undirected links.

Given the parametrization (33), one might be tempted to say that the algorithm in Theorem 1 can be used straightforwardly with the Lyapunov function ( 27). However, some attention must be paid when doing this: in fact, the actual input u j may be not well defined for all time instants on general graphs. To explain this point, let us collect all inputs in (25) on the left-hand side, leading to

U [u 1 • • • u N ] T = [β 1 • • • β N ]
T for an appropriate square matrix U depending on the estimates l ji . On directed acyclic graphs, U can be made upper triangular, with positive weights in its main diagonal, thus U is always invertible. On general graphs, the invertibility of U depends on l ji1 . Despite this difficult analytic aspect, the simulations in the next section show that the algorithm in Theorem 1 can handle networks beyond Assumption 3, and U turns out to be invertible at all time instants. Remark 3. The expression after (31) reveals that the agent are 'fictitiously' inverting the matrix U by only using neighbors' information. How such inversion is robust to delays is an open problem worth of future investigation. 

ẋi = 0 1 a 1i a 2i x i + 0 b 1i u i (34) 
with coefficients and initial conditions as in Table 1. The matrices are given in terms of ẋ0 = A m x 0 + b m r for the reference model and ẋi = A i x i + b i u i , i ∈ {1, . . . , N } for the other agents. The other design parameters are taken as:

γ k = 3, γ l = 0.3, Q = diag(1, 3 
), and all estimated gains are initialized to 0. Also note that sgn(l * i ) = 1, ∀i. The simulations are carried out for a sinusoidal reference r of frequency 0.2 rad/s and amplitude 1. For the acyclic network, the resulting synchronization is shown in Figs. 4 and7. All states converge asymptotically to the state of the reference model.

Table 1. Coefficients and initial conditions of agents

a 1 a 2 b 1 x 0 agent #0 -0.5 -1 1 [1 -1] ′ agent #1 -1 2 1 [1 1] ′ agent #2 -0.75 2.5 0.5 [-1 -1] ′ agent #3 -1.25 2 1.25 [-1 0] ′ agent #4 -0.5 1 0.75 [0 1] ′ agent #5 -0.75 1 1.5 [1 0] ′ agent #6 -1.5 2.5 1 [-1 1] ′
In the directed cyclic graph, two cycles are present (2-3-4 and 4-5-6). Using the same parameters as in the previous simulations, the resulting synchronization is shown in Figs.

5 and 8. It can be seen that synchronization is slightly faster, at the price of a larger magnitude of the input. Finally, for the undirected graph the synchronization is shown in Figs. 6 and9). It is observed that having bidirectional connections does not necessarily help synchronization: synchronization is slower than in the previous cases. We studied synchronization of uncertain agents via a MRAC formulation with distributed input. We showed that the parametrization derived for the acyclic case (Baldi and Frasca (2018)) can be extended to more general graphs. Despite a suitable Lyapunov function exists and ideal inputs (with ideal gains) might be well defined, it is difficult to prove that the actual inputs (with estimated gains) are well defined for all time instant. Simulations suggest so. Future work will include considering unmatched uncertainties [START_REF] Lymperopoulos | Adaptive control of networked distributed systems with unknown interconnections[END_REF]) and switching topologies by using adaptive switching strategies [START_REF] Sang | Adaptive control of piecewise linear systems: the state tracking case[END_REF]; [START_REF] Yuan | Adaptive asymptotic tracking control of uncertain time-driven switched linear systems[END_REF]).

  is the input, and A 1 , A 2 , A 3 and b 1 , b 2 , b 3 are unknown matrices of appropriate dimensions, with possibly A 1 = A 2 = A 3 and b 1 = b 2 = b 3 . Time index will be omitted whenever obvious. Consider the reference model ẋm = A m x m + b m r (2) where x m ∈ R n is the state of the reference model, r ∈ R is its reference input, and A m and b m are known matrices of appropriate dimensions, with A m being Hurwitz so as to have bounded state trajectories x m .

  Fig. 3. Acyclic, cyclic and undirected networksThe simulations are carried out on a directed acyclic network, on a directed cyclic network, and on an undirected network, as shown in Fig.3. Node 1 acts as the leader node and the reference model is indicated as agent 0. The agents are second-order linear agents in the canonical form

Fig. 6 .Fig. 9 .

 69 Fig.6. Undirected network: state/input for reference model (dashed) and agents (solid)

  u 1 (12) where k 21 , k 2 , l 21 are the estimates of k * 21 , k * 2 , l * 21 respectively. The scalar l * 2 does not need to be estimated, only its sign is needed. The adaptation law in (12) is derived via the dynamics of the error e 21 = x 2x 1 ė21 = A m e 21 + b 2 ( k′ 21 x 1 + k′

						21 . By
	taking the Lyapunov function					
	V 21 = e ′ 21 P e 21 +tr	k′ 21 k21 γ k |l * 2 |	+tr	k′ 2 k2 γ k |l * 2 |	+	l2 21 γ l |l * 2 |	(14)

2 e 21 + l21 u 1 ) (13) with k21 = k 21k * 21 , k2 = k 2k * 2 , l21 = l 21l *

  )γ k b ′ m P (e 31 + e 32 )(e 31 + e 32 ) ′ l31 = -sgn(l * 3 )γ l b ′ m P (e 31 + e 32 )u 1 l32 = -sgn(l * 3 )γ l b ′ m P (e 31 + e 32 )u 2 (18) where k 31 , k 32 , k 3 , l 31 , l 32 are the estimates of k * 31 , k * 32 , k * 3 , l * 31 , l * 32 respectively. We derive the adaptation law in (18) via the dynamics of the error e 321 = e 31 + e 32 and the Lyapunov function V 321 = e ′ 321 P e 321 + tr

	k′ 31 = -sgn(l * 3 )γ k b ′ m P (e 31 + e 32 )x ′ 1				
	k′ 32 = -sgn(l * 3 )γ k b ′ m P (e 31 + e 32 )x ′ 2				
	k′ 3 = -sgn(l * 3				
				e 31 (t) + e 32 (t)
				2	
	+l 31 (t)	u 1 (t) 2	+ l 32 (t)	u 2 (t) 2	(17)
	and the adaptive laws			

A companion paper(Baldi et al. (2018)) shows that appropriate parameter projection can guarantee invertibility of U .