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Abstract

We consider the problem of learning a low dimensional representation for compo-
sitional data. Compositional data consists of a collection of nonnegative data that
sum to a constant value. Since the parts of the collection are statistically dependent,
many standard tools cannot be directly applied. Instead, compositional data must
be first transformed before analysis. Focusing on principal component analysis
(PCA), we propose an approach that allows low dimensional representation learn-
ing directly from the original data. Our approach combines the benefits of the
log-ratio transformation from compositional data analysis and exponential family
PCA. A key tool in its derivation is a generalization of the scaled Bregman theorem,
that relates the perspective transform of a Bregman divergence to the Bregman
divergence of a perspective transform and a remainder conformal divergence. Our
proposed approach includes a convenient surrogate (upper bound) loss of the ex-
ponential family PCA which has an easy to optimize form. We also derive the
corresponding form for nonlinear autoencoders. Experiments on simulated data
and microbiome data show the promise of our method.

1 Introduction

Compositional data analysis (CoDA) is a subfield of statistics introduced more than three decades ago
[3, 2, 1, 29]. Compositional data consist of a collection of nonnegative measurements that sum to a
constant value, typically, proportions that sum to 1. Because knowing the sum, one component can be
determined from the sum of the remainder, the parts that make up the composition are mathematically
and statistically dependent. This distinct structure complicates analysis and does not allow standard
statistical analyses. Ignoring the underlying nature of the data studied might give rise to misleading
conclusions.

Among others, [1] and [13] provided a framework to perform CoDA by mapping data from the
constrained simplex space to the Euclidian space using nonlinear log-ratio transforms. In this paper,
we focus on Principal Components Analysis (PCA), one of the main tools for exploratory analysis of
compositional data. Just like in standard Euclidean data, it is particularly useful when the first few
principal components explain enough variability to be considered as representative. Unfortunately,
any operation of centering or scaling destroys the compositional nature of the data, which complicates
a direct application of PCA.

Our motivation for studying CoDA comes from the recent explosion of microbiome studies [14, 15].
Indeed, spectacular advances in 16S rRNA gene sequencing of the bacterial component of the human
microbial community (microbiota) have enabled researchers to investigate human health and disease,
leading to new insights into the role of these microbial communities. The microbiota sequencing data
are measured as read counts interpreted as a species’ abundance in a microbial community. To make
the microbial abundance comparable across samples, data are normalized to the relative abundances
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Figure 1: 2D Visualization of the low dimensional representation A on the arms dataset.

of all bacteria observed. On the other hand, because high-throughput experiments produce large
amounts of data, multivariate analysis is indispensable [27, 21]. There is a stress to understand the
soundness of models [5].

In this paper, we propose to learn a low dimensional representation of CoDA from the original data.
To account for the nonlinearity due to the compositional nature of the data, we start from exponential
family PCA [12] that we augment with the compositional constraint and then simplify the loss to
be optimized via a generalization of a recent result [25] on Bregman divergences, which may be
of independent interest. We also propose a nonlinear autoencoder (AE) version to learn the low
dimensional representation.

Let us examine a toy example to illustrate our approach. We generate the arms dataset in &9 by
evenly interpolating the simplex center and each of the 20 vertices with 100 points, therefore yielding
a matrix Xogx2000- Figure 1 shows the 2D representation Asx 2009 computed by five methods: the
standard PCA; c1r-PCA computes the standard PCA after performing clr; CoDA-PCA and CoDA-AE
are our proposed methods; t-SNE [32] is a popular nonlinear dimensionality reduction method and
is applied on X directly. In the PCA plot, the black segments indicate that the PCA reconstruction
is outside of the simplex. PCA cannot be directly adapted to CoDA because the projection on
the principal components may go beyond the convex hull of the vertices. It is clear that only
CoDA-PCA and CoDA-AE uncover the true structure, where all the arms are clearly presented, and
their connections are faithfully presented.

2 Compositional Data Analysis

We briefly review some definitions of CoDA. Compositional data are proportions: X is a compositional
dataset if and only if X € R¥*™ such that Vi € [1, ..., m] the vector column x; of X is in the simplex

& = {a: € R 1 Vj,z; > 0; Z?zl T; = /{}, where £ > 0 is a constant, classically 1. Here
the superscript d does not denote the dimensionality as dim(&%) = d — 1. For a dataset X’ which

contains counts of strictly positive values, we reduce it to a compositional dataset by dividing out the
totals, that is we compute the CoDA set X such that: &; = &/ <= is the vector of proportions

d
for individual <.

Using Bregman divergences makes explicit a dual affine [6] coordinate space which is in fact the log
coordinates of Aitchison [1]. It is in this space that we have affine constraints, which are therefore
non-linear in the "primal”, ambient space. To manage this nonlinear structure, it has been proposed [4]
to first apply a log-ratio transformation to transpose the data into real Euclidean space. For instance,
the additive log-ratio transformation (alr) applies log-ratio between a component and a reference
component; the centered log-ratio transformation (clr) scales each subject vector by its geometric
mean; and the isometric log-ratio transformation (ilr) is associated with an orthogonal coordinate
system in the simplex. Afterwards, standard PCA is performed.

By definition, the clr transformation is

e () = log (g(”;)) = CM log(x) = log() — log(@) 1, (1

where g(x) = (H?:1 z7)'/4 the geometric mean of z, T = 1 Z?Zl x; is the arithmetic mean of x,
14 is the 1 x d vector of all ones, and CI' = |; — éldlg. The purpose of the log-ratio transformation



(centered or not) is to go back to ¢ from &¢ without losing information. Notice that log(z;),

log(x) € (—00,0) so the compositional data is embedded in ¢ under the clr transformation. The

reverse operation: = ¢! (z’) = exp(z’) H;l:l exp(752) embeds R into &?. See the table
below for a comparison of clr, alr and ilr, presented as different transformations Clog(x). They are

equivalent up to linear transformations. Without loss of generality we focus on the clr.

clr I alr I _ ilr
o, =TT | Oy = 1] | Oy & (RO T RRT =1,

However interpreting the resulting coordinates is still challenging [13, 24]: alr transformation is no
distance-preserving; clr leads to degenerate distributions and singular covariance matrices; ilr avoids
the precedent drawbacks, but still, results from complicated nonlinear transformations are difficult to
interpret. Currently, there seems to be no consensus about the best practices ([16] versus [31]) and, in
all cases, log-transforming is not a remedy for all the difficulties arisen by CoDA [20].

3 Exponential Family Principal Component Analysis

Another way to apply dimension reduction is to perform a generalized PCA on crude count data.
Based on the same ideas as the generalised linear model, [12] described a generalized PCA model for
distributions from the exponential family. We first recall the standard PCA setting.

3.1 Principal Component Analysis

For simplicity suppose that the data matrix X is already centered that can be easily achieved by
appending to A matrix a row of ones.

(Traditional PCA) We have a dataset X € 4™ that we approximate as X ~ VTA by minimizing
the following loss wrt the constraints A € R>*™ | V € RE*4  WWT = |,

lpea(X;A V) = [|[X = VTA||Z . 2)

Hence, observations are column-wise. V : R% — R is surjective with VTV defining a rank-¢
projection, assuming in general ¢ < d. A is the representation of data points. The goodness of fit
of the representation is measured by the squared Frobenious norm. We summarise the different
transformations and loss functions in Table 1.

Observe that instead of finding a linear representation A and its corresponding linear loadings V,
we can consider nonlinear functions for encoding and decoding the latent representation. When the
nonlinear encoder and decoder are implemented as feed-forward neural networks, we arrive at the
autoencoder setting.

3.2 Bregman Divergence and p-PCA

As mentioned in the introduction, compositional data do not live in Euclidean space. Count data are
naturally linked to the Poisson distribution, and therefore we should consider an exponential family
model for count data. From the Bayesian viewpoint, the PCA goal is to minimize a distance (L? for
usual PCA) which is equivalent to a Bregman divergence minimization (or a Likelihood function
maximization).

Definition 1 (Bregman Divergence) Let ¢ : R¢ — R convex differentiable. The Bregman diver-
gence D, with generator ¢ is

Dy(z||z') = p(x) — p(a') — (& — ') TVe(z'). 3)

A Bregman divergence is just a truncation of the Taylor expansion of a function. It can therefore be
defined for any differentiable function, not just the convex ones. If  is not convex, we call D, a
Bregman distortion, which is a signed dissimilarity. We denote by ¢*(x) = sup, {zTy — (y)} the
convex conjugate of the generator ¢ [9].



Table 1: Summary of methods in this paper

Method Original Reconstruction Distortion Notes

PCA X VTA =% classical PCA(2)

¢-PCA X V*p(VTA) D,(- ) exponential family PCA (4)
clr-PCA ¢ (X) VTA =% CoDA with clr (5)
gauged-¢-PCA || Vo(X) VTA D () General Bregman PCA (8)
CoDA PCA ¢ (X) VTA Dexp (-1 ) (11) is a special case of (8)
s-CoDA-PCA Z; VKL(exp(VTa;)) | inner product || upper bound (17)

CoDA AE X go © ha(X) Dep (-1 ) neural networks gg and hg

PCA has been generalized to the exponential families in a way that makes fitting occur in the natural
parameter space [12, 19] (and references therein). The optimization problem is non-convex. The
algorithmic strategy proposed by [12] is to use an alternating sequence of convex minimizations
under constraints. Alternatively, [19] proposed maximizing the deviance (as a generalized notion
of variance) and [10] proposed maximizing the likelihood function via a variational algorithm and
gradient descent.

We denote exponential family PCA as p-PCA, where ¢ is the cumulant of the exponential family,
which is strictly convex differentiable with convex conjugate ¢*, and uniquely determines the
exponential family under mild conditions [7]. Note that for (-PCA, X is not neccessarily in a vector
space (e.g. X Z Rd*xm),

(p-PCA) We have a dataset Xy, that we approximate as X ~ V*(VTA) with A € RX™,
V € R*4 VVT = |, through minimizing the Bregman loss

lopca(GAV) =3 Dol || Ve*(VTai) = Dy(X || Vi (VTA)). )

Vectors are column-vectors: x;, a; are respectively column observation ¢ in the ambient and principal
spaces, respectively. This formulation has a major advantage that linear algebra may be used to fit
A,V while X may not lie in a vector space, see for example [12, 19] and references therein. We
remark that because of the dual symmetry of Bregman divergences, we have D, (X || Vp*(VTA)) =
D+« (VTA|| V(X)) [8]. Notice there exists a little "hole" in the ¢-PCA definition, as X is not
necessarily easy to center when it is not in a vector space.

¢-PCA includes standard PCA as a special case as when op(x) = 1||z||Z and the corresponding

2
Bregman divergence becomes Dy, (z || ') = 1|z — /|| .

4 Exponential family PCA on Compositional Data

CoDA has found a workaround for the centering problem, centered log-ratio coordinates. From [3,
Def. 4.6, Chap. 8] the associated loss is the standard PCA loss on clr transformed data:

o1 .
Larpoa (XA, V) = §HCKL(X) _VTA”% = DSD(CKL(X) | Vo™ (VTA)), (%)

where ¢, (X) is the centered log-ratio transform defined in Equation (1) and ¢(x) = 1||x||Z. Recall
from the previous section that we could deal with crude count data by using exponential family PCA.
However if we wish to perform PCA on the crude count data, while maintaining the clr transform, we
need an additional normalization term, which requires us to obtain a gauged version of the Bregman

divergence.

4.1 Scaled Bregman Theorem with Remainder

In this section we generalize the Scaled Bregman Theorem from [25, Theorem 1] to allow for a
remainder term. We use it in this paper to deal with the perspective transform required for CoDA,
but it may be of independent interest. Recall that ¢ is the generator of the Bregman distortion
(Definition 1). We additionally define a perspective (or gauge) function g to deal with the fact that we



are considering data on the simplex. Whenever ¢ and g are differentiable, the following is immediate
from [25, Theorem 1].

 Theorem 2 (Scaled Bregman Theorem with Remainder) Forany ¢ : X — Rand g : X — R.
(R = R\ {0}) that are both differentiable, denoting

g 5(z) = o B
the following holds true:
g(z) - D, (z||g) = Dg (x[ly) + Rtp,g(x ly), Ve,yeX, @)

T
where Ry, o( || y) = ¢* (Vo(9)) - Dy(x || y) is called the remainder.

We can abstract Theorem 2 by saying that for any ¢, g differentiable, we have
perspective-Bregman(yp, g) = Bregman(perspective(y)) + conformal-Bregman(g, ¢),

where “perspective(y)” is ¢ in (6), and conformal divergences are defined and analyzed in [26].
General classes of perspective transforms of convex functions are introduced in [22, 23]. The notion
of perspective transform of a Bregman divergence was introduced in [25]. In [25, Theorem 1],
conditions are assumed that make R, 4(x || y) = 0, resulting in the scaled Bregman theorem. Notice
that D, is a Bregman distortion but not necessarily a Bregman divergence if ¢ is not convex. For
reasons explained in [25], we call g a gauge. In the following we assume that ¢ is separable, so that
we can use both notations Vi and ¢’ to denote the gradient and derivatives involving ¢.

By Theorem 2, as long as g(x) is homogeneous of degree one, D, (& y) and
ﬁ [Dg (x || y) + Ry g(x || y)] are both invariant to re-scaling of & and y and can therefore be
used to deal with compositional data. A general formulation of g satisfying this condition can be
g(x) = H?:l :c;”, where Vj,w; > 0 and Z?Zl w; = 1. In this paper, we focus on the special
case Vj, w; = % so that D, (& || ) can be expressed in terms of the widely used clr transformation.

Setting w to be a one-hot vector (1,0, --- ,0) can express D,, (& || ¢) with the alr. This latter case
will be omitted here.

4.2 Exponential Family CoDA

We are now in a position to derive the exponential family version of the loss in (5). Let X denote the
matrix of the column vectors &;. It turns out that in the same way as (2) is an approximation of (4),
the loss in (5) is an approximation of the gauged loss:

lganged-p-PCA(X; A, V) = Dor (VIA[| V(X)) = Dy (X[ V" (VTA)). ®)

Note that the above expression is in terms of the normalised matrix X. To unpack it in terms of
the original data X, we apply Theorem 2. In the CoDA case, ¢*(z) = exp z, the convex dual of
©(z) = zlog z — z. Indeed, after remarking that V(X)) = ¢, (X), it follows

Egauged—KL»PCA (Xa A7 V) = Dexp (VTA || Cy1. (X)) = Dxy (X || eXP(VTA))
=1Texp(VTA)1 — trace (XTVTA) + constant. )

In other words, the CoDA PCA is in fact fitting natural parameters from centered log-ratios being
natural coordinates as well. From (9) we observe that both of them live in the same space. Therefore
VTA is centered in the same way as ¢, (X), and so

V1, € ker(AT) < ATV1i=0,, . (10)
Remark that a centering assumption is also explicit in [3, Chapter 8, Eq. 8.1].

Hence, we can define the CoDA PCA problem as follows.



(CoDA PCA) We have a dataset X € (&)™ that we approximate as ¢, (X) ~ VTA by minimizing
the following loss wrt the constraints A € REX™ |V € REX4 VT =1,, ATV1 = 0:

gCoDA-PCA(X§ A, V) = Dexp(VTA ” CKL(X))' (1D

Regarding ¢, (x), & and « as different coordinate systems of &9, we use the Fisher information
metric (FIM) [6], whose formulation is well studied on the & coordinates, to define the corresponding
pullback metric G under the ¢, () and & coordinates, meaning that these metrics correspond to the
same underlying geometry of G¢. We have the following proposition (proof omitted; see [30] for
similar derivations).

Proposition 3 The FIM that uniquely defines the geometry of ¢ € {CK,_(a}) X € Gd} is given by

Gij(c) = 0i; Z;’zpe(;;)(ci) — (5;:(2;1(6;)))2 ; the FIM under the coordinates & is given by G;; (&) =
0ij F Zjd:l i (Z?:l FAEL where §;; = 1 if i = j otherwise §;; = 0.

Intuitively, the metric § measures the local distance dZTG(&)d&T of a tiny shift d&. It is not
everywhere identity as in a Euclidean space. Therefore the distance should not be measured by the
Frobenious norm as in (5). In contrast, our loss {copa-pca (X; A, V) is based on the KL divergence
which locally agrees with the FIM [6].

4.3 Relating CoDA PCA to ¢o-PCA

We now define and analyze a generalized perspective transform of the generator of KL divergence:
~ . d . .
let KL(z) = g(@) - 327_; ¢(x;/9(x)) where p(2) = zlog(z) — z and g() = (I]; ;)"

Lemma 4 (Properties of KL) KL satisfies the following properties:

(1) KL is convex;

(2) the general term of the Hessian H of KL is

N . 1 —Uj; if j#i
Hij = Hij(KL(z)) = dz; ’ { D ke Ukj  otherwise 2)
where ugy = 1+ x,/xp. Furthermore,
1 2 2\ 2
2THz = 5 Z(xi + ;) - (m — xi) Yz e R4 (13)

Hence, zTHz > 0,Vx € §Ri+,Vz € R4 and zTuz = 0 only when z x x;

(3) function KL o exp is I1-homogeneous on span({1})*.

(Proof in SM, Section D) A consequence of Theorem 2 is the following Corollary.

Corollary 5 For any A, V such that ATV1 = 0, we have
1

@ - Dy (|| exp(VTa;)). (14)

Leopa-pca (XA V) < Eiz

Hence, the CoDA PCA loss is upperbounded by a weighted generalized o-PCA loss. Furthermore,
Dy (x| exp(VTa;)) = KL(x;) — 2] VKL(exp(VTa;)) (15)

Proof Since g is concave (Example 1 in Supplement), D (z|y) = —D_4(x|y) < 0, and (14)
follows from Theorem 7 and the fact that r; > 0, V4, which shows (14). (15) is a consequence of the
analytical construct of Bregman divergences (Definition 1) and point (3) in Lemma 4 and the fact that
VTa; € span({1})* by assumption. [ |



Remark In [3, Chapter 8], CoDA PCA is presented as a (centered) regular PCA over data that been
subject to two transforms via the centered log-ratio coordinates. What Corollary 5 shows is that
we can solve the problem via a surrogate formulation using non transformed data but minimizing
a loss which is that of a p-PCA transformed fwice: first taking a perspective transform of the KL
generator (KL) and then having a weighted Bregman divergence minimization (g~*(.)). We remark
that weights can also be folded in the arguments as we have:

0 = ) KL(&)— 2] VKL(exp(VTa;)) . (16)

3

O

Furthermore, the leftmost argument in (16) plays no role in its minimization, and therefore we get the
Surrogate CoDA PCA (s-CoDA-PCA) by replacing (11) with a simple inner product:

bscoparca(GAV) = =) &I VKL(exp(VTay)) . (17

S Implementations

Both the CODA-PCA in (11) and the s-CODA-PCA in (17) can be equivalently written as the
following unconstrained problems

(CODA-PCA) argmin [1]exp(Y)1,, — trace (XTY)], (18)
. 1417
(s-CODA-PCA) argmin trace {XT (exp(—Y) o dd 4 exp(Y) — Y)} , (19)
B,U

[TPNL]

where “o” means element-wise product, exp(-) is element-wise exponential, and Y = CUTB with
C e R¥xd U € R4 B € R>™. Cis a constant centering matrix satisfying rank(C) =d — 1,
CT1 = 0, so that Y’s columns are automatically centered and Y71 = BTUCT1 = 0. Any C
satisfying this condition corresponds to a valid re-parametrization of the feasible space, for example
C=l;—- %ldlg orC= 14— Ig (Ifi circularly raises the diagonal entries of |; by 1 row). U’s rows
form a nonorthogonal basis of *¢. B’s columns are the sample coordinates in such a basis. After
optimization, we take the QR decomposition C(U*)T = (V*)TT*, where V*’s rows are orthonormal.
Therefore C(U*)TB* = (V*)TT*B* and A* = T*B* is the corresponding coordinates. An optimal
solution of the original constrained PCA problem is given by (V*, A*).

Although the losses in (18) and (19) are non-convex, they are both bi-convex. Fixing U, the loss
is a strictly convex function of B that is decomposed into a sum of per-sample convex functions
of b;; fixing B, it is a strictly convex function of U. These convex functions have the general
form f(&) = Y, exp(a] & + B;) + ¢TE. Its gradient and Hessian are both in simple closed form:
V=Y expla]€+6;)oi+C V2 f =, exp(2a] €+20;)a;ax] . One can apply an off-the-shelf
convex optimizer, which in the simplest case can be the Newton method, to alternately minimize B
and U until convergence. Our implementation simply uses L-BFGS [9] based on the gradient of the
loss. In summary, we have the following result.

Proposition 6 The CODA-PCA and the S-CODA-PCA are both equivalent to an unconstrained
bi-convex optimization problem.

As an alternative implementation, we assume a parametric mapping b; = geo(x;) that is the ¢-
dimensional output of a feed-forward neural network with input ¢y, (x;) and &; (or &;) and connection
weights ©. Then we minimize the cost function in (18) with respect to U and ©. If gg is flexible
enough, then the minimization recovers the CODA-PCA projection. This approach could be favored
as @ it learns an out-of-sample mapping ge(-) with a compact parametric structure that does not
scale with the sample size m; and @ it can be adapted to an online learning scenario. However, it
requires tuning of the neural network architecture and the optimizer. In our experiments, the encoding
map is modeled by a feed-forward neural network with two hidden layers of ELU [11] units, each of
size 100. To distinguish between the two implementations, the method to directly optimize U and B
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Figure 2: Testing errors (y-axis) against the number of principal components (x-axis) based on three
different distance measures (from left to right) on the Atlas data (first row) and the diet swap data
(second row). The numbers along the c1r-PCA curves show the percentage of improvement (green)
or disimprovement (red), comparing CoDA-PCA against c1r-PCA.

without assuming the neural network mapping is called non-parametric CODA-PCA, and the latter
parametric version is simply called CODA-PCA.

The above implementation resembles an auto-encoder structure: x; g b; i> y;, where the decoder is
simply a linear mapping y; = CUTb,. In the general case, we apply a non-linear decoder b; 2, y; in
the form y; = Chg(b;), where hg (+) is a neural network with parameters ® and d output dimensions.
At the same time, we add a small random noise to the encoder input so as to avoid overfitting.
In this way we obtain a denoising CODA-AUTOENCODER. In contrast to the CODA-PCA, the
CODA-AUTOENCODER can only be trained by gradient-based optimizers.

In practice, the input matrix X may contain zeros that lie on the boundary of G%. In this case
¢ () and & are undefined. A simple way to tackle the zero entries is to replace them with a small

positive number ¢ > 0. Alternatively, one can redefine the gauge as g(x) = Hj:rj S O(xj)l/ P, where
p=|{j: x; > 0} so that g(x) is always positive and & is well defined on &¢ U 0&,

6 Experiments

‘We compare the following methods: c1r-PCA means PCA applied on the centered log-ratio coordi-
nates; CoDA-PCA is the proposed CODA-PCA in (11); SCoDA-PCA is the proposed S-CODA-PCA in
(17); clr-AE is an autoencoder with L? loss applied on the clr transformation; CoDA-AE is the
proposed CODA-AUTOENCODER in subsection 5. Both c1r-AE and CoDA-AE use exactly the same
structure with one hidden layer of 100 ELU [11] units in their decoders.

The baselines are assessed based on an array of measures including (L?-clr) the L2-distance ||cy, (z) —
c«.(z')||r between the input data € & and the reconstruction ' € &¢ in the clr space; (JSD)
the Jensen-Shannon divergence KL (x : %“’/) + iKL(2 : %‘”'), (TV) the total variation distance



d . . . .
23701 lzi — }|. These measurements are all invariant to scaling or permutation of & and «’. See
the supplementary material for more baselines and performance indicators.

We consider the following datasets available in the microbiome R package [18], each of which is
randomly split into a training set (90%) and a testing set (10%). The HITChip Atlas dataset [17]
contains 130 genus-level taxonomic groups that cover the majority of the known bacterial diversity
of the human intestine. The data come from 1006 western adults from 15 western countries (Europe
and the United States). Sample sets were analysed with three different DNA extraction methods. The
two-week diet swap study between western (USA) and traditional (rural Africa) diets was reported in
[28]. In this study, a two-week food exchange was performed in subjects from the same populations,
where African Americans were fed a high-fibre, low-fat African-style diet and rural Africans a
high-fat, low-fibre western-style diet. The group diet was indicated by HE (home environment days),
DI (dietary intervention days) and ED (initial and final endoscopy days). Each subject served as
his/her own control, given the known wide individual variation in colonic microbiota composition.

Fig. 2 shows the typical testing results. We observe that on most performance indicators CoDA-PCA
and CoDA-AE show a much smaller testing error as compared to c1r-PCA and clr-AE, respectively.
The only exception is on L2-clr, where c1r-PCA and clr-AE appear to be favored against our CoDA
variants. This is because L2-clr is exactly the cost function of those two methods. We found that
CoDA-AE is more robust against overfitting as compared to c1r-AE. The performance of SCoDA-PCA
is close to CoDA-PCA on most of the indicators and is better than CoDA-PCA on L2-clr.

The source codes to reproduce our experimental results are available online?.

7 Conclusion

We propose an approach for learning a low dimensional representation directly on raw count data,
which is compositional in nature. Our proposed algorithm generalizes PCA in two ways, first by going
to the exponential family via the Bregman divergence, and second by converting the normalization of
data to a change in the Bregman divergence. The key theorem used for transforming the Bregman
divergence generalizes a recent result, and may be of independent interest.
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