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OPTIMAL STABILITY RESULTS AND NONLINEAR DUALITY

FOR L∞ ENTROPY AND L1 VISCOSITY SOLUTIONS

NATHAËL ALIBAUD, JØRGEN ENDAL, AND ESPEN R. JAKOBSEN

Abstract. We give a new and rigorous duality relation between two central
notions of weak solutions of nonlinear PDEs: entropy and viscosity solutions.

It takes the form of the nonlinear dual inequality:

(⋆)

ˆ
|Stu0 − Stv0|φ0 dx ≤

ˆ
|u0 − v0|Gtφ0 dx, ∀φ0 ≥ 0, ∀u0, ∀v0,

where St is the entropy solution semigroup of the anisotropic degenerate par-

abolic equation

∂tu+ divF (u) = div(A(u)Du),

and where we look for the smallest semigroup Gt satisfying (⋆). This amounts
to finding an optimal weighted L1 contraction estimate for St. Our main result

is that Gt is the viscosity solution semigroup of the Hamilton-Jacobi-Bellman

equation
∂tφ = supξ{F ′(ξ) ·Dφ+ tr(A(ξ)D2φ)}.

Since weigthed L1 contraction results are mainly used for possibly noninte-

grable L∞ solutions u, the natural spaces behind this duality are L∞ for St

and L1 for Gt. We therefore develop a corresponding L1 theory for viscosity

solutions φ. But L1 itself is too large for well-posedness, and we rigorously

identify the weakest L1 type Banach setting where we can have it – a subspace
of L1 called L∞

int. A consequence of our results is a new domain of dependence

like estimate for second order anisotropic degenerate parabolic PDEs. It is

given in terms of a stochastic target problem and extends in a natural way re-
cent results for first order hyperbolic PDEs by [N. Pogodaev, J. Differ. Equ.,

2018].
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1. Introduction

In this paper we study two central notions of weak solutions of nonlinear PDEs
and their interplay – entropy solutions and viscosity solutions. Originally intro-
duced for first order scalar conservation laws [39] and Hamilton-Jacobi equations
[25] respectively, both solution concepts have later been extended to second order
PDEs [37, 36, 18, 22]. Conservation laws are divergence form equations arising in
continuum physics [27], while Hamilton-Jacobi equations are nondivergence form
equations from e.g. differential geometry and optimal control theory [31, 5, 4]. The
well-posedness of these equations is an important topic and requires the entropy
and viscosity solution theories in general. The literature is by now very large and
includes lots of applications. See [31, 28, 5, 4, 48, 27, 24] for the state-of-the-art.

Here we develop a new connection between these solution concepts. It is already
well-known that viscosity solutions are integrated entropy solutions in space dimen-
sion one [20, 38, 23]. Our connection is valid in any dimension and is expressed
through weighted L1 contraction results for entropy solutions: The optimal weight
is the viscosity solution of a well-determined dual equation. Since L∞ is a natural
space for such weighted estimates, we need and do develop an L1 theory for viscos-
ity solutions of the dual equation. Consequences are a new domain of dependence
like result for second order PDEs in terms of a stochastic target problem, a new
rigorous form of duality between L∞ entropy and L1 viscosity solutions in terms
of nonlinear semigroups, and a new characterization of viscosity supersolutions; see
(8), (10) and (11) respectively.

The idea of using viscosity solutions to get estimates for entropy solutions was
from [29]. The corresponding results were rather accurate but not optimal yet.
In this paper we prove optimal estimates for entropy solutions – and – that vis-
cosity solutions are in fact needed to prove this optimality. This is exactly what
leads to rigorous duality results. Also note that we consider nonlinear anisotropic
diffusions as opposed to [29]. For an early discussion and open questions about
“duality between nonlinear semigroups,” see [14, pp. 28–29]. We also mention the
recent papers [19, 45] which study transport equations with linear diffusion through
viscosity solutions of their dual equations.

To be more precise, we consider the following two Cauchy problems: For the
anisotropic degenerate parabolic convection-diffusion equation

(1)
∂tu+ divF (u) = div (A(u)Du) x ∈ Rd, t > 0,

u(x, 0) = u0(x) x ∈ Rd,



STABILITY AND DUALITY FOR ENTROPY AND VISCOSITY SOLUTIONS 3

and for the Hamilton-Jacobi-Bellman (HJB) equation

∂tφ = supξ∈E
{
b(ξ) ·Dφ+ tr

(
a(ξ)D2φ

)}
x ∈ Rd, t > 0,(2a)

φ(x, 0) = φ0(x) x ∈ Rd,(2b)

where “D,” “D2” and “div” respectively denote the gradient, the Hessian and the
divergence in x, and “tr” is the trace. We assume that

(H1) F ∈W 1,∞
loc (R,Rd) and A = σA (σA)

T
for σA ∈ L∞

loc(R,Rd×K),

as well as

(H2)


E is a nonempty set,

b : E → Rd a bounded function,

a = σa (σa)
T

for some bounded σa : E → Rd×K ,

where K is the maximal rank of A(u) and a(ξ). The entropy solution theory for first
order PDEs [39] was extended in [18, 22] to show well-posedness of (1) in L1 ∩L∞

or L1. Well-posedness in L∞ is less standard for second order PDEs, but results
exist in [21, 3, 29, 42]; see [32] for anisotropic diffusions. Our main objective is to
derive an optimal weighted L1 contraction result for L∞ entropy solutions of (1).
This then will require the developement of a corresponding L1 theory for a dual
equation of the form (2), a nonstandard generalization of classical viscosity solution
theory [25, 37, 36, 24, 31, 5, 4].

Contraction type estimates are quantitative continuous dependence results on
the initial data. A simple example is the L1 contraction principle [39, 18, 22]:

(3) ∥(u− v)(t)∥L1 ≤ ∥u0 − v0∥L1 .

For possibly nonintegrable L∞ solutions, we need weighted estimates. An important
result is the finite speed of propagation property for first order PDEs [39]:

(4)

ˆ
|x−x0|<R

|u(x, t) − v(x, t)|dx ≤
ˆ
|x−x0|<R+Ct

|u0(x) − v0(x)|dx;

see [43] for more precise estimates. For second order PDEs, a standard example is
given in [13, 21, 49, 32]:

(5)

ˆ
|u(x, t) − v(x, t)|e−

√
1+|x|2 dx ≤ eCt

ˆ
|u0(x) − v0(x)|e−

√
1+|x|2 dx.

Note that (5) does not imply (3) and (4). A finer result that is closer to (4) is given
in [29] but it still does not imply (3), see [29, Rem. 2.7(b)].

We continue with a formal presentation of our main results. We first give a very
accurate weighted L1 contraction estimate for (1). We need to be precise about
the dependence of the estimates in u0 and v0. Note that C in (4) and (5) actually
depends on L∞ bounds on these initial data. These bounds will determine E in the
dual equation of the form (2). For m < M , our new estimate for (1) is

(6)

ˆ
|u(x, t) − v(x, t)|φ0(x) dx ≤

ˆ
|u0(x) − v0(x)|φ(x, t) dx,

where φ0 ≥ 0 is arbitrary, the weight φ is the viscosity solution of (2) with

(7) b = F ′, a = A, E = [m,M ] ∩
{

Lebesgue points of (F ′, A)
}
,

and u0 and v0 are arbitrary with values in [m,M ]. For a precise statement, see
Theorem 19. Note that we also use another equivalent formulation of (2) in terms
of ess sup, see (21). The standard HJB form is, however, used especially for results
specific to viscosity solutions.
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Equation (2) is also related to stochastic control theory [31]. If we assume F ′

and A are continuous so E becomes compact, then the solution φ of (2) is the value
function of a stochastic target problem and (6) can be rewritten as

(8)

ˆ
U

|u(x, t) − v(x, t)|dx ≤
ˆ

|u0(x) − v0(x)| sup
ξ·∈Ξ

P (Xx
t ∈ U) dx,

where U ⊆ Rd is arbitrary, P is the probability, Ξ is the set of [m,M ]-valued
processes, Bs a Brownian motion, and Xx

s an Ito process satisfying the stochastic
differential equation (SDE)

(9)
dXx

s = F ′(ξs) ds+
√

2σA(ξs) dBs s > 0,

Xx
0 = x.

For the precise statement, see Corollary 22. The control ξs is determined to max-
imize the probability for the controlled process Xx

s starting from x at time 0 to
reach U at time t, and Equation (2a) with data (7) is the dynamic programming
equation for this control problem. Interestingly (8) can be interpreted as a domain
of dependence estimate for (1). Indeed if we consider the deterministic case A ≡ 0,

then formally (9) becomes the characteristic equation of (1),
dXx

s

ds = F ′(u(Xx
s , s)),

if we take ξs = u(Xx
s , s). In fact Estimate (8) reduces to the domain of dependence

estimate of [43] for scalar conservation laws, see Corollary 21. This suggests that
(8) is a natural extension of such estimates to the degenerate parabolic equation
(1), where the second order term in (1) is taken into account via the Brownian part
(the Ito integral) in (9).

Note that (6) and (8) imply (3), (4), (5), the related results in [29, 43], and as
we will see, they are optimal in a rigorous sense. To discuss the optimality of (6),
we fix φ0 and try to identify the minimal φ satisfying (6) for any u0, v0. The key
result (Theorem 23) is a characterization of viscosity supersolutions of (2) in terms
of contraction estimates for (1):

A nonnegative function φ is a viscosity supersolution of (2a) with
data (7) if and only if

(10)

ˆ
|u(x, t) − v(x, t)|φ(x, s) dx ≤

ˆ
|u0(x) − v0(x)|φ(x, t+ s) dx,

for all t, s ≥ 0 and u0, v0 with values in [m,M ] with associated
entropy solutions u, v of (1).

Roughly speaking this result implies that if we restrict to weights satisfying a nat-
ural semigroup property, then the best weight in (6) is the viscosity solution of (2)
since by comparison solutions are always smaller than supersolutions. This then
leads to our most original result (Corollary 37):

If St and Gt are the solution semigroups of (1) and (2), with data
(7), then Gt is the smallest semigroup satisfying

(11)

ˆ
|Stu0 − Stv0|φ0 dx ≤

ˆ
|u0 − v0|Gtφ0 dx,

for all u0, v0 with values in [m,M ] and nonnegative φ0.

We can interpret (11) as a nonlinear dual inequality and Gt as a dual semigroup of
St, because Gt is entirely determined by (11) and knowledge of St. The duality in
the other direction is open (Remark 39). Since St is taken on L∞ from the begining,
it remains to properly define Gt on L1.

Classical viscosity solution theory starting from [25, 37, 36] and summarized in
e.g. [24, 31, 5, 4], typically considers bounded continuous Cb solutions. For solutions
in L1 or Lp (in space) there are fewer results, see e.g. [16] for nondegenerate PDEs
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and [41, 2, 1, 6, 15, 17, 29] for various other PDEs. Here we show that (2) can be
ill-posed in L1 in general. We then consider stronger norm topologies and identify
the weakest one for which (2) is well-posed in general: It is generated by the norm

φ0 7→
ˆ

sup
x+[−1,1]d

|φ0|dx

which is the norm of the space L∞
int as defined in [2, 1]. Since L∞

int ⊂ L1 ∩ L∞, it
follows that Cb ∩ L∞

int is a natural L1 type Banach space for the dual equation (2)
and its solution semigroup Gt in (11); see Theorem 33 and Corollary 36.

Our results on L1 viscosity solutions are of independent interest, see in particular
Theorem 35. Let us comment them further. The estimates of [2] are not in L∞

int

but in its predual L1
unif ̸⊂ L1, while [1] gives weighted L∞

int estimates for unbounded
solutions with linear diffusions. In [29] there are L1 estimates for fully nonlinear
degenerate PDEs with isotropic diffusions and exponentially decaying initial data.
Equation (2) is fully nonlinear, degenerate, possibly anisotropic, and we consider
general L∞

int data while identifying L∞
int as the most natural L1 viscosity solution

setting.

The rest of this paper is organized as follows. We recall basic facts in Section
2, we state our main results in Section 3, and prove them in Section 4. For com-
pleteness, some results for minimal discontinuous viscosity solutions are proved in
A, a complete proof of well-posedness for L∞ entropy solutions is given in B, and
further comments on our duality results are postponed to C and D.

2. Preliminaries

This section recalls basic facts on Cb viscosity and L∞ entropy solutions; for
proofs, see e.g. [24, 31, 5, 4] and [22, 11, 27] respectively. We also define the space
L∞
int.

2.1. Notation. Throughout R+ := [0,∞), balls and cubes of Rd with center x and
radius r > 0 are Br(x) := {y : |y − x| < r} and Qr(x) := x + (−r, r)d, the symbol
“co” denotes the convex hull of sets, “(ess) Im” the (essential) image of (measurable)
functions, “Sp” the spectrum of matrices, and 1U the indicator function of a set U .

We follow standard notation for function spaces, e.g. Cc denotes continuous
functions with compact support, BLSC (resp. BUSC) bounded lower (resp. up-
per) semicontinuous functions, Lp stands for Lebesgue spaces, etc. For two normed
spaces X ⊆ Y , we say that X is continuously embedded into Y if the canonical

injection is continuous, and the completion of X is denoted by X
∥·∥X ⊆ Y .

Concerning operations on functions, “∗” is the convolution which is mostly taken
in x ∈ Rd, and we use “∗x,t” if it is taken in (x, t) ∈ Rd+1, etc. To regularize
functions of x, we use convolution with an approximate unit ρν of the form

(12) ρν(x) :=
1

νd
ρ
(x
ν

)
,

where 0 ≤ ρ ∈ C∞
c (Rd) and

´
ρ = 1, while for functions of t, we convolve with

(13) θν(t) :=
1

ν
θ

(
t

ν

)
,

where 0 ≤ θ ∈ C∞
c ((−∞, 0)) and

´
θ = 1. If needed, we extend functions of t ∈ R+

by zero to all t ∈ R to give a meaning to the convolution. For locally bounded
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everywhere defined φ0 : Rd → R or φ : Rd × R+ → R, we define the infconvolution
[24, 31, 5, 4] of e.g. φ0 for all x by

(14) (φ0)ε(x) := inf
y∈Rd

{
φ0(y) +

|x− y|2

2ε2

}
.

Here the inf is pointwise and, to avoid confusion, we will use distinct notation for
ess inf, etc. The upper φ∗ (lower φ∗) semicontinuous envelope of φ is defined as

φ∗(x, t) := lim sup
(y,s)→(x,t)

φ(y, s)

(
φ∗(x, t) := lim inf

(y,s)→(x,t)
φ(y, s)

)
.

For a family (φε = φε(x, t))ε>0, the upper and lower relaxed limits as ε→ 0+ are,
using standard notation [24, 5, 4],

(15) lim sup*φε(x, t) := lim sup
(y,s)→(x,t)

ε→0+

φε(y, s) ∀(x, t) ∈ Rd × R+,

and lim inf*φε := − lim sup* (−φε). As is customary, we use the same notation
lim sup* and lim inf* also when the limits are taken in another variable than ε→ 0+,
e.g. R → ∞. We write limε↓0 ↑ φε for the limit if φε(x, t) ↗ supε>0 φε(x, t) as
ε↘ 0. We use similar notation for φ0 = φ0(x) as e.g. (φ0)∗(x) := lim supy→x φ0(y),
etc.

As concerning stochastic processes, we fix

(16)

{
a complete filtered probability space (Ω,F ,Ft,P), and

a standard d-dimensional Brownian Bt on this filtration.

The associated expectation w.r.t. P is denoted by E. We will assume possibly
without mentioning that all stochastic processes in this paper are defined on this
filtered probability space, and that whenever we need a Brownian motion, then we
take the above Brownian motion.

Less standard notation. Following [2, 1],

(17) L∞
int(Rd) :=

{
φ0 ∈ L1

loc(Rd) : ∥φ0∥L∞
int
<∞

}
,

where ∥φ0∥L∞
int

:=
´

ess supQ1(x)
|φ0|dx. For the pointwise sup, we use ∥φ0∥int :=´

supQ1(x)
|φ0|dx. Note that ∥φ0∥int = ∥φ0∥L∞

int
if φ0 is continuous. For more

details about L∞
int, see Section 2.4.

For any φ ∈ BLSC(R× R+), we associate a particular envelope defined as

(18) φ#(x, t) := lim inf
r→0+
y→x

1

meas(Br(y))

ˆ
Br(y)

φ(z, t) dz.

This envelope will appear naturally in Theorem 23 and more properties will be
given in Section 4.4.

2.2. Viscosity solutions of (2). We begin by introducing the correct notion of
solutions for HJB equations [24, 31, 5, 4].

Definition 1 (Viscosity solutions). Assume (H2) and φ0 : Rd → R is bounded.

(a) A locally bounded function φ : Rd × R+ → R is a viscosity subsolution (resp.
supersolution) of (2) if

(i) for every ϕ ∈ C∞(Rd × R+) and local maximum (x, t) ∈ Rd × (0,∞) of
φ∗ − ϕ (resp. mininimum of φ∗ − ϕ),

∂tϕ(x, t) ≤ supE
{
b ·Dϕ(x, t) + tr

(
aD2ϕ(x, t)

)}
(resp. ≥),
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(ii) and for every x ∈ Rd,

φ∗(x, 0) ≤ (φ0)∗(x) (resp. φ∗(x, 0) ≥ (φ0)∗(x)).

(b) A function φ is a viscosity solution if it is both a sub and supersolution.

Remark 2. We say that φ is a viscosity subsolution (resp. supersolution) of (2a) if
(ai) holds.

We recall the well-known comparison and the well-posedness for (2) [24, 31].

Theorem 3 (Comparison principle). Assume (H2). If φ and ψ are bounded sub
and supersolutions of (2a), and

φ∗(x, 0) ≤ ψ∗(x, 0) ∀x ∈ Rd,

then φ∗ ≤ ψ∗ on Rd × R+.

Theorem 4 (Existence and uniqueness). Assume (H2) and φ0 ∈ Cb(Rd). Then
there exists a unique viscosity solution φ ∈ Cb(Rd × R+) of (2).

Remark 5. By the comparison principle, inf φ0 ≤ φ ≤ supφ0 and we have the
following contraction property: ∥φ−ψ∥∞ ≤ ∥φ0−ψ0∥∞ for every pair of solutions
φ and ψ with initial data φ0 and ψ0.

We may take φ0 to be discontinuous as in (8). In that case, we lose uniqueness
and we have to work with minimal and maximal solutions [26, 10, 33] (see also [4]
for bilateral solutions). For our considerations, we only need minimal solutions.

Theorem 6 (Minimal solutions). Assume (H2) and φ0 : Rd → R bounded. Then
there exists a minimal viscosity solution φ ∈ BLSC(Rd ×R+) of (2), in the sense
that φ ≤ φ for any bounded viscosity solution φ of (2). Moreover φ(x, t = 0) =

(φ0)∗(x) for any x ∈ Rd.

Note that φ is unique by definition. Actually, it is more precisely the minimal
supersolution.

Proposition 7. Assume (H2) and φ0 : Rd → R is bounded. Then any bounded
supersolution φ of (2) is such that φ ≤ φ∗.

Remark 8. In particular, we have the following comparison principle: φ ≤ ψ for
any bounded φ0 ≤ ψ0.

For completeness, the proofs of Theorems 6 and Proposition 7 are given in A.1
because [26, 10, 33, 4] consider slightly different problems. Let us continue with
representation formulas for the solution φ from control theory [31, 4, 34, 35].

Proposition 9 (First order). Assume (H2), a ≡ 0, and φ0 : Rd → R bounded.
Then the minimal viscosity solution of (2) is given by

φ(x, t) = sup
x+tC

(φ0)∗ ∀(x, t) ∈ Rd × R+,

where C = co {Im(b)}.

In the second order case, we need a probabilistic framework.

Proposition 10 (Second order). Assume (H2), (16), and

(19) the set E is compact and the functions b(·) and σa(·) are continuous.

Then the minimal viscosity solution of (2) is given by

φ(x, t) = sup
ξ·∈Ξ

E {(φ0)∗(Xx
t )} ,
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where Ξ is the set of progressively measurable E-valued processes and Xx
s an Ito

process satisfying the SDE{
dXx

s = b(ξs) ds+
√

2σa(ξs) dBs, s > 0,

Xx
s=0 = x.

These results are standard for continuous viscosity solutions [31, 4], see also
[4, 34, 35] for maximal solutions. For minimal solutions, we did not find any
reference so we provide the proofs in A.2.

2.3. Entropy solutions of (1). Well-posedness of (1) in L∞ is essentially estab-
lished in [32] for smooth fluxes, see [22, 11] for previous results in L∞ ∩ L1 or L1.
Let us now recall these results in the form needed here and provide complementary
proofs in B for completeness.

Definition 11 (Entropy-entropy flux triple). We say that (η, q, r) is an entropy-
entropy flux triple if η ∈ C2(R) is convex, q′ = η′F ′ and r′ = η′A.

Given β ∈ C(R), we also need the notation

ζik(u) :=

ˆ u

0

σA

ik(ξ) dξ and ζβik(u) :=

ˆ u

0

σA

ik(ξ)β(ξ) dξ.

Definition 12 (Entropy solutions). Assume (H1) and u0 ∈ L∞(Rd). A function
u ∈ L∞(Rd × R+) ∩ C(R+;L1

loc(Rd)) is an entropy solution of (1) if

(a)
∑d
i=1 ∂xi

ζik(u) ∈ L2
loc(Rd × R+) for any k = 1, . . . ,K,

(b) for any k = 1, . . . ,K and any β ∈ C(R)

d∑
i=1

∂xiζ
β
ik(u) = β(u)

d∑
i=1

∂xiζik(u) ∈ L2
loc(Rd × R+),

(c) and for all entropy-entropy flux triples (η, q, r) and 0 ≤ ϕ ∈ C∞
c (Rd × R+),

¨
Rd×R+

η(u)∂tϕ+

d∑
i=1

qi(u)∂xi
ϕ+

d∑
i,j=1

rij(u)∂2xixj
ϕ

 dx dt

+

ˆ
Rd

η(u0(x))ϕ(x, 0) dx ≥
¨

Rd×R+

η′′(u)

K∑
k=1

(
d∑
i=1

∂xi
ζik(u)

)2

ϕ dxdt.

Theorem 13 (Existence and uniqueness). Assume (H1) and u0 ∈ L∞(Rd). Then
there exists a unique entropy solution u ∈ L∞(Rd ×R+) ∩C(R+;L1

loc(Rd)) of (1).

See [32, Theorem 1.1] or B for the proof.

Remark 14. (a) In the L1 settings of [22, 11], the following contraction principle
holds: For solutions u and v of (1) with initial data u0 and v0,

∥u(·, t) − v(·, t)∥L1 ≤ ∥u0 − v0∥L1 ∀t ≥ 0.

(b) In the L∞ setting of [32], uniqueness is based on the weighted L1 contraction
principle (5), see also Lemma 63 in B.

(c) In all cases, we have comparison and maximum principles as stated in Lemma
65 in B.

In L∞, uniqueness is based on a doubling of variables arguments developed in
[39, 18, 11]. This argument leads to (20) below, and this inequality will be the
starting point of our analysis.
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Lemma 15 (Kato inequality). Assume (H1) and u, v are entropy solutions of
(1) with initial data u0, v0 ∈ L∞(Rd). Then for all T ≥ 0 and nonnegative test
functions ϕ ∈ C∞

c (Rd × [0, T ]),

(20)

ˆ
Rd

|u− v|(x, T )ϕ(x, T ) dx ≤
ˆ
Rd

|u0 − v0|(x)ϕ(x, 0) dx

+

¨
Rd×(0,T )

|u− v|∂tϕ+

d∑
i=1

qi(u, v)∂xiϕ+

d∑
i,j=1

rij(u, v)∂2xixj
ϕ

 dxdt,

where

qi(u, v) = sign(u− v)

ˆ u

v

F ′
i (ξ) dξ, rij(u, v) = sign(u− v)

ˆ u

v

Aij(ξ) dξ.

See B for precise references to the computations in [11] on how to show this
lemma in our setting.

2.4. The function space L∞
int. Let us now give some basic properties on the space

which was defined in (17).

Theorem 16. The space L∞
int(Rd) is a Banach space, and it is continuously em-

bedded into L1 ∩ L∞(Rd).

See [2, 1] for the proof and choice of the above notation. We also need the
following result:

Lemma 17. For any r > 0 and ε ≥ 0, there is a constant Cr,ε ≥ 0 such thatˆ
sup

Qr+ε(x)

|φ0|dx ≤ Cr,ε

ˆ
sup
Qr(x)

|φ0|dx ∀φ0 : Rd → R.

Remark 18. This result will be used with the pointwise sup for discontinuous φ0,
typically lower or upper semicontinuous.

The proof can be found in [2, 1], see e.g. [1, Lemma 2.5.1].

3. Main results

In this section we precisely state our results: the weighted L1 contraction esti-
mate for (1) in Section 3.1, the optimality of the weight in Section 3.2, and the
interpretation in terms of dual nonlinear semigroup in Section 3.3. Section 3.3
contains the L1 theory for (2), and the long proofs are postponed to Section 4.

3.1. Weighted L1 contraction for entropy solutions. The weight φ of our new
estimate for (1) is the viscosity solution of (2) with data (7), a problem which we
rewrite in the more convenient form1

∂tφ = ess sup
m≤ξ≤M

{
F ′(ξ) ·Dφ+ tr

(
A(ξ)D2φ

)}
x ∈ Rd, t > 0,(21a)

φ(x, 0) = φ0(x) x ∈ Rd,(21b)

for given m < M and φ0.

1Viscosity solutions are understood as in Definition 1 via Problem (2) with data (7). But we
let the reader check that we can equivalently redefine this notion via (21). More precisely φ is a

viscosity supersolution of (2) with data (7) if and only if for every ϕ ∈ C∞ and local max (x, t)
of φ∗ − ϕ, ∂tϕ(x, t) ≤ ess supm≤ξ≤M

{
F ′(ξ) ·Dϕ(x, t) + tr

(
A(ξ)D2ϕ(x, t)

)}
, etc.
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Theorem 19 (Weighted L1 contraction). Assume (H1), m < M , u0 = u0(x) and
v0 = v0(x) are measurable with values in [m,M ], and 0 ≤ φ0 ∈ BLSC(Rd). Then
the corresponding entropy solutions u and v of (1) and minimal viscosity solution
φ of (21) satisfy

(22)

ˆ
Rd

|u− v|(x, t)φ0(x) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x, t) dx ∀t ≥ 0.

Remark 20. (a) The right-hand side of (22) can be infinite. To get finite integrals,
it suffices to take u0 − v0 ∈ L1. We shall see later that another sufficient
condition is that φ0 ∈ L∞

int, since φ will then be L1 in space by Theorem 35.
(b) The same result holds when φ is replaced by any measurable supersolution of

(21), since it is greater than φ.
(c) We also point the interested reader to Lemma 54. There we prove that a conse-

quence of the above result is that u0 − v0 ∈ L1 implies u− v ∈ C(R+;L1(Rd)).

From control theory there exist representation formulas for φ in the first and
second order cases, see Propositions 9 and 10. Combining the above result with
these representation formulas give us very precise domain of dependence results. In
the first order case, we recover the precise results of [43], while in the second order
case the result is new.

Corollary 21 (First order equations). Assume (H1) with A ≡ 0, m < M , u0
and v0 are measurable functions with values in [m,M ], and u and v are entropy
solutions of (1) with initial data u0 and v0. Thenˆ

B

|u− v|(x, t) dx ≤
ˆ
B−tC

|u0 − v0|(x) dx

for any Borel set B ⊆ Rd and t ≥ 0, where

C = co
{

ess Im
(

(F ′) [m,M ]

)}
.

Proof. Let U ⊇ B be an open set and take φ0 = 1U . By Proposition 9, the
minimal solution of (21) is φ(x, t) = 1U−tC(x). Apply then Theorem 19 and take
the infimum over all open U ⊇ B. □

Corollary 22 (Second order equations). Assume (H1), (16), F ′(·) and σA(·) con-
tinuous, m < M , u0 and v0 in L∞(Rd, [m,M ]), and u and v entropy solutions of
(1) with u0 and v0 as initial data. Then for any open U ⊆ Rd and t ≥ 0,ˆ

U

|u− v|(x, t) dx ≤
ˆ
Rd

|u0 − v0|(x) sup
ξ·∈Ξ

P (Xx
t ∈ U) dx,

where Ξ is the set of progressively measurable [m,M ]-valued processes and Xx
s is

an Ito process satisfying the SDE (9).

Proof. Take φ0 = 1U and apply Proposition 10 to compute φ in Theorem 19. □

The proof of Theorem 19 is given in Section 4.3.

3.2. Optimality of the weight. Let us now discuss the optimality of the weight
φ in a weighted L1 contraction estimate for (1) such as (22). The first step is
a reformulation of the definition of viscosity supersolutions of (21a) in terms of
weights in L1 contraction estimates for (1).

Theorem 23 (Weights and supersolutions). Assume (H1), m < M , and 0 ≤ φ ∈
BLSC(Rd × R+). Then the statements below are equivalent.
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(I) For any measurable functions u0 and v0 with values in [m,M ] and entropy
solutions u and v of (1) with initial data u0 and v0,ˆ

Rd

|u− v|(x, t)φ(x, s) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x, t+ s) dx ∀t, s ≥ 0.

(II) The function φ# (cf. (18)) is a viscosity supersolution of (21a).

Remark 24. (a) We will see in Lemma 56(ii) that φ#(·, t) = φ(·, t) a.e. in Rd, for
any t. Hence φ# satisfies (I) if and only if φ does.

(b) For a fixed t, the classical precise representative [30, 44] of φ(·, t), is defined
over Lebesgue points (in space) as

φ̂(x, t) := lim
r→0+

1

meas(Br(x))

ˆ
Br(x)

φ(y, t) dy.

Assigning the value supφ at all other points, and taking the lower semicontin-
uous envelope (in x), will exactly give φ#(·, t).

(c) Although φ ∈ BLSC makes sense everywhere, we need to consider another
precise representative in x for the viscosity inequalities to hold. This is because
these inequalities are pointwise while (I) does not depend on the choice of such
representatives. If e.g. modifying φ only at some (x0, t0) such that

φ(x0, t0) < lim inf
(x0,t0) ̸=(x,t)→(x0,t0)

φ(x, t),

we would preserve (I) while losing the viscosity inequalities.2

(d) We do not need to change the precise representative in t, roughly speaking
because we consider BLSC weights satisfying (I) for all times.

(e) For simplicity, we restrict to BLSC weights since this regularity is shared by
φ from Theorem 19 and most of the weights from the literature. But we have
a similar result for merely measurable weights in (x, t); see C for completeness.

We will therefore roughly speaking deduce from the comparison principle that
our weight is optimal in the class of weights

Wm,M,φ0
:=
{

0 ≤ φ ∈ BLSC(Rd × R+) satisfying (I) and φ(t = 0) ≥ φ0

}
.

Corollary 25 (Optimality of the weight). Assume (H1), m < M , and 0 ≤ φ0 ∈
BLSC(Rd). Then the weight φ from Theorem 19 belongs to the class Wm,M,φ0

and
satisfies

(φ)#(x, t) = inf {φ#(x, t) : φ ∈ Wm,M,φ0
} ∀(x, t) ∈ Rd × R+.

Remark 26. (a) Property (I) is stronger than (22) since it holds for any s ≥ 0.
This may be interpreted as a certain semigroup property.

(b) Property (I) is satisfied by most of the weights from the literature, as e.g. for

φ ≡ 1, φ(x, t) = 1|x−x0|<R+Ct and φ(x, t) = eCte−
√

1+|x|2 ,

in respectively (3), (4) and (5); see also the stability results from [39, 13, 21,
49, 22, 29, 32, 43].

The proofs of Theorem 23 and Corollary 25 are given in Section 4.4.

2Indeed φ− ϕ would achieve a local min in (x0, t0), for all ϕ ∈ C∞.
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3.3. L∞
int, semigroup formulation, and a new form of duality. We now in-

terpret our results in terms of semigroups. This will reflect some form of duality
for nonlinear semigroups, which will reduce to standard duality in the linear case.
We first need to make the functional framework precise. Recall that L1 might seem
natural for the dual semigroup which will correspond to the weights in (22), but
it is too weak for HJB equations and we will precisely explain why L∞

int ⊂ L1 is a
better and very natural setting. This preliminary study has also its own interest in
viscosity solution theory, and is written for HJB equations in the usual form (2).

Preliminaries: Cb ∩ L∞
int as a natural L1 setting for (2). We first explain why the

pure L1 setting is too weak to develop a general well-posedness theory for (2).
Consider a solution of the eikonal type equation3

(23) ∂tφ =

d∑
i=1

|∂xi
φ|.

Under which condition is it integrable?

Proposition 27 (Necesssary and sufficient integrability condition). Let φ be the
viscosity solution of (23) with initial data φ0 ∈ Cb(Rd). We then have[

φ(·, t) ∈ L1(Rd) ∀t ≥ 0
]

⇐⇒
[
φ−
0 ∈ L1(Rd) and φ+

0 ∈ L∞
int(Rd)

]
.

Proof. Since φ(x, t) = supQt(x)
φ0 by Proposition 9, we conclude by Lemma 17. □

We continue by showing that the L1 topology is too weak to get the continuous
dependence on the initial data, even for solutions which remain integrable.

Proposition 28 (Failure of the L1 continuous dependence). For all n ≥ 1, let
φn0 (x) := (1 − n|x|)+, and φn be the solution of (23) with initial data φn0 . Then
φn0 ∈ Cb ∩ L∞

int(Rd) and

lim
n→∞

φn0 = 0 in L1(Rd),

but
lim
n→∞

φn(·, t) = 1Qt
(·) ̸= 0 in L1(Rd), ∀t > 0.

Proof. Use again that φn(x, t) = supQt(x)
φn0 . □

Interestingly a similar analysis works also for purely diffusive HJB equations.
Consider e.g. an equation in one space dimension4

(24) ∂tφ =
(
∂2xxφ

)+
.

To have L1 solutions, we need again that φ+
0 ∈ L∞

int.

Proposition 29 (L∞
int and nonlinear diffusions). Let φ0 ∈ Cb(R) be nonnegative

and φ be the viscosity solution of (24) with φ0 as initial data. Then,[
φ(·, t) ∈ L1(R) ∀t ≥ 0

]
⇐⇒ φ0 ∈ L∞

int(R).

See Section 4.5 for the proof. We now use the lack of a fundamental solution of
(24) to show that there is no continuous dependence on the initial data in L1.

Proposition 30 (Blow-up everywhere). For all n ≥ 1, let φn be the viscosity
solution of (24) with an approximate delta-function as initial data:

(25) φn(x, t = 0) = nρ(nx),

where 0 ≤ ρ ∈ Cc(R) is nontrivial. Then limn→∞ φn(x, t) = ∞, ∀x ∈ R,∀t > 0.

3Equation (23) is of the form (2) with E = Q1(0), b(ξ) = ξ, and a ≡ 0.
4Equation (24) is of the form (2) with E = [0, 1], b ≡ 0, and a(ξ) = ξ.
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See Section 4.5 for the proof.

Remark 31. A counterexample to the L1 continuous dependence for (24) is then
given by the sequence of solutions

ψn(x, t) := φn(x, t)/
√
∥φn(·, t0)∥L1 for a fixed t0 > 0,

since ∥ψn(t = 0)∥L1 → 0 while ∥ψn(·, t)∥L1 ≥ ∥ψn(·, t0)∥L1 → ∞ for any t ≥ t0.

In view of the previous results, we now look for a Banach space X ⊂ L1 that
is strong enough to get well-posedness for (2) in general. We are mainly inter-
ested in properly defining an associated semigroup; see e.g. [14, 12] for a general
presentation of nonlinear semigroups.

Definition 32. Let E be a normed space.

(a) A family of maps Gt : E → E parametrized by t ≥ 0 is a semigroup on E if{
Gt=0 = id (the identity), and

Gt+s = GtGs (meaning the composition) for any t, s ≥ 0.

(b) It is a semigroup of continuous operators if in addition Gt : E → E is contin-
uous for each t ≥ 0.

(c) And it is strongly continuous if for each φ0 ∈ E, t ≥ 0 7→ Gtφ0 ∈ E is strongly
continuous (i.e. continuous in norm).

Let φ be the unique viscosity solution of (2) and define

(26) Gt : φ0 ∈ Cb(Rd) 7→ φ(·, t) ∈ Cb(Rd).

Then Gt is a semigroup of Lipschitz continuous (in Cb) operators by Remark 5. A
natural construction is to define X as the completion of some E ⊆ Cb ∩ L1, such
that X ⊆ L1 and Gt can be extended from E onto X. More precisely we require
that

(27)


E is a vector subspace of Cb ∩ L1(Rd),
E is a normed space,

E is continuously embedded into L1(Rd),

and for any data (E , b, a) satisfying (H2), the semigroup (26) satisfies:

(28) ∀t ≥ 0,

{
Gt(E) ⊆ X := E

∥·∥E
, Gt : E → X is continuous, and

Gt admits an extension onto X as a continuous operator.

Here E
∥·∥E ⊆ L1(Rd) is the completion, see Section 2.1.

The best E is given below.

Theorem 33 (A natural L1 setting for (2)). The space Cb ∩L∞
int(Rd) is a Banach

space satisfying the properties (27)–(28). Moreover, any other space E satisfying
(27)–(28) is continuously embedded into Cb ∩ L∞

int(Rd).

Remark 34. Since the best E = X is a Banach space by Theorem 16, it is a
posteriori not necessary to extend Gt outside Cb. The classical notion of viscos-
ity solutions is then already satisfactory to study L1 solutions of fully nonlinear
degenerate PDEs.

Theorem 33 relies on the following estimate:
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Theorem 35 (General L∞
int stability). Assume (H2) and T ≥ 0. For any bounded

subsolution φ and supersolution ψ of (2a),

(29)

ˆ
sup

Q1(x)×[0,T ]

(φ∗ − ψ∗)
+

dx ≤ C

ˆ
sup
Q1(x)

(φ∗ − ψ∗)
+

(·, 0) dx,

for some constant C = C(d, ∥a∥∞, ∥b∥∞, T ) ≥ 0.

As a consequence we have the following result:

Corollary 36 (L∞
int well-posedness of (2)). Assume (H2) and Gt is the solution

semigroup defined in (26). Then its restriction to Cb ∩ L∞
int(Rd) is a strongly con-

tinuous semigroup of Lipschitz continuous operators.

The proofs of Theorem 35 and Corollary 36 are given in Section 4.2, while The-
orem 33 is proved in Section 4.5.

A certain duality between nonlinear semigroups. For each t ≥ 0, let

St : u0 ∈ L∞(Rd) 7→ u(·, t) ∈ L∞(Rd)

where u is the entropy solution of (1), and let

Gt : φ0 ∈ Cb ∩ L∞
int(Rd) 7→ φ(·, t) ∈ Cb ∩ L∞

int(Rd)

where φ is the viscosity solution of (21). Note that Gt = Gm,Mt depends on the
parameters m and M through Equation (21a).

Corollary 37 (A form of duality). Assume (H1), m < M , and consider the semi-
groups St and Gt defined as above. Then Gt is the smallest strongly continuous
semigroup of continuous operators on Cb ∩ L∞

int(Rd) satisfying

(30)

ˆ
Rd

|Stu0 − Stv0|φ0 dx ≤
ˆ
Rd

|u0 − v0|Gtφ0 dx,

for every u0 and v0 in L∞(Rd, [m,M ]), 0 ≤ φ0 ∈ Cb ∩ L∞
int(Rd), and t ≥ 0.

The proof of Corollary 37 is given in Section 4.4.

Remark 38. Here “smallest” means that any other semigroup Ht satisfying the
same properties is such that

Gtφ0 ≤ Htφ0 ∀φ0 ≥ 0,∀t ≥ 0.

Remark 39. (a) Inequality (30) can be seen as a nonlinear dual inequality between
St and Gt, and Gt as a dual semigroup of St whose restriction over the cone
Cb ∩ L∞

int(Rd,R+) is entirely determined by St through (30).
(b) The question of duality in the other direction is open. Let us formulate it

precisely. Consider St and the whole family {Gm,Mt : m < M} defined just
before Corollary 37.

Open question. Is St the unique weakly-⋆ continuous semigroup

on L∞(Rd) such that for all m < M , Gm,Mt is the smallest strongly
continuous semigroup of continuous operators on Cb ∩L∞

int(Rd) satis-
fying

(31)

ˆ
Rd

|Stu0 − Stv0|φ0 dx ≤
ˆ
Rd

|u0 − v0|Gm,M

t φ0 dx,

for all u0 and v0 in L∞(Rd, [m,M ]), 0 ≤ φ0 ∈ Cb ∩ L∞
int(Rd), and

t ≥ 0?
A positive answer would mean that St is conversely entirely determined by the

family {Gm,Mt : m < M} through (31).
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(c) Following part (a), we might be tempted to define a notion of dual for more
general nonlinear semigroups. It is not our aim to explore such a direction, but
note however that it would make sense only if

(i) we have a reciprocal duality as discussed in part (b), and
(ii) we can recover standard duality notions in the linear case.

We can say more about (ii), and in D we give a sample result for slightly
more abstract semigroups, for which we would not a priori know the associated
equations.

4. Proofs

This section is devoted to the proofs of the results of Section 3. We will prove
them in a certain order to arrive at Corollaries 25 and 37, thus concluding by the
optimality of the weight and the interpretation in terms of dual nonlinear semigroup.
The proofs of Propositions 29 and 30 and Theorem 33 are independent of this
developement and given at the end of the section.

4.1. More on viscosity solutions of (2). We need further classical results that
can be found in [24, 31, 5, 4].

Proposition 40 (Stability w.r.t. sup). Assume (H2) and F ≠ ∅ is a uniformly
locally bounded family of viscosity subsolutions of (2a). Then, the function

(x, t) 7→ sup{φ(x, t) : φ ∈ F}

is a viscosity subsolution of (2a).

The next results concern relaxed limits; cf. (15).

Proposition 41 (Stability w.r.t. relaxed limits). Assume (H2) and let (φε)ε>0

be a family of uniformly locally bounded viscosity subsolutions (resp. supersolu-
tions) of (2a). Then lim sup*φε (resp. lim inf*φε) is a subsolution of (2a) (resp.
supersolution).

Remark 42. The notion of solution (or semisolution) is thus stable under local
uniform convergence (equivalent to lim sup*φε = lim inf*φε).

Proposition 43 (Limiting initial data). Assume (H2) and (φε)ε>0 is a uniformly
locally bounded family of viscosity subsolutions (resp. supersolutions) of (2a). Then
lim sup*φε (resp. lim inf*φε) satisfies

lim sup*φε(x, 0) = lim sup*
[
(φε)

∗(·, 0)
]
(x) ∀x ∈ Rd

(resp. lim inf*φε(x, 0) = lim inf*
[
(φε)∗(·, 0)

]
(x)).

Remark 44. For subsolutions this means that

lim sup
Rd×R+∋(y,s)→(x,0)

ε→0+

φε(y, s) = lim sup
Rd∋y→x
ε→0+

(φε)
∗(y, 0),

where (φε)
∗ is the upper semicontinuous envelope computed in (x, t). The proof can

be found in [9] and [5, Theorem 4.7]. The idea is to first consider φ := lim sup*φε,
φ0(x) := lim sup*

[
(φε)

∗(·, 0)
]
(x), and show that min{∂tφ−H(Dφ,D2φ), φ−φ0} ≤

0 at t = 0 in the viscosity sense. Fix then some x and use the viscosity inequalities
at a max (y, t) of the function φ(y, t) − |y − x|2/ε̃ − Ct with C large enough such
that t = 0. We get φ(x, 0) ≤ φ0(y) and conclude as ε̃→ 0+.

Here is the stability for minimal solutions, see A.1 for the proof.
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Proposition 45 (Stability of minimal solutions). Assume (H2) and (φn0 )n is a
nondecreasing uniformly globally bounded sequence. If φ

n
is the minimal solution

of (2) with φn0 as initial data, then supn φn is the minimal solution of (2) with

initial data supn(φn0 )∗.

Let us continue with regularization procedures. Usually we consider inf and
supconvolutions, but for convex Hamiltonians we can use the classical convolution
for supersolutions, see [7, 8] (the ideas were introduced in [40]).

Lemma 46. Assume (H2), φ ∈ BLSC(Rd × (0,∞)) is a supersolution of (2a),
and 0 ≤ f ∈ L1(Rd × (−∞, 0)). Then φ ∗x,t f is a supersolution of (2a).

Below is another version that will be needed.

Lemma 47. Assume (H2), φ ∈ Cb(Rd × (0,∞)) is a supersolution of (2a), and
0 ≤ g ∈ L1(Rd). Then φ ∗x g remains a supersolution.

The latter lemma is not proven in [7, 8], but can be obtained via a standard
approximation procedure. Let us give it for completeness.

Proof of Lemma 47. By Lemma 46, φν := φ ∗x g ∗x ρν ∗t θν is a supersolution of
(2a). It remains to pass to the limit as ν → 0+. We will show that the convergence
is local uniform towards φ ∗x g, which will be sufficient by stability of the equation.
We only need a local uniform convergence for t > 0 because the conclusion concerns
the PDE only. With the assumed regularity on φ,

lim
ν→0+

φ ∗x ρν ∗t θν = φ locally uniformly,

and ∥φ ∗x ρν ∗t θν∥∞ ≤ ∥φ∥∞. Moreover, for any x ∈ Rd, t > 0 and R ≥ 0,

|φν − φ ∗x g|(x, t) ≤ |φ ∗x ρν ∗t θν − φ| ∗x g(x, t)

≤

(
sup
|y|≤R

|φ ∗x ρν ∗t θν − φ|(x− y, t)

)ˆ
|y|≤R

g(y) dy

+ 2∥φ∥∞
ˆ
|y|>R

g(y) dy.

This is enough to conclude since limR→∞
´
|y|>R g(y) dy = 0. □

4.2. L∞
int well-posedness: Proofs of Theorem 35 and Corollary 36. Let us

now show that (2) is well-posed in L∞
int as stated in Corollary 36. We first need to

prove Theorem 35 for which we will use the lemmas below.

Lemma 48. Assume (H2), and φ and ψ are sub and supersolutions of (2a). Then
(φ∗ − ψ∗)+ remains a subsolution.

Sketch of proof. First note that φ− ψ is a subsolution since

∂t(φ− ψ) ≤ sup
ξ∈E

Hξ(φ) − sup
ξ∈E

Hξ(ψ) ≤ sup
ξ∈E

(Hξ(φ) −Hξ(ψ)) ,

for Hξ(φ) := b(ξ) ·Dφ+ tr
(
a(ξ)D2φ

)
. Since (φ∗ −ψ∗)+ = max{φ∗ −ψ∗, 0}, it is a

subsolution by stability of viscosity subsolutions w.r.t. max, see Proposition 40. □

The rigorous justification of the above computations can be done by using a test
function, Ishii lemma, and semijets [24, Theorem 8.3]. The details are standard
and left to the reader. Here is a second lemma involving the profile

U : r ≥ 0 7→ c0

ˆ ∞

r

e−
s2

4 ds,

where c0 > 0 is chosen such that U(0) = 1.
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Lemma 49. Let Lb ≥ 0 and La > 0. For any (x, t) ∈ Rd × R+, define

(32) Ψ(x, t) :=

{
U
(

(|x| − 1 − Lbt)
+
/
√
Lat
)

if t > 0,

1|x|<1 if t = 0.

Then in the viscosity sense,

∂tΨ ≥ Lb|DΨ| + La sup
λ∈Sp(D2Ψ)

λ+ in Rd × (0,∞)

(it is in fact an equality). Moreover Ψ ∈ Cb(Rd × (0,∞)) ∩ C(R+;L1(Rd)) where
the latter time continuity holds up to t = 0.

Remark 50. Roughly speaking, we will use Ψ as a fundamental solution to construct
L1 supersolutions of (2), but we cannot take it as a Dirac mass at t = 0 because of
Proposition 30.

Proof. The desired PDE holds if |x| < 1 +Lbt since Ψ is constant in that region. It
is also satisfied if |x| = 1 +Lbt because the subjets are empty. Now if |x| > 1 +Lbt,
then

∂tΨ = −La
|x| − 1 − Lbt

2(Lat)
3
2

U ′ − Lb√
Lat

U ′, DΨ =
x

|x|
U ′

√
Lat

,

and

∂2xixj
Ψ =

(
δij
|x|

− xixj
|x|3

)
U ′

√
Lat

+
xixj
|x|2

U ′′

Lat
.

Since U ′ ≤ 0 and U ′′ ≥ 0, we have
∑d
i,j=1 ∂

2
xixj

Ψhihj ≤ U ′′

Lat
for any h = (hi) with

|h| = 1. Hence supλ∈Sp(D2Ψ) λ
+ ≤ U ′′

Lat
and

∂tΨ − Lb|DΨ| − La sup
λ∈Sp(D2Ψ)

λ+ ≥ −rU
′(r)/2 + U ′′(r)

t

with r = (|x| − 1 − Lbt)/
√
Lat. The right-hand side is zero by definition of U , and

we obtain the desired equation for positive times. Now the detailed verification that
Ψ ∈ Cb(Rd×(0,∞))∩C(R+;L1(Rd)) does not contain any particular difficulty and
is left to the reader. The proof is complete. □

Proof of Theorem 35. Let Lb := ∥b∥∞ and La := ∥ tr(a)∥∞ and assume La > 0.
We will use the following Ky Fan inequality [46]:

(33) tr (XY ) ≤
d∑
i=1

λi(X)λi(Y ) ∀X,Y real d× d symmetric matrices,

with the ordered eigenvalues λ1 ≤ · · · ≤ λd. It implies that any subsolution of (2a)
is a subsolution of the equation

(34) ∂tφ = Lb|Dφ| + La sup
λ∈Sp(D2φ)

λ+.

Consider now arbitrary bounded sub and supersolutions φ and ψ of (2a). By
Lemma 48, (φ∗ − ψ∗)+ is a subsolution of (2a) thus of (34). To prove Estimate
(29), we will construct an integrable supersolution of (34). We will take it of the
form

ψ := Ψ ∗x sup
Q1(·)

ϕ0,

where ϕ0(x) := (φ∗ − ψ∗)
+

(x, t = 0) and Ψ is defined in Lemma 49. Let us
use Lemma 47 to show that ψ is a supersolution of (34). We need supQ1(·)

ϕ0
to be integrable, and this can be assumed without loss of generality since (29)
trivially holds if not. Now recalling that Ψ ∈ Cb(Rd × (0,∞)) is a supersolution
of (34), Lemma 47 applies and ψ remains a supersolution. Since moreover Ψ ∈
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C(R+;L1(Rd)) and supQ1(·)
ϕ0 ∈ L∞(Rd), this supersolution is continuous up to

t = 0 and satisfies

ψ(x, 0) =

ˆ
1|y|<1 sup

Q1(x−y)
ϕ0︸︷︷︸

=(φ∗−ψ∗)+(t=0)

dy ≥ (φ∗ − ψ∗)
+

(x, 0).

Hence (φ∗ − ψ∗)+ ≤ ψ everywhere by the comparison principle, andˆ
sup

Q1(x)×[0,T ]

(φ∗ − ψ∗)
+

dx ≤
ˆ

sup
Q1(x)×[0,T ]

ψ dx

≤
ˆ

sup
t∈[0,T ]

Ψ(y, t) dy

ˆ
sup
Q2(x)

ϕ0 dx,

by the Fubini theorem, etc. The first integral satisfiesˆ
sup
t∈[0,T ]

Ψ(y, t) dy ≤
ˆ
U
(

(|y| − 1 − LbT )
+
/
√
LaT

)
dy <∞,

by (32) and since U is nondecreasing and integrable. For the second integral,
Lemma 17 implies thatˆ

sup
Q2(x)

ϕ0 dx ≤ C

ˆ
sup
Q1(x)

(φ∗ − ψ∗)
+

(·, 0) dx,

for a constant C which only depends on d. Combining the three inequalities above
completes the proof of (29) when La = ∥ tr(a)∥∞ > 0. If La = 0, there is no
diffusive part in (2a), and (29) follows from Proposition 9 and Lemma 17. □

We are ready to prove Corollary 36. We need the result below.

Lemma 51. Assume (H2) and φ and ψ are continuous viscosity solutions of (2a).
Then |φ− ψ| is a subsolution of the same PDE.

Proof. Use that |φ− ψ| = max{(φ− ψ)+, (ψ − φ)+} and Lemma 48. □

Proof of Corollary 36. The fact that Gt maps Cb ∩L∞
int(Rd) into itself follows from

Theorem 35. Indeed, if φ0 ∈ Cb ∩ L∞
int(Rd), then the function (x, t) 7→ |Gtφ0(x)|

is a bounded subsolution of (2a), by Lemma 51 with ψ ≡ 0. Estimate (29) then
implies that for any t ≥ 0,

∥Gtφ0∥int =

ˆ
sup
Q1(x)

|Gtφ0|dx ≤ C

ˆ
sup
Q1(x)

|φ0|dx,

for some constant C = C(d, ∥a∥∞, ∥b∥∞, t). Let us now prove that

Gt : Cb ∩ L∞
int(Rd) → Cb ∩ L∞

int(Rd)

is Lipschitz continuous for any t ≥ 0. Let us apply again (29) to

(x, t) 7→ |Gtφ0(x) −Gtψ0(x)|,

which is a subsolution of (2a) by Lemma 51. As above we get that

∥Gtφ0 −Gtψ0∥int ≤ C

ˆ
sup
Q1(x)

|φ0 − ψ0|dx,

and deduce the desired continuity because C does not depend on the initial data.
Hence Gt is a semigroup of Lipschitz continuous operators on Cb ∩ L∞

int(Rd) and it
remains to prove the time continuity. Fix t0 ≥ 0 and let us show thatˆ

sup
Q1(x)

|Gtφ0 −Gt0φ0|dx→ 0 as t→ t0.
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The pointwise convergence follows from the continuity of (x, t) 7→ Gtφ0(x) (as
continuous solution of (2)), and a dominating function is given by

x 7→ sup
(y,s)∈Q1(x)×[0,t0+1]

2|Gsφ0(y)|

which is integrable by Theorem 35. □

4.3. Weighted L1 contraction: Proof of Theorem 19. We continue with the
general weighted L1 contraction principle for (1).

Proof of Theorem 19. We have to show that

(35)

ˆ
Rd

|u− v|(x, T )φ0(x) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x, T ) dx ∀T ≥ 0.

Let us use the Kato inequality (20) with 0 ≤ ϕ ∈ C∞
c (Rd× [0, T ]). We then obtain,

for a.e. x ∈ Rd and t ≥ 0,
d∑
i=1

qi(u, v)∂xiϕ+

d∑
i,j=1

rij(u, v)∂2xixj
ϕ

 (x, t)

= sign(u(x, t) − v(x, t))

ˆ u(x,t)

v(x,t)

{
F ′(ξ) ·Dϕ(x, t) + tr

(
A(ξ)D2ϕ(x, t)

)}
dξ

≤ |u(x, t) − v(x, t)| ess sup
m≤ξ≤M

{
F ′(ξ) ·Dϕ(x, t) + tr

(
A(ξ)D2ϕ(x, t)

)}
,

(36)

where we have taken the sup over [m,M ] because of the maximum principle Lemma
65. Injecting into (20), we get that

(37)

ˆ
Rd

|u− v|(x, T )ϕ(x, T ) dx ≤
ˆ
Rd

|u0 − v0|(x)ϕ(x, 0) dx

+

¨
Rd×(0,T )

|u− v|

(
∂tϕ+ ess sup

m≤ξ≤M

{
F ′(ξ) ·Dϕ+ tr

(
A(ξ)D2ϕ

)})
dxdt.

In the third integral, we recognize the backward in time version of (21a). The proof
of (35) then consists in taking ϕ(x, t) = φ(x, T − t).

Simplified case: 0 ≤ φ0 ∈ Cc(Rd).
Now (21) has a unique viscosity solution φ which coincides with φ. It belongs to

Cb(Rd × R+) ∩ C(R+;L1(Rd)) by Corollary 36 and Theorem 16. Let us regularize
it by convolution

φν := φ ∗x,t (ρνθν) ,

with the mollifiers (12) and (13). It follows that

φν ∈ C∞(Rd × R+) ∩ C(R+;L1(Rd))
along with all its derivatives. This is enough to take ϕν(x, t) := φν(x, T − t) as
a test function in (37) by approximation. Note that ϕν is a supersolution of the
backward version of (21a) by Lemma 46, i.e.

∂tϕν + ess sup
m≤ξ≤M

{
F ′(ξ) ·Dϕν + tr

(
A(ξ)D2ϕν

)}
≤ 0 for any t < T .

Inequality (37) with the test function ϕν then implies thatˆ
Rd

|u− v|(x, T )φν(x, 0) dx ≤
ˆ
Rd

|u0 − v0|(x)φν(x, T ) dx,

for any T ≥ 0 and ν > 0. By the C(R+;L1(Rd)) regularity of φ, the convolution
φν = φ ∗x,t (ρνθν) converges to φ in C([0, T ];L1(Rd)) as ν → 0+. Passing to the
limit as ν → 0+ then yields (35).
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General case: 0 ≤ φ0 ∈ BLSC(Rd).
We would like to pointwise approximate φ0 by a monotone sequence φn0 ↑ φ0 such
that 0 ≤ φn0 ∈ Cc(Rd). Take

φn0 (x) := inf
y∈Rd

{
φ0(y)1|y|<n + n|x− y|2

}
≥ 0.

Then φn0 is continuous as an infconvolution, see e.g. [24, 31, 5, 4]. Also,

φn0 (x) ≤ φ0(x)1|x|<n ∀x ∈ Rd,

which implies that φn0 ∈ Cc(Rd). In the limit n → ∞, we have φn0 ↑ (φ0)∗ = φ0.
Let φn be the solution of (21) with initial data φn0 , then by the previous step,ˆ

Rd

|u− v|(x, T )φn0 (x) dx ≤
ˆ
Rd

|u0 − v0|(x)φn(x, T ) dx,

for any T ≥ 0 and n. By the stability of minimal solutions (see Proposition 45),
these solutions satisfy φn ↑ φ pointwise. So we conclude the proof of (35) by passing
to the limit as n→ ∞ using the monotone convergence theorem. □

Remark 52. Going back to (20) and (36), we might think about the kinetic setting
for (1) since

sign(u(x, t) − v(x, t))

ˆ u(x,t)

v(x,t)

{
∂tϕ(x, t) + F ′(ξ) ·Dϕ(x, t) + tr

(
A(ξ)D2ϕ(x, t)

)}
dξ

=

ˆ
R
|χ(ξ;u) − χ(ξ; v)|

{
∂tϕ(x, t) + F ′(ξ) ·Dϕ(x, t) + tr

(
A(ξ)D2ϕ(x, t)

)}
dξ,

with the usual kinetic function χ; cf. [22]. However, we did not explore this. For
L1 kinetic solutions of (1), u and v would take values outside any bounded interval,
so there would be further terms for large |ξ| and we do not have any idea of what
might then be a reasonable version of (6).

4.4. Duality: Proofs of Theorem 23 and Corollaries 25 and 37. Let us now
establish the new characterization of viscosity supersolutions (Theorem 23). We
need several technical lemmas.

Here is a first classical result on entropy solutions.

Lemma 53. Assume (H1) and u0 ∈ L∞(Rd). Then, the entropy solution of (1)
is a distributional solution of (1),

¨
Rd×R+

u∂tϕ+

d∑
i=1

Fi(u)∂xi
ϕ+

d∑
i,j=1

Aij(u)∂2xixj
ϕ

 dxdt

+

ˆ
Rd

u0(x)ϕ(x, 0) dx = 0 ∀ϕ ∈ C∞
c (Rd × R+),

where Aij(u) =
´ u
0
Aij(ξ) dξ.

Proof. Take η(u) = ±u successively in the entropy inequalities, Definition 12(c).
□

Here is another result on the continuity in time.

Lemma 54. Assume (H1), u0, v0 ∈ L∞(Rd) with u0 − v0 ∈ L1(Rd), u and v
entropy solutions of (1) with initial data u0 and v0. Then u− v ∈ C(R+;L1(Rd)).

Proof of Lemma 54. By Theorem 19 with φ0 ≡ 1, we have

∥u(·, t) − v(·, t)∥L1 ≤ ∥u0 − v0∥L1 ∀t ≥ 0.
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Since the left-hand side is finite, u − v ∈ L∞(R+;L1(Rd)). By the continuity in
time with values in L1

loc(Rd) of these functions, it remains to prove that

(38) lim
R→∞

sup
t∈[0,T ]

ˆ
|x|≥R

|u(x, t) − v(x, t)|dx = 0 ∀T ≥ 0.

To do so, we will use again Theorem 19.
Fix m < M such that u0 and v0 take their values in [m,M ], and consider

φR0 (x) := φ0

( x
R

)
, R > 0,

where φ0 = φ0(x) is some kernel such that
0 ≤ φ0 ∈ Cb(Rd),
φ0(x) = 0 for |x| ≤ 1/2,

and φ0(x) = 1 for |x| ≥ 1.

With that choice, φR0 → 0 as R → ∞ locally uniformly in Rd. We then claim that
the solutions φR of (21) with initial data φR0 converge locally uniformly in Rd×R+

to zero too. This is a consequence of the method of relaxed semilimits [9]. Let us
give details for completeness. By the maximum principle,

∥φR∥∞ ≤ ∥φR0 ∥∞ = ∥φ0∥∞ ∀R > 0.

We can then apply Propositions 41 and 43 to lim sup*φR as R → ∞ and get that
it is a subsolution of (21a) satisfying

lim sup*φR(x, 0) = lim sup*φR0 (x) = 0 ∀x ∈ Rd.
Let us recall that the above lim sup*φR0 as R → ∞ is only taken in space; cf. (15)
and Remark 44. Similarly lim inf*φR as R→ ∞ is a supersolution of (2) with zero
as initial data. The comparison principle then implies that

lim sup*φR ≤ lim inf*φR.

Hence φR converges locally uniformly in Rd×R+, as R→ ∞, to the unique solution
of (21) with zero initial data, that is zero itself.

Now we can show (38). By Theorem 19 with the previous m, M , and φR0 ,ˆ
|x|≥R

|u(x, t) − v(x, t)|dx ≤
ˆ
Rd

|u(x, t) − v(x, t)|φR0 (x) dx

≤
ˆ
Rd

|u0(x) − v0(x)|φR(x, t) dx ≤
ˆ
Rd

|u0(x) − v0(x)| sup
s∈[0,T ]

φR(x, s) dx,

for any T ≥ t ≥ 0. The right-hand side vanishes as R→ ∞ by the discussion above
and the dominated convergence theorem. The proof of (38) is complete. □

Here is a regularization procedure for the weights.

Lemma 55. Assume (H1), m < M , ρν and θν are defined in (12) and (13), and
0 ≤ φ ∈ BLSC(Rd × R+) satisfies (I) in Theorem 23. Then for any ν > 0, the
convolution

φν := φ ∗x,t (ρνθν) ∈ C∞
b (Rd × R+)

also satisfies (I) in Theorem 23.

Proof. By assumption,

(39)

ˆ
Rd

|u− v|(x, t)φ(x, s) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x, t+ s) dx,

for any t, s ≥ 0, u0 and v0 with values in [m,M ], and entropy solutions u and v
of (1) with u0 and v0 as initial data. Our aim is to get the same result for φν .
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Let us use (39) not for u0 and v0, but their translations u0(· + y) and v0(· + y) for
some fixed y ∈ Rd. Since the PDE part of (1) is invariant w.r.t. translation, the
corresponding solutions are u(x+ y, t) and v(x+ y, t). Hence,ˆ

Rd

|u− v|(x+ y, t)φ(x, s) dx ≤
ˆ
Rd

|u0 − v0|(x+ y)φ(x, t+ s) dx

for any t, s ≥ 0. By changing the variable of integration, we obtain thatˆ
Rd

|u− v|(x, t)φ(x− y, s) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x− y, t+ s) dx.

Now we fix τ ≤ 0 and apply this formula, not for s but s− τ . We deduce that

(40)

ˆ
Rd

|u− v|(x, t)φ(x− y, s− τ) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x− y, t+ s− τ) dx.

Multiply then by ρν(y)θν(τ) and integrate over (y, τ) ∈ Rd × R− to conclude. □

Later we will pass to the limit5

(41) φ♭ := lim inf*φν as ν → 0+,

and compare φ♭ with the function φ# defined in (18). To compare the two limits,
we will assume in addition that

(42) supp(ρν) ⊂ Bν(0) and supp(θν) ⊂ (−ν, 0).

Here are fundamental properties of φ♭ and φ# that will be needed.

Lemma 56. Assume φ ∈ BLSC(Rd × R+), φ♭ and φ# are as above, and (42)
holds. Then:

(i) The limit φ♭ is the pointwise largest function in BLSC(Rd ×R+) that is less
than or equal φ a.e. in Rd × R+. Moreover φ♭ = φ a.e. in Rd × R+.

(ii) For any t ≥ 0, φ#(·, t) is the pointwise largest function in BLSC(Rd) less
than or equal φ(·, t) a.e. in Rd. Moreover φ#(·, t) = φ(·, t) a.e. in Rd.

Remark 57. (a) Above “pointwise largest function” means, e.g. for the item (i),
that if any other ψ ∈ BLSC(Rd × R+) is such that ψ ≤ φ a.e. in Rd × R+,
then necessarily

ψ(x, t) ≤ φ♭(x, t) for all (x, t) ∈ Rd × R+.

The second item has to be understood similarly.
(b) In the sequel, it is understood that “a.e.” holds in (x, t) in (i) and x in (ii),

without possibly recalling it.

Proof. Let us prove (i). Note first that φ♭ is lower semicontinuous as a lower relaxed
limit. To prove that φ♭ ≤ φ a.e., it suffices to do it for the Lebesgue points of φ.
Such points (x, t) ∈ Rd × (0,∞) satisfy

lim
ν→0+

1

νd+1

¨
Bν(x)×(t−ν,t+ν)

|φ(y, s) − φ(x, t)|dy ds = 0,

so by the assumptions on the mollifiers, see (12), (13) and (42), we find that

|φν(x, t) − φ(x, t)| ≤ 1

νd+1

¨
Bν(x)×(t,t+ν)

|φ(y, s) − φ(x, t)| ·

· ρ
(
x− y

ν

)
θ

(
t− s

ν

)
dy ds→ 0 as ν → 0+.

It follows that
φ♭(x, t) ≤ lim

ν→0+
φν(x, t) = φ(x, t),

5This is the relaxed limit in (15) with the parameter ν instead of ε.
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at any Lebesgue point. Moreover, for any fixed (x, t), lower semicontinuity of φ
implies that

φν(y, s) =

¨
Bν(y)×(s,s+ν)

φ(z, τ)︸ ︷︷ ︸
≥φ(x,t)+o(1)

ρ

(
y − z

ν

)
θ

(
s− τ

ν

)
dz dτ ≥ φ(x, t) + o(1)

as (y, s, ν) → (x, t, 0+), and we get that

φ♭(x, t) = lim inf*φν(x, t) ≥ φ(x, t).

We conclude that φ♭ = φ a.e.
Now, to complete the proof of (i), it remains to prove that φ♭ ≥ ψ pointwise for

any other ψ ∈ BLSC(Rd × R+) such that ψ ≤ φ a.e. Given such a function, let

ψ♭ := lim inf*ψ ∗x,t (ρνθν).

As above, ψ ≤ ψ♭ pointwise; but also ψ♭ ≤ φ♭ pointwise since

ψ ∗x,t (ρνθν) ≤ φ ∗x,t (ρνθν).

This proves (i) and the arguments for (ii) are similar. □

Here is also a general inequality between φ♭ and φ# that will be needed.

Lemma 58. Under the hypotheses of the previous lemma, (φ#)∗ ≤ φ♭ pointwise
in Rd × R+.

Proof. Let us first prove that φ# is measurable in (x, t). We have

φ#(x, t) = sup
n≥1

=:φn(x,t)︷ ︸︸ ︷
inf
m≥n

inf
1
m≤r≤ 1

n

|y|≤ 1
n

1

meas(Br(y))

ˆ
Br(y)

φ(x+ z, t) dz

︸ ︷︷ ︸
=:φn,m(x,t)

,

where n and m are integers. For each 1
m ≤ r ≤ 1

n and |y| ≤ 1
n , the function

(x, t) 7→ 1

meas(Br(y))

ˆ
Br(y)

φ(x+ z, t) dz

is lower semicontinuous by Fatou’s lemma and φ ∈ BLSC (assumption in the
previous lemma). The infimum φn,m remains lower semicontinuous, because r and
y live in compact sets. Hence, φn = infm≥n φn,m is measurable in (x, t) and so is
φ# = supn≥1 φn.

We can now prove the lemma. For any t ≥ 0, the measurable functions φ,φ#

satisfy φ#(·, t) = φ(·, t) a.e., hence we may use the Fubini theorem to conclude that
¨

Rd×R+

1{φ#=φ} dxdt =

ˆ
R+

(ˆ
Rd

1{φ#(x,t)=φ(x,t)} dx

)
dt = 0.

This proves that φ# = φ a.e. in (x, t), so that (φ#)∗ ≤ φ a.e. in (x, t). Hence
(φ#)∗ ≤ φ♭ pointwise by Lemma 56(i). □

Here are further properties that we will need.

Lemma 59. Let φ,ψ ∈ BLSC(Rd × R+) and φ#, ψ# as in (18). Then

(i) φ ≤ (φ#)∗ pointwise, and
(ii) if φ ≤ ψ# pointwise, then φ# ≤ ψ# pointwise.
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Proof. We can show that φ ≤ φ# from the definition of φ# and the lower semi-
continuity of φ, exacty as we showed that φ ≤ φ♭ in the proof of Lemma 56. In
particular, φ ≤ (φ#)∗ which is part (i). For part (ii), use Lemma 56(ii). It says
that ψ#(·, t) = ψ(·, t) a.e. in x, for each fixed t ≥ 0. Hence, φ(·, t) ≤ ψ(·, t) a.e.
and the desired inequality follows again from the definitions of φ# and ψ#. □

We are now in position to prove Theorem 23.

Proof of Theorem 23. Let us proceed in several steps.

1) (II) =⇒ (I).

By (II), (φ#)∗ is a BLSC supersolution of (21a). In particular, for any fixed s ≥ 0,
the function

(x, t) 7→ (φ#)∗(x, t+ s)

is also a supersolution of (21a). By Remark 20(b), we can apply Theorem 19 to
this supersolution with the BLSC initial weight (φ#)∗(·, s). The result is thatˆ

Rd

|u− v|(x, t)(φ#)∗(x, s) dx ≤
ˆ
Rd

|u0 − v0|(x)(φ#)∗(x, t+ s) dx,

for any u0 = u0(x) and v0 = v0(x) with values in [m,M ], u and v entropy solutions
of (1) with u0 and v0 as initial data, and t, s ≥ 0. This is exactly (I) but with
(φ#)∗ instead of φ. To replace (φ#)∗ by φ, we use Lemma 59(i) for the left-hand
side. For the right-hand side, we use that (φ#)∗ ≤ φ# pointwise and the fact that
φ#(x, t+ s) = φ(x, t+ s) for a.e. x, see Lemma 56(ii). This implies (I) with φ, as
desired.

2) (I) =⇒ (II) for smooth weights φ.

Let us prove the reverse implication when 0 ≤ φ ∈ C∞
b (Rd × R+). We will appro-

priately choose u0 and v0 later. For the moment, we assume that

m ≤ v0 ≤ u0 ≤M and u0 − v0 ∈ L1(Rd).

By Lemmas 65 and 54, 0 ≤ u− v ∈ C(R+;L1(Rd)), and then we can use (I) to get

(43)

ˆ
Rd

(u− v)(x, T )φ(x, s) dx ≤
ˆ
Rd

(u0 − v0)(x)φ(x, T + s) dx,

for any T, s ≥ 0. Let us fix s > 0 and determine what PDE φ satisfies. This will be
done by injecting the weak formulation of (1) into (43) and then pass to the limit
as T → 0+. By Lemma 53,

ˆ
Rd

(u− v)(x, T )ϕ(x, T ) dx =

¨
Rd×(0,T )

(
(u− v)∂tϕ+

d∑
i=1

(Fi(u) − Fi(v))∂xi
ϕ

+

d∑
i,j=1

(Aij(u) −Aij(v))∂2xixj
ϕ

 dx dt

+

ˆ
Rd

(u0 − v0)(x)ϕ(x, 0) dx,

for any ϕ ∈ C∞
c (Rd × [0, T ]) and A′

ij = Aij . Note that we have rewritten the
equation given by Lemma 53 with integrals in t < T and an additional final term at
t = T . This follows from standard arguments using the L1

loc continuity in time of
u and v. Since φ ∈ C∞

b , u− v ∈ Ct(L
1
x) and u, v ∈ L∞, a standard approximation

argument shows that we can take ϕ to be

ϕ(x, t) = φ(x, t+ s− T ),
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and get that

ˆ
Rd

(u− v)(x, T )φ(x, s) dx =

¨
Rd×(0,T )

(
(u− v)∂tφ(t+ s− T )

+

d∑
i=1

(Fi(u) − Fi(v))∂xiφ(t+ s− T )

+

d∑
i,j=1

(Aij(u) −Aij(v))∂2xixj
φ(t+ s− T )

 dxdt

+

ˆ
Rd

(u0 − v0)(x)φ(x, s− T ) dx.

(44)

Here we assume that s > 0 and T is so small that s − T > 0. Inserting (44) into
(43), we get

ˆ
Rd

(u0 − v0)(x)φ(x, s+ T ) dx

−
ˆ
Rd

(u0 − v0)(x)φ(x, s− T ) dx ≥
¨

Rd×(0,T )

(
. . .
)

dxdt.

We now would like to divide by 2T and pass to the limit as T → 0+. All the com-
putations are justified, again because φ ∈ C∞

b , the solutions u and v are bounded,
and u− v ∈ Ct(L

1
x). We get that

ˆ
Rd

(u0(x) − v0(x))∂sφ(x, s) dx

≥ 1

2

ˆ
Rd

(
(u0 − v0)∂sφ(s) +

d∑
i=1

(Fi(u0) − Fi(v0))∂xi
φ(s)

+

d∑
i,j=1

(Aij(u0) −Aij(v0))∂2xixj
φ(s)

dx.

Substracting the term
´

(u0 − v0)∂sφ(s) dx/2 of the right-hand side implies that

ˆ
Rd

(u0(x) − v0(x))∂sφ(x, s) dx

≥
ˆ
Rd

 d∑
i=1

(Fi(u0) − Fi(v0))∂xiφ(s) +

d∑
i,j=1

(Aij(u0) −Aij(v0))∂2xixj
φ(s)

 dx

=

ˆ
Rd

ˆ u0(x)

v0(x)

{
F ′(ξ) ·Dφ(x, s) + tr

(
Aij(ξ)D

2φ(x, s)
)}

dξ dx,

(45)

for any s > 0 and 0 ≤ u0 − v0 ∈ L1(Rd) such that both u0 and v0 take their values
in the interval [m,M ]. It remains to choose u0 − v0 as an approximate unit, up to
some multiplicative constant.

Let us introduce new parameters: x0 ∈ Rd, ε > 0 and m ≤ a < b ≤ M . We
would like to choose

(46) u0 − v0 = (b− a)1x0+(−ε,ε)d ,
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with the constraint that both u0 and v0 only take the two values a and b. Writing
x = (xi), take e.g.

u0(x) :=

{
a if x1 > (x0)1 + ε,

b if not,

and

v0(x) :=

{
a if x1 > (x0)1 + ε or x ∈ x0 + (−ε, ε)d,
b if not.

Then m ≤ v0 ≤ u0 ≤ M and u0 − v0 ∈ L1(Rd) as required. Inserting our choice
into (45) and dividing by (b− a)εd, we deduce that

1

εd

ˆ
x0+(−ε,ε)d

∂sφ(x, s) dx

≥ 1

εd

ˆ
x0+(−ε,ε)d

1

b− a

ˆ b

a

{
F ′(ξ) ·Dφ(x, s) + tr

(
Aij(ξ)D

2φ(x, s)
)}

dξ dx.

Let now ξ ∈ (m,M) be any Lebesgue point of any arbitrarily chosen a.e. represen-
tative of (F ′, A). Take first the limit as a, b → ξ such that ξ is the center of each
[a, b] in order to use the Lebesgue point property; take next the limit as ε → 0+.
This gives us that

∂sφ(x0, s) ≥ F ′(ξ) ·Dφ(x0, s) + tr
(
Aij(ξ)D

2φ(x0, s)
)
,

for any x0 ∈ Rd, s > 0, and Lebesgue point ξ. That is φ is a supersolution of (21).
This completes the proof of the remaining implication in the case where φ is C∞

b

(and then φ# = φ).

3) (I) =⇒ (II) for nonnegative BLSC weights φ.

In this case we use the regularization procedure of Lemma 55. By this lemma

φν = φ ∗x,t (ρνθν)

satisfies (I) since φ does by assumption. By the previous step we deduce that φν
is a supersolution of (21a). Hence

φ♭ = lim inf*φν

is also a supersolution by stability (cf. Proposition 41). But to prove (II), we need
to show that φ# is a supersolution. We will do this by showing that φ♭ = (φ#)∗
pointwise (at least for positive times). To prove that φ♭ ≤ (φ#)∗, we need to use
(I). By (I), ˆ

Rd

|u− v|(x, t)φ(x, s) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x, t+ s) dx,

for any u0 and v0 in L∞(Rd, [m,M ]) and corresponding solutions u and v of (1)
and t, s ≥ 0. By Lemma 56(i), we also have that φ♭ = φ a.e. In particular, there is
a null set N ⊂ R+ such that φ(·, s) = φ♭(·, s) a.e., for any s /∈ N .6 Fixing T > 0,
there thus exists a sequence sn → T− such that sn /∈ N , for any n. Choosing
moreover tn := T − sn, we deduce thatˆ

Rd

|u− v|(x, tn)φ♭(x, sn) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x, T ) dx.

Let us pass to the limit as n → ∞ in the left-hand side. To do so, we use Fa-
tou’s lemma, which is possible because of the lower semicontinuity of φ♭ and the
continuity of entropy solutions with values in L1

loc(Rd) which implies that

|u− v|(x, tn) → |u0 − v0|(x) for a.e. x

6To find N use that
˜

Rd×R+ 1{φ♭=φ} dxds = 0 =
´
R+ meas{φ(·, s) = φ♭(·, s)}ds by Fubini.
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(along a subsequence). In the limit, it then follows thatˆ
Rd

|u0 − v0|(x)φ♭(x, T ) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x, T ) dx

for any u0 and v0 in L∞(Rd, [m,M ]) and T > 0. To continue, we argue as in the
previous step where we chose 0 ≤ u0−v0 ∈ L1(Rd) to be an approximate unit up to
a multiplicative constant, cf. (46). The same arguments imply that for any T > 0,

φ♭(·, T ) ≤ φ(·, T ) a.e.

By Lemma 56(ii), we conclude that φ♭ ≤ φ# pointwise (for positive times). Hence,
φ♭ ≤ (φ#)∗ and then φ♭ = (φ#)∗ pointwise (for positive times) by Lemma 58. This
implies that (φ#)∗ = φ♭ is a supersolution of (21a). The proof of Theorem 23 is
complete. □

We have now established all preliminary results and are ready to prove our
duality results (Corollaries 25 and 37).

Proof of Corollary 25. We already know that φ ∈ Wm,M,φ0
by Theorem 19. Let us

prove the formula with the inf. Take φ ∈ Wm,M,φ0
, which means that φ ∈ BLSC

and satisfies Theorem 23(I) with φ(t = 0) ≥ φ0. By this theorem, φ satisfies (II)
as well, that is φ# is a supersolution of (21a). Recall that φ ≤ (φ#)∗ pointwise by
Lemma 59(i). In particular

(φ#)∗(t = 0) ≥ φ(t = 0) ≥ φ0.

Thus φ# is a supersolution of the Cauchy problem (21), and φ ≤ φ# by Proposition
7. Then Lemma 59(ii) implies that (φ)# ≤ φ# pointwise, and we conclude that

(φ)#(x, t) = inf {φ#(x, t) : φ ∈ Wm,M,φ0
} ∀(x, t) ∈ Rd × R+

(with an equality because φ ∈ Wm,M,φ0
). The proof is complete. □

Proof of Corollary 37. Fix m < M . By what precedes, the solution semigroup Gt
of (21) is a strongly continuous semigroup of continuous operators on Cb∩L∞

int(Rd)
and satisfies (30). Let now Ht be another arbitrary such semigroup satisfying (30),
i.e. such that ˆ

Rd

|Stu0 − Stv0|φ0 dx ≤
ˆ
Rd

|u0 − v0|Htφ0 dx,

for any u0 and v0 in L∞(Rd, [m,M ]), 0 ≤ φ0 ∈ Cb ∩ L∞
int(Rd), and t ≥ 0. We have

to prove that for any such φ0 and t,

Gtφ0 ≤ Htφ0.

First the minimal solution of (21) is the unique continuous solution, that is

φ(x, t) = Gtφ0(x) ∀(x, t) ∈ Rd × R+.

Moreover, the above assumption on Ht implies that

Htφ0(x) ∈ Wm,M,φ0
.

By Corollary 25 we deduce that for any x ∈ Rd and t ≥ 0,

(Gtφ0)# (x) ≤ (Htφ0)# (x),

where we recall that

(Gtφ0)# (x) = lim inf
r→0+
y→x

1

meas(Br(y))

ˆ
Br(y)

Gtφ0(z) dz

(and similarly for H). Since both Gtφ0(x) and Htφ0(x) are continuous in x, we have
(Gtφ0)# = Gtφ0 and (Htφ0)# = Htφ0 pointwise and the proof is complete. □



28 N. ALIBAUD, J. ENDAL, AND E. R. JAKOBSEN

4.5. L∞
int versus L

1: Proofs of Propositions 29, 30, and Theorem 33. Recall
that these results justify the use of L∞

int for (2), instead of L1. We need a result on

the profile U(r) = c0
´∞
r

e−
s2

4 ds with c0 such that U(0) = 1.

Lemma 60. For any (x, t) ∈ R× R+, let

ψ(x, t) :=

{
U
(
|x|/

√
t
)

if t > 0,

1{0}(x) if t = 0.

Then ψ ∈ BUSC(R× R+) and is a subsolution of (24).

Proof. Let us prove that ψ is a subsolution of (24). In the domain {x ̸= 0, t > 0},
we find as in the proof of Lemma 49 that

∂tψ = ∂2xxψ = (∂2xxψ)+

in the classical sense. If now x = 0, we have

∂tψ(0, ·) = 0 ≤ (∂2xxψ(0, ·))+

since ψ(0, ·) is constant in time. Let us now show that ψ is BUSC. It is clearly
continuous for positive t and it only remains to prove that

1x=0 ≥ lim sup
R×R+∋(y,t)→(x,0)

U
(
|y|/

√
t
)
,

for any x ∈ R. If x = 0, the result follows since U(r) ≤ U(0) = 1 for any r ≥ 0. If
x ̸= 0, then we use that

|y|/
√
t→ ∞ as (y, t) → (x, 0+)

together with the fact that limr→∞ U(r) = 0. The proof of Lemma 60 is now
complete. □

Proof of Proposition 29. Theorem 35 implies the if-part. Let us prove the only-if-
part. It is based on the following pointwise lower bound:

(47) φ(x, t) ≥ U
(

1/
√
t
)

sup
x+[−1,1]

φ0 ∀x ∈ R,∀t > 0,

where U is the profile from the previous lemma, 0 ≤ φ0 ∈ Cb(R) and φ is the
solution of (24) with φ0 as initial data. Let us prove (47). Fix x and t. The sup on
the right-hand side is attained at some x0 ∈ x+ [−1, 1]. By the previous lemma,

(y, s) 7→ φ0(x0)U
(
|y − x0|/

√
s
)

is a BUSC subsolution of (24). At s = 0, it equals the function

y 7→ φ0(x0)1{x0}(y)

which is less or equal to φ0 = φ0(y). By the comparison principle (Theorem 3),

φ(y, s) ≥ φ0(x0)U
(
|y − x0|/

√
s
)

∀y ∈ R,∀s > 0.

Taking (y, s) = (x, t), we then get that

φ(x, t) ≥ φ0(x0)︸ ︷︷ ︸
=supx+[−1,1] φ0

U
(
|x− x0|/

√
t
)

︸ ︷︷ ︸
≥U(1/

√
t)

.

This completes the proof of (47). From that bound the only-if-part of Proposition
29 is obvious since U(1/

√
t) is positive for t > 0. □
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Proof of Proposition 30. Let x0 ∈ R and c > 0 be such that

ρ ≥ c1{x0},

where ρ is defined in (25), and define

ψn(x, t) := ncψ
(
nx− x0, n

2t
)
,

where ψ is given by Lemma 60. It is easy to see that ψn remains a subsolution of
(24). Moreover, it is BUSC with

φn(x, 0) ≥ ψn(x, 0) ∀x ∈ R,
by (25). Hence φn ≥ ψn by the comparison principle and it suffices to show that

lim
n→∞

ψn(x, t) = ∞ ∀x ∈ R,∀t > 0.

But this is quite easy because

ψn(x, t) = ncU
(∣∣∣x− x0

n

∣∣∣ /√t) ,
for any x ∈ R and t > 0, and both the constant c and the profile U(·) are positive.
The proof of Proposition 30 is complete. □

To show Theorem 33, we need the following lemma whose proof is elementary
and left to the reader.

Lemma 61. For any φ0 : Rd → Rd, sup |φ0| ≤ | supφ0| + | inf φ0|.

Proof of Theorem 33. The fact that E = Cb ∩ L∞
int(Rd) satisfies (27)–(28) follows

from Theorem 16 and Corollary 36. Let now E be another normed space satisfying
such properties and let us prove that it is continuously embedded into Cb∩L∞

int(Rd).
Recall that (28) is required to hold for any data b = b(ξ) and a = a(ξ) satisfying
(H2). Choose e.g. the eikonal equation

∂tφ =

d∑
i=1

|∂xiφ|

and denote by Get its semigroup. By the representation Proposition 9,

Getφ0(x) = sup
x+t[−1,1]d

φ0.

Since Get=1 maps E ⊆ Cb ∩ L1(Rd) into X = E
∥·∥E ⊆ L1(Rd) by assumption, the

function
x 7→ sup

x+[−1,1]d
φ0

belongs to L1(Rd) for any φ0 ∈ E. Using that E is a vector space, −φ0 ∈ E, and
the function

x 7→ inf
x+[−1,1]d

φ0

also belongs to L1(Rd). By Lemma 61, we conclude that E ⊆ Cb ∩ L∞
int(Rd).

Finally we use that Get=1 : E → X is continuous at φ0 ≡ 0 to obtain that for any
∥φn0∥E → 0, as n → ∞, we have Get=1φ

n
0 → 0 in X. Combining this with the

continuity of the inclusion X ⊆ L1(Rd), we obtain that∥∥∥∥∥ sup
x+[−1,1]d

φn0

∥∥∥∥∥
L1

x

→ 0.

Using once again that E is a normed space, the same holds with −φ0, that is∥∥∥∥ inf
x+[−1,1]d

φn0

∥∥∥∥
L1

x

→ 0.
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By Lemma 61, we conclude that ∥φn0∥int → 0 which completes the proof. □
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Appendix A. Complementary proofs for viscosity solutions

A.1. Minimal viscosity solutions. Here are the proofs of Theorem 6 and Propo-
sitions 7 and 45; the ideas are inspired by [26, 10, 33] and the details are given for
completeness.

Proof of Theorem 6. Consider the infconvolution (φ0)ε as in (14), which is at least
Cb with inf φ0 ≤ (φ0)ε ≤ (φ0)∗ ≤ supφ0, and

lim
ε↓0

↑ (φ0)ε = sup
ε>0

(φ0)ε = (φ0)∗,

see e.g. [24, 31, 5, 4]. Let φε be the viscosity solution of (2a) with initial data
(φ0)ε, whose well-posedness is ensured by Theorem 4. By the maximum principle,
see Remark 5, we have the bounds

inf φ0 ≤ φε ≤ supφ0.

We can then define the real-valued and bounded function

φ := sup
ε>0

φε.

We will see that this is our desired minimal solution.
The key step is to prove that

(48) φ = sup
ε>0

φε = lim inf*φε

where the relaxed limit is taken as ε→ 0+. This follows by elementary arguments
(see e.g. [5, 4]) since φε is at least lower semicontinuous and nondecreases as ε ↓ 0,
which follows by comparison since (φ0)ε nondecreases as ε ↓ 0. Let us give details
for the reader’s convenience. For any fixed (x, t),

lim inf*φε(x, t) ≤ lim
ε→0+

φε(x, t) = φ(x, t).

Moreover, for any sequence (xn, tn, εn) → (x, t, 0+) such that εn ≤ εm for any
n ≥ m, we have φεn(xn, tn) ≥ φεm(xn, tn). Fixing m and taking the limit in n,

lim inf
n→∞

φεn(xn, tn) ≥ lim inf
n→∞

φεm(xn, tn) ≥ φεm(x, t)

by lower semicontinuity of φεm . Taking the limit in m,

lim inf
n→∞

φεn(xn, tn) ≥ lim
m→∞

φεm(x, t) = φ(x, t).
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This proves (48).
By stability by sup (Proposition 40), φ is a subsolution of (2a), and by stability

by relaxed limit (Proposition 41), φ is a supersolution of (2a). To pass to the limit
in the initial data, use Proposition 43 to infer that

(φ)∗(x, t = 0) ≤ lim sup*φε(x, 0) = lim sup* [φε(·, 0)] (x) ≤ (φ0)∗(x)

(the first relaxed limit as ε → 0+ is in (x, t) and the second in x). This gives the
inequality of subsolution as in Definition 1(aii). For the other inequality, use that
φ is lower semicontinuous, as a sup of continuous functions, with

φ(x, t = 0) = sup
ε>0

φε(x, 0) = (φ0)∗(x).

This proves that φ is a solution of (2). It only remains to prove that it is minimal.
Let φ be another bounded discontinuous solution. Noting that

(φ0)ε ≤ (φ0)∗ ≤ φ∗(t = 0),

we use once more the comparison principle to deduce that φε ≤ φ, for any ε > 0,
so φ ≤ φ as ε→ 0+. □

Proof of Proposition 7. We argue as in the end of the proof of Theorem 6: Assume
φ is a bounded supersolution of (2), then (φ0)ε ≤ (φ0)∗ ≤ φ∗(t = 0) and, by
comparison, φε ≤ φ, etc. □

Proof of Proposition 45. Let φ denote the minimal solution of (2) with initial data
φ0 := supn(φn0 )∗. We have to prove that φ = supn φn, where φ

n
is the minimal

solution of (2) with initial data φn0 . By Proposition 7, we have φ
n
≤ φ for any

integer n. We thus already know that φ ≥ supn φn and it only remains to prove
the other inequality. To do so, it suffices to show that supn φn is a supersolution

of (2) (with initial data φ0). Indeed, by Proposition 7, we then get φ ≤ supn φn.

It is at this stage that we need to use monotonicity. Recall that n 7→ φn0 (x) is
nondecreasing for any x. By the comparison principle, cf. Remark 8, the same
monotonicity holds for the minimal solutions which means that n 7→ φ

n
(x, t) is

nondecreasing for any fixed x and t. Since φ
n

is lower semicontinuous, we can

argue as for (48) and get that

sup
n
φ
n

= lim inf*φn,

where the above relaxed limit is taken as n→ ∞. By stability, see Propositions 41
and 43, we deduce that lim inf*φn is a supersolution of (2a) with initial data

lim inf*φn(t = 0) = lim inf*(φ
n
0 )∗.

But this initial data is precisely

lim inf*(φ
n
0 )∗ = sup

n
(φn0 )∗ = φ0,

again by similar arguments than for (48). This completes the proof. □

A.2. Representation formulas. Let us prove Propositions 9 and 10. These re-
sults are classical in control theory, but usually written for continuous or maximal
solutions, see [31, 4, 34, 35]. Here we give the proofs for minimal solutions.

Proof of Proposition 9. By the assumption that a ≡ 0, (2a) is now

∂tφ = sup
ξ∈E

{b(ξ) ·Dφ} = sup
q∈C

{q ·Dφ},
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where C = co {Im(b)} is compact. By control theory [5, 4] the viscosity solutions
of (2) is given by

φ(x, t) = sup
x+tC

φ0

if φ0 is bounded and uniformly continuous. In the general case, consider the inf-
convolution (14). Recall that (φ0)ε is at least bounded and uniformly continuous,
and (φ0)ε ↑ (φ0)∗ pointwise as ε ↓ 0. It follows that the solution of (2a) with (φ0)ε
as initial data is

φε(x, t) = sup
x+tC

(φ0)ε.

By Proposition 45, the minimal solution of (2) is thus

φ(x, t) = sup
ε>0

φε(x, t) = sup
ε>0

sup
x+tC

(φ0)ε = sup
x+tC

sup
ε>0

(φ0)ε = sup
x+tC

(φ0)∗.

Rigorously speaking, Proposition 45 implies that this is the minimal solution with
initial data (φ0)∗, but it coincides with the minimal solution associated to φ0 by
Proposition 7. □

Proof of Proposition 10. Equation (2a) is given by

∂tφ = sup
ξ∈E

{
b(ξ) ·Dφ+ tr

(
σa(ξ)(σa)T(ξ)D2φ

)}
,

where E is compact and the coefficients b and σa are continuous by (19). By
stochastic control theory [31], the viscosity solution of (2) is given by

φ(x, t) = sup
ξ·∈Ξ

E {φ0(Xx
t )}

if φ0 is bounded and uniformly continuous, where Ξ and Xx
s are defined in Propo-

sition 10. Let us now repeat the argument of the proof of Proposition 9 considering
the infconvolution (φ0)ε and the corresponding solution of (2a)

φε(x, t) = sup
ξ·∈Ξ

E {(φ0)ε(X
x
t )} .

We find that the minimal solution of (2) is

φ(x, t) = sup
ε>0

φε(x, t) = sup
ξ·∈Ξ

sup
ε>0

E {(φ0)ε(X
x
t )} .

Since (φ0)ε ↑ (φ0)∗ as ε ↓ 0, we conclude the proof using the monotone convergence
theorem:

sup
ε>0

E {(φ0)ε(X
x
t )}

= lim
ε↓0

↑E {(φ0)ε(X
x
t )} = E

{
lim
ε↓0

↑(φ0)ε(X
x
t )
}

= E {(φ0)∗(Xx
t )} . □

Appendix B. Complementary proofs for entropy solutions

For completeness, we recall the proof of Theorem 13 which is Theorem 1.1 in [32]
under (H1). We will take the opportunity to give details, but we will not perform
the doubling of variables to show Lemma 15 for which we will refer to [11].

Recall that [22, 11] proved the well-posedness of L1 kinetic or renormalized
solutions which are equivalent to entropy solutions in L1 ∩ L∞. The definition of
entropy solutions in L1 ∩ L∞ uses the energy estimate (2.8) of [22],

¨
Rd×R+

K∑
k=1

(
d∑
i=1

∂xi
ζik(u)

)2

dxdt ≤ 1

2
∥u0∥L2 <∞ if u0 ∈ L1 ∩ L∞,

where ζik(u) =
´ u
0
σA

ik(ξ) dξ. As a consequence “L2” was used e.g. in [11, Definition

2.2] instead of “L2
loc” in Definition 12. But we have the following result:
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Lemma 62 (Local energy estimate). Assume (H1), u0 ∈ L∞(Rd), 0 ≤ ϕ ∈
C∞
c (Rd), and T ≥ 0. If u is an entropy solution of (1) in the sense of Defini-

tion 12 and

∥u0∥L∞ + ∥u∥L∞ + ∥ϕ∥W 2,1 ≤M,

then there is a constant C only depending on T , M , F and A such that

¨
Rd×(0,T )

K∑
k=1

(
d∑
i=1

∂xi
ζik(u(x, t))

)2

ϕ(x) dxdt ≤ C.

Proof. We use Definition 12(c) with the entropy η(u) = |u|2 and the corresponding
fluxes

q(u) = 2

ˆ u

0

ξF ′(ξ) dξ and r(u) = 2

ˆ u

0

ξA(ξ) dξ.

We also take a test function ϕ(x)1[0,T ](t) where 0 ≤ ϕ ∈ C∞
c (Rd). It is not smooth

in time but a standard approximation argument shows that it can be used in Def-
inition 12(c) if we add also a final value term at t = T . Here we need the L1

loc

continuity in time of entropy solutions. The result is

≥0︷ ︸︸ ︷ˆ
Rd

u2(x, T )ϕ(x) dx+2

¨
Rd×(0,T )

K∑
k=1

(
d∑
i=1

∂xi
ζik(u)

)2

ϕdx dt

≤
ˆ
Rd

u20(x)ϕ(x) dx+

¨
Rd×(0,T )

 d∑
i=1

qi(u)∂xi
ϕ+

d∑
i,j=1

rij(u)∂2xixj
ϕ

 dx dt.

By assumption ∥u0∥L∞ + ∥u∥L∞ + ∥ϕ∥W 2,1 ≤M , so it follows that{
∥q(u)∥L∞(Rd×R+,Rd) ≤ 2M2 ess sup−M≤ξ≤M |F ′(ξ)|, and

∥r(u)∥L∞(Rd×R+,Rd×d) ≤ 2M2 ess sup−M≤ξ≤M |A(ξ)|.

With all these estimates, the conclusion readily follows. □

Let us now give precise references on how to show the Kato inequality.

Sketch of the proof of Lemma 15. Copy the proof of Theorem 3.1 of [11] with l = ∞
and zero renormalization measures µul ≡ 0 ≡ µvl . With the aid of the previous local
energy estimate, check that every computation holds until (3.19) – even if u and v
satisfy (a)–(b) of Definition 12 with L2

loc and not L2 as in [11]. This gives (20) with
ϕ ∈ C∞

c (Rd × (0,∞)). Use an approximation argument for ϕ(x, t)1[0,T ](t) and the

continuity in time with values in L1
loc to get initial and final terms. □

To show the uniqueness of entropy solutions, it suffices to find a good ϕ in (20),
e.g. an exponential as in [21, 32]. This gives the result below.

Lemma 63. Assume (H1) and u, v are L∞ entropy solutions of (1) with initial
data u0, v0 ∈ L∞(Rd). Then for any t ≥ 0 and m < M such that u and v take their
values in [m,M ],ˆ

Rd

|u− v|(x, t)e−|x| dx ≤ e(LF+LA)t

ˆ
Rd

|u0 − v0|(x)e−|x| dx,

where LF = ess sup[m,M ] |F ′| and LA = ess sup[m,M ] tr(A).

Remark 64. By the maximum principle, the result remains true for any [m,M ]
containing the values u0 and v0. But at this stage of this appendix, this principle
is only known in L1 ∩ L∞ (or L1) by [22, 11] and it will follow later in L∞.
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Sketch of the proof. The proof is inspired by [21, 32]. Consider

ϕε(x, t) := e(LF+LA)(T−t)−
√
ε2+|x|2 ,

for some arbitrary ε > 0, and check that

|u− v|∂tϕε +

d∑
i=1

qi(u, v)∂xi
ϕε +

d∑
i,j=1

rij(u, v)∂2xixj
ϕε

≤ |u− v|

{
∂tϕε + LF |Dϕε| + LA sup

λ∈Sp(D2ϕε)

λ+

}
≤ 0

by the Ky Fan inequality (33). Then by the Kato inequality (20) with ϕε,ˆ
Rd

|u− v|(x, T )e−
√
ε2+|x|2 dx ≤ e(LF+LA)T

ˆ
Rd

|u0 − v0|(x)e−
√
ε2+|x|2 dx

and the result follows in the limit ε→ 0+. □

Proof of Theorem 13. By Lemma 63, it remains to show the existence. The proof
is inspired by [22, 11]. Given u0 ∈ L∞(Rd), take (un0 )n in L1 ∩ L∞(Rd) such that

(49) − ess supu−0 ≤ un0 ≤ ess supu+0 and un0 → u0 in L1
loc(Rd).

Let un be the entropy solution of (1) with initial data un0 . By the maximum
principle (in L1 ∩ L∞), we know that

(50) − ess supu−0 ≤ un ≤ ess supu+0 .

Moreover, by Lemma 63, we have for any R ≥ 0, T ≥ 0, and integers n, m,

∥um − un∥C([0,T ];L1({|x|<R}))

= sup
t∈[0,T ]

ˆ
|x|<R

|um(x, t) − un(x, t)|dx

≤ eR sup
t∈[0,T ]

ˆ
Rd

|um(x, t) − un(x, t)|e−|x| dx

≤ eRe(LF+LA)T

ˆ
Rd

|um0 (x) − un0 (x)|e−|x| dx,

where the latter integral tends to zero as n,m → ∞ by (49). Hence there exists
some u ∈ L∞(Rd × R+) ∩ C(R+;L1

loc(Rd)) such that

(51) lim
n→∞

un = u in C([0, T ];L1
loc(Rd)), ∀T ≥ 0.

It remains to show that u is an entropy solution with initial data u0.
We have to derive the L2

loc energy estimate of Definition 12(a), and check that
it is enough to pass to the limit in the equation as in [22, 11]. By Lemma 62 and
the L∞ bounds in (50), the sequence{

d∑
i=1

∂xi
ζik(un)

}
⊂ L2(Rd × R+)

is uniformly bounded in L2(K), for any k = 1, . . . ,K, and compact K ⊂ Rd × R+.

It then weakly converges in L2(K) to
∑d
i=1 ∂xi

ζik(u). We can identify the limit

because
∑d
i=1 ∂xi

ζik(un) also converges to
∑d
i=1 ∂xi

ζik(u) in the distribution sense.
Indeed

ζik(·) =

ˆ ·

0

σA

ik(ξ) dξ

is locally Lipschitz continuous since σA

ik(·) is locally bounded, and (50) and (51)
imply that ζik(un) → ζik(u) in C([0, T ];L1

loc(Rd)) for all T ≥ 0. And as claimed
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previously, all corresponding derivatives necessarily converge in the distribution
sense. The proof of part (a) in Definition 12 is complete. Moreover we have found
that

d∑
i=1

∂xi
ζik(un) ⇀

d∑
i=1

∂xi
ζik(u) in L2(K),

for any k = 1, . . . ,K and compact K ⊂ Rd × R+.
To show the chain rule in part (b) of Definition 12, we start from the chain rule

for un,

(52)

d∑
i=1

∂xi
ζβik(un) = β(un)

d∑
i=1

∂xi
ζik(un) ∈ L2(Rd × R+),

valid for any β ∈ C(R), k = 1, . . . ,K, and integer n. Recall also that

ζβik(un) =

ˆ un

0

σA

ik(ξ)β(ξ) dξ.

By the previous convergence results and bounds, the right-hand side of (52) con-

verges weakly in L2(K) to β(u)
∑d
i=1 ∂xiζik(u). We can argue as before to show

that the left-hand side converges weakly in L2(K) to
∑d
i=1 ∂xiζ

β
ik(u). We thus get

part (b) of Definition 12 in the limit. Moreover,

(53)

d∑
i=1

∂xiζ
β
ik(un) ⇀

d∑
i=1

∂xiζ
β
ik(u) in L2(K),

for any β ∈ C(R), k = 1, . . . ,K, and compact K ⊂ Rd × R+.
Now, it remains to prove part (c) of Definition 12. The only difference with [22,

11] is that the previous convergences hold locally in L2 and not globally. But since
we use test functions, the reasoning is the same. Let us recall it for completeness.
We focus on the quadratic term. Take β =

√
η′′ and apply the chain rule Definition

12(b),

¨
Rd×R+

η′′(un)

K∑
k=1

(
d∑
i=1

∂xiζik(un)

)2

ϕ dxdt

=

¨
Rd×R+

η′′(un)

K∑
k=1

(
d∑
i=1

∂xi
ζik(un)

) d∑
j=1

∂xj
ζjk(un)

ϕ dx dt

=

¨
Rd×R+

K∑
k=1

(
d∑
i=1

∂xi
ζ
√
η′′

ik (un)

) d∑
j=1

∂xj
ζ
√
η′′

jk (un)

ϕdxdt

=

¨
Rd×R+

K∑
k=1

(
d∑
i=1

∂xi
ζ
√
η′′

ik (un)
√
ϕ

)2

dxdt

=

K∑
k=1

∥∥∥∥∥
d∑
i=1

∂xi
ζ
√
η′′

ik (un)
√
ϕ

∥∥∥∥∥
2

L2(Rd×R+)

.

But, by (53), we have for any k = 1, . . . ,K,

d∑
i=1

∂xiζ
√
η′′

ik (un)
√
ϕ ⇀

d∑
i=1

∂xiζ
√
η′′

ik (u)
√
ϕ in L2(Rd × R+).
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It follows that∥∥∥∥∥
d∑
i=1

∂xi
ζ
√
η′′

ik (u)
√
ϕ

∥∥∥∥∥
L2(Rd×R+)

≤ lim inf
n→∞

∥∥∥∥∥
d∑
i=1

∂xi
ζ
√
η′′

ik (un)
√
ϕ

∥∥∥∥∥
L2(Rd×R+)

,

that is

lim inf
n→∞

¨
Rd×R+

η′′(un)

K∑
k=1

(
d∑
i=1

∂xiζik(un)

)2

ϕdxdt

≥
K∑
k=1

∥∥∥∥∥
d∑
i=1

∂xiζ
√
η′′

ik (u)
√
ϕ

∥∥∥∥∥
2

L2(Rd×R+)

=

¨
Rd×R+

η′′(u)

K∑
k=1

(
d∑
i=1

∂xi
ζik(u)

)2

ϕdxdt,

where similar chain rule computations have been used for u. This is enough to
pass to the limit in the entropy inequalities of Definition 12(b) and the proof is
complete. □

As a byproduct of the previous proof, we get the lemma below.

Lemma 65. Assume (H1), u0 ∈ L∞(Rd), and u is the entropy solution of (1).
Then ess inf u0 ≤ u ≤ ess supu0. Moreover, if v is the entropy solution with initial
data v0, then u0 ≥ v0 implies u ≥ v.

Proof. For the comparison principle, define un0 (x) := u0(x)1|x|<n and vn0 similarly.
As previously, the associated entropy solutions un and vn respectively converge
towards u and v in C([0, T ];L1

loc(Rd)), T ≥ 0, and thus a.e. up to taking a (common)
subsequence. If u0 ≥ v0, then un0 ≥ vn0 for all n, so un ≥ vn by the comparison
principle in L1 ∩ L∞, and u ≥ v at the limit. For the maximum principle, apply
the comparison principle to v0 := ess inf u0 and ess supu0 successively. □

Appendix C. Measurable weights and viscosity supersolutions

Let us provide for completeness a version of Theorem 23 for measurable and
essentially bounded weights φ : Rd × R+ → R. The result will involve a version of
φ# from (18) in both space and time. It is defined as

(54) φ##(x, t) := lim inf
r→0+
y→x

R+∋s→t

1

rmeas(Br(y))

¨
Br(y)×(s,s+r)

φ(z, τ) dz dτ.

Notably φ## ∈ BLSC with φ## ≤ φ a.e., but we may not have φ## = φ a.e.
when φ /∈ BLSC; cf. Remark 67.

Theorem 66 (Measurable weights and supersolutions). Assume (H1), m < M ,
and φ : Rd × R+ → R is measurable, nonnegative, essentially bounded, and such
that

(55)

ˆ
Rd

|u− v|(x, t)φ(x, s) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x, t+ s) dx a.e. t, s ≥ 0,

for any u0 and v0 in L∞(Rd, [m,M ]) with respective associated entropy solutions u
and v of (1). Then φ## in (54) is a viscosity supersolution of (21a).

Remark 67. The reciprocal assertion may fail. A one dimensional example is
φ(x, t) = 1E(x) with a fat Cantor set E (a closed nowhere dense set of positive
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measure). Indeed φ## ≡ 07 is always a solution of (21a), but chosing (1) as the
heat equation ∂tu = ∂2xxu, u0 = 1R\E , and v0 ≡ 0, we cannot have (55) because
the right-hand side is zero and the left-hand side is positive.

Remark 68 (The optimal measurable weight is φ). Given in addition 0 ≤ φ0 ∈
BLSC(Rd) such that

(56) φ0(x) ≤ φ##(x, t = 0) for all x ∈ Rd,

we have ˆ
Rd

|u− v|(x, t)φ0(x) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x, t) dx a.e. t ≥ 0.

This is (22) with the merely measurable weight φ. Notably the minimal viscosity
solution φ of (21) remains optimal within this class of weights satisfying (55) and
(56), because φ ≤ φ## ≤ φ where the last inequality holds a.e.

Remark 69. (a) Going back to φ ∈ BLSC satisfying Theorem 23(I), and applying
Theorems 23 and 66, we get two viscosity supersolutions φ# and φ## of (21a).
This is however coherent because they actually represent the same supersolu-
tion. Indeed φ## is nothing else than φ♭ in (41), and we have seen during the
proof of (I) =⇒ (II) that (φ#)∗ = φ♭ = φ## pointwise.

(b) For general φ ∈ BLSC, (φ#)∗ ≤ φ## pointwise by Lemma 58 but the reverse
inequality may fail. An example is φ(x, t) = 1t̸=t0 with some fixed t0, which
gives (φ#)∗ = φ and φ## ≡ 1.

We actually already proved the above theorem since φ## = φ♭ from (41). But
let us give details for the reader’s convenience.

Proof of Theorem 66. By “a.e.” in (55), we assume having a null set N ⊂ R+ such
that (55) holds for all t, s ≥ 0 such that s /∈ N and t+ s /∈ N . Fix r > 0 and define

φr(x, t) :=
1

rmeas(Br(x))

¨
Br(x)×(t,t+r)

φ(y, s) dy ds.

As for (40), it is easy to deduce from (55) thatˆ
Rd

|u− v|(x, t)φ(x− y, s− τ) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x− y, t+ s− τ) dx,

for all y ∈ Rd, t ≥ 0, and s − τ ≥ 0, such that s − τ /∈ N and t + s − τ /∈ N .
Fix t, s ≥ 0, multiply by 1

rmeas(Br(x))
and integrate over (y, τ) ∈ Br(0) × (−r, 0),

which we can do excepted for τ ∈ (s − N) ∪ (t + s − N). But the latter set is a
null set, and this shows that φr satisfies (55) for all t, s ≥ 0. Since moreover φr is
continuous in (x, t), it is a viscosity supersolution of (21a) by Theorem 23 and so
is φ## = lim inf*φr as r → 0+. □

Appendix D. Nonlinear to linear semigroups

In this section we give a sample result on how we from nonlinear duality can
recover standard duality notions in the linear case. It contains the discussion and
results mentioned in Remark 39(c) and the notation and setting is taken from Sec-
tion 3.3. First note that X = Cb∩L∞

int was a natural space for the weight semigroup
Gt, but other X could be more appropriate if we consider other semigroups than
St. Here are some reasonable assumptions which we will need:

(57) X ̸= ∅ is a Banach space continuously embedded and dense in L1,

7Use that φ## is LSC, nonnegative, and equals zero in the dense open set (R \ E)× R+.
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such that

(58) ∀φ0 ∈ L1,∀ψ0 ∈ X, |φ0| ≤ |ψ0| ⇒
[
φ0 ∈ X and ∥φ0∥X ≤ ∥ψ0∥X

]
,

(i.e. X is a Banach lattice) and for any mollifier ρν (cf. (12)) and φ0 ∈ X,

(59) X ∋ ρν ∗ φ0 → φ0 strongly in X with ∥ρν ∗ φ0∥X ≤ ∥ρν∥X∥φ0∥L1 .

Note that hereafter L1 = L1(Rd) etc.

Proposition 70 (Relation with standard duality). Take a weakly-⋆ continuous
semigroup Tt of weakly-⋆ continuous linear operators on L∞ = (L1)⋆ such that each
Tt is positive and commutes with translations.8 Let (Tt)⋆ be its predual semigroup
on L1 defined by

(60)

ˆ
Rd

φ0Ttu0 dx =

ˆ
Rd

u0(Tt)⋆φ0 dx, ∀u0 ∈ L∞,∀φ0 ∈ L1,∀t ≥ 0.

Assume also that there exist X satisfying (57)–(58)–(59), a strongly continuous
semigroup Ht of continuous operators on X+ := {φ0 ∈ X : φ0 ≥ 0} satisfying
(61)ˆ

Rd

|Ttu0 − Ttv0|φ0 dx ≤
ˆ
Rd

|u0 − v0|Htφ0 dx, ∀u0, v0 ∈ L∞,∀φ0 ∈ X+,∀t ≥ 0,

and that Ht is the minimal such semigroup. Then (Tt)⋆ is necessarily the unique
extension of Ht from X+ onto L1 as a semigroup of bounded linear operators.

Remark 71. For a general duality theory for linear semigroups, see [47]. Let us
recall that (60) defines a strongly continuous semigroup (Tt)⋆ of bounded linear
operators on L1.9 The semigroup Ht would be the new predual defined as following
Remark 39(a), which would thus coincide with (Tt)⋆ in the linear case.

Proof. Take u0 ≥ 0, v0 ≡ 0 and φ0 ≥ 0 in (61), to getˆ
Rd

u0(Tt)⋆φ0 dx =

ˆ
Rd

φ0Ttu0 dx ≤
ˆ
Rd

u0Htφ0 dx.

This shows that

(62) (Tt)⋆ ≤ Ht on X+.

To continue, we claim that (Tt)⋆ is a strongly continuous semigroup of continuous
operators on X+ satisfying (61). Let us verify this claim. Let us prove that (Tt)⋆
satisfies (61), as Ht does. Since Tt ≥ 0 and is linear,

|Ttu0 − Ttv0| = |Tt(u0 − v0)+ − Tt(u0 − v0)−| ≤ Tt(u0 − v0)+ + Tt(u0 − v0)−

for any u0 and v0 in L∞. Hence
ˆ
Rd

|Ttu0 − Ttv0|φ0 dx ≤
ˆ
Rd

(
Tt(u0 − v0)+ + Tt(u0 − v0)−

)
φ0 dx

=

ˆ
Rd

(
(u0 − v0)+ + (u0 − v0)−

)
(Tt)⋆φ0 dx =

ˆ
Rd

|u0 − v0|(Tt)⋆φ0 dx,

for any φ0 ∈ X+. To show next that (Tt)⋆ is bounded for ∥ · ∥X , we use that
(Tt)⋆ ≥ 0, the previous bound (62), the assumption (58), and the continuity of
Ht for this norm. For the time continuity of (Tt)⋆, we regularize any φ0 ∈ X by

8That is Tφ0 ≥ 0 if φ0 ≥ 0, and T (φ0(·+ h)) = (Tφ0)(·+ h) for all φ0 ∈ L∞ and h ∈ Rd.
9Indeed, given φ0 ∈ L1, u0 ∈ L∞ 7→

´
φ0Ttu0 is weakly-⋆ continuous thus corresponding

to a unique element (Tt)⋆φ0 ∈ L1 ⊂ (L∞)⋆. This operator (Tt)⋆ is bounded in L1 since Tt

is weakly-⋆ continuous in L∞, thus bounded. The semigroup (Tt)⋆ is weakly continuous thus
strongly continuous.
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convolution thanks to (59). Take φν0 := ρν ∗ φ0 → φ0 in X as ν → 0+, and note
that
(63)
∥φ0 − (Tt)⋆φ0∥X ≤ ∥φ0 − φν0∥X + ∥φν0 − (Tt)⋆φ

ν
0∥X + ∥(Tt)⋆(φ

ν
0 − φ0)∥X︸ ︷︷ ︸

≤
∑

± ∥Ht(φν
0−φ0)±∥X by (62)

.

Note also that (Tt)⋆(φ0∗ρν) = ρν ∗(Tt)⋆φ0 since (Tt)⋆ : L1 → L1 is linear, bounded,
and commutes with translations. Hence

∥φν0 − (Tt)⋆φ
ν
0∥X = ∥ρν ∗ (φ0 − (Tt)⋆φ0)∥X ≤ ∥ρν∥X∥φ0 − (Tt)⋆φ0∥L1

by (59), and letting t→ 0+ before ν → 0+ in (63) implies that

lim
t→0+

∥φ0 − (Tt)⋆φ0∥X = 0

by the (time) strong continuity of (Tt)⋆ on L1. This proves our claim, and we infer
that (Tt)⋆ = Ht on X+. The result follows by density. □
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