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We give a new and rigorous duality relation between two central notions of weak solutions of nonlinear PDEs: entropy and viscosity solutions. It takes the form of the nonlinear dual inequality:

where St is the entropy solution semigroup of the anisotropic degenerate parabolic equation ∂tu + divF (u) = div(A(u)Du), and where we look for the smallest semigroup Gt satisfying (⋆). This amounts to finding an optimal weighted L 1 contraction estimate for St. Our main result is that Gt is the viscosity solution semigroup of the Hamilton-Jacobi-Bellman

Since weigthed L 1 contraction results are mainly used for possibly nonintegrable L ∞ solutions u, the natural spaces behind this duality are L ∞ for St and L 1 for Gt. We therefore develop a corresponding L 1 theory for viscosity solutions ϕ. But L 1 itself is too large for well-posedness, and we rigorously identify the weakest L 1 type Banach setting where we can have it -a subspace of L 1 called L ∞ int . A consequence of our results is a new and optimal domain of dependence estimate for second order anisotropic degenerate parabolic PDEs. It is given in terms of a stochastic target problem and extends in a natural way recent results for first order hyperbolic PDEs by [N. Pogodaev, J. Differ.

Introduction

In this paper we study two central notions of weak solutions of nonlinear PDEs and their interplay -entropy solutions and viscosity solutions. Originally introduced for first order scalar conservation laws [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF] and Hamilton-Jacobi equations [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi Equations[END_REF] respectively, both solution concepts have later been extended to second order PDEs [START_REF] Jensen | The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations[END_REF][START_REF] Ishii | On uniqueness and existence of viscosity solutions of fully nonlinear second order elliptic PDEs[END_REF][START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF][START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF]. Conservation laws are divergence form equations arising in continuum physics [START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Physics[END_REF], while Hamilton-Jacobi equations are nondivergence form equations from e.g. differential geometry and optimal control theory [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF][START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF]. The well-posedness of these equations is an important topic and requires the entropy and viscosity solution theories in general. The literature is by now very large and includes lots of applications. See [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF][START_REF] Dibenedetto | Degenerate parabolic equations[END_REF][START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF][START_REF] Vázquez | The porous medium equation. Mathematical theory[END_REF][START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Physics[END_REF][START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for the state-of-the-art.

Here we develop a new connection between these solution concepts. It is already well-known that viscosity solutions are integrated entropy solutions in space dimension one [START_REF] Caselles | Scalar conservation laws and Hamilton-Jacobi equations in one-space variable[END_REF][START_REF] Karlsen | A note on front tracking and equivalence between viscosity solutions of Hamilton-Jacobi equations and entropy solutions of scalar conservation laws[END_REF][START_REF] Colombo | Initial Data Identification in Conservation Laws and Hamilton-Jacobi Equations[END_REF]. Our connection is valid in any dimension and is expressed through weighted L 1 contraction results for entropy solutions: The optimal weight is the viscosity solution of a well-determined dual equation. Since L ∞ is a natural space for such weighted estimates, we need and do develop an L 1 theory for viscosity solutions of the dual equation. Consequences are a new and optimal domain of dependence result for second order PDEs in terms of a stochastic target problem, a new rigorous form of duality between L ∞ entropy and L 1 viscosity solutions in terms of nonlinear semigroups, and a new characterization of viscosity supersolutions; see [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF], [START_REF] Barles | Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations[END_REF] and [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF] respectively.

The idea of using viscosity solutions to get estimates for entropy solutions was from [START_REF] Endal | L 1 Contraction for Bounded (Non-integrable) Solutions of Degenerate Parabolic Equations[END_REF]. The corresponding results were rather accurate but not optimal yet. In this paper we prove optimal estimates for entropy solutions -and -that viscosity solutions are in fact needed to prove this optimality. This is exactly what leads to rigorous duality results. Also note that we consider nonlinear anisotropic diffusions as opposed to [START_REF] Endal | L 1 Contraction for Bounded (Non-integrable) Solutions of Degenerate Parabolic Equations[END_REF]. For an early discussion and open questions about "duality between nonlinear semigroups," see [14, pp. 28-29].

To be more precise, we consider the following two Cauchy problems: For the anisotropic degenerate parabolic convection-diffusion equation ( 1)

∂ t u + divF (u) = div (A(u)Du) x ∈ R d , t > 0, u(x, 0) = u 0 (x) x ∈ R d ,
and for the Hamilton-Jacobi-Bellman (HJB) equation

∂ t ϕ = sup ξ∈E b(ξ) • Dϕ + tr a(ξ)D 2 ϕ x ∈ R d , t > 0, (2a) ϕ(x, 0) = ϕ 0 (x) x ∈ R d , (2b) 
where "D," "D 2 " and "div" respectively denote the gradient, the Hessian and the divergence in x, and "tr" is the trace. We assume that (H1) T for some bounded σ a : E → R d×K , where K is the maximal rank of A(u) and a(ξ). The entropy solution theory for first order PDEs [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF] was extended in [START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF][START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF] to show well-posedness of (1) in L 1 ∩ L ∞ or L 1 . Well-posedness in L ∞ is less standard for second order PDEs, but results exist in [START_REF] Chen | Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations[END_REF][START_REF] Andreianov | A note on uniqueness of entropy solutions to degenerate parabolic equations in R d[END_REF][START_REF] Endal | L 1 Contraction for Bounded (Non-integrable) Solutions of Degenerate Parabolic Equations[END_REF][START_REF] Panov | To the theory of entropy sub-solutions of degenerate non-linear parabolic equations[END_REF]; see [START_REF] Frid | Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic Equations[END_REF] for anisotropic diffusions. Our main objective is to derive an optimal weighted L 1 contraction result for L ∞ entropy solutions of (1). This then will require the developement of a corresponding L 1 theory for a dual equation of the form (2), a nonstandard generalization of classical viscosity solution theory [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi Equations[END_REF][START_REF] Jensen | The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations[END_REF][START_REF] Ishii | On uniqueness and existence of viscosity solutions of fully nonlinear second order elliptic PDEs[END_REF][START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF][START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF]. Contraction type estimates are quantitative continuous dependence results on the initial data. A simple example is the L 1 contraction principle [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF][START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF][START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF]:

F ∈ W 1,∞ loc (R,
(3) (u -v)(t) L 1 ≤ u 0 -v 0 L 1 .
For possibly nonintegrable L ∞ solutions, we need weighted estimates. An important result is the finite speed of propagation property for first order PDEs [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF]:

(4) ˆ|x-x0|<R |u(x, t) -v(x, t)| dx ≤ ˆ|x-x0|<R+Ct |u 0 (x) -v 0 (x)| dx;
see [START_REF] Pogodaev | Estimates of the domain of dependence for scalar conservation laws[END_REF] for optimal estimates. For second order PDEs, a standard example is given in [START_REF] Ph | Solutions of the porous medium equation in R N under optimal conditions on initial values[END_REF][START_REF] Chen | Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations[END_REF][START_REF] Wu | Nonlinear diffusion equations[END_REF][START_REF] Frid | Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic Equations[END_REF]:

(5) ˆ|u(x, t)v(x, t)|e - √ 1+|x| 2 dx ≤ e Ct ˆ|u 0 (x)v 0 (x)|e - √ 1+|x| 2 dx.

Note that [START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF] does not imply [START_REF] Andreianov | A note on uniqueness of entropy solutions to degenerate parabolic equations in R d[END_REF] and [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF]. A finer result that is closer to (4) is given in [START_REF] Endal | L 1 Contraction for Bounded (Non-integrable) Solutions of Degenerate Parabolic Equations[END_REF] but it still does not imply [START_REF] Andreianov | A note on uniqueness of entropy solutions to degenerate parabolic equations in R d[END_REF], see [START_REF] Endal | L 1 Contraction for Bounded (Non-integrable) Solutions of Degenerate Parabolic Equations[END_REF]Rem. 2.7(b)].

We continue with a formal presentation of our main results; see Section 3 for precise statements. We first give a new and very accurate weighted L 1 contraction estimate for (1) of the form [START_REF] Barles | Uniqueness results for nonlocal Hamilton-Jacobi equations[END_REF] ˆ|u(x, t)v(x, t)|ϕ 0 (x) dx ≤ ˆ|u 0 (x)v 0 (x)|ϕ(x, t) dx, where ϕ 0 ≥ 0 is arbitrary and the weight ϕ is the viscosity solution of ( 2) with b = F ′ and a = A. From control theory [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF], we can reformulate [START_REF] Barles | Uniqueness results for nonlocal Hamilton-Jacobi equations[END_REF] in terms of a stochastic target problem. The result is a natural extension of the optimal domain of dependence result for first order PDEs given in [START_REF] Pogodaev | Estimates of the domain of dependence for scalar conservation laws[END_REF]:

(7) ˆU |u(x, t) -v(x, t)| dx ≤ ˆ|u 0 (x) -v 0 (x)| sup ξ • P (X x t ∈ U ) dx
where U ⊆ R d is arbitrary, P is the probability, ξ s an adapted control, B s a Brownian motion, X x s an Ito process satisfying dX x s = F ′ (ξ s ) ds + √ 2 σ A (ξ s ) dB s , X x s=0 = x, and the weight in [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF] maximizes the chance to reach the target U at time t. Note that here t is fixed and X x t depends on the process ξ s . These two equivalent results imply (3), ( 4), [START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF], the related results in [START_REF] Endal | L 1 Contraction for Bounded (Non-integrable) Solutions of Degenerate Parabolic Equations[END_REF][START_REF] Pogodaev | Estimates of the domain of dependence for scalar conservation laws[END_REF], and as we will see, they are optimal in a rigorous sense.

To discuss the optimality of ( 6), we fix ϕ 0 and try to identify the minimal ϕ satisfying [START_REF] Barles | Uniqueness results for nonlocal Hamilton-Jacobi equations[END_REF] for any u 0 , v 0 . The key result is a characterization of viscosity supersolutions of (2) in terms of contraction estimates for (1):

A function ϕ is a viscosity supersolution of (2a) if and only if [START_REF] Barles | Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations[END_REF] ˆ|u(x, t)v(x, t)|ϕ(x, s) dx ≤ ˆ|u 0 (x)v 0 (x)|ϕ(x, t + s) dx, for all t, s ≥ 0 and u 0 , v 0 with associated entropy solutions u, v of (1) with F ′ = b and A = a. Roughly speaking this result implies that if we restrict to weights satisfying a natural semigroup property, then the best weight in [START_REF] Barles | Uniqueness results for nonlocal Hamilton-Jacobi equations[END_REF] is the viscosity solution of (2) since by comparison solutions are always smaller than supersolutions. This then leads to our most original result:

If S t and G t are the solution semigroups of (1) and (2), b = F ′ and a = A, then G t is the smallest semigroup satisfying

(9) ˆ|S t u 0 -S t v 0 |ϕ 0 dx ≤ ˆ|u 0 -v 0 |G t ϕ 0 dx, ∀ϕ 0 ≥ 0, ∀u 0 , ∀v 0 .
We can interpret (9) as a nonlinear dual inequality and G t as a dual semigroup of S t , because G t is entirely determined by ( 9) and knowledge of S t . The duality in the other direction is open (Remark 40). Since S t is taken on L ∞ from the begining, it remains to properly define G t on L 1 . Classical viscosity solution theory starting from [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi Equations[END_REF][START_REF] Jensen | The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations[END_REF][START_REF] Ishii | On uniqueness and existence of viscosity solutions of fully nonlinear second order elliptic PDEs[END_REF] and summarized in e.g. [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF][START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF], typically considers bounded continuous C b solutions. For solutions in L 1 or L p (in space) there are fewer results, see e.g. [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF] for nondegenerate PDEs and [START_REF] Lin | L 1 -stability and error estimates for approximate Hamilton-Jacobi solutions[END_REF][START_REF] Alvarez | Dislocation Dynamics: Short-time Existence and Uniqueness of the Solution[END_REF][START_REF] Alibaud | Fractional semi-linear parabolic equations with unbounded data[END_REF][START_REF] Barles | Uniqueness results for nonlocal Hamilton-Jacobi equations[END_REF][START_REF] Bokanowski | L 1 -error estimates for numerical approximations of Hamilton-Jacobi-Bellman equations in dimension 1[END_REF][START_REF] Carlini | A generalized fast marching method for dislocation dynamics[END_REF][START_REF] Endal | L 1 Contraction for Bounded (Non-integrable) Solutions of Degenerate Parabolic Equations[END_REF] for various other PDEs. Here we show that (2) can be ill-posed in L 1 in general. We then consider stronger norm topologies and identify the weakest one for which (2) is well-posed in general: It is generated by the norm

ϕ 0 → ˆsup x+[-1,1] d |ϕ 0 | dx which is the norm of the space L ∞ int as defined in [2, 1]. Since L ∞ int ⊂ L 1 ∩ L ∞ , it follows that C b ∩ L ∞
int is a natural L 1 type Banach space for the dual equation ( 2) and its solution semigroup G t in [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF].

Our results on L 1 viscosity solutions may be of independent interest. Let us comment them further. The estimates of [START_REF] Alvarez | Dislocation Dynamics: Short-time Existence and Uniqueness of the Solution[END_REF] are not in L ∞ int but in its predual L 1 unif ⊂ L 1 , while [START_REF] Alibaud | Fractional semi-linear parabolic equations with unbounded data[END_REF] gives weighted L ∞ int estimates for unbounded solutions with linear diffusions. In [START_REF] Endal | L 1 Contraction for Bounded (Non-integrable) Solutions of Degenerate Parabolic Equations[END_REF] there are L 1 estimates for fully nonlinear degenerate PDEs with isotropic diffusions and exponentially decaying initial data. Equation ( 2) is fully nonlinear, degenerate, possibly anisotropic, and we consider general L ∞ int data while identifying L ∞ int as the most natural L 1 viscosity solution setting. The rest of this paper is organized as follows. We recall basic facts in Section 2, we state our main results in Section 3, and prove them in Section 4. For completeness, some results for minimal discontinuous viscosity solutions are proved in Appendix A, while a complete proof of well-posedness for L ∞ entropy solutions is given in Appendix B.

General notation. We let R + := [0, ∞) and 1 U denote the indicator function of a set U . Given two normed spaces X ⊆ Y , X is continuously embedded into Y if the canonical injection is continuous. More specific notation are introduced progressively when we need them, essentially in Section 2.

Preliminaries

This section recalls basic facts on C b viscosity and L ∞ entropy solutions; for proofs, see e.g. [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF][START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF] and [START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF][START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Physics[END_REF] respectively. We also define the space L ∞ int .

2.1. Viscosity solutions of (2). Let ϕ * (resp. ϕ * ) denote the upper (resp. lower) semicontinuous envelope of ϕ.

Definition 1 (Viscosity solutions). Assume (H2) and ϕ 0 : R d → R is bounded. (a) A locally bounded function ϕ :

R d × R + → R is a viscosity subsolution (resp. supersolution) of (2) if i) for every φ ∈ C ∞ (R d × R + ) and local maximum (x, t) ∈ R d × (0, ∞) of ϕ * -φ (resp. mininimum), ∂ t φ(x, t) ≤ sup E b • Dφ + tr aD 2 φ (x, t) (resp. ≥),
ii) and for every

x ∈ R d , ϕ * (x, 0) ≤ (ϕ 0 ) * (x) (resp. ϕ * (x, 0) ≥ (ϕ 0 ) * (x)).
(b) A function ϕ is a viscosity solution if it is both a sub and supersolution.

Remark 2. We say that ϕ is a viscosity subsolution (resp. supersolution) of (2a) if (ai) holds.

We recall the well-known comparison and the well-posedness for (2).

Theorem 3 (Comparison principle). Assume (H2). If ϕ and ψ are bounded sub and supersolutions of (2a), and

ϕ * (x, 0) ≤ ψ * (x, 0) ∀x ∈ R d , then ϕ * ≤ ψ * on R d × R + .
Theorem 4 (Existence and uniqueness). Assume (H2) and

ϕ 0 ∈ C b (R d ).
Then there exists a unique viscosity solution

ϕ ∈ C b (R d × R + ) of (2).
Remark 5. By the comparison principle, inf ϕ 0 ≤ ϕ ≤ sup ϕ 0 and we have the following contraction property: ϕψ ∞ ≤ ϕ 0ψ 0 ∞ for every pair of solutions ϕ and ψ with initial data ϕ 0 and ψ 0 .

We may take ϕ 0 to be discontinuous as in [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF]. In that case, we loose uniqueness and we have to work with minimal and maximal solutions [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF][START_REF] Barles | Front propagation and phase field theory[END_REF][START_REF] Giga | A level set approach to semicontinuous viscosity solutions for Cauchy problems[END_REF] (see also [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF] for bilateral solutions). For our considerations, we only need minimal solutions. We denote by BLSC bounded lower semicontinuous functions.

Theorem 6 (Minimal solutions). Assume (H2) and ϕ 0 : R d → R bounded. Then there exists a minimal viscosity solution ϕ ∈ BLSC(R d × R + ) of (2), in the sense that ϕ ≤ ϕ for any bounded viscosity solution ϕ of (2). Moreover ϕ(x, t = 0) = (ϕ 0 ) * (x) for any x ∈ R d .

Note that ϕ is unique by definition. Actually, it is more precisely the minimal supersolution.

Proposition 7. Assume (H2) and ϕ 0 : R d → R is bounded. Then any bounded supersolution ϕ of (2) is such that ϕ ≤ ϕ * . Remark 8. In particular, we have the following comparison principle: ϕ ≤ ψ for any bounded ϕ 0 ≤ ψ 0 .

For completeness, the proofs of Theorems 6 and Proposition 7 are given in Appendix A.1 because [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF][START_REF] Barles | Front propagation and phase field theory[END_REF][START_REF] Giga | A level set approach to semicontinuous viscosity solutions for Cauchy problems[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF] consider slightly different problems. Let us continue with representation formulas for the solution ϕ from control theory [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF][START_REF] Goreac | Discontinuous control problems for non-convex dynamics and near viability for singularly perturbed control systems[END_REF][START_REF] Goreac | Mayer and optimal stopping stochastic control problems with discontinuous cost[END_REF]. Throughout, "co" denotes the convex hull and "Im" the image.

Proposition 9 (First order). Assume (H2), a ≡ 0, and ϕ 0 : R d → R bounded. Then the minimal viscosity solution of (2) is given by

ϕ(x, t) = sup x+tC (ϕ 0 ) * ∀(x, t) ∈ R d × R + ,
where C = co {Im(b)}.

In the second order case, we need a probabilistic framework. For simplicity, we fix for the rest of this paper a complete filtered probability space (Ω, F , F t , P), and a standard d-dimensional Brownian B t on this filtration.

We will assume without mention that all stochastic processes in this paper are defined on this filtered probability space, and that whenever we need a Brownian motion, then we take the above Brownian motion. Let us denote the expectation by E. Then: Proposition 10 (Second order). Assume (H2), ϕ 0 : R d → R is bounded, [START_REF] Barles | Front propagation and phase field theory[END_REF] the set E is compact and the functions b(•) and σ a (•) are continuous.

Then the minimal viscosity solution of (2) is given by

ϕ(x, t) = sup ξ • E {(ϕ 0 ) * (X x t )} ,
where ξ s is a progressively measurable E-valued control and X x s an Ito process satisfying the SDE

dX x s = b(ξ s ) ds + √ 2 σ a (ξ s ) dB s , s > 0, X x s=0 =
x. These results are standard for continuous viscosity solutions [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF], see also [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF][START_REF] Goreac | Discontinuous control problems for non-convex dynamics and near viability for singularly perturbed control systems[END_REF][START_REF] Goreac | Mayer and optimal stopping stochastic control problems with discontinuous cost[END_REF] for maximal solutions. For minimal solutions, we did not find any reference so we provide the proofs in Appendix A.2.

Entropy solutions of (1)

. Well-posedness of (1) in L ∞ is essentially established in [START_REF] Frid | Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic Equations[END_REF] for smooth fluxes, see [START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF] for previous results in L ∞ ∩ L 1 or L 1 . Let us now recall these results in the form needed here and provide complementary proofs in Appendix B for completeness.

Definition 11 (Entropy-entropy flux triple). We say that (η, q, r) is an entropy-

entropy flux triple if η ∈ C 2 (R) is convex, q ′ = η ′ F ′ and r ′ = η ′ A.
Given β ∈ C(R), we also need the notation

ζ ik (u) := ˆu 0 σ A ik (ξ) dξ and ζ β ik (u) := ˆu 0 σ A ik (ξ)β(ξ) dξ.
Definition 12 (Entropy solutions). Assume (H1) and

u 0 ∈ L ∞ (R d ). A function u ∈ L ∞ (R d × R + ) ∩ C(R + ; L 1 loc (R d )) is an entropy solution of (1) if (a) d i=1 ∂ xi ζ ik (u) ∈ L 2 loc (R d × R + ) for any k = 1, . . . , K, (b) for any k = 1, . . . , K and any β ∈ C(R) d i=1 ∂ xi ζ β ik (u) = β(u) d i=1 ∂ xi ζ ik (u) ∈ L 2 loc (R d × R + ),
(c) and for all entropy-entropy flux triples (η, q, r) and

0 ≤ φ ∈ C ∞ c (R d × R + ), ¨Rd ×R +   η(u)∂ t φ + d i=1 q i (u)∂ xi φ + d i,j=1 r ij (u)∂ 2 xixj φ   dx dt + ˆRd η(u 0 (x))φ(x, 0) dx ≥ ¨Rd ×R + η ′′ (u) K k=1 d i=1 ∂ xi ζ ik (u) 2 φ dx dt.
Theorem 13 (Existence and uniqueness). Assume (H1) and u 0 ∈ L ∞ (R d ). Then there exists a unique entropy solution

u ∈ L ∞ (R d × R + ) ∩ C(R + ; L 1 loc (R d ))
of (1). See [START_REF] Frid | Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic Equations[END_REF]Theorem 1.1] or Appendix B for the proof. Remark 14. (a) In the L 1 settings of [START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF], the following contraction principle holds: For solutions u and v of (1) with initial data u 0 and v 0 ,

u(•, t) -v(•, t) L 1 ≤ u 0 -v 0 L 1 ∀t ≥ 0.
(b) In the L ∞ setting of [START_REF] Frid | Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic Equations[END_REF], uniqueness is based on the weighted L 1 contraction principle [START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF], see also Lemma 63 in Appendix B. (c) In all cases, we have comparison and maximum principles as stated in Lemma 65 in Appendix B.

In L ∞ , uniqueness is based on a doubling of variables arguments developed in [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF][START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF][START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF]. This argument leads to [START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF] below, and this inequality will be the starting point of our analysis.

Lemma 15 (Kato inequality). Assume (H1) and u, v are entropy solutions of [START_REF] Alibaud | Fractional semi-linear parabolic equations with unbounded data[END_REF] 

with initial data u 0 , v 0 ∈ L ∞ (R d ). Then for all T ≥ 0 and nonnegative test functions φ ∈ C ∞ c (R d × [0, T ]), (11) 
ˆRd |u -v|(x, T )φ(x, T ) dx ≤ ˆRd |u 0 -v 0 |(x)φ(x, 0) dx + ¨Rd ×(0,T )   |u -v|∂ t φ + d i=1 q i (u, v)∂ xi φ + d i,j=1 r ij (u, v)∂ 2 xixj φ   dx dt,
where

q i (u, v) = sign(u -v) ˆu v F ′ i (ξ) dξ, r ij (u, v) = sign(u -v) ˆu v A ij (ξ) dξ.
See Appendix B for precise references to the computations in [START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF] on how to show this lemma in our setting.

The function space

L ∞ int . Let L ∞ int (R d ) := ϕ 0 ∈ L 1 loc (R d ) s.t. ϕ 0 L ∞ int < ∞ where ϕ 0 L ∞ int := ´ess sup Q 1 (x) |ϕ 0 | dx and Q r (x) := x + [-r, r] d for r > 0. Theorem 16. The space L ∞ int (R d ) is a Banach space, and it is continuously em- bedded into L 1 ∩ L ∞ (R d ).
See [START_REF] Alvarez | Dislocation Dynamics: Short-time Existence and Uniqueness of the Solution[END_REF][START_REF] Alibaud | Fractional semi-linear parabolic equations with unbounded data[END_REF] for the proof and choice of the above notation. From now on we use the pointwise sup, and to avoid confusion, the notation

ϕ 0 int := ˆsup Q 1 (x) |ϕ 0 | dx. Note that ϕ 0 int = ϕ 0 L ∞ int if ϕ 0 is continuous.
We also need the following result: Lemma 17. For any r > 0 and ε ≥ 0, there is a constant C r,ε ≥ 0 such that ˆsup

Q r+ε (x) |ϕ 0 | dx ≤ C r,ε ˆsup Q r (x) |ϕ 0 | dx ∀ϕ 0 : R d → R.
Remark 18. This result will be used with the pointwise sup for discontinuous ϕ 0 , typically lower or upper semicontinuous.

The proof can be found in [START_REF] Alvarez | Dislocation Dynamics: Short-time Existence and Uniqueness of the Solution[END_REF][START_REF] Alibaud | Fractional semi-linear parabolic equations with unbounded data[END_REF], see e.g. [1, Lemma 2.5.1].

Main results

We are ready to precisely state our main results. The L 1 theory for (2) is given in Section 3.1, the estimates for (1) in Section 3.2, and the duality results between (1) and (2) in Section 3.3. The long proofs are given in Section 4.

L ∞

int as a natural L 1 setting for (2). We first explain why the pure L 1 setting is too weak to develop a general well-posedness theory for [START_REF] Alvarez | Dislocation Dynamics: Short-time Existence and Uniqueness of the Solution[END_REF]. Consider the unique viscosity solution of the eikonal equation ( 12)

∂ t ϕ = d i=1 |∂ xi ϕ|, with a given initial data ϕ 0 ∈ C b (R d ).
Under which condition is it integrable?

Proposition 19 (Necesssary and sufficient integrability condition). We have

ϕ(•, t) ∈ L 1 (R d ) ∀t ≥ 0 ⇐⇒ ϕ - 0 ∈ L 1 (R d ) and ϕ + 0 ∈ L ∞ int (R d ) .
Proof. Since ϕ(x, t) = sup Q t (x) ϕ 0 by Proposition 9, we conclude by Lemma 17.

We continue by showing that the L 1 topology is too weak to get the continuous dependence on the initial data, even for solutions which remain integrable.

Proposition 20 (Failure of the L 1 continuous dependence). For all n ≥ 1, let ϕ n 0 (x) := (1 -n|x|) + , and ϕ n be the solution of [START_REF] Ph | Nonlinear Evolution Equations Goeverned by Accretive Operators[END_REF] with initial data ϕ n 0 . Then

ϕ n 0 ∈ C b ∩ L ∞ int (R d ) and lim n→∞ ϕ n 0 = 0 in L 1 (R d ), but lim n→∞ ϕ n (•, t) = 1 Q t (•) = 0 in L 1 (R d ), ∀t > 0. Proof. Use again that ϕ n (x, t) = sup Q t (x) ϕ n 0 .
Interestingly a similar analysis works also for purely diffusive PDEs. Consider e.g. an equation in one space dimension [START_REF] Ph | Solutions of the porous medium equation in R N under optimal conditions on initial values[END_REF] ∂

t ϕ = ∂ 2 xx ϕ + .
To have L 1 solutions, we need again that ϕ + 0 ∈ L ∞ int . Proposition 21 (L ∞ int and nonlinear diffusions). Let ϕ 0 ∈ C b (R) be nonnegative and ϕ be the solution of [START_REF] Ph | Solutions of the porous medium equation in R N under optimal conditions on initial values[END_REF] with ϕ 0 as initial data. Then,

ϕ(•, t) ∈ L 1 (R) ∀t ≥ 0 ⇐⇒ ϕ 0 ∈ L ∞ int (R)
. See Section 4.5 for the proof. We now use the lack of a fundamental solution of (13) to show that there is no continuous dependence on the initial data in L 1 . Consider solutions ϕ n of ( 13) with an approximate delta-function as initial data: [START_REF] Ph | Nonlinear evolution equations in Banach spaces: basic results and open problems[END_REF] ϕ n (x, t = 0) = nρ(nx),

where 0 ≤ ρ ∈ C c (R) is nontrivial. Then:
Proposition 22 (Blow-up everywhere). lim n→∞ ϕ n (x, t) = ∞, ∀x ∈ R, ∀t > 0.

See Section 4.5 for the proof. For linear diffusion equations, ϕ n would converge to the fundamental solution, but here it explodes pointwise and in all L p loc . A counterexample to the L 1 continuous dependence for [START_REF] Ph | Solutions of the porous medium equation in R N under optimal conditions on initial values[END_REF] is then given by the sequence of solutions

ψ n (x, t) := ϕ n (x, t)/ ϕ n (•, t 0 ) L 1 for a fixed t 0 > 0, since ψ n (t = 0) L 1 → 0 while ψ n (•, t) L 1 ≥ ψ n (•, t 0 ) L 1 → ∞ for any t ≥ t 0 .
In view of the previous results, we now look for a Banach space X ⊂ L 1 that is strong enough to get well-posedness for (2) in general. We are mainly interested in properly defining an associated semigroup; see e.g. [START_REF] Ph | Nonlinear evolution equations in Banach spaces: basic results and open problems[END_REF][START_REF] Ph | Nonlinear Evolution Equations Goeverned by Accretive Operators[END_REF] for a general presentation of nonlinear semigroups.

Definition 23. Let E be a normed space. (a) A family of maps G t : E → E parametrized by t ≥ 0 is a semigroup on E if G t=0 = id (the identity), and G t+s = G t G s (meaning the composition) for any t, s ≥ 0. (b) It is a semigroup of continuous operators if in addition G t : E → E is contin- uous for each t ≥ 0. (c) And it is strongly continuous if for each ϕ 0 ∈ E, t ≥ 0 → G t ϕ 0 ∈ E is strongly continuous (i.e.

continuous in norm).

Let ϕ be the unique viscosity solution of (2) and define

(15) G t : ϕ 0 ∈ C b (R d ) → ϕ(•, t) ∈ C b (R d ).
Then G t is a semigroup of Lipschitz continuous operators by Remark 5. A natural construction is to define X as the completion of some E ⊆ C b ∩ L 1 , such that X ⊂ L 1 and G t can be extended from E onto X. More precisely we require that ( 16)

     E is a vector subspace of C b ∩ L 1 (R d ), E is a normed space, E is continuously embedded into L 1 (R d ),
and for any data (E, b, a) satisfying (H2), the semigroup (15) satisfies:

(17) ∀t ≥ 0, G t (E) ⊆ X := E • E , G t : E → X is continuous, and
G t admits an extension onto X as a continuous operator.

The best E is given below.

Theorem 24

(A natural L 1 setting for (2)). The space C b ∩ L ∞ int (R d
) is a Banach space satisfying the properties ( 16)- [START_REF] Carlini | A generalized fast marching method for dislocation dynamics[END_REF]. Moreover, any other space E satisfying (16)-( 17)

is continuously embedded into C b ∩ L ∞ int (R d ). Remark 25.
Since the best E = X is a Banach space by Theorem 16, it is a posteriori not necessary to extend G t outside C b . The classical notion of viscosity solutions is then already satisfactory to study L 1 solutions of fully nonlinear degenerate PDEs.

Theorem 24 relies on the following estimate:

Theorem 26 (General L ∞ int stability). Assume (H2) and T ≥ 0. For any bounded subsolution ϕ and supersolution ψ of (2a), ( 18)

ˆsup Q 1 (x)×[0,T ] (ϕ * -ψ * ) + dx ≤ C ˆsup Q 1 (x) (ϕ * -ψ * ) + (•, 0) dx, for some constant C = C(d, a ∞ , b ∞ , T ) ≥ 0.
As a consequence we have the following result:

Corollary 27 (L ∞ int well-posedness of ( 2)). Assume (H2) and G t is the solution semigroup defined in [START_REF] Bokanowski | L 1 -error estimates for numerical approximations of Hamilton-Jacobi-Bellman equations in dimension 1[END_REF]. Then its restriction to

C b ∩ L ∞ int (R d
) is a strongly continuous semigroup of Lipschitz continuous operators.

The proofs of Theorem 26 and Corollary 27 are given in Section 4.2, while Theorem 24 is proved in Section 4.5.

3.2.

Weighted L 1 contraction for (1). We state our new and improved weighted L 1 contraction principle for L ∞ entropy solutions of [START_REF] Alibaud | Fractional semi-linear parabolic equations with unbounded data[END_REF]. The weight will be the viscosity solution of the following problem:

∂ t ϕ = ess sup m≤ξ≤M F ′ (ξ) • Dϕ + tr A(ξ)D 2 ϕ x ∈ R d , t > 0, (19a) ϕ(x, 0) = ϕ 0 (x) x ∈ R d , (19b) 
for given m < M and ϕ 0 .

Theorem 28 (Weighted L 1 contraction). Assume (H1), m < M , u 0 = u 0 (x) and v 0 = v 0 (x) are measurable with values in [m, M ], and 0 ≤ ϕ 0 ∈ BLSC(R d ).
Then the corresponding entropy solutions u and v of (1) and minimal viscosity solution ϕ of (19) satisfy

(20) ˆRd |u -v|(x, t)ϕ 0 (x) dx ≤ ˆRd |u 0 -v 0 |(x)ϕ(x, t) dx ∀t ≥ 0.
Remark 29. (a) Problem ( 19) is of the form (2) with a pointwise sup taken over the Lebesgue points of F ′ and A.

(b) The right-hand side of ( 20) can be infinite. To get finite integrals, it suffices to take ϕ 0 ∈ L ∞ int or u 0v 0 ∈ L 1 . (c) The same result holds when ϕ is replaced by any measurable supersolution of [START_REF] Caselles | Scalar conservation laws and Hamilton-Jacobi equations in one-space variable[END_REF], since it is greater than ϕ.

As a consequence of this result and the representation formula for first order PDEs, we obtain the following estimate on the domain of dependence:

Corollary 30 (First order equations). Assume (H2) with A ≡ 0, m < M , u 0 and v 0 are measurable functions with values in [m, M ], and u and v are entropy solutions of (1) with initial data u 0 and v 0 . Then

ˆB |u -v|(x, t) dx ≤ ˆB-tC |u 0 -v 0 |(x) dx
for any Borel set B ⊆ R d and t ≥ 0, where

C = co ess Im (F ′ ) [m,M]
and ess Im is the essential image.

Proof. Let U ⊇ B be an open set and take ϕ 0 = 1 U . By Proposition 9, the minimal solution of ( 19) is ϕ(x, t) = 1 U-tC (x). Apply then Theorem 28 and take the infimum over all open U ⊇ B.

Remark 31. This result also follows from [START_REF] Pogodaev | Estimates of the domain of dependence for scalar conservation laws[END_REF] where similar estimates are given for (x, t)-dependent first order PDEs using techniques based on differential inclusions.

For second order equations, we have the following extension of the domain of dependence result:

Corollary 32 (Second order equations). Assume (H2), F ′ (•) and σ A (•) continuous, m < M , u 0 and v 0 in L ∞ (R d , [m, M ])
, and u and v solutions of (1) with u 0 and v 0 as initial data. Then for any open U ⊆ R d and t ≥ 0,

ˆU |u -v|(x, t) dx ≤ ˆRd |u 0 -v 0 |(x) sup ξ • P (X x t ∈ U ) dx,
where ξ s is a progressively measurable [m, M ]-valued process and X x s is an Ito process satisfying the SDE

(21) dX x s = F ′ (ξ s ) ds + √ 2 σ A (ξ s ) dB s , s > 0, X x s=0 = x. Remark 33.
(1) X x s is a stochastic process starting from x at time s = 0. The dynamics of X x s is given by the controlled SDE [START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF] where the coefficients are (derivatives of) the fluxes in Equation ( 1). The control is determined to maximize the probability for the process to reach U at time s = t. Equation ( 19) is the dynamic programming equation for this control problem.

(2) If A ≡ 0, the problem is deterministic and we recover Corollary 30.

Proof. Take ϕ 0 = 1 U and apply Proposition 10 to compute ϕ in Theorem 28.

The proof of Theorem 28 is given in Section 4.3.

3.3.

Optimal weight and duality between (1) and (2). We discuss the optimality of Theorem 28 and its rigorous interpretation in terms of duality relations. The first step is a reformulation of the definition of viscosity supersolutions in terms of weights in L 1 contraction estimates for [START_REF] Alibaud | Fractional semi-linear parabolic equations with unbounded data[END_REF].

Theorem 34 (Weights and supersolutions). Assume (H1), m < M , and 0 ≤ ϕ ∈ BLSC(R d × R + ). Then the statements below are equivalent.

(I) For any measurable functions u 0 and v 0 with values in [m, M ] and entropy solutions u and v of (1) with initial data u 0 and v 0 ,

ˆRd |u -v|(x, t)ϕ(x, s) dx ≤ ˆRd |u 0 -v 0 |(x)ϕ(x, t + s) dx ∀t, s ≥ 0.
(II) The function

ϕ # (x, t) := lim inf r→0 + y→x 1 meas(B r (y)) ˆBr(y) ϕ(z, t) dz
is a viscosity supersolution of (19a).

We have used the notation B r (y) := {z : |z -y| < r}.

Remark 35. The function ϕ # satisfies (I) if and only if ϕ does since it is an a.e. representative in space of ϕ.

We will therefore roughly speaking deduce from the comparison principle that our weight is optimal in the class of weights

W m,M,ϕ0 := 0 ≤ ϕ ∈ BLSC(R d × R + ) satisfying (I) and ϕ(t = 0) ≥ ϕ 0 .
Corollary 36 (Optimality of the weight). Assume (H1), m < M , and 0 ≤ ϕ 0 ∈ BLSC(R d ). Then the weight ϕ from Theorem 28 belongs to the class W m,M,ϕ0 and satisfies

(ϕ) # (x, t) = inf {ϕ # (x, t) : ϕ ∈ W m,M,ϕ0 } ∀(x, t) ∈ R d × R + .
Remark 37. (a) Property (I) is stronger than [START_REF] Chen | Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations[END_REF] since it holds for any s ≥ 0.

This may be interpreted as a semigroup property. (b) Property (I) is satisfied by most of the weights from the literature, as e.g. for

ϕ ≡ 1, ϕ(x, t) = 1 |x-x0|<R+Ct and ϕ(x, t) = e Ct e - √ 1+|x| 2 ,
in respectively (3), ( 4) and [START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF]; see also the stability results from [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF][START_REF] Ph | Solutions of the porous medium equation in R N under optimal conditions on initial values[END_REF][START_REF] Chen | Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations[END_REF][START_REF] Wu | Nonlinear diffusion equations[END_REF][START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Endal | L 1 Contraction for Bounded (Non-integrable) Solutions of Degenerate Parabolic Equations[END_REF][START_REF] Frid | Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic Equations[END_REF][START_REF] Pogodaev | Estimates of the domain of dependence for scalar conservation laws[END_REF].

In the context of semigroups, the above result reflects some form of duality. For each t ≥ 0, let

S t : u 0 ∈ L ∞ (R d ) → u(•, t) ∈ L ∞ (R d )
where u is the entropy solution of (1), and let

G t : ϕ 0 ∈ C b ∩ L ∞ int (R d ) → ϕ(•, t) ∈ C b ∩ L ∞ int (R d )
where ϕ is the viscosity solution of [START_REF] Caselles | Scalar conservation laws and Hamilton-Jacobi equations in one-space variable[END_REF]. Note that G t = G m,M t depends on the parameters m and M through Equation (19a).

Corollary 38 (A form of duality). Assume (H1), m < M , and consider the semigroups S t and G t defined as above. Then G t is the smallest strongly continuous semigroup of continuous operators on

C b ∩ L ∞ int (R d ) satisfying (22) ˆRd |S t u 0 -S t v 0 |ϕ 0 dx ≤ ˆRd |u 0 -v 0 |G t ϕ 0 dx, for every u 0 and v 0 in L ∞ (R d , [m, M ]), 0 ≤ ϕ 0 ∈ C b ∩ L ∞ int (R d
), and t ≥ 0. Remark 39. Here "smallest" means that any other semigroup H t satisfying the same properties is such that 

G t ϕ 0 ≤ H t ϕ 0 ∀ϕ 0 ≥ 0, ∀t ≥ 0.
C b ∩ L ∞ int (R d ) satis- fying (23) ˆRd |S t u 0 -S t v 0 |ϕ 0 dx ≤ ˆRd |u 0 -v 0 |G m,M t ϕ 0 dx, for all u 0 and v 0 in L ∞ (R d , [m, M ]), 0 ≤ ϕ 0 ∈ C b ∩ L ∞ int (R d )
, and t ≥ 0? A positive answer would mean that S t is conversely entirely determined by {G m,M t : m < M } through [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF].

Proofs

This section is devoted to the proofs of the results of Section 3. We progressively establish what we need to arrive at our concluding duality results (Corollaries 36 and 38). The proofs of Propositions 21 and 22 and Theorem 24 are independent of this developement and given at the end of the section.

4.1. More on viscosity solutions of (2). We need further classical results that can be found in [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF][START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF].

Proposition 41 (Stability w.r.t. sup). Assume (H2) and F = ∅ is a uniformly locally bounded family of viscosity subsolutions of (2a). Then, the function

(x, t) → sup{ϕ(x, t) : ϕ ∈ F } is a viscosity subsolution of (2a).
The next results concern relaxed limits. Consider the upper limit lim sup * ϕ ε (x, t) := lim sup

(y,s)→(x,t) ε→0 + ϕ ε (y, s) ∀(x, t) ∈ R d × R + ,
as well as the lower limit lim inf * ϕ ε :=lim sup * (-ϕ ε ). Then: 

{lim sup * ϕ ε } (x, 0) = {lim sup * (ϕ ε ) * (•, 0)} (x) ∀x ∈ R d (resp. lim inf * ϕ ε (x, 0) = lim inf * (ϕ ε ) * (•, 0) (x)).
Remark 45. For subsolutions this means that lim sup

R d ×R + ∋(y,s)→(x,0) ε→0 + ϕ ε (y, s) = lim sup R d ∋y→x ε→0 + (ϕ ε ) * (y, 0),
where (ϕ ε ) * is the upper semicontinuous envelope computed in (x, t). The proof can be found in [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF] and [START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF]Theorem 4.7]. 1 Here is the stability for minimal solutions, see Appendix A.1 for the proof.

Proposition 46 (Stability of minimal solutions). Assume (H2) and (ϕ n 0 ) n is a nondecreasing uniformly globally bounded sequence. If ϕ n is the minimal solution of (2) with ϕ n 0 as initial data, then sup n ϕ n is the minimal solution of (2) with initial data sup n (ϕ n 0 ) * .

Let us continue with regularization procedures. Usually we consider inf and supconvolutions, but for convex Hamiltonians we can use the classical convolution for supersolutions, see [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Barles | Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations[END_REF] (the ideas were introduced in [START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations[END_REF]).

Lemma 47. Assume (H2), ϕ ∈ BLSC(R d × (0, ∞)) is a supersolution of (2a), and 0 ≤ f ∈ L 1 (R d × (-∞, 0)). Then ϕ * x,t f is a supersolution of (2a).
Here and throughout we extend the functions by zero to all t ∈ R to give a meaning to the convolutions in time. Below is another version that will be needed.

Lemma 48. Assume (H2), ϕ ∈ C b (R d × (0, ∞)) is a supersolution of (2a), and 0 ≤ g ∈ L 1 (R d ). Then ϕ * x g remains a supersolution.
The latter lemma is not proven in [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Barles | Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations[END_REF], but can be obtained via a standard approximation procedure. Let us give it for completeness. Throughout this paper ρ ν is a space approximate unit as ν → 0 + of the form [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi Equations[END_REF] ρ ν (x) := 1

ν d ρ x ν , where 0 ≤ ρ ∈ C ∞ c (R d ) and ´ρ = 1. Moreover θ ν is a time approximate unit of the form (25) θ ν (t) := 1 ν θ t ν , where 0 ≤ θ ∈ C ∞ c ((-∞, 0)) and ´θ = 1.
Proof of Lemma 48. By Lemma 47, ϕ ν := ϕ * x g * x ρ ν * t θ ν is a supersolution of (2a). It remains to pass to the limit as ν → 0 + . We will show that the convergence is local uniform towards ϕ * x g, which will be sufficient by stability of the equation. We only need a local uniform convergence for t > 0 because the conclusion concerns the PDE only. With the assumed regularity on ϕ,

lim ν→0 + ϕ * x ρ ν * t θ ν = ϕ locally uniformly,
1 Let us briefly recall the ideas for the reader's convenience. First consider ϕ := lim sup * ϕε, ϕ 0 (x) := {lim sup * (ϕε) * (•, 0)}(x), and show that min{∂tϕ -H(Dϕ, D 2 ϕ), ϕ -ϕ 0 } ≤ 0 at t = 0 in the viscosity sense. Fix then some x and use the viscosity inequalities at a max (y, t) of the function ϕ(y, t) -|y -x| 2 /ε -Ct with C large enough such that t = 0. We get ϕ(x, 0) ≤ ϕ 0 (y) and conclude as ε → 0 + .

and ϕ * x ρ ν * t θ ν ∞ ≤ ϕ ∞ . Moreover, for any x ∈ R d , t > 0 and R ≥ 0, |ϕ ν -ϕ * x g|(x, t) ≤ |ϕ * x ρ ν * t θ ν -ϕ| * x g(x, t) ≤ sup |y|≤R |ϕ * x ρ ν * t θ ν -ϕ|(x -y, t) ˆ|y|≤R g(y) dy + 2 ϕ ∞ ˆ|y|>R g(y) dy.
This is enough to conclude since lim R→∞ ´|y|>R g(y) dy = 0. 

∂ t (ϕ -ψ) ≤ sup ξ∈E H ξ (ϕ) -sup ξ∈E H ξ (ψ) ≤ sup ξ∈E (H ξ (ϕ) -H ξ (ψ)) .
By stability, (ϕ *ψ * ) + = max{ϕ *ψ * , 0} is thus indeed a subsolution.

The rigorous justification of the above computations can be done by using a test function, Ishii lemma, and semijets [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Theorem 8.3]. The details are standard and left to the reader. Here is a second lemma involving the profile 4 ds, where c 0 > 0 is chosen such that U (0) = 1. Below and after "Sp" is the spectrum.

U : r ≥ 0 → c 0 ˆ∞ r e -s 2
Lemma 50. Let L b ≥ 0 and L a > 0. For any (x, t) ∈ R d × R + , define

(26) Ψ(x, t) := U (|x| -1 -L b t) + / √ L a t if t > 0, 1 |x|<1 if t = 0.
Then in the viscosity sense,

∂ t Ψ ≥ L b |DΨ| + L a sup λ∈Sp(D 2 Ψ) λ + in R d × (0, ∞) (it is in fact an equality). Moreover Ψ ∈ C b (R d × (0, ∞)) ∩ C(R + ; L 1 (R d ))
where the latter time continuity holds up to t = 0.

Remark 51. Roughly speaking, we will use Ψ as a fundamental solution to construct L 1 supersolutions of ( 2), but we cannot take it as a Dirac mass at t = 0 because of Proposition 22.

Proof. The desired PDE holds if

|x| < 1 + L b t since Ψ is constant in that region. It is also satisfied if |x| = 1 + L b t because the subjets are empty. Now if |x| > 1 + L b t, then ∂ t Ψ = -L a |x| -1 -L b t 2(L a t) 3 2 U ′ - L b √ L a t U ′ , DΨ = x |x| U ′ √ L a t , and 
∂ 2 xixj Ψ = δ ij |x| - x i x j |x| 3 U ′ √ L a t + x i x j |x| 2 U ′′ L a t .
Since U ′ ≤ 0 and U ′′ ≥ 0, we have

d i,j=1 ∂ 2 xixj Ψh i h j ≤ U ′′ Lat for any h = (h i ) with |h| = 1. Hence sup λ∈Sp(D 2 Ψ) λ + ≤ U ′′
Lat and

∂ t Ψ -L b |DΨ| -L a sup λ∈Sp(D 2 Ψ) λ + ≥ - rU ′ (r)/2 + U ′′ (r) t with r = (|x| -1 -L b t)/ √ L a t.
The right-hand side is zero by definition of U , and we obtain the desired equation for positive times. Now the detailed verification that

Ψ ∈ C b (R d × (0, ∞)) ∩ C(R + ; L 1 (R d ))
does not contain any particular difficulty and is left to the reader. The proof is complete.

Proof of Theorem 26. Let L b := b ∞ and L a := tr(a) ∞ and assume L a > 0. We will use the following Ky Fan inequality [START_REF] Theobald | An inequality for the trace of the product of two symmetric matrices[END_REF]: [START_REF] Dibenedetto | Degenerate parabolic equations[END_REF] tr (XY )

≤ d i=1 λ i (X)λ i (Y ) ∀X, Y real d × d symmetric matrices,
with the ordered eigenvalues

λ 1 ≤ • • • ≤ λ d .
It implies that any subsolution of (2a) is a subsolution of the equation ( 28)

∂ t ϕ = L b |Dϕ| + L a sup λ∈Sp(D 2 ϕ) λ + .
Consider now arbitrary bounded sub and supersolutions ϕ and ψ of (2a). By Lemma 49, (ϕ *ψ * ) + is a subsolution of (2a) thus of [START_REF] Endal | L 1 Contraction for Bounded (Non-integrable) Solutions of Degenerate Parabolic Equations[END_REF]. To prove Estimate (18), we will construct an integrable supersolution of [START_REF] Endal | L 1 Contraction for Bounded (Non-integrable) Solutions of Degenerate Parabolic Equations[END_REF]. We will take it of the form ψ := Ψ * x sup

Q 1 (•) φ 0 ,
where φ 0 (x) := (ϕ *ψ * ) + (x, t = 0) and Ψ is defined in Lemma 50. Let us use Lemma 48 to show that ψ is a supersolution of [START_REF] Endal | L 1 Contraction for Bounded (Non-integrable) Solutions of Degenerate Parabolic Equations[END_REF]. We need sup Q 1 (•) φ 0 to be integrable, and this can be assumed without loss of generality since [START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF] trivially holds if not. Now recalling that Ψ ∈ C b (R d × (0, ∞)) is a supersolution of (28), Lemma 48 applies and ψ remains a supersolution. Since moreover

Ψ ∈ C(R + ; L 1 (R d )) and sup Q 1 (•) φ 0 ∈ L ∞ (R d
), this supersolution is continuous up to t = 0 and satisfies

ψ(x, 0) = ˆ1|y|<1 sup Q 1 (x-y) φ 0 =(ϕ * -ψ * ) + (t=0) dy ≥ (ϕ * -ψ * ) + (x, 0).
Hence (ϕ *ψ * ) + ≤ ψ everywhere by the comparison principle, and

ˆsup Q 1 (x)×[0,T ] (ϕ * -ψ * ) + dx ≤ ˆsup Q 1 (x)×[0,T ] ψ dx ≤ ˆsup t∈[0,T ] Ψ(y, t) dy ˆsup Q 2 (x)
φ 0 dx, by the Fubini theorem, etc. The first integral satisfies

ˆsup t∈[0,T ] Ψ(y, t) dy ≤ ˆU (|y| -1 -L b T ) + / L a T dy < ∞,
by [START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Physics[END_REF] and since U is nondecreasing and integrable. For the second integral, Lemma 17 implies that ˆsup

Q 2 (x) φ 0 dx ≤ C ˆsup Q 1 (x) (ϕ * -ψ * ) + (•, 0) dx,
for a constant C which only depends on d. Combining the three inequalities above completes the proof of ( 18) when L a = tr(a) ∞ > 0. If L a = 0, there is no diffusive part in (2a), and (18) follows from Proposition 9 and Lemma 17.

We are ready to prove Corollary 27. We need the result below.

Lemma 52. Assume (H2) and ϕ and ψ are continuous viscosity solutions of (2a).

Then |ϕ -ψ| is a subsolution of the same PDE.

Proof. Use that |ϕ -ψ| = max{(ϕψ) + , (ψϕ) + } and Lemma 49.

Proof of Corollary 27. The fact that

G t maps C b ∩ L ∞ int (R d ) into itself follows from Theorem 26. Indeed, if ϕ 0 ∈ C b ∩ L ∞ int (R d ), then the function (x, t) → |G t ϕ 0 (x)
| is a bounded subsolution of (2a), by Lemma 52 with ψ ≡ 0. Estimate [START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF] then implies that for any t ≥ 0,

G t ϕ 0 int = ˆsup Q 1 (x) |G t ϕ 0 | dx ≤ C ˆsup Q 1 (x) |ϕ 0 | dx, for some constant C = C(d, a ∞ , b ∞ , t). Let us now prove that G t : C b ∩ L ∞ int (R d ) → C b ∩ L ∞ int (R d
) is Lipschitz continuous for any t ≥ 0. Let us apply again [START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF] to

(x, t) → |G t ϕ 0 (x) -G t ψ 0 (x)|,
which is a subsolution of (2a) by Lemma 52. As above we get that

G t ϕ 0 -G t ψ 0 int ≤ C ˆsup Q 1 (x) |ϕ 0 -ψ 0 | dx,
and deduce the desired continuity because C does not depend on the initial data. Hence G t is a semigroup of Lipschitz continuous operators on C b ∩ L ∞ int (R d ) and it remains to prove the time continuity. Fix t 0 ≥ 0 and let us show that ˆsup

Q 1 (x) |G t ϕ 0 -G t0 ϕ 0 | dx → 0 as t → t 0 .
The pointwise convergence follows from the continuity of (x, t) → G t ϕ 0 (x) (as continuous solution of ( 2)), and a dominating function is given by

x → sup (y,s)∈Q 1 (x)×[0,t0+1] 2|G s ϕ 0 (y)|
which is integrable by Theorem 26.

4.3.

Weighted L 1 contraction: Proof of Theorem 28. We continue with the general weighted L 1 contraction principle for (1).

Proof of Theorem 28. We have to show that ( 29)

ˆRd |u -v|(x, T )ϕ 0 (x) dx ≤ ˆRd |u 0 -v 0 |(x)ϕ(x, T ) dx ∀T ≥ 0.
Let us use the Kato inequality [START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF]. For a.e. x ∈ R d and t ≥ 0,  

 d i=1 q i (u, v)∂ xi φ + d i,j=1 r ij (u, v)∂ 2 xixj φ    (x, t) = sign(u(x, t) -v(x, t)) ˆu(x,t) v(x,t) F ′ (ξ) • Dφ(x, t) + tr A(ξ)D 2 φ(x, t) dξ ≤ |u(x, t) -v(x, t)| ess sup m≤ξ≤M F ′ (ξ) • Dφ(x, t) + tr A(ξ)D 2 φ(x, t) ,
where we have taken the sup over [m, M ] because of the maximum principle Lemma 65. Injecting into [START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF], we get that (30)

ˆRd |u -v|(x, T )φ(x, T ) dx ≤ ˆRd |u 0 -v 0 |(x)φ(x, 0) dx + ¨Rd ×(0,T ) |u -v| ∂ t φ + ess sup m≤ξ≤M F ′ (ξ) • Dφ + tr A(ξ)D 2 φ dx dt.
In the third integral, we recognize the backward in time version of (19a). The proof of ( 29) then consists in taking φ(x, t) = ϕ(x, Tt).

Simplified case: 19) has a unique viscosity solution ϕ which coincides with ϕ. It belongs to 

0 ≤ ϕ 0 ∈ C c (R d ). Now (
C b (R d × R + ) ∩ C(R + ; L 1 (R d ))
ϕ ν := ϕ * x,t (ρ ν θ ν ) ,
with the mollifiers ( 24) and [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF]. It follows that

ϕ ν ∈ C ∞ (R d × R + ) ∩ C(R + ; L 1 (R d ))
along with all its derivatives. This is enough to take φ ν (x, t) := ϕ ν (x, Tt) as a test function in [START_REF] Frid | Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic Equations[END_REF] by approximation. Note that φ ν is a supersolution of the backward version of (19a) by Lemma 47, i.e.

∂ t φ ν + ess sup m≤ξ≤M F ′ (ξ) • Dφ ν + tr A(ξ)D 2 φ ν ≤ 0 for any t < T .
Inequality [START_REF] Frid | Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic Equations[END_REF] with the test function φ ν then implies that

ˆRd |u -v|(x, T )ϕ ν (x, 0) dx ≤ ˆRd |u 0 -v 0 |(x)ϕ ν (x, T ) dx,
for any T ≥ 0 and ν > 0. By the C(R + ; L 1 (R d )) regularity of ϕ, the convolution ϕ ν = ϕ * x,t (ρ ν θ ν ) converges to ϕ in C([0, T ]; L 1 (R d )) as ν → 0 + . Passing to the limit as ν → 0 + then yields [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF].

General case: 0 ≤ ϕ 0 ∈ BLSC(R d ). We would like to pointwise approximate ϕ 0 by a monotone sequence

ϕ n 0 ↑ ϕ 0 such that 0 ≤ ϕ n 0 ∈ C c (R d ). Take ϕ n 0 (x) := inf y∈R d ϕ 0 (y)1 |y|<n + n|x -y| 2 ≥ 0.
Then ϕ n 0 is continuous as an infconvolution, see e.g. [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF][START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF]. Also,

ϕ n 0 (x) ≤ ϕ 0 (x)1 |x|<n ∀x ∈ R d ,
which implies that ϕ n 0 ∈ C c (R d ). In the limit n → ∞, we have ϕ n 0 ↑ (ϕ 0 ) * = ϕ 0 . Let ϕ n be the solution of [START_REF] Caselles | Scalar conservation laws and Hamilton-Jacobi equations in one-space variable[END_REF] with initial data ϕ n 0 , then by the previous step,

ˆRd |u -v|(x, T )ϕ n 0 (x) dx ≤ ˆRd |u 0 -v 0 |(x)ϕ n (x, T ) dx,
for any T ≥ 0 and n. By the stability of minimal solutions (see Proposition 46), these solutions satisfy ϕ n ↑ ϕ pointwise. So we conclude the proof of (29) by passing to the limit as n → ∞ using the monotone convergence theorem. Here is a first classical result on entropy solutions.

Lemma 53. Assume (H1) and u 0 ∈ L ∞ (R d ). Then, the entropy solution of (1) is a distributional solution of (1),

¨Rd ×R +   u∂ t φ + d i=1 F i (u)∂ xi φ + d i,j=1 A ij (u)∂ 2 xixj φ   dx dt + ˆRd u 0 (x)φ(x, 0) dx = 0 ∀φ ∈ C ∞ c (R d × R + ),
where

A ij (u) = ´u 0 A ij (ξ) dξ.
Proof. Take η(u) = ±u successively in the entropy inequalities, Definition 12(c).

Here is another result on the continuity in time.

Lemma 54. Assume (H1),

u 0 , v 0 ∈ L ∞ (R d ) with u 0 -v 0 ∈ L 1 (R d
), u and v entropy solutions of (1) with initial data u 0 and v 0 . Then

u -v ∈ C(R + ; L 1 (R d )).
Proof of Lemma 54. By Theorem 28 with ϕ 0 ≡ 1, we have

u(•, t) -v(•, t) L 1 ≤ u 0 -v 0 L 1 ∀t ≥ 0. Since the left-hand side is finite, u -v ∈ L ∞ (R + ; L 1 (R d ))
. By the continuity in time with values in L 1 loc (R d ) of these functions, it remains to prove that (31) lim

R→∞ sup t∈[0,T ] ˆ|x|≥R |u(x, t) -v(x, t)| dx = 0 ∀T ≥ 0.
To do so, we will use again Theorem 28. Fix m < M such that u 0 and v 0 take their values in [m, M ], and consider

ϕ R 0 (x) := ϕ 0 x R , R > 0,
where

ϕ 0 = ϕ 0 (x) is some kernel such that      0 ≤ ϕ 0 ∈ C b (R d ), ϕ 0 (x) = 0 for |x| ≤ 1/2, and ϕ 0 (x) = 1 for |x| ≥ 1.
With that choice, ϕ R 0 → 0 as R → ∞ locally uniformly. We then claim that the solutions ϕ R of [START_REF] Caselles | Scalar conservation laws and Hamilton-Jacobi equations in one-space variable[END_REF] with initial data ϕ R 0 converge locally uniformly to zero too. This is a consequence of the method of relaxed semilimits [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF]. Let us give details for completeness. By the maximum principle,

ϕ R ∞ ≤ ϕ R 0 ∞ = ϕ 0 ∞ ∀R > 0.
We can then apply Propositions 42 and 44 to lim sup * ϕ R as R → ∞ and get that it is a subsolution of (19a) satisfying lim sup * ϕ R (x, 0) = lim sup * ϕ R 0 (x) = 0 ∀x ∈ R d . Similarly, lim inf * ϕ R is a supersolution of (2) with zero as initial data. The comparison principle then implies that lim sup * ϕ R ≤ lim inf * ϕ R .

Hence ϕ R converges locally uniformly to the unique solution of [START_REF] Caselles | Scalar conservation laws and Hamilton-Jacobi equations in one-space variable[END_REF] with zero initial data, that is zero itself. Now we can show [START_REF] Giga | A level set approach to semicontinuous viscosity solutions for Cauchy problems[END_REF]. By Theorem 28 with the previous m, M , and ϕ R 0 ,

ˆ|x|≥R |u(x, t) -v(x, t)| dx ≤ ˆRd |u(x, t) -v(x, t)|ϕ R 0 (x) dx ≤ ˆRd |u 0 (x) -v 0 (x)|ϕ R (x, t) dx ≤ ˆRd |u 0 (x) -v 0 (x)| sup s∈[0,T ] ϕ R (x, s) dx,
for any T ≥ t ≥ 0. The right-hand side vanishes as R → ∞ by the discussion above and the dominated convergence theorem. The proof of (31) is complete.

Here is a regularization procedure for the weights.

Lemma 55. Assume (H1), m < M , ρ ν and θ ν are defined in [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi Equations[END_REF] and [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF], and 0 ≤ ϕ ∈ BLSC(R d × R + ) satisfies (I) in Theorem 34. Then for any ν > 0, the convolution

ϕ ν := ϕ * x,t (ρ ν θ ν ) ∈ C ∞ b (R d × R + ) also satisfies (I) in Theorem 34.
Proof. By assumption, (32)

ˆRd |u -v|(x, t)ϕ(x, s) dx ≤ ˆRd |u 0 -v 0 |(x)ϕ(x, t + s) dx,
for any t, s ≥ 0, u 0 and v 0 with values in [m, M ], and entropy solutions u and v of (1) with u 0 and v 0 as initial data. Our aim is to get the same result for ϕ ν . Let us use ( 32) not for u 0 and v 0 , but their translations u 0 (• + y) and v 0 (• + y) for some fixed y ∈ R d . Since the PDE part of ( 1) is invariant w.r.t. translation, the corresponding solutions are u(x + y, t) and v(x + y, t). Hence,

ˆRd |u -v|(x + y, t)ϕ(x, s) dx ≤ ˆRd |u 0 -v 0 |(x + y)ϕ(x, t + s) dx
for any t, s ≥ 0. By changing the variable of integration, we obtain that

ˆRd |u -v|(x, t)ϕ(x -y, s) dx ≤ ˆRd |u 0 -v 0 |(x)ϕ(x -y, t + s) dx.
Now we fix τ ≤ 0 and apply this formula, not for s but sτ . We deduce that

ˆRd |u -v|(x, t)ϕ(x -y, s -τ ) dx ≤ ˆRd |u 0 -v 0 |(x)ϕ(x -y, t + s -τ ) dx.
Multiply then by ρ ν (y)θ ν (τ ) and integrate over (y, τ ) ∈ R d × R -to conclude.

Later we will pass to the limit

ϕ ♭ := lim inf * ϕ ν as ν → 0 + ,
and compare ϕ ♭ with the function

(33) ϕ # (x, t) = lim inf r→0 + y→x 1 meas(B r (y)) ˆBr(y) ϕ(z, t) dz.
To do so, we will assume in addition that [START_REF] Ishii | On uniqueness and existence of viscosity solutions of fully nonlinear second order elliptic PDEs[END_REF] supp(ρ ν ) ⊂ B ν (0) and supp(θ ν ) ⊂ (-ν, 0).

Here are fundamental properties on ϕ ♭ and ϕ # that will be needed. Proof. Let us prove (i). Note first that ϕ ♭ is lower semicontinuous as a lower relaxed limit. To prove that ϕ ♭ ≤ ϕ a.e., it suffices to do it for the Lebesgue points of ϕ.

Lemma 56. Assume ϕ ∈ BLSC(R d × R + ),
Such points (x, t) ∈ R d × (0, ∞) satisfy lim ν→0 + 1 ν d+1 ¨Bν(x)×(t-ν,t+ν)
|ϕ(y, s)ϕ(x, t)| dy ds = 0, so by the assumptions on the mollifiers, see ( 24), ( 25) and ( 34), we find that

|ϕ ν (x, t) -ϕ(x, t)| ≤ 1 ν d+1 ¨Bν(x)×(t,t+ν) |ϕ(y, s) -ϕ(x, t)| • • ρ x -y ν θ t -s ν dy ds → 0 as ν → 0 + .
It follows that ϕ ♭ (x, t) ≤ lim ν→0 + ϕ ν (x, t) = ϕ(x, t), at any Lebesgue point. Moreover, for any fixed (x, t), lower semicontinuity of ϕ implies that

ϕ ν (y, s) = ¨Bν(y)×(s,s+ν) ϕ(z, τ ) ≥ϕ(x,t)+o(1) ρ y -z ν θ s -τ ν dz dτ ≥ ϕ(x, t) + o(1)
as (y, s, ν) → (x, t, 0 + ), and we get that

ϕ ♭ (x, t) = lim inf * ϕ ν (x, t) ≥ ϕ(x, t).
We conclude that ϕ ♭ = ϕ a.e. Now, to complete the proof of (i), it remains to prove that ϕ ♭ ≥ ψ pointwise for any other ψ ∈ BLSC(R d × R + ) such that ψ ≤ ϕ a.e. Given such a function, let

ψ ♭ := lim inf * ψ * x,t (ρ ν θ ν ). As above, ψ ≤ ψ ♭ pointwise; but also ψ ♭ ≤ ϕ ♭ pointwise since ψ * x,t (ρ ν θ ν ) ≤ ϕ * x,t (ρ ν θ ν ).
This proves (i) and the arguments for (ii) are similar.

Here is also a general inequality between ϕ ♭ and ϕ # that will be needed.

Lemma 58. Under the hypotheses of the previous lemma, (ϕ

# ) * ≤ ϕ ♭ pointwise.
Proof. Let us first prove that ϕ # is measurable in (x, t). We have

ϕ # (x, t) = sup n≥1 =:ϕn(x,t) inf m≥n inf 1 m ≤r≤ 1 n |y|≤ 1 n 1 meas(B r (y)) ˆBr(y) ϕ(x + z, t) dz =:ϕn,m(x,t)
,

where n and m are integers. For each We can now prove the lemma. For any t ≥ 0, the measurable functions ϕ, ϕ # satisfy ϕ # (•, t) = ϕ(•, t) a.e., hence we may use the Fubini theorem to conclude that

¨Rd ×R + 1 {ϕ # =ϕ} dx dt = ˆR+ ˆRd 1 {ϕ # (x,t)=ϕ(x,t)} dx dt = 0.
This proves that ϕ # = ϕ a.e. in (x, t), so that (ϕ # ) * ≤ ϕ a.e. in (x, t). Hence (ϕ # ) * ≤ ϕ ♭ pointwise by Lemma 56(i).

Here are further properties that we will need.

Lemma 59. Let ϕ, ψ ∈ BLSC(R d × R + ) and ϕ # , ψ # as in [START_REF] Goreac | Mayer and optimal stopping stochastic control problems with discontinuous cost[END_REF]. Then (i) ϕ ≤ (ϕ # ) * pointwise, and

(ii) if ϕ ≤ ψ # pointwise, then ϕ # ≤ ψ # pointwise.
Proof. We can show that ϕ ≤ ϕ # from the definition of ϕ # and the lower semicontinuity of ϕ, exacty as we showed that ϕ ≤ ϕ ♭ in the proof of Lemma 56. In particular, ϕ ≤ (ϕ # ) * which is part (i). For part (ii), use Lemma 56(ii). It says that ψ # (•, t) = ψ(•, t) a.e. in x, for each fixed t ≥ 0. Hence, ϕ(•, t) ≤ ψ(•, t) a.e. and the desired inequality follows again from the definitions of ϕ # and ψ # .

We are now in position to prove Theorem 34.

Proof of Theorem 34. Let us proceed in several steps.

1) (II) =⇒ (I).

By (II), (ϕ # ) * is a BLSC supersolution of (19a). In particular, for any fixed s ≥ 0, the function

(x, t) → (ϕ # ) * (x, t + s)
is also a supersolution of (19a). By Remark 29(c), we can apply Theorem 28 to this supersolution with the BLSC initial weight (ϕ # ) * (•, s). The result is that

ˆRd |u -v|(x, t)(ϕ # ) * (x, s) dx ≤ ˆRd |u 0 -v 0 |(x)(ϕ # ) * (x, t + s) dx,
for any u 0 = u 0 (x) and v 0 = v 0 (x) with values in [m, M ], u and v entropy solutions of (1) with u 0 and v 0 as initial data, and t, s ≥ 0. This is exactly (I) but with (ϕ # ) * instead of ϕ. To replace (ϕ # ) * by ϕ, we use Lemma 59(i) for the left-hand side. For the right-hand side, we use that (ϕ # ) * ≤ ϕ # pointwise and the fact that ϕ # (x, t + s) = ϕ(x, t + s) for a.e. x, see Lemma 56(ii). This implies (I) with ϕ, as desired.

2) (I) =⇒ (II) for smooth weights ϕ.

Let us prove the reverse implication when 0

≤ ϕ ∈ C ∞ b (R d × R +
). We will appropriately choose u 0 and v 0 later. For the moment, we assume that

m ≤ v 0 ≤ u 0 ≤ M and u 0 -v 0 ∈ L 1 (R d ).
By Lemmas 65 and 54, 0 ≤ uv ∈ C(R + ; L 1 (R d )), and then we can use (I) to get ( 35)

ˆRd (u -v)(x, T )ϕ(x, s) dx ≤ ˆRd (u 0 -v 0 )(x)ϕ(x, T + s) dx,
for any T, s ≥ 0. Let us fix s > 0 and determine what PDE ϕ satisfies. This will be done by injecting the weak formulation of ( 1) into ( 35) and then pass to the limit as T → 0 + . By Lemma 53,

ˆRd (u -v)(x, T )φ(x, T ) dx = ¨Rd ×(0,T ) (u -v)∂ t φ + d i=1 (F i (u) -F i (v))∂ xi φ + d i,j=1 (A ij (u) -A ij (v))∂ 2 xixj φ   dx dt + ˆRd (u 0 -v 0 )(x)φ(x, 0) dx, for any φ ∈ C ∞ c (R d × [0, T ]) and A ′ ij = A ij .
Note that we have rewritten the equation given by Lemma 53 with integrals in t < T and an additional final term at t = T . This follows from standard arguments using the L 1 loc continuity in time of

u and v. Since ϕ ∈ C ∞ b , u -v ∈ C t (L 1 
x ) and u, v ∈ L ∞ , a standard approximation argument shows that we can take φ to be φ(x, t) = ϕ(x, t + s -T ), and get that

ˆRd (u -v)(x, T )ϕ(x, s) dx = ¨Rd ×(0,T ) (u -v)∂ t ϕ(t + s -T ) + d i=1 (F i (u) -F i (v))∂ xi ϕ(t + s -T ) + d i,j=1 (A ij (u) -A ij (v))∂ 2 xixj ϕ(t + s -T )   dt + ˆRd (u 0 -v 0 )(x)ϕ(x, s -T ) dx. (36) 
Here we assume that s > 0 and T is so small that s -T > 0. Inserting (36) into [START_REF] Jensen | The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations[END_REF], we get

ˆRd (u 0 -v 0 )(x)ϕ(x, s + T ) dx - ˆRd (u 0 -v 0 )(x)ϕ(x, s -T ) dx ≥ ¨Rd ×(0,T ) . . . dx dt.
We now would like to divide by 2T and pass to the limit as T → 0 + . All the computations are justified, again because ϕ ∈ C ∞ b , the solutions u and v are bounded, and uv ∈ C t (L 1

x ). We get that

ˆRd (u 0 (x) -v 0 (x))∂ s ϕ(x, s) dx ≥ 1 2 ˆRd (u 0 -v 0 )∂ s ϕ(s) + d i=1 (F i (u 0 ) -F i (v 0 ))∂ xi ϕ(s) + d i,j=1 (A ij (u 0 ) -A ij (v 0 ))∂ 2 xixj ϕ(s)   dx.
Substracting the term ´(u 0v 0 )∂ s ϕ(s) dx/2 of the right-hand side implies that

ˆRd (u 0 (x) -v 0 (x))∂ s ϕ(x, s) dx ≥ ˆRd   d i=1 (F i (u 0 ) -F i (v 0 ))∂ xi ϕ(s) + d i,j=1 (A ij (u 0 ) -A ij (v 0 ))∂ 2 xixj ϕ(s)   dx = ˆRd ˆu0(x) v0(x) F ′ (ξ) • Dϕ(x, s) + tr A ij (ξ)D 2 ϕ(x, s) dξ dx, (37) 
for any s > 0 and 0 ≤ u 0v 0 ∈ L 1 (R d ) such that both u 0 and v 0 take their values in the interval [m, M ]. It remains to choose u 0v 0 as an approximate unit, up to some multiplicative constant.

Let us introduce new parameters:

x 0 ∈ R d , ε > 0 and m ≤ a < b ≤ M . We would like to choose u 0 -v 0 = (b -a)1 x0+(-ε,ε) d ,
with the constraint that both u 0 and v 0 only take the two values a and b. Writing x = (x i ), take e.g.

u 0 (x) := a if x 1 > (x 0 ) 1 + ε, b if not, and 
v 0 (x) := a if x 1 > (x 0 ) 1 + ε or x ∈ x 0 + (-ε, ε) d , b if not.
Then m ≤ v 0 ≤ u 0 ≤ M and u 0v 0 ∈ L 1 (R d ) as required. Inserting our choice into [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF] and dividing by (ba)ε d , we deduce that

1 ε d ˆx0+(-ε,ε) d ∂ s ϕ(x, s) dx ≥ 1 ε d ˆx0+(-ε,ε) d 1 b -a ˆb a F ′ (ξ) • Dϕ(x, s) + tr A ij (ξ)D 2 ϕ(x, s) dξ dx.
Let now ξ ∈ (m, M ) be any Lebesgue point of any arbitrarily chosen a.e. representative of (F ′ , A). Take first the limit as a, b → ξ such that ξ is the center of each [a, b] in order to use the Lebesgue point property; take next the limit as ε → 0 + . This gives us that

∂ s ϕ(x 0 , s) ≥ F ′ (ξ) • Dϕ(x 0 , s) + tr A ij (ξ)D 2 ϕ(x 0 , s) ,
for any x 0 ∈ R d , s > 0, and Lebesgue point ξ. That is ϕ is a supersolution of ( 19). This completes the proof of the remaining implication in the case where ϕ is C ∞ b (and then ϕ # = ϕ).

3) (I) =⇒ (II) for nonnegative BLSC weights ϕ.

In this case we use the regularization procedure of Lemma 55. By this lemma

ϕ ν = ϕ * x,t (ρ ν θ ν )
satisfies (I) since ϕ does by assumption. By the previous step we deduce that ϕ ν is a supersolution of (19a). Hence

ϕ ♭ = lim inf * ϕ ν
is also a supersolution by stability (cf. Proposition 42). But to prove (II), we need to show that ϕ # is a supersolution. We will do this by showing that ϕ ♭ = (ϕ # ) * pointwise (at least for positive times). We already have (ϕ # ) * ≤ ϕ ♭ by Lemma 58.

To prove that ϕ ♭ ≤ (ϕ # ) * , we need to use (I). By (I),

ˆRd |u -v|(x, t)ϕ(x, s) dx ≤ ˆRd |u 0 -v 0 |(x)ϕ(x, t + s) dx,
for any u 0 and v 0 in L ∞ (R d , [m, M ]) and corresponding solutions u and v of (1) and t, s ≥ 0. By Lemma 56(i), we also have that ϕ ♭ = ϕ a.e. In particular, there is a null set N ⊂ R + such that ϕ(•, s) = ϕ ♭ (•, s) a.e., for any s / ∈ N . 2 Fixing T > 0, there thus exists a sequence s n → T -such that s n / ∈ N , for any n. Choosing moreover t n := Ts n , we deduce that

ˆRd |u -v|(x, t n )ϕ ♭ (x, s n ) dx ≤ ˆRd |u 0 -v 0 |(x)ϕ(x, T ) dx.
Let us pass to the limit as n → ∞ in the left-hand side. To do so, we use Fatou's lemma, which is possible because of the lower semicontinuity of ϕ ♭ and the continuity of entropy solutions with values in

L 1 loc (R d ) which implies that |u -v|(x, t n ) → |u 0 -v 0 |(x) for a.e. x
(along a subsequence). In the limit, it then follows that

ˆRd |u 0 -v 0 |(x)ϕ ♭ (x, T ) dx ≤ ˆRd |u 0 -v 0 |(x)ϕ(x, T ) dx for any u 0 and v 0 in L ∞ (R d , [m, M ]) and T > 0.
To continue, we argue as in the previous step where we chose 0 ≤ u 0v 0 ∈ L 1 (R d ) to be an approximate unit up to a multiplicative constant. The same arguments imply that for any T > 0,

ϕ ♭ (•, T ) ≤ ϕ(•, T ) a.e.
By Lemma 56(ii), we conclude that ϕ ♭ ≤ ϕ # pointwise (for positive times). Hence, ϕ ♭ ≤ (ϕ # ) * and then ϕ ♭ = (ϕ # ) * (for positive times). This implies that (ϕ # ) * = ϕ ♭ is a supersolution of (19a). The proof of Theorem 34 is complete.

We have now established all preliminary results and are ready to prove our duality results (Corollaries 36 and 38).

Proof of Corollary 36. We already know that ϕ ∈ W m,M,ϕ0 by Theorem 28. Let us prove the formula with the inf. Take ϕ ∈ W m,M,ϕ0 , which means that ϕ ∈ BLSC and satisfies Theorem 34(I) with ϕ(t = 0) ≥ ϕ 0 . By this theorem, ϕ satisfies (II) as well, that is ϕ # is a supersolution of (19a). Recall that ϕ ≤ (ϕ # ) * pointwise by Lemma 59(i). In particular

(ϕ # ) * (t = 0) ≥ ϕ(t = 0) ≥ ϕ 0 .
Thus ϕ # is a supersolution of the Cauchy problem [START_REF] Caselles | Scalar conservation laws and Hamilton-Jacobi equations in one-space variable[END_REF], and ϕ ≤ ϕ # by Proposition Then Lemma 59(ii) implies that (ϕ) # ≤ ϕ # , and we conclude that

(ϕ) # (x, t) = inf {ϕ # (x, t) : ϕ ∈ W m,M,ϕ0 } ∀(x, t) ∈ R d × R +
(with an equality because ϕ ∈ W m,M,ϕ0 ). The proof is complete.

Proof of Corollary 38. Fix m < M . By what precedes, the solution semigroup G t of ( 19) is a strongly continuous semigroup of continuous operators on C b ∩ L ∞ int (R d ) and satisfies [START_REF] Colombo | Initial Data Identification in Conservation Laws and Hamilton-Jacobi Equations[END_REF]. Let now H t be another arbitrary such semigroup satisfying [START_REF] Colombo | Initial Data Identification in Conservation Laws and Hamilton-Jacobi Equations[END_REF], i.e. such that ˆRd

|S t u 0 -S t v 0 |ϕ 0 dx ≤ ˆRd |u 0 -v 0 |H t ϕ 0 dx, 2 To find N use that ˜Rd ×R + 1 {ϕ ♭ =ϕ} dx ds = 0 = ´R+ meas{ϕ(•, s) = ϕ ♭ (•, s)} ds by Fubini.
for any

u 0 and v 0 in L ∞ (R d , [m, M ]), 0 ≤ ϕ 0 ∈ C b ∩ L ∞ int (R d
), and t ≥ 0. We have to prove that for any such ϕ 0 and t,

G t ϕ 0 ≤ H t ϕ 0 .
First the minimal solution of ( 19) is the unique continuous solution, that is

ϕ(x, t) = G t ϕ 0 (x) ∀(x, t) ∈ R d × R + .
Moreover, the above assumption on H t implies that

H t ϕ 0 (x) ∈ W m,M,ϕ0 .
By Corollary 36 we deduce that for any x ∈ R d and t ≥ 0,

(G t ϕ 0 ) # (x) ≤ (H t ϕ 0 ) # (x),
where we recall that

(G t ϕ 0 ) # (x) = lim inf r→0 + y→x 1 meas(B r (y)) ˆBr(y) G t ϕ 0 (z) dz
(and similarly for H). Since both G t ϕ 0 (x) and H t ϕ 0 (x) are continuous in x, we have (G t ϕ 0 ) # = G t ϕ 0 and (H t ϕ 0 ) # = H t ϕ 0 pointwise and the proof is complete.

4.5. L ∞ int versus L 1 : Proofs of Propositions 21, 22, and Theorem 24. Recall that these results justify the use of L ∞ int for (2), instead of L 1 . We need a result on the profile U (r) = c 0 ´∞ r e -s 2 4 ds with c 0 such that U (0) = 1.

Lemma 60. For any

(x, t) ∈ R × R + , let ψ(x, t) := U |x|/ √ t if t > 0, 1 {0} (x) if t = 0.
Then ψ ∈ BU SC(R × R + ) and is a subsolution of [START_REF] Ph | Solutions of the porous medium equation in R N under optimal conditions on initial values[END_REF].

Proof. Let us prove that ψ is a subsolution of (13). In the domain {x = 0, t > 0}, we find as in the proof of Lemma 50 that 

∂ t ψ = ∂ 2 xx ψ = (∂ 2 xx ψ) + in the classical sense. If now x = 0, we have ∂ t ψ(0, •) = 0 ≤ (∂ 2 xx ψ(0, •)) + since ψ(0, •) is constant
ϕ 0 ∀x ∈ R, ∀t > 0,
where U is the profile from the previous lemma, 0 ≤ ϕ 0 ∈ C b (R) and ϕ is the solution of ( 13) with ϕ 0 as initial data. Let us prove [START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations[END_REF]. Fix x and t. The sup on the right-hand side is attained at some x 0 ∈ x + [-1 , 1]. By the previous lemma, (y, s) → ϕ 0 (x 0 )U |yx 0 |/ √ s is a BU SC subsolution of [START_REF] Ph | Solutions of the porous medium equation in R N under optimal conditions on initial values[END_REF]. At s = 0, it equals the function

y → ϕ 0 (x 0 )1 {x0} (y)
which is less or equal to ϕ 0 = ϕ 0 (y). By the comparison principle (Theorem 3),

ϕ(y, s) ≥ ϕ 0 (x 0 )U |y -x 0 |/ √ s ∀y ∈ R, ∀s > 0.
Taking (y, s) = (x, t), we then get that

ϕ(x, t) ≥ ϕ 0 (x 0 ) = sup x+[-1,1] ϕ0 U |x -x 0 |/ √ t ≥ U(1/ √ t)
.

This completes the proof of [START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations[END_REF]. From that bound the only-if-part of Proposition 21 is obvious since U (1/ √ t) is positive for t > 0.

Proof of Proposition 22. Let x 0 ∈ R and c > 0 be such that

ρ ≥ c1 {x0} ,
where ρ is defined in [START_REF] Ph | Nonlinear evolution equations in Banach spaces: basic results and open problems[END_REF], and define

ψ n (x, t) := ncψ nx -x 0 , n 2 t ,
where ψ is given by Lemma 60. It is easy to see that ψ n remains a subsolution of [START_REF] Ph | Solutions of the porous medium equation in R N under optimal conditions on initial values[END_REF]. Moreover, it is BU SC with ϕ n (x, 0) ≥ ψ n (x, 0) ∀x ∈ R, by [START_REF] Ph | Nonlinear evolution equations in Banach spaces: basic results and open problems[END_REF]. Hence ϕ n ≥ ψ n by the comparison principle and it suffices to show that

lim n→∞ ψ n (x, t) = ∞ ∀x ∈ R, ∀t > 0.
But this is quite easy because

ψ n (x, t) = ncU x - x 0 n / √ t ,
for any x ∈ R and t > 0, and both the constant c and the profile U (•) are positive. The proof of Proposition 22 is complete.

To show Theorem 24, we need the following lemma whose proof is elementary and left to the reader. Since

G e t=1 maps E ⊆ C b ∩ L 1 (R d ) into X = E • E ⊂ L 1 (R d ) by assumption, the function x → sup x+[-1,1] d ϕ 0 belongs to L 1 (R d ) for any ϕ 0 ∈ E.
Using that E is a vector space, -ϕ 0 ∈ E, and the function

x → inf x+[-1,1] d ϕ 0 also belongs to L 1 (R d ). By Lemma 61, we conclude that E ⊆ C b ∩ L ∞ int (R d ).
Finally we use that G e t=1 : E → X is continuous at ϕ 0 ≡ 0 to obtain that for any ϕ n 0 E → 0, as n → ∞, we have G e t=1 ϕ n 0 → 0 in X. Combining this with the continuity of the inclusion X ⊂ L 1 (R d ), we obtain that sup

x+[-1,1] d ϕ n 0 L 1 x → 0.
Using once again that E is a normed space, the same holds with -ϕ 0 , that is inf

x+[-1,1] d ϕ n 0 L 1 x → 0.
By Lemma 61, we conclude that ϕ n 0 int → 0 which completes the proof. see e.g. [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF][START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF]. Let ϕ ε be the viscosity solution of (2a) with initial data (ϕ 0 ) ε , whose well-posedness is ensured by Theorem 4. By the maximum principle, see Remark 5, we have the bounds inf ϕ 0 ≤ ϕ ε ≤ sup ϕ 0 .

We can then define the real-valued and bounded function

ϕ := sup ε>0 ϕ ε .
We will see that this is our desired minimal solution.

The key step is to prove that

(40) ϕ = sup ε>0 ϕ ε = lim inf * ϕ ε
where the relaxed limit is taken as ε → 0 + . This follows by elementary arguments (see e.g. [START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF]) since ϕ ε is at least lower semicontinuous and nondecreases as ε ↓ 0, which follows by comparison since (ϕ 0 ) ε nondecreases as ε ↓ 0. Let us give details for the reader's convenience. For any fixed (x, t),

lim inf * ϕ ε (x, t) ≤ lim ε→0 + ϕ ε (x, t) = ϕ(x, t).
Moreover, for any sequence (x n , t n , ε n ) → (x, t, 0 + ) such that ε n ≤ ε m for any n ≥ m, we have ϕ εn (x n , t n ) ≥ ϕ εm (x n , t n ). Fixing m and taking the limit in n,

lim inf n→∞ ϕ εn (x n , t n ) ≥ lim inf n→∞ ϕ εm (x n , t n ) ≥ ϕ εm (x, t)
by lower semicontinuity of ϕ εm . Taking the limit in m,

lim inf n→∞ ϕ εn (x n , t n ) ≥ lim m→∞ ϕ εm (x, t) = ϕ(x, t).
This proves [START_REF] Panov | To the theory of entropy sub-solutions of degenerate non-linear parabolic equations[END_REF]. By stability by sup (Proposition 41), ϕ is a subsolution of (2a), and by stability by relaxed limit (Proposition 42), ϕ is a supersolution of (2a). To pass to the limit in the initial data, use Proposition 44 to infer that (ϕ) * (x, t = 0) ≤ {lim sup * ϕ ε } (x, 0) = {lim sup * ϕ ε (•, 0)} (x) ≤ (ϕ 0 ) * (x) (the first limsup being taken in (x, t) and the second in x). This gives the inequallity of subsolution as in Definition 1(aii). For the other inequality, use that ϕ is lower semicontinuous, as a sup of continuous functions, with

ϕ(x, t = 0) = sup ε>0 ϕ ε (x, 0) = (ϕ 0 ) * (x).
This proves that ϕ is a solution of (2). It only remains to prove that it is minimal. Let ϕ be another bounded discontinuous solution. Noting that

(ϕ 0 ) ε ≤ (ϕ 0 ) * ≤ ϕ * (t = 0),
we use once more the comparison principle to deduce that ϕ ε ≤ ϕ, for any ε > 0, so ϕ ≤ ϕ as ε → 0 + . Proof of Proposition 7. We argue as in the end of the proof of Theorem 6: Assume ϕ is a bounded supersolution of (2), then (ϕ 0 ) ε ≤ (ϕ 0 ) * ≤ ϕ * (t = 0) and, by comparison, ϕ ε ≤ ϕ, etc.

Proof of Proposition 46. Let ϕ denote the minimal solution of (2) with initial data ϕ 0 := sup n (ϕ n 0 ) * . We have to prove that ϕ = sup n ϕ n , where ϕ n the minimal solution of (2) with initial data ϕ n 0 . By Proposition 7, we have ϕ n ≤ ϕ for any integer n. We thus already know that ϕ ≥ sup n ϕ n and it only remains to prove the other inequality. To do so, it suffices to show that sup n ϕ n is a supersolution of (2) (with initial data ϕ 0 ). Indeed, by Proposition 7, we then get ϕ ≤ sup n ϕ n .

It is at this stage that we need to use monotonicity. Recall that n → ϕ n 0 (x) is nondecreasing for any x. By the comparison principle, cf. Remark 8, the same monotonicity holds for the minimal solutions which means that n → ϕ n (x, t) is nondecreasing for any fixed x and t. Since ϕ n is lower semicontinuous, we can argue as for [START_REF] Panov | To the theory of entropy sub-solutions of degenerate non-linear parabolic equations[END_REF] and get that sup n ϕ n = lim inf * ϕ n as n → ∞.

By stability, see Propositions 42 and 44, we deduce that lim inf * ϕ n is a supersolution of (2a) with initial data

lim inf * ϕ n (t = 0) = lim inf * (ϕ n 0 ) * . But this initial data is precisely lim inf * (ϕ n 0 ) * = sup n (ϕ n 0 ) * = ϕ 0 ,
again by similar arguments than for [START_REF] Panov | To the theory of entropy sub-solutions of degenerate non-linear parabolic equations[END_REF]. This completes the proof.

A.2. Representation formulas. Let us prove Propositions 9 and 10. These results are classical in control theory, but usually written for continuous or maximal solutions, see [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF][START_REF] Goreac | Discontinuous control problems for non-convex dynamics and near viability for singularly perturbed control systems[END_REF][START_REF] Goreac | Mayer and optimal stopping stochastic control problems with discontinuous cost[END_REF]. Here we give the proofs for solutions.

Proof of Proposition 9. By the assumption that a ≡ 0, (2a) is now

∂ t ϕ = sup ξ∈E {b(ξ) • Dϕ} = sup q∈C {q • Dϕ},
where C = co {Im(b)} is compact. By control theory [START_REF] Barles | Solutions de viscosité des équations deHamilton-Jacobi[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellmann equations. Systems & Control: Foundations & Applications[END_REF] the viscosity solutions of ( 2) is given by ϕ(x, t) = sup x+tC ϕ 0 if ϕ 0 is bounded and uniformly continuous. In the general case, consider the infconvolution [START_REF] Lin | L 1 -stability and error estimates for approximate Hamilton-Jacobi solutions[END_REF]. Recall that (ϕ 0 ) ε is at least bounded and uniformly continuous, and (ϕ 0 ) ε ↑ (ϕ 0 ) * pointwise as ε ↓ 0. It follows that the solution of (2a) with (ϕ 0 ) ε as initial data is

ϕ ε (x, t) = sup x+tC (ϕ 0 ) ε .
By Proposition 46, the minimal solution of ( 2) is thus

ϕ(x, t) = sup ε>0 ϕ ε (x, t) = sup ε>0 sup x+tC (ϕ 0 ) ε = sup x+tC sup ε>0 (ϕ 0 ) ε = sup x+tC (ϕ 0 ) * .
Rigorously speaking, Proposition 46 implies that this is the minimal solution with initial data (ϕ 0 ) * , but it coincides with the minimal solution associated to ϕ 0 by Proposition 7.

Proof of Proposition 10. Equation (2a) is given by

∂ t ϕ = sup ξ∈E b(ξ) • Dϕ + tr σ a (ξ)(σ a ) T (ξ)D 2 ϕ ,
where E is compact and the coefficients b and σ a are continuous by [START_REF] Barles | Front propagation and phase field theory[END_REF]. By stochastic control theory [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF], the viscosity solution of (2) is given by

ϕ(x, t) = sup ξ • E {ϕ 0 (X x t )}
if ϕ 0 is bounded and uniformly continuous, where ξ s and X x s are defined as in Proposition 10. Let us now repeat the argument of the proof of Proposition 9 considering the infconvolution (ϕ 0 ) ε and the corresponding solution of (2a)

ϕ ε (x, t) = sup ξ • E {(ϕ 0 ) ε (X x t )} .
We find that the minimal solution of (2) is

ϕ(x, t) = sup ε>0 ϕ ε (x, t) = sup ξ • sup ε>0 E {(ϕ 0 ) ε (X x t )} .
Since (ϕ 0 ) ε ↑ (ϕ 0 ) * as ε ↓ 0, we conclude the proof using the monotone convergence theorem:

sup ε>0 E {(ϕ 0 ) ε (X x t )} = lim ε↓0 ↑ E {(ϕ 0 ) ε (X x t )} = E lim ε↓0 ↑(ϕ 0 ) ε (X x t ) = E {(ϕ 0 ) * (X x t )} .

Appendix B. Complementary proofs for entropy solutions

For completeness, we recall the proof of Theorem 13 which is Theorem 1.1 in [START_REF] Frid | Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic Equations[END_REF] under (H1). We will take the opportunity to give details, but we will not perform the doubling of variables to show Lemma 15 for which we will refer to [START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF].

Recall that [START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF] proved the well-posedness of L 1 kinetic or renormalized solutions which are equivalent to entropy solutions in L 1 ∩ L ∞ . The definition of entropy solutions in L 1 ∩ L ∞ uses the energy estimate (2.8) of [START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF], We also take a test function φ

¨Rd ×R + K k=1 d i=1 ∂ xi ζ ik (u) 2 dx dt ≤ 1 2 u 0 L 2 < ∞ if u 0 ∈ L 1 ∩ L ∞ , where ζ ik (u) = ´u 0 σ A ik ( 
∈ L ∞ (R d ), 0 ≤ φ ∈ C ∞ c (R d ),
(x)1 [0,T ] (t) where 0 ≤ φ ∈ C ∞ c (R d ).
It is not smooth in time but a standard approximation argument shows that it can be used in Definition 12(c) if we add also a final value term at t = T . Here we need the L 1 loc continuity in time of entropy solutions. The result is

≥0 ˆRd u 2 (x, T )φ(x) dx +2 ¨Rd ×(0,T ) K k=1 d i=1 ∂ xi ζ ik (u) 2 φ dx dt ≤ ˆRd u 2 0 (x)φ(x) dx + ¨Rd ×(0,T )   d i=1 q i (u)∂ xi φ + d i,j=1 r ij (u)∂ 2 xixj φ   dx dt.
By assumption

u 0 L ∞ + u L ∞ + φ W 2,1 ≤ M , so it follows that q(u) L ∞ (R d ×R + ,R d ) ≤ 2M 2 ess sup -M≤ξ≤M |F ′ (ξ)|, and r(u) L ∞ (R d ×R + ,R d×d ) ≤ 2M 2 ess sup -M≤ξ≤M |A(ξ)|.
With all these estimates, the conclusion readily follows.

Let us now give precise references on how to show the Kato inequality.

Sketch of the proof of Lemma 15. Copy the proof of Theorem 3.1 of [START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF] with l = ∞ and zero renormalization measures µ u l ≡ 0 ≡ µ v l . With the aid of the previous local energy estimate, check that every computation holds until (3.19) -even if u and v satisfy (a)-(b) of Definition 12 with L 2 loc and not L 2 as in [START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF]. This gives [START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF] with

φ ∈ C ∞ c (R d × (0, ∞))
. Use an approximation argument for φ(x, t)1 [0,T ] (t) and the continuity in time with values in L 1 loc to get initial and final terms.

To show the uniqueness of entropy solutions, it suffices to find a good φ in ( 11), e.g. an exponential as in [START_REF] Chen | Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations[END_REF][START_REF] Frid | Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic Equations[END_REF]. This gives the result below. Remark 64. By the maximum principle, the result remains true for any [m, M ] containing the values u 0 and v 0 . But at this stage of this appendix, this principle is only known in L 1 ∩ L ∞ (or L 1 ) by [START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF] and it will follow later in L ∞ .

Sketch of the proof. The proof is inspired by [START_REF] Chen | Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations[END_REF][START_REF] Frid | Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic Equations[END_REF]. Consider Let u n be the entropy solution of (1) with initial data u n 0 . By the maximum principle (in L 1 ∩ L ∞ ), we know that [START_REF] Theobald | An inequality for the trace of the product of two symmetric matrices[END_REF] ess sup u - 0 ≤ u n ≤ ess sup u + 0 .

Moreover, by Lemma 63, we have for any R ≥ 0, T ≥ 0, and integers n, m, It remains to show that u is an entropy solution with initial data u 0 . We have to derive the L 2 loc energy estimate of Definition 12(a), and check that it is enough to pass to the limit in the equation as in [START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF]. By Lemma 62 and the L ∞ bounds in [START_REF] Theobald | An inequality for the trace of the product of two symmetric matrices[END_REF], the sequence

d i=1 ∂ xi ζ ik (u n ) ⊂ L 2 (R d × R + )
is uniformly bounded in L 2 (K), for any k = 1, . . . , K, and compact K ⊂ R d × R + . It then weakly converges in L 2 (K) to d i=1 ∂ xi ζ ik (u). We can identify the limit because 

∂ xi ζ √ η ′′ ik (u n ) φ 2 L 2 (R d ×R + )
.

But, by (45), we have for any k = 1, . . . , K, where similar chain rule computations have been used for u. This is enough to pass to the limit in the entropy inequalities of Definition 12(b) and the proof is complete.

d i=1 ∂ xi ζ √ η ′′ ik (u n ) φ ⇀ d i=1 ∂ xi ζ √ η ′′ ik (u) φ in L 2 (R d × R + ).

It follows that

As a byproduct of the previous proof, we get the lemma below.

Lemma 65. Assume (H1), u 0 ∈ L ∞ (R d ), and u is the entropy solution of (1).

Then ess inf u 0 ≤ u ≤ ess sup u 0 . Moreover, if v is the entropy solution with initial data v 0 , then u 0 ≥ v 0 implies u ≥ v.

Proof. For the comparison principle, define u n 0 (x) := u 0 (x)1 |x|<n and v n 0 similarly. As previously, the associated entropy solutions u n and v n respectively converge towards u and v in C([0, T ]; L 1 loc (R d )), T ≥ 0, and thus a.e. up to taking a (common) subsequence. If u 0 ≥ v 0 , then u n 0 ≥ v n 0 for all n, so u n ≥ v n by the comparison principle in L 1 ∩ L ∞ , and u ≥ v at the limit. For the maximum principle, apply the comparison principle to v 0 := ess inf u 0 and ess sup u 0 successively.

E

  R d ) and A = σ A (σ A ) T for σ A ∈ L ∞ loc (R, R d×K ), is a nonempty set, b : E → R d a bounded function, a = σ a (σ a )

4. 2 .

 2 L ∞ int well-posedness: Proofs of Theorem 26 and Corollary 27. Let us now show that (2) is well-posed in L ∞ int as stated in Corollary 27. We first need to prove Theorem 26 for which we will use the lemmas below. Lemma 49. Assume (H2), and ϕ and ψ are sub and supersolutions of (2a). Then (ϕ *ψ * ) + remains a subsolution. Skecth of the proof. Let H ξ (ϕ) := b(ξ) • Dϕ + tr a(ξ)D 2 ϕ and note that

Lemma 61 .

 61 For any ϕ0 : R d → R d , sup |ϕ 0 | ≤ | sup ϕ 0 | + | inf ϕ 0 |. Proof of Theorem 24. The fact that E = C b ∩ L ∞ int (R d ) satisfies (16)-(17) follows from Theorem 16 and Corollary 27. Let now E be another normed space satisfying such properties and let us prove that it is continuously embedded into C b ∩L ∞ int (R d ). Recall that (17) is required to hold for any data b = b(ξ) and a = a(ξ) satisfying (H2). Choose e.g. the eikonal equation ∂ t ϕ = d i=1 |∂ xi ϕ| and denote by G e t its semigroup. By the representation Proposition 9, G e t ϕ 0 (x) = sup x+t[-1,1] d ϕ 0 .

∂

  and T ≥ 0. If u is an entropy solution of (1) in the sense of Definition[START_REF] Ph | Nonlinear Evolution Equations Goeverned by Accretive Operators[END_REF] andu 0 L ∞ + u L ∞ + φ W 2,1 ≤ M, then there is a constant C only depending on T , M , F and A such that ¨Rd ×(0,T ) xi ζ ik (u(x, t)) 2 φ(x) dx dt ≤ C.Proof. We use Definition 12(c) with the entropy η(u) = |u| 2 and the corresponding fluxes q(u) = 2 ˆu 0 ξF ′ (ξ) dξ and r(u) = 2 ˆu 0 ξA(ξ) dξ.

Lemma 63 .

 63 Assume (H1) and u, v are L ∞ entropy solutions of[START_REF] Alibaud | Fractional semi-linear parabolic equations with unbounded data[END_REF] with initial data u 0 , v 0 ∈ L ∞ (R d). Then for any t ≥ 0 and m < M such that u and v take their values in [m, M ], ˆRd |u -v|(x, t)e -|x| dx ≤ e (LF +LA)t ˆRd |u 0v 0 |(x)e -|x| dx, where L F = ess sup [m,M] |F ′ | and L A = ess sup [m,M] tr(A).

φ

  ε (x, t) := e (LF +LA)(T -t)- √ ε 2 +|x| 2 ,for some arbitrary ε > 0, and check that|u -v|∂ t φ ε + d i=1 q i (u, v)∂ xi φ ε + d i,j=1 r ij (u, v)∂ 2 xixj φ ε ≤ |u -v| ∂ t φ ε + L F |Dφ ε | + L A sup λ∈Sp(D 2 φε)λ + ≤ 0 by the Ky Fan inequality[START_REF] Dibenedetto | Degenerate parabolic equations[END_REF]. Then by the Kato inequality[START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF] with φ ε ,ˆRd |u -v|(x, T )e - √ ε 2 +|x| 2 dx ≤ e (LF +LA)T ˆRd |u 0v 0 |(x)e - √ ε 2 +|x| 2 dxand the result follows in the limit ε → 0 + .Proof of Theorem 13. By Lemma 63, it remains to show the existence. The proof is inspired by[START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF].Given u 0 ∈ L ∞ (R d ), take (u n 0 ) n in L 1 ∩ L ∞ (R d ) such that(41)ess sup u - 0 ≤ u n 0 ≤ ess sup u + 0 and u n 0 → u 0 in L 1 loc (R d ).

  u mu n C([0,T ];L 1 ({|x|<R})) = sup t∈[0,T ] ˆ|x|<R |u m (x, t)u n (x, t)| dx ≤ e R sup t∈[0,T ] ˆRd |u m (x, t)u n (x, t)|e -|x| dx ≤ e R e (LF +LA)T ˆRd |u m 0 (x)u n 0 (x)|e -|x| dx,where the latter integral tends to zero as n, m → ∞ by[START_REF] Pogodaev | Estimates of the domain of dependence for scalar conservation laws[END_REF]. Hence there exists someu ∈ L ∞ (R d × R + ) ∩ C(R + ; L 1 loc (R d )) such that (43) lim n→∞ u n = u in C([0, T ]; L 1 loc (R d )), ∀T ≥ 0.

d i=1 ∂∂∂∂

 i=1 xi ζ ik (u n ) also converges to d i=1 ∂ xi ζ ik (u) in the distribution sense. Indeed ζ ik (•) = ˆ• 0 σ A ik (ξ) dξ is locally Lipschitz continuous since σ A ik (•) is locally bounded, and (42) and (43)imply that ζ ik (u n ) → ζ ik (u) in C([0, T ]; L 1 loc (R d)) for all T ≥ 0. And as claimed previously, all corresponding derivatives necessarily converge in the distribution sense. The proof of part (a) in Definition 12 is complete. Moreover we have found thatd i=1 ∂ xi ζ ik (u n ) ⇀ d i=1 ∂ xi ζ ik (u) in L 2 (K), for any k = 1, . . . , K and compact K ⊂ R d × R + .To show the chain rule in part (b) of Definition 12, we start from the chain rule foru n , xi ζ β ik (u n ) = β(u n ) d i=1 xi ζ ik (u n ) ∈ L 2 (R d × R + ),valid for any β ∈ C(R), k = 1, . . . , K, and integer n. Recall also thatζ β ik (u n ) = ˆun 0 σ A ik (ξ)β(ξ) dξ.By the previous convergence results and bounds, the right-hand side of (44) converges weakly to β(u)d i=1 ∂ xi ζ ik (u) in L 2 (K).We can argue as before to show that the left-hand side converges weakly in L 2 (K) to d i=1 ∂ xi ζ β ik (u). We thus get part (b) of Definition 12 in the limit. Moreover, (45)d i=1 ∂ xi ζ β ik (u n ) ⇀ d i=1 ∂ xi ζ β ik (u) in L 2 (K),for any β ∈ C(R), k = 1, . . . , K, and compact K ⊂ R d × R + . Now, it remains to prove part (c) of Definition 12. The only difference with[START_REF] Chen | Well-posedness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF] is that the previous convergences hold locally in L 2 and not globally. But since we use test functions, the reasoning is the same. Let us recall it for completeness. We focus on the quadratic term. Take β = √ η ′′ and apply the chain rule Definition 12(b),¨Rd ×R + η ′′ (u n ) xi ζ ik (u n )

L 2 (L 2 (∂ 2 L 2 (∂ xi ζ ik (u) 2 φ

 22222 R d ×R + ) R d ×R + ) , that is lim inf n→∞ ¨Rd ×R + η ′′ (u n ) xi ζ ik (u n ) R d ×R + ) = ¨Rd ×R + η ′′ (u) dx dt,

  The proofs ofTheorem 34, and Corollaries 36 and 38 are given in Section 4.4. Remark 40. (a) Inequality (22) can be seen as a nonlinear dual inequality between S t and G t , and G t as a dual semigroup of S t whose restriction over the cone C b ∩ L ∞ int (R d , R + ) is entirely determined by S t through (22). (b) The question of duality in the other direction is open. Let us formulate it precisely. Consider S t and the whole family {G m,M

	before Corollary 38.	t	: m < M } defined just
	Open question. Is S t the unique weakly-⋆ continuous semigroup on L ∞ (R d ) such that for all m < M , G m,M t is the smallest strongly
	continuous semigroup of continuous operators on	

  by Corollary 27 and Theorem 16. Let us regularize it by convolution

  4.4. Duality: Proofs of Theorem 34 and Corollaries 36 and 38. Let us now establish the new characterization of viscosity supersolutions (Theorem 34). We need several technical lemmas.

  For any t ≥ 0, ϕ # (•, t) is the pointwise largest function in BLSC(R d ) less than or equal ϕ(•, t) a.e. Moreover ϕ # = ϕ(•, t) a.e.

	Remark 57. It is understood that "a.e." holds in (x, t) in (i) and x in (ii).

ϕ ♭ and ϕ # are as above, and (34) holds. Then:

(i) The limit ϕ ♭ is the pointwise largest function in BLSC(R d × R + ) that is less than or equal ϕ a.e. Moreover ϕ ♭ = ϕ a.e.

(ii)

  live in compact sets. Hence, ϕ n = inf m≥n ϕ n,m is measurable in (x, t) and so is ϕ # = sup n≥1 ϕ n .

	(x, t) →	1 meas(B	1 m ≤ r ≤ 1 n and |y| ≤ 1 n , the function

r (y)) ˆBr(y) ϕ(x + z, t) dz is lower semicontinuous by Fatou's lemma and ϕ ∈ BLSC (assumption in the previous lemma). The infimum ϕ n,m remains lower semicontinuous, because r and y

  in time. Let us now show that ψ is BU SC. It is clearly continuous for positive t and it only remains to prove that

		1 x=0 ≥	lim sup R×R + ∋(y,t)→(x,0)	U |y|/	√ t ,
	for any x ∈ R. If x = 0, the result follows since U (r) ≤ U (0) = 1 for any r ≥ 0. If x = 0, then we use that |y|/ √ t → ∞ as (y, t) → (x, 0 + )
	together with the fact that lim r→∞ U (r) = 0. The proof of Lemma 60 is now
	complete.			
	Proof of Proposition 21. Theorem 26 implies the if-part. Let us prove the only-if-
	part. It is based on the following pointwise lower bound:
	(38)	ϕ(x, t) ≥ U 1/	√ t	sup x+[-1,1]

  ξ) dξ. As a consequence "L 2 " was used e.g. in[START_REF] Bendahmane | Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations[END_REF], Definition 2.2] instead of "L 2 loc " in Definition 12. But we have the following result: Lemma 62 (Local energy estimate). Assume (H1), u 0
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Appendix A. Complementary proofs for viscosity solutions A.1. Minimal viscosity solutions. Here are the proofs of Theorem 6 and Propositions 7 and 46; the ideas are inspired by [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF][START_REF] Barles | Front propagation and phase field theory[END_REF][START_REF] Giga | A level set approach to semicontinuous viscosity solutions for Cauchy problems[END_REF] and the details are given for completeness.

Proof of Theorem 6. Consider the infconvolution [START_REF] Lin | L 1 -stability and error estimates for approximate Hamilton-Jacobi solutions[END_REF] (ϕ 0 ) ε (x) := inf