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Abstract: In systems engineering, evaluation is required each time design choices must be made or 

justified. Generally, design choices take place according to multiple criteria: some of them may be 

contradictory. Moreover, since knowledge is still missing at the conceptual stage, it is often difficult to 

anticipate the consequences of design decisions on the ultimate effectiveness of the final product. An 

original qualitative evaluation method, taking into account the decision makers’ optimistic or pessimistic 

attitude, and combining a preferences model on the criteria is proposed for the purpose of highlighting the 

most promising alternative system design solutions. An example in the mechatronics field serves to 

illustrate our proposals. 
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1. INTRODUCTION 

In the competitive marketplace, both time and finances are 

often lacking to finalizing several product concepts and then 

retaining only the most satisfactory one. Engineers therefore 

require support in reviewing possible system design solutions 

(called more shortly ‘alternatives’ hereafter) and in making 

and defending the best design choices from the earliest product 

design stages (Hehenberger et al., 2010). The design 

evaluation process however faces a number of challenges, 

including: 

1) Though the initial choices are definitely critical to ensuring 

a successful design, rating the merit factors of each alternative 

during the conceptual design stage is generally subject to 

uncertainty and imprecision due to the lack of knowledge 

about the system/product behaviour; 

2) When designing complex products such as mechatronics 

ones, assessing the consequences of choices among several 

alternatives is a critical issue that has still not been resolved 

effectively to this day (Torry-Smith et al., 2011); 

3) Design choices can benefit to some criteria and can damage 

some others. The challenge then is to identify satisfactory 

alternatives that achieve an acceptable balance between the 

technical requirements. 

Our proposal seeks to address above issues by extending some 

qualitative reasoning to determine the level of satisfaction of 

considered alternatives (Imoussaten et al., 2011) (Couturier et 

al., 2014). After defining in section 2 the role of evaluation 

within the Systems Engineering (SE) framework, section 3 

presents our qualitative approach for evaluation. Based on the 

relationships between a behaviour model of the system being 

designed and a decision-making model, a qualitative 

evaluation taking into account the decision makers’ 

pessimistic or optimistic attitude is developed. Then a 

satisfaction score is associated to each alternative taking into 

account a preferences model on the criteria. MAUT 

multicriteria analysis method (Keeney et al., 1987) has been 

chosen since we are interested to evaluate the satisfaction score 

of each alternative on each criteria (regardless other 

alternatives) and since we limit the expression of the 

preferences model to the relative importance of criteria, 

considered as independent. The method improves goals model 

reasoning (Giorgini et al., 2002) since conflicts resulting from 

contradictory qualitative influences on goals can be solved. 

Moreover, it is proved, in section 3, that the proposed 

evaluation operators are consistent with the optimistic or 

pessimistic attitude of the decision makers. Section 4 

illustrates our proposals through the design of an autonomous 

mobile robot.  

2. EVALUATION IN SYSTEMS ENGINEERING 

Systems Engineering (SE) is an interdisciplinary and 

collaborative approach based on the standards ISO/IEC 15288 

(ISO/IRC, 2008), ANSI/EIA 632 and IEEE 1220, as well as on 

conceptual guidelines, e.g. SEBoK (BKCASE, 2012) and best 

practice guidelines, e.g. INCOSE handbook (INCOSE, 2011) 

or Nasa handbook (Nasa, 2007). SE promotes vocabulary, 

concepts and a comprehensive approach that facilitates 

communication within a design team, regardless of the 

underlying technological field, and moreover relies on a set of 

standardized processes and activities that have become widely 

and successfully applied across various industrial fields (SE 

Guide book, 2007). 

Among the aforementioned SE components, five technical 

processes run in an iterative manner when engineering a 

system. These iterative and recursive processes are (SEBok, 

2012): Mission analysis, Stakeholders' needs definition, 

System requirements specification, Logical architecture 

design, and Physical architecture design. They are supported 

by three services, namely: System verification, System 

validation, and System analysis. 



 

 

     

 

According to standards EIA 632, IEEE 1220, SEBok 2012, 

technical performance assessment and trade-offs studies are 

necessary activities of System analysis.  

Thus this paper addresses the set of evaluation issues 1) to 3) 

(see section 1) and focuses on evaluating the effectiveness of 

technical product under design. The proposed evaluation 

method could also be applied in other SE application domains, 

including the development or the amelioration of socio 

technical systems such as manufacturing systems. The 

limitation of the method is the availability of reliable expertise 

in the application field. 

The next section will present the generic activities associated 

with the evaluation process in SE. 

 2.1 Evaluation process  

In SE, an evaluation is required each time engineering choices 

must be made or justified, e.g. choices of major operations and 

solution concepts, research and resolution of inconsistencies 

between requirements, choice of logical vs. physical 

architecture.  

This evaluation process includes generic activities, as 

summarized in Fig. 1. Without going into the details (see 

(Couturier et al., 2014) for more explanation), the main 

activities composing the evaluation process consist of: 

defining the evaluation objectives ("why" and "what"), 

preparing the job ("how"), producing and analysing the 

robustness of the results ("do" and "check"), and finally 

delivering outcomes ("conclude"). If the evaluation objectives 

are not met or if results lack adequate differentiation or show 

excessive dependence on the evaluation methods, then the 

evaluation process should return to one of its previous steps. 

 

Fig. 1: Evaluation process 

Since the evaluation process constitutes the backbone of the 

decision-making process, the decision-making model must be 

specified in the ‘How activities’. Such a model takes into 

account core elements, e.g. evaluation criteria, decision-

makers' preferences, scoring functions used to assign 

satisfaction levels to system attributes, and aggregation 

methods chosen to provide a global satisfaction score of 

alternatives.  

2.2 Multicriteria analysis in evaluation 

Alternatives should be assessed or ranked according to most 

suitable multicriteria analysis methods. Regarding the 

evaluation of product effectiveness, three main families of 

multi-criteria decision-making methods can be distinguished 

(Fülop, 2005): total aggregation methods (Multi-Attribute 

utility Theory MAUT (Keeney et al., 1987) (Fishburn,1982), 

paired comparison methods (Analytic Hierarchy Process AHP 

(Saaty et al., 2007), and outranking approaches (French 

methods PROMETHEE, GAIA, ELECTRE I, II, III (Roy, 

1991). 

Each of these methods varieties has advantages and 

disadvantages and is best suited depending on application 

cases. Comparing these methods is not an objective of this 

paper. However, the MAUT framework seems to us best suited 

for our case. Indeed, we are interested to evaluate the 

behaviour of each alternative on each characteristics of the 

system (regardless other alternatives) and we are also 

potentially interested to assess the evolution of alternatives 

evaluations when new components are added to it. Thus 

aggregation operators are needed. 

We consider that performance indicators are used to assess an 

alternative on a criterion. For instance, when designing an 

autonomous robot, performance indicators such as the 

‘maximum robot speed reached by the robot on a straight way’ 

or the ‘capacity of the robot to turn on itself’ can be used to 

assess a ‘mobility’ type criterion. The goal to reach by a 

performance indicator is specified by the performance 

requirements: For instance, a maximum speed between 0.5m/s 

and 1.5m/s; a turn capacity between -180° and +180°.  

The values taken by an indicator depend on the design choices 

made by the designers all along the SE process: for instance 

the number of driving wheels, the type of motors etc. So, the 

values of the performance indicators generally change until the 

final product is built. To help designers make the most 

satisfactory choices all along the SE process, the performance 

indicators values have to be predicted using some models of 

the product.  

With such models and from the design parameters choices (the 

inputs of the models) can be predicted the performance 

indicator values (the outputs of the models). For instance, 

when designing an autonomous robot, a predictive model 

could be used to estimate the value of the ‘maximum speed of 

the robot’ (output variable) from the number of driving wheels, 

the type of engine etc. (input variables). In the following 

section, no distinction is made between performance indicators 

and ‘output variables’ nor between design parameters and 

‘input variables’. 

Because of the lack of knowledge before the system is built, 

predictive models tend to be coarse at the conceptual design 

stage, whereas at the detailed design stage, more specialized 

and precise models are taken into consideration in order to 

derive product feature data. 

Let’s precise now how predictive models are linked to 

decision-making models in order to evaluate alternatives. 

 

3. QUALITATIVE EVALUATION 



 

 

     

 

3.1 Predictive and decision-making models 

Let's start by considering a situation with m input variables. 

Each input variable takes its values in the set denoted 𝑋 𝑗    with 

𝑗 = 1, . . , 𝑚. Let’s denote 𝑋 = 𝑋1 × 𝑋2 ×. .× 𝑋𝑚 
 the set of all 

m_tuple𝑠  𝑥 = (𝑥1, 𝑥2, . . , 𝑥𝑚) where 𝑥𝑗 ∈ 𝑋𝑗 is the value of the 

jth input variable of 𝑥. 𝑋𝑗 may be a set of nominal, discrete or 

continuous values. Each admissible element of 𝑋 stands for an 

alternative.  

 

Let's also consider that the system may be described by n 

output variables relative to the decision-making criteria. Each 

output variable takes its values in the set denoted  𝑌𝑖 with 𝑖 =
1, . . , 𝑛. Let’s denote 𝑌 = 𝑌1 × 𝑌2 ×. .× 𝑌𝑛 the set of all 

n_tuples 𝑦 = (𝑦1, 𝑦2, . . , 𝑦𝑛), where 𝑦𝑖 ∈ 𝑌𝑖 is the value 

assigned to the ith output variable of 𝑦. 𝑌𝑖 may be a set of 

nominal, discrete or continuous values.  

To each input in 𝑋 corresponds an output in 𝑌 representing the 

characteristics of interest for the decision makers/designers. 

Let's indicate this correspondence by the transformation 𝑇 =
(𝑇1, … , 𝑇𝑛) where 𝑇𝑖 : 𝑋 → 𝑌𝑖 , 𝑖 = 1, . . , 𝑛 

 
(Fig.2). 

T may be a formal transformation deduced either from 

physical laws or from available and validated knowledge in the 

field. 

The values taken by the output variables must then be 

interpreted in terms of satisfaction with respect to the decision 

makers’/designers’ goals. The Multi-Attribute Utility Theory 

allows expressing the degree of satisfaction of an output 

variable by a real-valued utility function in [0,1]. Let denote 

𝑢𝑖: 𝑌𝑖 → [0,1] the utility function for the 𝑖𝑡ℎ  output variable. 

Thus 𝑢𝑖(𝑦𝑖) represents the extent to which the goal associated 

with the 𝑖𝑡ℎ   output variable is satisfied by the value 𝑦𝑖 . 

 

 
Fig. 2: Decision model and predictive model 

 

Then the global satisfaction level of an alternative should be 

computed using some aggregation operator U (Fig. 2). For 

example, U can represent the weighted average operator. 

However, as mentioned above, the predictive models that 

provide transformation T are typically unknown or incomplete 

during the conceptual design phase. The scenario is then often 

played out where experts or senior engineers are asked to 

advice on alternatives and judge the qualitative effects of 

design choices on decision makers’/designers’  satisfaction. To 

deal with this kind of uncertainty context, we have relied on 

the research work presented in (Montmain et al., 2014) 

regarding qualitative analyses. 

 

3.2 Qualitative evaluation 

The notion behind the qualitative model in (Montmain et al., 

2014) is that an expert can express the fact that an input 

variable value will improve (positive effect) or deteriorate 

(negative effect) the performance of the system under design 

with regard to a criterion. Moreover, experts are also able to 

associate a degree of confidence to this fact. Authors state: “jth  

input variable value may improve (resp. deteriorate) ith output 

variable with a confidence degree 𝛿𝑖𝑗
+ (resp. 𝛿𝑖𝑗

−) (see Fig.3). 

We use the same semantic in this paper and consider that 𝛿𝑖𝑗
+ 

and 𝛿𝑖𝑗
− take their values in an ordinal scale 𝑄𝑆 containing a 

zero, top and intermediate values. It can be for example a scale 

of four values  𝑄𝑆 = {𝑧𝑒𝑟𝑜 = 𝑛𝑢𝑙𝑙, 𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑡𝑜𝑝 =
𝑠𝑡𝑟𝑜𝑛𝑔}. 

 

We intend to compare the alternatives taking into account both 

the improvement and the deterioration effects of alternatives 

on each output variable (Giorgini et al., 2002). 

At this aim, we define the impact of an alternative on an output 

variable as the pair: (confidence degree in amelioration, 

confidence degree in deterioration). 

To assign such impact degrees we introduce two aggregation 

operators along with two propagation constraints as in 

(Montmain et al., 2014).  

Each combination of an aggregation operator with a 

propagation constraint yields a decision-maker's attitude. The 

following pessimistic or optimistic attitude of the decision-

maker can serve as a guide. 

 
Fig. 3: Negative and positive effects on output variables 

 

Indeed, the estimation of an alternative impact on the output 

variable naturally depends on the  design choices, as well as 

on the decision maker’s decisional behavior: a pessimistic 

attitude (whereby a risk aversion position will lead to retaining 

the most highly negative impact degree) vs. an optimistic 

attitude (whereby risk acceptance will retain the most highly 

positive impact degree).  

Let’s denote 𝑎𝑡 ∈ {1,2} the decision-maker's attitude (“1” 

encodes the pessimistic attitude and “2” the optimistic 

attitude). For each 𝑎𝑡 and 𝑥 ∈ 𝑋, let's also denote 𝛿𝑖,𝑥
𝑎𝑡 the 

impact of alternative 𝑥 on the ith output variable. As proposed 

above 𝛿𝑖,𝑥
𝑎𝑡 ∈ QS × QS can be represented by the pair of ordinal 



 

 

     

 

values (𝛿𝑖,𝑥
+,𝑎𝑡 , 𝛿𝑖,𝑥

−,𝑎𝑡), where 𝛿𝑖,𝑥
+,𝑎𝑡

 (resp. 𝛿𝑖,𝑥
−,𝑎𝑡

) corresponds to 

an aggregation of the degrees of confidence in positive (resp. 

negative) effects. 

The pessimistic attitude is modeled by assigning the least 

positive impact degree as the aggregation of improvement 

cases (less favorable cases) and the worst negative impact 

degree as the aggregation of deterioration cases (less favorable 

cases again). The propagation constraint consists of comparing 

the least positive impact degree to the worst negative impact 

degree on the ith output variable, resulting in: 

 

𝛿𝑖,𝑥
+,1 = {

min
𝑗

𝛿𝑖𝑗
+,1  𝑖𝑓 min

𝑗
𝛿𝑖𝑗

+,1 > max
𝑗

𝛿𝑖𝑗
−,1

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝛿𝑖,𝑥
−,1 = {

0  𝑖𝑓 min
𝑗

𝛿𝑖𝑗
+,1 > max

𝑗
𝛿𝑖𝑗

−,1

max
𝑗

𝛿𝑖𝑗
−,1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (1) 

The optimistic attitude is modeled by assigning the highest 

positive impact degree as the aggregation of improvement 

cases and the worst negative impact degree as the aggregation 

of deterioration cases. The propagation constraint consists of 

comparing the highest positive impact degree to the worst 

negative impact degree on the ith output variable hence: 

 

𝛿𝑖,𝑥
+,2 = {

max
𝑗

𝛿𝑖𝑗
+,2  𝑖𝑓 max

𝑗
𝛿𝑖𝑗

+,2 > max
𝑗

𝛿𝑖𝑗
−,2

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝛿𝑖,𝑥
−,2 = {

0  𝑖𝑓 max
𝑗

𝛿𝑖𝑗
+,2 > max

𝑗
𝛿𝑖𝑗

−,1

max
𝑗

𝛿𝑖𝑗
−,2  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                     (2)

 

 

  
It is clear that for a same output variable, both the positive 

impact degree and the negative impact degree can’t be 

different from 0 at the same time, that 

is:∀𝑖, min(𝛿𝑖,𝑥
+,𝑎𝑡 , 𝛿𝑖,𝑥

−,𝑎𝑡) = 0 

It can be verified that the positive impact on any criterion 

according to an optimistic attitude is greater or equal to the 

positive impact according to a pessimistic attitude: 

∀𝑖      𝛿 𝑖,𝑥
+,2 ≥    𝛿 𝑖,𝑥

+,1                                                     (3)  

Verification of expression (3):  

Whether   min
𝑗

(𝛿 𝑖𝑗
+ ) > max

𝑗
(𝛿 𝑖𝑗

− )  then    𝛿 𝑖,𝑥
+,2 = max

𝑗

(𝛿 𝑖𝑗
+ ) ≥

 min
𝑗

(𝛿 𝑖𝑗
+ ) =   𝛿 𝑖,𝑥

+,1   

or  min
𝑗

(𝛿 𝑖𝑗
+ ) ≤ max

𝑗
(𝛿 𝑖𝑗

− )   then   𝛿 𝑖,𝑥
+,1 =  0 and   𝛿 𝑖,𝑥

+,2 =

 max
𝑗

(𝛿 𝑖𝑗
+ ) ≥   𝛿 𝑖,𝑥

+,1
 

In the same way, it can be easily verified that the deterioration 

impact on any criterion according to a pessimistic attitude is 

superior or equal to the deterioration impact according to an 

optimistic attitude: 

∀𝑖      𝛿 𝑖,𝑥
−,1 ≥  𝛿 𝑖,𝑥

−,2                                         (4) 

 

Let's denote 𝛿𝑥
𝑎𝑡 = (𝛿𝑥

+,𝑎𝑡 = 𝐹1(𝛿𝑖,𝑥
+,𝑎𝑡), 𝛿𝑥

−,𝑎𝑡 = 𝐹2(𝛿𝑖,𝑥
+,𝑎𝑡)) the 

‘global impact’ of the alternative x  on the global satisfaction 

level. Operators 𝐹1 and 𝐹2 are chosen not only to avoid risky 

choices but also to facilitate the ranking of alternatives. For 

instance, the global impact can be computed by taking 𝐹1 as 

“min” operator and 𝐹2 as “max” operator.  

𝛿𝑥
𝑎𝑡 = (min

𝑖
( 𝛿𝑖,𝑥

+,𝑎𝑡), max
𝑖

( 𝛿𝑖,𝑥
−,𝑎𝑡))                           (5)  

In section 3.3 we show how importance of criteria can be taken 

into account so as to smooth veto and dictator effects of some 

poor but uncertain score through min or max operators. 

 

3.3 Introducing a preferences model in the qualitative 

evaluation 

In this first work we limit the expression of preferences model 

to the consideration of the relative importance of criteria.  

Let’s assume that decision-makers/designers can express the 

importance of criteria in estimating the global impact of the 

alternatives. In order to keep the global impact interpretable, 

criteria importance take values in the scale 𝑄𝑆.  

Let denote for 𝜔 ∈ 𝑄𝑆, ¬𝜔 the value corresponding to the 

reversed scale of 𝜔 (i.e., ¬𝑛𝑢𝑙𝑙 = 𝑠𝑡𝑟𝑜𝑛𝑔, ¬low=medium, 

…). It is the counter part of 1 − 𝜔 on the [0,1] interval scale. 

Let’s denote 𝜔𝑖 ∈ 𝑄𝑆 the weight of the  𝑖𝑡ℎ criterion and 𝜔 =
(𝜔1, 𝜔2, … , 𝜔𝑛) the weights vector.  

The importance of criteria are taken into account in changing 

the aggregation operator of expression (5) 𝛿𝑥
𝑎𝑡 into 𝛿𝑥,𝜔

𝑎𝑡 : 

𝛿𝑥,𝜔
𝑎𝑡 = (𝛿𝑥,𝜔

+,𝑎𝑡 , 𝛿𝑥,𝜔
−,𝑎𝑡) = (min

𝑖
(𝛿𝑖,𝑥,𝜔𝑖

+,𝑎𝑡 ), max
𝑖

(𝛿𝑖,𝑥,𝜔𝑖

−,𝑎𝑡 ))      (6) 

with 𝛿𝑖,𝑥,𝜔𝑖

+,𝑎𝑡 =  max (¬𝜔𝑖 , 𝛿𝑖,𝑥
+,𝑎𝑡);  𝛿𝑖,𝑥,𝜔𝑖

−,𝑎𝑡 = min (𝜔𝑖  , 𝛿𝑖,𝑥
−,𝑎𝑡)     

Aggregation operator (6) limits the veto given to each criterion 

through the “min” and “max” operators of expression (5). 

Indeed, low weights reduce the penalizing effect of a low 

improvement impact degree in the min
𝑖

 (max (𝜔𝑖 , 𝛿𝑖,𝑥
+,𝑎𝑡)  

expression. Similarly, low weights mitigate the penalizing 

effect of strong deterioration impact degree in the 

 max
𝑖

 (min (¬𝜔𝑖  , 𝛿𝑖,𝑥
−,𝑎𝑡) expression. It comes: 

𝛿𝑥,𝑠𝑡𝑟𝑜𝑛𝑔
𝑎𝑡 =  𝛿𝑥

𝑎𝑡 and  𝛿𝑥,𝑛𝑢𝑙𝑙
𝑎𝑡 = (strong, 𝑛𝑢𝑙𝑙) 

 

Let us verify, hereafter, that the proposed evaluation operators 

are consistent with the optimistic or pessimistic attitude of the 

decision makers. 

It can be verified that for any weight (extending the case 

without any weight), the positive impact on any criterion 

according to optimistic attitude is equal or greater than the 

aggregated positive impact according to the pessimistic 

attitude: 

∀𝑖     ( 𝛿 𝑖,𝑥,𝜔𝑖

+,2 ≥  𝛿 𝑖,𝑥,𝜔𝑖

+,1  )                                            (7) 

 

Verification for expression (7): 

Whether  𝛿 𝑖,𝑥,𝜔𝑖

+,2 = ¬𝜔𝑖    then from (3) it comes (¬𝜔𝑖 ≥

 𝛿 𝑖,𝑥
+,2 ≥  𝛿 𝑖,𝑥

+,1
) and  𝛿 𝑖,𝑥,𝜔𝑖

+,1 = ¬𝜔𝑖 =  𝛿 𝑖,𝑥,𝜔𝑖

+,2
 

or  𝛿 𝑖,𝑥,𝜔𝑖

+,2 =  𝛿 𝑖,𝑥
+,2   ≥ ¬𝜔𝑖   and from (3) it comes  𝛿 𝑖,𝑥,𝜔𝑖

+,2 ≥

max ( ¬𝜔𝑖 , 𝛿 𝑖,𝑥
+,1) =  𝛿 𝑖,𝑥,𝜔𝑖

+,1
  

In the same way, it can be verified that for any weight, the 

negative impact on any criterion according to the pessimistic 

attitude is equal or greater than the aggregated negative impact 

according to the optimistic attitude: 

∀𝑖     ( 𝛿 𝑖,𝑥,𝜔𝑖

−,1 ≥    𝛿 𝑖,𝑥,𝜔𝑖

−,2  )                                        (8) 

It comes, using  𝐹1 and 𝐹2  operators that the global positive 

impact (respectively the global negative impact) according to 

the optimistic attitude (respectively to the pessimistic attitude) 

is equal or greater than the global positive impact (respectively 



 

 

     

 

global negative impact) according to the optimistic attitude 

(respectively to the pessimistic attitude): 

  (𝛿 𝑥,𝜔
+,2 ≥  𝛿 𝑥,𝜔

+,1 ) and (𝛿 𝑥,𝜔
−,1 ≥  𝛿 𝑥,𝜔

−,2 )                  (9) 

 

In section 5 we illustrate the proposed qualitative evaluation in 

the case of the design of an autonomous mobile robot. 

 

4. QUALITATIVE EVALUATION: AN ILLUSTRATION 

4.1 Context 

 

To illustrate our qualitative evaluation approach we consider 

the design of a small autonomous mobile robot. It concerns an 

educational robotic challenge RobAFIS 2013 (Robafis,2013), 

promoted by AFIS, the French association of Systems 

Engineering. The purpose of RobAFIS is to better understand 

and develop the use of systems engineering best practices, as 

recommended and formalized by AFIS. 

In RobAFIS 2013, the autonomous robot had to be built using 

some provided and imposed materials. It was limited to a 0,3m 

square cube and it had to achieve the following mission as 

quickly as possible: to grasp and transport some various 

coloured spheres between several stock devices spread over a 

plan playground. Some dark lines were drawn on the ground 

to guide the robot between stock devices. 

The robot was broken down into four sub-systems: a gripper 

device, sensors equipment, a rolling base, a control device. The 

physical alternatives (the possible robot configurations) 

depend on the design option of the other sub-systems than the 

control device that was imposed to the competitors.  

The solution principles are resumed in Table 1. There are three 

principles for designing the gripper device, three for the rolling 

base and two for the sensors equipment. Thus, there are 18 

alternatives to compare, corresponding to the 3x3x2 

admissible configurations.  

Table 1.  Solution principles 

Gripper device Rolling 

base 

Sensors equipment 

G1: Fork 

(taking the 

sphere from 

below) 

R1: Four 

wheels 

rolling base 

S1: two colour sensors 

for following the dark 

lines, one light sensor for 

recognizing the sphere 

colour 

G2: Lateral 

gripper 

(pinching 

laterally the 

sphere) 

R2: Two 

wheel drive 

and one free 

wheel 

rolling base 

S2: one colour sensor for 

following the dark line, 

one colour sensor for 

recognizing the sphere 

colour 

G3:  Grapnel 

(taking over 

the sphere) 

R3: rolling 

base with 

tracks 

 

 

Three independent criteria are retained: the sparsity of used 

components (Cr1), the robot speed capability (Cr2), the 

number of successful missions (Cr3).  

Let consider for this case study the ordinal scale 𝑄𝑆 =
{𝑁𝑢𝑙𝑙(0), 𝐿𝑜𝑤 (𝐿), 𝑀𝑒𝑑𝑖𝑢𝑚 (𝑀), 𝐻𝑖𝑔ℎ (𝐻)}. Table 2 

presents, for each of the three criteria, the positive impact 

(denoted by “+”) or negative impact (denoted by “-“) of each 

input variable value with their confidence degrees as provided 

by the experts. 

Table 2. Qualitative evaluation 

 
 

To illustrate the use of operators introduced in sections 3.2 and 

3.3, Let’s consider the alternative 𝑥 =[G2,R3,S1],(grey cases 

in Table 2) and a pessimistic attitude (at=1), then according to 

(5),(6) the global impact of alternatives can be computed 

considering a preferences model or not. 

 

4.2 Case of same importance of criteria 

For the 𝐶𝑟1 criterion “pieces nbr” we have min
𝑗

𝛿𝐶𝑟1𝑗
+,1 = 𝑀 

 max
𝑗

𝛿𝐶𝑟1𝑗
−,1 = 𝑀

 
 so according to expression (1)  𝛿𝐶𝑟1,𝑥

+,1 = 0   

and 𝛿𝐶𝑟1,𝑥
−,1 = 𝑀 and the impact of alternative 𝑥 on Cr1 is 

𝛿𝐶𝑟1,𝑥
1 = (𝛿𝐶𝑟1,𝑥

+,1 , 𝛿𝐶𝑟1,𝑥
−,1 ) = (0, 𝑀).  In the same way we obtain 

: 𝛿𝐶𝑟2,𝑥
1 = (𝑀, 0), and 𝛿𝐶𝑟3,𝑥

1 = (𝐿, 0). 

 

So according to (5) the global impact of alternative x is: 

𝛿𝑥
1 = (𝛿𝑥

+,1, 𝛿𝑥
−,1) = (min(0, , 𝑀, 𝐿) , max(𝑀, 0,0)) = (0, 𝑀)

 In the same way for an other alternative x’ =[G1,R2,S1], we 

can compute the global impact:  

𝛿𝑥′
1 = (𝛿𝑥′

+,1, 𝛿𝑥′
−,1) = (0, 𝑀) = (min(𝑀, 0, 𝑀) , max(0, 𝑀, 0))

 
 
The eighteen alternatives are then ordered according to the 

decreasing values of global positive impacts and for ex aequo 

according to the increasing values of global negative impacts. 
The most promising alternatives have then been found to be  

[G2,R1,S1],[G2,R2,S1],[G2,R2,S2] with for each of them a 

global impact of (L,0). 

According to an optimistic attitude, the most promising 

alternatives have been found to be the same as above but with 

a global impact (M,0). 

There is no promising robot with a degree –M on any criterion 

(cases where experts think with a good confidence that the 

robot will deteriorate at least one criterion). Robots with R1 

and S2 options are not found to be promising configurations 

too. 

 

4.3 Case of preferences model on criteria 

Let’s consider now that the relative importance of criteria Cr1, 

Cr2,Cr3 are taken into account and let 𝜔 = (𝐻, 𝐿, 𝐻) the 

weights vector (i.e. the time spent to achieve the mission is not 

so important). According to expression (6), the new global 



 

 

     

 

score for x’= [G1,R2,S1] becomes: 𝛿𝑥′,𝜔
1 = (𝛿

𝑥′,𝜔
+,1 , 𝛿

𝑥′,𝜔
−,1 ) =

(𝑀, 𝐿) = (min(max(0, 𝑀) , max(𝑀, 0) , max(0, 𝑀)), 
max(min(𝐻, 0) , min(𝐿, 𝑀) , min(𝐻, 0))) 

and it appears now that x’ is a more promising alternative than 

x. Indeed: 

𝛿𝑥,𝜔
1 = (𝛿𝑥,𝜔

+,1, 𝛿𝑥,𝜔
−,1) = (𝐿, 𝑀)

= (min(max(𝑀, 0) , max(𝑀, 𝑀) , max(0, 𝐿)), 
 max(min(𝐻, 𝑀) , min(𝐿, 0) , min(𝐻, 0)))

  

This can be explained by the fact that the poor score of G1 on 

Cr2 is now considered not so important in the estimation of the 

global impact of alternative x’. 

 

So it has been shown how veto and dictator effects of poor 

qualitative scores on less important criteria can be smoothed 

by using a weights vector describing the preferences model of 

the decision-makers’/designers’. 
 

5. CONCLUSION 

The role of the evaluation process in Systems Engineering is 

to support designers each time engineering choices need to be 

made or justified. However it is often difficult to anticipate, 

during the conceptual design phase, given that the data are 

quite uncertain or imprecise. The proposed evaluation method 

aims at achieving this objective by adopting an original 

qualitative analysis in order to detect the most promising 

alternative design solutions while taking into account the risk 

aversion of decision-makers (pessimistic attitude verso 

optimistic attitude) but also a model of their preferences on 

criteria. Our proposals have been illustrated through the design 

of an autonomous mobile robot. This work will be completed 

in proposing intermediate attitude (between pure optimistic 

and pessimistic ones) and in introducing levels on degradation 

and amelioration opinions. The formalism should be also 

extended to deal with the fusion of experts’ opinions in the 

case where the members of a design group do not necessarily 

agree. 

More generally, our research consists in incorporating most of 

the recent progresses in multicriteria decision aid in the aim of 

increasing the level of confidence designers can show in the 

choices they make during the Systems Engineering processes. 
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