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1. INTRODUCTION

A flood is an overflow water that submerges land which is
generally dry. It usually happens as an overflow of water
from the low-flow channel of a river. In order to divert or
block the excess of water due to flooding, and in partic-
ular to avoid downstream flooding of the river, hydraulic
structures are necessary (such as retention ponds, dams,
etc ). Those structures need operation strategies that
help managing a complex water system. Attenuating flood
consists in putting water in the right place at the right
time. The work presented in this paper describes a flood
retention areas management method for the attenuation
of the river overflow. In this aim, a network flow model
of the river equipped with tanks (river-tanks system) and
an optimization algorithm are proposed. Indeed, in the
last few years, optimization has constantly proven its
effectiveness in solving real problems. Thus, many stud-
ies have been done to manage reservoirs releases under
different concepts, such as scheduling, stochastic dynamic
programming, meta-heuristics, etc.
Qi et al. (2015) have developed new scheduling ap-

1 This work was partially supported by the urban community of Le

Grand Tarbes.

proaches using artificial intelligence for a multi-objective
optimization for reservoir flood control management. Li
and Ouyang (2015) proposed a generalized multi-objective
flood control model. Archibald et al. (2006) proposed an
operation policy for a multi-reservoir control problem,
using stochastic dynamic programming, based on the de-
composition of the problem into a number of indepen-
dent sub-problems, where each one is formulated as a low
dimensional stochastic dynamic program. Kelman et al.
(1990) explored the use of sampling stochastic dynamic
programming in order to generate efficient and fast oper-
ating policies. Another application of stochastic dynamic
programming was given in Liu et al. (1990), based on a two
stages decision process. Ahmed and Sarma (2005) used ge-
netic algorithm (GA) in the aim to find an optimal operat-
ing policy for a multi-reservoirs system; while Moravej and
Hosseini-Moghari (2016) proposed an application of the
Interior Search Algorithm (ISA) to solve multi-reservoirs
system operation optimization problems. They showed in
their work the efficiency of this method comparing to other
methods like non-linear and linear programming, genetic
algorithm and other meta-heuristics.
In Nouasse et al. (2013) the River-Tanks system with one
gate is presented as a dynamic network wherein a mini-
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Abstract: Flood is a natural phenomenon, usually sudden and a calamitous event with 
devastating consequences and serious effects on the society, the environment and the economy. 
Thus, more and more research efforts have been carried out and many solutions have been 
implemented in the aim to control their impact. In order to divert or block the excess water 
due to flooding, hydraulic structures such as retaining walls, retention ponds, dams, etc. are 
necessary and require the use of operation strategies to manage the complex water system. 
In this paper, a flood decrease strategy based on the graph theory is proposed in order to 
manage the control of the water storage and release from reservoirs along the river. This river-
Tanks system is modeled by a dynamic network and the management problem is formulated as a 
minimum cost dynamic flow problem with some additional constraints. Then, this main problem 
is reduced into a set of low dimensional dynamic sub-problems, for which the dynamic network is 
extended into a static network solved using a heuristic method. Thereby this single commodity 
flow problem with additional constraints is modeled as a mixed integer linear program. Finally, 
the program is combined with a specialized hydraulic simulator to simulate the water transfer 
and the exchange between the reservoirs and the river. The proposed approach was applied on 
the Bastillac area and results obtained for a 100-year flood case are given, illustrating that the 
strategy ensures a weak downstream flow peak and a reduced impact.
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Fig. 1. River-tanks system

mum cost flow problem is solved using a greedy algorithm
which consists of solving at each iteration a static flow
problem where the capacities of the edges depend on the
previous results obtained so far and on the measured flow
rates in front of each tank. However, in the case where the
tanks are not big enough to store all the overflowing water,
at the time when the tanks are full the flood is undergone,
the method can no longer manage the overflowing. In this
case, this method could be improved if the decision made
at each iteration took into account the flow rates that may
come in the next iterations, in other words if the flow evo-
lution is prognosticated. Optimization methods have been
proved to be very efficient when they are used with simula-
tion modelling. A comprehensive survey and bibliography
is given by Rani and Moreira (2010). Nowadays many
hydraulic modelling softwares exist, such as SIC (Baume
et al. (2005)), HEC-RAS (Brunner (1997)), TELEMAC
(Galland et al. (1991)), MIKE 11 (DHI (2009)), etc. The
majority of those softwares, solve the Saint-Venant equa-
tions (de Saint-Venant (1871)). In this paper an opera-
tional management strategy of tanks equipped with 2 gates
(entrance and exit) based on graph theory is proposed. In
order to reduce flooding in the downstream of the river,
the tanks connected to the waterway are managed to hold
extra water during the flood. This management problem is
formulated as a minimum cost flow problem in a dynamic
network over a time horizonH. This implies the knowledge
of the incoming flow to the upstream of the river during
all the horizon H. However, the dynamical aspect compli-
cates its resolution and therefore increases its execution
time. Furthermore, in actual cases the incoming flow is
known only when it reaches. Thus, the main problem is
reduced into a set of low time dimensional dynamic sub-
problems considering a k length time window wherein the
incoming flow rates can be estimated. The estimation can,
for example, be done by computing a trend from previous
measured values or by using precipitation forecasts com-
bined with rainfall-runoff models (Fourmigué and Arnaud
(2010), Scharffenberg (2013)). In order to solve each sub-
problem, the dynamic network is extended into a static
network, which can be solved using a heuristic method
described thereafter. Thereby this single commodity flow
problem with additional constraints is modeled as a mixed
integer linear program. Finally, the program is combined
with a specialized hydraulic simulator named SIC to em-
ulate the flow rates at each station of the river.
In the following, the methodology is firstly described, a
case study is presented and the results obtained by apply-
ing the strategy on this case are given.

2. METHODOLOGY

The objective of our study is to find the optimal quantity
of water over time that should cross each gate of each tank

Fig. 2. Dynamic graph associated with the system

during the entire time horizon H, in order to minimize
the global flood arriving to the downstream of the river
wherein the area to protect. The time delays between the
tanks and the gates are denoted respectively by τ and ξ
as shown in figure 1. Each tank has a maximum storage
capacity Ui that cannot be exceed, and a storage cost Ci.

2.1 Dynamic network

In this section, the sub problem wherein the future flow
rates over a time window are known, and for which a mini-
mum cost flow problem should be solved is considered. The
corresponding dynamic network, G, over this sub-horizon,
represented in figure 2, is defined by G = (V,A, τ ′, C ′, U),
where:

V = W ∪ S ∪ P , with S : the source, P : the arrival point
and W = G1 ∪ G2 ∪ R nodes representing the tanks.
With G1 : entering gates, G2 : exciting gates and R :
the reservoirs.

A : the set of arcs representing the flow in the river and
the reservoirs.

τ ′ = τ ∪ ξ : the set of time delays as shown in the figure 1.
It is assumed that the flow crosses instantly the gates,
which means the transit times of the arcs linking the
reservoirs with their gates are null.

C ′ = Cs ∪ Cx : where Cs is the set of storage costs and
Cx is the set of overflow’s costs.

U : the set of arcs capacities.

It has been proven that the minimum cost dynamic flow
problem is weakly NP-hard problem (Skutella (2009)),
which complicates its resolution phase. Nevertheless, it can
be reduced to a minimum cost static flow problem on a
pseudo- polynomial time. For this purpose, the dynamic
network is reduced into a static network, named extended
network thereafter, as introduced by Fulkerson (1966).
This extended network contains a copy of the vertex set of
the dynamic network for each iteration. The transit times
are implicitly expressed by the connection between the
iterations, i.e. the transit times are represented by arcs
linking those copies as shown in the figure 3.

The sub-problem corresponding to the time window It =
[t, t + k] with lenght k, where the incoming flow rates
are estimated, needs, as an input, the values of the flow
rate in front of the gates at t. This values are provided
by SIC (Simulation of Irrigation Canals), an hydraulic
numerical modeling software developed by IRSTEA Mont-
pellier (Baume et al. (2005)). The SIC software permits the
simulation of the hydraulic behavior of irrigation canals
and rivers, in steady and unsteady flow conditions. SIC
allows us to simulate the behavior of the river flow due to
the operations made on the gates.



Fig. 3. Extended graph associated to the sub-problem

2.2 Mathematical formulation

In this section the problem is formulated as a minimum
cost dynamic flow problem with some additional con-
straints, where the flows are represented by non-negative
variables : qini(t), qouti(t) stand for the river flow at the
level of the front, exit reservoir gates respectively; qri(t)
and qsi(t) represent the flow entering and leaving the
reservoir i; and si(t) is the flow stored in the tank. µi(t) is
a boolean variable equal to 1 if the tank i is releasing at
time t. Then the problem can be formulated as the follow,
where M is a large positive constant:

(P ) : min

α
︷ ︸︸ ︷
Cx(Gn,P )

×Qmax +

β
︷ ︸︸ ︷
t+k∑

l=t

n∑

i=1

Csi
× si (1)

sc.

Qmax ≥ (qoutn(l)−Qlam) ∀l = t, ..., t + k (2)

qouti(l) = qini(l− ξi) + qri(l)− qsi(l− ξi) ∀i = 1, ..., n ∀l− ξi > 0

(3)

qini(l)− qouti−1(l− τi−1) = 0 ∀i = 2, ..., n; ∀l− τi−1 > 0 (4)

qin1(l) = Qinput(l) ∀l = t, ..., t + k; (5)

si(l) = si(l− 1) + qsi(l)− qri(l) ∀i = 1, ..., n ∀l = t, ..., t + k (6)

qouti(l) ≤ Qlam + (1− µi(l))M ∀i = 1, ..., n ∀l = t, ..., t + k (7)

qri(l) ≤ Uiµi(l) ∀i = 1, ..., n ∀l = t, ..., t + k (8)

M(1− µi(l)) ≥ qini(l)−Qdo ∀i = 1, ..., n ∀l = t, ..., t + k (9)

qini(l), qouti(l) ≥ 0 ∀i = 1, ..., n ∀l = t, ..., t + k (10)

0 ≤ si(l) ≤ Ui ∀i = 1, ..., n ∀l = t, ..., t + k (11)

µi(l) ∈ {0, 1} ∀i = 1, ..., n ∀l = t, ..., t + k (12)

The first term α of the objective function (1) represents
the cost of damages, Cx(Gn,P )

, if Qmax reaches the down-
stream of the river, where Qmax is the highest flow over
the entire time horizon which is calculated by the equation
(2). The second term β represents the total storing cost.
In this formulation, the conservation flow constraints are
expressed by the equations (3), (4) and (6). The constraint
(3) ensures that the river flow at the exit gate level of each
tank i at any time t within t− ξi > 0, equals to what has

Fig. 4. Storage strategy

come from the river at the front gate level at time t − ξi
(time delay between the two gates of the tank i) minus
what crossed the first gate at this exact same moment,
plus the quantity that has been released from the tank i
at time t (if t−ξi < 0, then the flow has not yet reached the
exit gate that is qouti(t) = 0). The constraint (4) makes
the connection between the tanks, such that the river flow
at the front gate level of each tank is equal to the flow sent
from the previous tank at time t− τi−1. For the first tank,
this river flow is initialized by Qinput(l), the flow measured
at the upstream of the river (5). Finally the constraint
(6) has for aim to update the storage. The constraint (7)
ensures that the outflow from each tank would not exceed
Qlam in case the current tank is being released (µi(t) = 1).
Moreover, for safety reasons, a tank can be released only if
the incoming flow rate is lower than Qdo = 80%Qlam. This
condition is provided by the equations (8) and (9). The
equations (10), (11) and (12) are related to the acceptable
range for variables values.

2.3 Optimal threshold method

The objective of the proposed method is to compute the
water quantity that should be stored or released from each
tank during a river flood episode. Thus, the algorithm
described is divided into two sections : storage and release.
When the total storage capacity of the tanks is not enough
to keep the entire flooding two strategies can be applied.
Either the flow under Qlam is stored until the total storage
capacity is reached, or the peak of the food is reduced. In
the first case, the flood is avoided for a short time and
then undergone. In the second, the flood and the possible
damages are reduced. In order the implement the second
method it is necessary to compute the optimal threshold
Q′lam below which no water is stored in the tank even if
the flow rate is higher than Qlam as shown in figure 4.
Thus, a new variable Q′lam varying from Qlam to Qpeak

(the highest flow reached during the flood), is defined.
Let Qinput be the vector of the incoming flows to the
upstream of the river in each iteration, with dim(Qinput) =
k, and Ui the capacity of a tank. The value of a feasible
solution obtained by a specific threshold is given by :

V (Store(Qinput, Ui, Q
′

lam, s)) = max
1,...,k

Qout(t)

The value of the solution obtained for each Q′lam ∈

[Qlam, Qpeak] returned by algorithm 1, are compared and
the Q′lam corresponding to the lowest one, is selected.

The outflow obtained by the algorithm 1, is then sent to
the exit gate of the tank with a time lag, and the quantity



Algorithm 1 Store

Data: Qinput : incoming flows
Ui : capacity of the tank i
Q′lam : storing threshold
s : vector of the stored flows
Results: Qout : outflows
Variables : k : horizon’s size
q : stored quantity at an iteration
sd : available space in the tank
Initialization :
k ←− dim(Qinput)
sd ←− Ui

for t = 1 to k do
if Qinput(t) > Q′lam and sd > 0 then

Stored quantity :
q ←− min{sd, Qinput(t)−Q′lam}

Calculate the outflow from the front gate :
Qout(t)←− Qinput(t)− q

Update the available space :
sd ←− sd − q

Update the stored flow :
for l = t+ 1 to k do

s(l)←− s(l) + q
end for

end if
end for

Algorithm 2 Release

Data: Qinput : incoming flows
s : vector of the stored flows
Qdo : restitution threshold
Q′lam : storing threshold
Results: Qout : outflows
T : total released flows
Variables : k : horizon’s size
qr : released flow
Initialization :
k ←− dim(Qinput)
T ←− 0
for t = 1 to k do

if Qinput(t) < Qdo and s(t) > 0 then
The released flow :
qr ←− min{s(t), Qlam −Qinput(t)}
T ←− T + qr

Update outflow :
Qout(t)←− Qinput(t) + qr

Update the stored flow :
for l = t+ 1 to k do

s(l)←− s(l)− qr
end for

end if
end for

that could be released from it is calculated using algorithm
2. This basic process consists in verifying that water can
be released from the tank (i.e. the flow rate in front of the
second gate is lower than Qdo, and the tank is not empty).

When water from the tank is released, it gives back a
certain space available (additional tank capacity) that can
be used for future storage. Therefore, several processes are
launched increasing each time the capacity, as long as the
value of the solution is improved (algorithm 3).

Algorithm 3 Optimal threshold method

Data: Qinput : incoming flows
Qlam : overflowing threshold
Qdo : restitution threshold
Ui : capacity of the tank
Qpeak : highest flow reached during the flood
Results: Qout : outflows
s : vector of the stored flows
Variables : I : boolean variable equals to true if an
improvement can be done
T : total released flows
T0 : previous total released flows
Q1out : intermediate outflow
Initialization :
I ←− true
T0 ←− 0
s←− 0
while I do

Q1out ←− min
Q′

lam
=Qlam,...,Qpeak

V (Store(Qinput, Ui, Q
′

lam, s))

(Qout, T )←− Release(Q1out, s,Qdo)
if T > T0 then

T0 ←− T
Ui ←− Ui + T

else
I ←− false

end if
end while

3. OPTIMIZATION-SIMULATION MECHANISM

The optimal threshold method described previously, allows
the resolution of the sub-problem under the [t, t+ k] time
interval. The main problem over the time horizon H, is
solved through the use of the real time strategy given in
figure 5. The actual flow rates at t in front of the gates, qin,
are emulated by SIC, since SIC provides flow rates in front
of each gate using only data collected from one hydraulic
measuring station established upstream. The data needed
for the sub-problem, the incoming flows Qinput(l), for
l ∈ [t + 1, t + k] must be estimated, for example, by
computing a trend from previous measured values or
by using precipitation forecasts combined with rainfall-
runoff models. Based on these data, the real time strategy
consists in making at each moment t an operational
decision based on the solution of the sub-dynamic problem
corresponding to the interval It = [t, t+ k]. The results of
the sub-problem (ie the flow that should cross each gate
during the interval It), are sent to the hydraulic simulator
SIC in order to calculate the opening heights of the gates
needed to obtain the exchange of the computed flow. SIC
also gives back the river flow rates in front of each gate
considering the operations made over the time window
k. Thereafter, the algorithm solves a new sub-problem
corresponding to It+1 and launches a new SIC simulation
with new instructions over the interval It+1. This process
is given by the algorithm 4 and schematized in 5.

4. CASE STUDY

4.1 Site and hydrological description

The case study considered concerns the Bastillac area
which is a parceling located in the town of Tarbes in the



Fig. 5. Optimization-Simulation mechanism

Algorithm 4 Processus

Data: H : Horizon
n : number of tanks
Qlam : overflowing threshold
Qdo : restitution threshold
Ui : capacity of the tank
k : size of the sub-problem
Results: qout : outflows in the river at the level of each
reservoir exit gate
s : vector of the stored flows
Variables : qin : flows measured in the river at the level
of each front gate at t
Q : estimated flows in the river at the level of each
reservoir front gate over It = [t, t+ k]
Qp : highest flow reached during the time window
Initialization :
si(t)←− 0 ∀i = 1, ..., n ∀t = 1, ..., H
Initialize SIC
for t = 1 to H do

qin← Read measures from SIC
Q← Estimate flows over It
Qp ← max

j=1,...,k
Q(t+ j)

for i = 1 to n do
(qouti , si) ← Optimal threshold

method(Q(i), Qlam, Qdo, Ui, Qp)
end for
set gates instructions in SIC

end for

south west of France. The Bastillac area is half surrounded
by Echez river which borders it from the south and the
east (figure 6). Thereby, this area is regularly flooded by
the overflowing of the river. The flow rates of the Echez
river are largely controlled and measured at the stations
Louey (90km2) and Borderes-sur-Echez (168km2), and
the station Maubourguet (420km2) before the confluence
with the Adour river. In addition, a flood warning station
is located at the road bridge from Tarbes to Pau. The
Bastillac area can be flooded when the flow rate of the
Echez river is close to 60m3/s.

4.2 Planning

In order to protect the Bastillac area, different solutions
were considered by the urban community of Le Grand
Tarbes. Setting a flood expansion area is among these
solutions. Here in, for this studied case, it is shown that

Fig. 6. Bastillac area reservoir system

controlling the flood expansion area, developing strategies
for storage/restitution, and forecasting flow rates permits
to reduce the volume of the retention pond, and thus the
costs of construction. The front gate of the flood expansion
area is planned to be established in the upstream of the
Bastillac area, on the right side of the Echez river. Its
purpose is to limit the inflow by storing a portion of the
flood in the upstream area (figure 6). The fenced area
covers a surface of 40 ha. For a dyke of 1 meter height,
the volume of the reservoir is of 350.000m3. The flood
expansion area will be equipped with check valves to its
input and output.
Using a topographic survey, the river bed (lowest part
the river valley) was modeled in SIC, and projected the
reservoir to simulate the water transfer and the exchange
between the river and the tank according to the commands
of the algorithm. Since Borderes-sur-Echez station is clos-
est to the Bastillac area, its data were used in this study.
Various flow rates were extracted from Hydro bank in
order to derive flood hydro-graphs which were used for
applying the proposed method in the case of flood events
with different characteristics (one or two peaks flood, var-
ious flow rate ranges and flood duration ranges, etc).
Herein, the flooding of 25 January 2014 was chosen to
illustrate the results obtained. The peak flow was 88m3/s
which corresponds to a return period of 20 years. A flood
hydrology study of the Echez river over a chronicle decades
led to a flow of 105m3/s for a return period of one hundred
years. In order to asses the ability of the future reservoir
to reduce a 100-year flood, the flood hydrograph of 2014
floods was multiplied by a coefficient so that the peak flow
become 105m3/s instead of 88m3/s. The incoming flow
rates are estimated over a 6 hours time window. In order
to asses the results of our strategy, it was compared to
an ordinary strategy consisting in storing when the flow
rate exceeds Qlam and release when it is below Qdo. For
simplification, the ordinary manipulation is denoted STR1
and the one developed in this paper STR2.

4.3 Results

The results are presented in figure 7 in which the incoming
flow in blue line corresponds to a 100-years flood, the
overflowing threshold, Qlam, in red discontinuous line is
equal to 60m3/s, the restitution threshold, Qdo, in green
discontinuous line is equal to 50m3/s and the outflow
obtained at the downstream of the river is given in yellow
when the ordinary strategy STR1 and in purple for the
proposed strategy STR2.



Fig. 7. Outflows downstream during a 100-years flood

Fig. 8. Reservoir filling evolution during a 100-years flood

Comparing the outflows obtained for the two strategies,
it is noticed that the maximum overflow value (77m3/s)
reached in the case of STR2 is below the one (87m3/s)
reached for STR1. Thus, STR2 successfully store the peak
of the flood, while the reservoir in STR1 was filled before
the arrival of the peak. Furthermore, because the STR2
strategy prefer a low amplitude flood than an intense sharp
one, the time period where the downstream flow is over
Qlam for STR1 (12h) is shorter than for STR2 (10h). In
figure 8 the maximum capacity of the tank (350000m3) is
represented in red discontinuous line and the water volume
stored in the tank is given in yellow when the ordinary
strategy STR1 is applied and in purple for the proposed
strategy STR2. The storage in the reservoir in the case of
STR1 starts before the STR2 case, and by consequence
the tank was filled before the arrival of the peak. Hence
STR2 allows managers to evacuate citizens and attenuates
the potential damages.

5. CONCLUSION

A flood decrease strategy was presented to control a river
system equipped with flood diversion areas. The strategy is
based on a network flow modeling coupled with a hydraulic
simulator to simulate water transfer. Its effectiveness was
tested on the Bastillac area for flood events with different
characteristics and a 100 years flood case reported. The
strategy developed in this paper ensures a weak down-
stream flow peak and a reduced impact. Future work
will focus on finding an optimal frequency for the valves
manipulation and on applying a robust algorithm for the
estimation, over the time window, of the incoming flow.
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