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A New Decision-Theory-Based Framework
for Echo Canceler Control

Tales Imbiriba , Member, IEEE, José Carlos M. Bermudez , Senior Member, IEEE,
Jean-Yves Tourneret , Senior Member, IEEE, and Neil J. Bershad , Fellow, IEEE

Abstract—A control logic has a central role in many echo can-
cellation systems for optimizing the performance of adaptive fil-
ters, while estimating the echo path. For reliable control, accurate
double-talk and channel change detectors are usually incorporated
to the echo canceler. This work expands the usual detection strat-
egy to define a classification problem characterizing four possible
states of the echo canceler operation. The new formulation allows
the use of decision theory to continuously control the transitions
among the different modes of operation. The classification rule re-
duces to a low-cost statistics, for which it is possible to determine
the probability of error under all hypotheses, allowing the clas-
sification performance to be accessed analytically. Monte Carlo
simulations using synthetic and real data illustrate the reliability
of the proposed method.

Index Terms—Adaptive filters, adaptive signal processing, adap-
tive systems, echo cancellation, channel change, double-talk, clas-
sification, multivariate gamma distribution.

I. INTRODUCTION

ECHO cancellation is a requirement in modern voice com-
munication systems. Speech echo cancelers (ECs) are

employed in telephone networks (line echo cancelers) or in
hands-free communications (acoustic echo cancelers). Most EC
designs include two main blocks; a channel identification block
and a control logic block. The channel identification block tries
to estimate the echo path, often employing adaptive filtering.
However, the adaptive algorithm tends to diverge in the presence
of near-end signals (double-talk – DT). Hence, adaptation must
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be stopped during DT. On the other hand, abrupt echo channel
changes (CC) require a faster adaptation to improve tracking.
Finally, in the absence of both DT and CC, a slow adaptation rate
tends to improve channel estimation accuracy. The control logic
is then required to control the transitions among these distinct
modes of adaptive operation.

The EC control may or may not employ DT or CC detectors.
Different approaches have been proposed to deal with DT or
CC in echo cancelers, some of which do not require a DT detec-
tor, aiming at a continuous adaptation of the EC. Blind source
separation strategies based on independent component analysis
(BSS/ICA) were proposed in [1], [2], variable stepsize (VSS)
methods in [3]–[5], and methods based on the prediction of the
near-end signal using a prediction error (PE) framework in [4],
[6], [7]. Frequency domain adaptive filter (FDAF) solutions have
also been proposed, resulting in low computational complexity
and fast convergence at the expense of higher memory usage
and additional end-to-end delay [4], [5], [8].

BSS strategies try to separate the near- and far-end signal
components, adapting the EC only on the far-end component. A
BSS method, based on ICA, led to a weighted recursive least-
squares (RLS) [1], [2] algorithm using a O(N 2) implementation
based on the matrix inversion lemma to guarantee stability. VSS
methods continuously adjust the adaptive filter (AF) stepsize to
cope with different states of a dynamical system. An optimal AF
stepsize is derived in [3] which depends on the non-accessible
undisturbed error signal. This requires further estimation and
detection stages. VSS strategies were also considered in the
frequency domain [4], [5]. An FDAF VSS method was proposed
in [4] in the context of PE framework. The gains of a noise-
reduction Wiener filter where used as variable stepsizes for each
frequency bin in the FDAF. In [5], the FDAF at each frequency
bin is derived from a system distance measure as a function of
time and frequency.

The PE framework has been used in [4], [6], [7] to simultane-
ously estimate the echo path and a parametric AR model for the
near-end signal. A low complexity method was proposed for the
near-end modeling that is adequate for speech signals, leading
to the PEM-AFROW algorithm [6], [7]. Although the resulting
cost function is essentially nonconvex, simulations indicate that
the proposed algorithms are robust to double-talk and present
fast convergence under single-talk.

Several works have proposed methods for DT detection in
ECs without considerations regarding CC, such as [9]–[12].
However, DT detection strategies that assume a static channel
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Fig. 1. Basic echo canceller structure.

response may yield unpredictable performances in the presence
of CC [13]. The vast majority of the techniques available for
DT or CC detection rely on ad hoc statistics to make the de-
cision, leading to cumbersome design processes. A few works
employ a statistical framework to formulate the detection prob-
lem. For instance, [14] proposes a maximum a posteriori (MAP)
decision rule based on channel output observations and assum-
ing Bernoulli distributed priors for the different hypotheses. A
similar approach is used in [15], but employing a Markov chan-
nel model. In [16], a generalized likelihood ratio test (GLRT)
is proposed using observations from both the channel input
and output signals. DT and CC detection are considered. In
[17] and [18], a first test distinguishes single-talk from DT or
CC, and a second test based on the echo path estimate detects
DT. Though the latter two studies consider DT and CC in a
single formulation, all these aforementioned statistical formu-
lations have been proposed for the conventional adaptive EC
structure [3].

An alternative EC structure has been proposed in [9], which
uses a shadow adaptive filter that operates in parallel with the
actual echo cancellation filter. The shadow filter coefficients are
transferred to the echo cancellation filter when the shadow filter
is a better estimate of the unknown channel response than the
echo cancellation filter. From the authors experience, this struc-
ture allows a much better control of the EC convergence than the
conventional structure. The EC structure is shown in Fig. 1. The
EC consists of the main echo cancellation filter and the adaptive
shadow filter. The output of the main filter is subtracted from
the echo to obtain the canceled echo z1(n). The shadow filter
weights are adapted continuously. The control logic is designed
such that the shadow filter coefficients are copied to the main
filter when this will improve the EC performance. A likelihood
ratio test (LRT) detector based on the EC structure in Fig. 1
was derived in [19] to detect DT versus CC. A generalized LRT
(GLRT) that could be simplified to a sufficient statistic was
proposed for the same EC structure in [20]. The performance
of the test statistic was evaluated as a function of the system
parameters. The idea developed in [19] and [20] was to use the
detection result 1) to stop adaptation when DT was detected and
2) to adapt fast in the presence of channel change. The speed of
adaptation was controlled by the adaptation stepsize.

The decision theory-based DT and CC detection formulation
in [19], [20] did not include decision theory based formulations
for the exit from a DT or a CC condition. These decisions were
still made in an ad hoc manner.

This paper formulates the echo canceler control logic as a
more general classification problem, with four hypotheses asso-
ciated to the presence or absence of DT and to the presence or
absence of CC1

H0 : no DT and no CC

H1 : no DT and CC

H2 : DT and no CC

H3 : DT and CC. (1)

There are several motivations for identifying these four classes.
These motivations include 1) the possibility to adjust accu-
rately the stepsize of the adaptive filter for long time intervals
when there is no DT and no CC, resulting in smaller residual
errors, 2) the inclusion of H3 adds an important degree of flexi-
bility to the control logic that can be exploited, as will be shown
in Section V-A, 3) these four classes lead to a simple and low
cost test statistic.

The paper is organized as follows. In Section II we intro-
duce the signal models and derive the classification rules. In
Section III we present the performance analysis of the proposed
classifier. Monte Carlo simulations are presented in Section IV
to validate the theory. Section V discusses application of the pro-
posed classification strategy and presents illustrative simulation
results. Finally, Section VI discusses the results and presents the
conclusions.

II. DOUBLE-TALK AND CHANNEL CHANGE CLASSIFICATION

A. Signal and Channel Models

The channel input vector x(n) = [x(n), . . . , x(n − N +
1)]� is of dimension N × 1 with covariance matrix E[x(n)
x�(n)] = Σx and the channel output is a scalar y(n). The input
signal is stationary within the decision periods and the DT sig-
nal can be modelled by a white Gaussian process for detection
purposes [16]. Also, [y(n),x�(n)]� is modelled as a zero-mean
Gaussian vector. Denoting the adaptive shadow filter response
by h0 , the main echo cancellation filter response by h1 , and the
true echo path response by g, the channel output y(n) can be
expressed as follows under the different hypotheses:

H0(no DT, no CC) : h1 = g, y(n) = h�
1 x(n) + n0(n)

H1(no DT, CC) : h0 = g, y(n) = h�
0 x(n) + n0(n)

H2(DT, no CC) : h1 = g, y(n) = h�
1 x(n) + n0(n) + n1(n)

H3(DT, CC) : h0 = g, y(n) = h�
0 x(n) + n0(n) + n1(n).

(2)

1The acronyms CC and DT are usually employed to signify instantaneous
phenomena. Here, CC and DT are used to define system states following the
onset of channel change or double-talk, which are tested for at regular time
intervals (see Section V).



The H0 hypothesis considers that h0 has converged and has
been recently copied to h1 . Hypothesis H1 assumes that h0 has
already converged (or is much closer tog thanh1) after a channel
change. Therefore, we consider that the system is at a CC state
whenh0 ≈ g and there exist a measurable mismatch betweenh0
and h1 . In H2 , a DT signal n1(n) happens after convergence of
h0 and copy to h1 (similar to H0). Finally, a fourth hypothesis
H3 considers that DT happens following a CC after h0 has
already converged to the new channel but has not yet been copied
to h1 . All cases rely on the convergence (or divergence) of h0
and its relation to h1 resulting in several practical implications
concerning the control logic block in Fig. 1. The control strategy
will be addressed in Section V.

The additive noise n0(n) is stationary zero-mean white2

Gaussian, independent of x(n) with E[n2
0(n)] = σ2

0 . The sec-
ond additive noise n1(n), modeling the DT, is zero-mean
white Gaussian, and independent of both x(n) and n0(n) with
E[n2

1(n)] = σ2
1 . Two error signals z0(n) = y(n) − h�

0 x(n) and
z1(n) = y(n) − h�

1 x(n) were introduced in [20] to facilitate
the analysis. These error signals can be expressed as follows
under the different hypotheses

H0(no DT, no CC) :

z0(n) = (h1 − h0)�x(n) + n0(n), z1(n) = n0(n)

H1(no DT, CC) :

z0(n) = n0(n), z1(n) = (h0 − h1)�x(n) + n0(n)

H2(DT, no CC) :

z0(n) = (h1 − h0)�x(n) + n0(n) + n1(n)

z1(n) = n0(n) + n1(n)

H3(DT, CC) :

z0(n) = n0(n) + n1(n)

z1(n) = (h0 − h1)�x(n) + n0(n) + n1(n). (3)

B. Classification Rule

1) One-Sample Case: The joint pdf of z(n) = [z0(n),
z1(n)]� is Gaussian under all hypotheses such that

p[z(n)|Hi ] ∼ N (0,Σi1), i = 0, . . . , 3 (4)

where the second subscript in Σi1 (1 in this case) indicates
the 1-sample case. The covariance matrices of z(n) under the
different hypotheses can be written

Σ01 =

(
σ2

0 + c2
x σ2

0

σ2
0 σ2

0

)

Σ11 =

(
σ2

0 σ2
0

σ2
0 σ2

0 + c2
x

)
(5)

2Note here that the whiteness assumption for n0 (n) is not restrictive since it
is always possible to whiten the channel outputs by pre-multiplying consecutive
samples by an appropriate matrix. Of course, this operation assumes that the
covariance matrix of consecutive noise samples is known or can be estimated.

Fig. 2. DT and CC decision regions in the (z2
0 (n), z2

1 (n)) plane.

Σ21 =

(
σ2

0 + σ2
1 + c2

x σ2
0 + σ2

1

σ2
0 + σ2

1 σ2
0 + σ2

1

)

Σ31 =

(
σ2

0 + σ2
1 σ2

0 + σ2
1

σ2
0 + σ2

1 σ2
0 + σ2

1 + c2
x

)
(6)

with

c2
x = (h0 − h1)�Σx(h0 − h1) (7)

where c2
x can be interpreted as the power at the output of the dif-

ference filter with response h0 − h1 . Assuming all hypotheses
are equiprobable, the classification rule minimizing the average
probability of error decides hypothesis Hi is true when

1√|Σi1 |
exp

[
−1

2
z�(n)Σ−1

i1 z(n)
]

>
1√|Σj1 |

exp
[
−1

2
z�(n)Σ−1

j1 z(n)
]

(8)

for all j �= i. Equivalently, hypothesis Hi will be accepted if

z�(n)
(
Σ−1

j1 − Σ−1
i1

)
z(n) > ln

( |Σi1 |
|Σj1 |

)
(9)

for all j �= i. Straightforward computations (detailed in
Appendix A) allow one to compute the inverses and determi-
nants of the 2 × 2 matrices Σi1 and Σj1 yielding the following
classification rule

H0 aif z2
1 (n) < z2

0 (n) and z2
1 (n) < T

H1 aif z2
1 (n) > z2

0 (n) and z2
0 (n) < T

H2 aif z2
1 (n) < z2

0 (n) and z2
1 (n) > T

H3 aif z2
1 (n) > z2

0 (n) and z2
0 (n) > T (10)

where “aif” means “accepted if” and

T =
σ2

0 (σ2
0 + σ2

1 )
σ2

1
ln
(

1 +
σ2

1

σ2
0

)
. (11)

The different decision regions corresponding to (10) are illus-
trated in the (z2

0 (n), z2
1 (n)) plane in Fig. 2.

2) Multiple Samples: The analysis above can be generalized
to the case where multiple time samples z(n − k), for k =
p − 1, . . . , 0, are available. The analysis is performed here for
two samples (i.e., p = 2) for simplicity and is generalized later.



When two samples are observed, the error signals z0(n), z0(n −
1) and z1(n), z1(n − 1) are considered. They can be expressed
as follows under the different hypotheses:

Under H0 :

z0(n) = (h1 − h0)�x(n) + n0(n)

z1(n) = n0(n)

z0(n − 1) = (h1 − h0)�x(n − 1) + n0(n − 1)

z1(n − 1) = n0(n − 1). (12)

Under H1 :

z0(n) = n0(n)

z1(n) = (h0 − h1)�x(n) + n0(n)

z0(n − 1) = n0(n − 1)

z1(n − 1) = (h0 − h1)�x(n − 1) + n0(n − 1). (13)

Under H2 :

z0(n) = (h1 − h0)�x(n) + n0(n) + n1(n)

z1(n) = n0(n) + n1(n)

z0(n − 1) = (h1 − h0)�x(n − 1)

+ n0(n − 1) + n1(n − 1)

z1(n − 1) = n0(n − 1) + n1(n − 1). (14)

Under H3 :

z0(n) = n0(n) + n1(n)

z1(n) = (h0 − h1)�x(n) + n0(n) + n1(n)

z0(n − 1) = n0(n − 1) + n1(n − 1)

z1(n − 1) = (h0 − h1)�x(n − 1)

+ n0(n − 1) + n1(n − 1). (15)

Defining z2d(n) = [z0(n), z0(n − 1), z1(n), z1(n − 1)]�,
z2d(n) is a zero-mean Gaussian vector under all hypotheses.
Straightforward computations yield the covariance matrices of
z2d(n) under the different hypotheses. These matrices can be
expressed as

Σ02 =

(
σ2

0I2 + Hx σ2
0I2

σ2
0I2 σ2

0I2

)

Σ12 =

(
σ2

0I2 σ2
0I2

σ2
0I2 σ2

0I2 + Hx

)
(16)

Σ22 =

(
(σ2

0 + σ2
1 )I2 + Hx (σ2

0 + σ2
1 )I2

(σ2
0 + σ2

1 )I2 (σ2
0 + σ2

1 )I2

)

Σ32 =

(
(σ2

0 + σ2
1 )I2 (σ2

0 + σ2
1 )I2

(σ2
0 + σ2

1 )I2 (σ2
0 + σ2

1 )I2 + Hx

)
(17)

where I2 is the 2 × 2 identity matrix and Hx is given by Equa-
tion (18).

Hx =

(
h0 − h1 0

0 h0 − h1

)�( Σx R1x

R−1x Σx

)

×
(

h0 − h1 0

0 h0 − h1

)
(18)

In (18), Σx = E[x(n)x�(n)], R1x = E[x(n)x�(n − 1)], and
R−1x = E[x(n − 1)x�(n)]. The determinants and inverses of
these block matrices can be computed following [21, p. 572]

|Σ02 | = |Σ12 | = σ4
0 |Hx |

|Σ22 | = |Σ32 | = (σ2
0 + σ2

1 )2 |Hx | (19)

and

Σ−1
02 =

(
H−1

x −H−1
x

−H−1
x

1
σ 2

0
I2 + H−1

x

)

Σ−1
12 =

( 1
σ 2

0
I2 + H−1

x −H−1
x

−H−1
x H−1

x

)
(20)

Σ−1
22 =

(
H−1

x −H−1
x

−H−1
x

1
σ 2

0 +σ 2
1
I2 + H−1

x

)

Σ−1
32 =

( 1
σ 2

0 +σ 2
1
I2 + H−1

x −H−1
x

−H−1
x H−1

x

)
. (21)

where H−1
x is assumed to exist.

Performing the same computations shown in Appendix A for
vector z2d(n) and matrices (16) and (17), the following multiple
sample classification rule can then be obtained

H0 aif ‖z1(n)‖2 < ‖z0(n)‖2 and ‖z1(n)‖2 < T2 ,

H1 aif ‖z1(n)‖2 > ‖z0(n)‖2 and ‖z0(n)‖2 < T2 ,

H2 aif ‖z1(n)‖2 < ‖z0(n)‖2 and ‖z1(n)‖2 > T2 ,

H3 aif ‖z1(n)‖2 > ‖z0(n)‖2 and ‖z0(n)‖2 > T2 , (22)

where zi( n ) = [zi( n ), zi( n − 1 )]�, ‖zi(n)‖2 = z2
i (n) +

z2
i (n − 1) and

T2 = 2T = 2
σ2

0
(
σ2

0 + σ2
1
)

σ2
1

ln
(

1 +
σ2

1

σ2
0

)
. (23)

The factor 2 multiplying T in (23) results from
ln (|Σi1 |/|Σj1 |) = −2 ln

(
1 + σ2

1/σ2
0
)
. This result can be com-

pared with (10) obtained for the one-sample case. The gen-
eralization to more than two samples is straightforward. In-
deed, in the p-sample case, the covariance matrices Σip of
zpd(n) are defined as in (16) and (17), with I2 replaced with
Ip , and Hx defined differently. However, since Hx cancels
from the difference between the two inverses, the classifi-
cation rule for the p-sample case is expressed by (22) with
‖zi(n)‖2 = zi

�(n)zi(n) =
∑p−1

k=0 z2
i (n − k) the squared norm

of zi(n), i = 0, 1, and with T2 = 2T replaced with Tp = pT .



III. PERFORMANCE ANALYSIS

This section studies the probability of classification error for
the classifier proposed in Section II.

A. One-Sample Case

It is clear from the classification rules (10) that d(n) =
[z2

0 (n), z2
1 (n)]� is a sufficient statistic for the classification

problem. Interestingly, the exact distribution of d(n) can be
derived under all hypotheses, allowing for an analytical study
of the classifier performance. First, we note that the elements
of d(n) form the diagonal of the matrix Z = z(n)z�(n). Now,
since z(n) = [z0(n), z1(n)]� is jointly distributed according to
a zero-mean Gaussian distribution with covariance matrix Σi1 ,
see (4), it is shown in Appendix B that, under all hypotheses
Hi , i = 0, . . . , 3, d(n) is distributed according to a multivari-
ate gamma distribution denoted G(q, P ) with shape parameter
q = p/2 and scale parameter P = {p1 , p2 , p12}, with

p1 = 2Σi1(1, 1)

p2 = 2Σi1(2, 2)

p12 = 4 [Σi1(1, 1)Σi,1(2, 2) − Σi1(1, 2)Σi1(2, 1)] (24)

where Σi1(1, 1), Σi1(1, 2) = Σi1(2, 1) and Σi1(2, 2) are the
elements of the covariance matrix Σi1 .

B. Multiple-Sample

Once again it is clear that the vector d(n) =
[‖z0(n)‖2 , ‖z1(n)‖2 ]� is a sufficient statistic for solving the
proposed classification problem. Noting that zpd(n) is a re-
arrangement of the p vectors z(n − k), k = 0, . . . , p − 1,
the distribution of d(n) can be obtained following the rea-
soning presented in Appendix B, under the assumption of
independence of vectors z(n − i) and z(n − j), i �= j, and
stationarity for z(n − k). Assuming the vectors z(n − k),
k = 0, . . . , p − 1, to be distributed according to the same zero-
mean Gaussian distribution with covariance matrix Σi1 , ma-
trix A =

∑p−1
k=0 z(n − k)z�(n − k) is distributed according to a

Wishart distribution W2(p,Σi1) with p degrees of freedom [22,
Th. 3.2.4, p. 91]. Thus, d(n) = diag(A) is distributed accord-
ing to a multivariate gamma distribution with shape parameter
q = p/2 and P given by (31).

C. Probability of Error

To simplify the notation, define t0 and t1 such that d(n) =
[‖z0(n)‖2 , ‖z1(n)‖2 ]� = [t0 , t1 ]�. Also consider fj to be the
bivariate gamma density associated with hypothesis Hj . Then,
the probability of error Pij = P (Hi |Hj ), can be computed as:

Pij =
∫∫

Di

fj (t0 , t1) dt0dt1 (25)

where Di represents the integration limits associated with Hi .
A detailed expansion of (25) for all classes is presented in the
supplementary document, also available in [23]. The integral
(25) was implemented using MATLAB function integral2.m.

Figs. 3–5 show the probabilities P (Hi |Hj ) computed us-
ing (25) as functions of c2

x ∈ [0, 10] for different sets of param-

eters. Each row of these figures corresponds to a given true hy-
pothesis Hi , i = 0, . . . , 3. Fig. 3 shows P (Hi |Hj ) for σ2

1 = 1,
σ2

0 = 0.001, and p ∈ {1, 4, 8, 16, 32}. These plots clearly show
that the performance of the classifier improves by increasing c2

x

or p. A large value of p is especially important in distinguishing
between hypotheses H2 and H3 . It is also clear that the classi-
fication error increases significantly for low values of c2

x . As a
limiting situation, the vector d(n) will be placed exactly on the
line ‖z0(n)‖2 = ‖z1(n)‖2 separating the classes H0 and H1 ,
or H2 and H3 (see Fig. 2) for c2

x = 0.
Since p = 32 yielded good classification performance, we

opted for fixing p = 32 in Figs. 4 and 5, while varying the
DT power in Fig. 4 and the noise power in Fig. 5. Although
the DT power has little influence on the classifier performance
under H0 and H1 hypotheses (Fig. 4), a clearer influence is
observable under H2 and H3 . In this case, increasing the DT
power tends to increase P (H2 |H3) and P (H3 |H2) (bottom two
rows of Fig. 4). This behavior is expected as the effect of a
channel change in distinguishing between hypotheses H2 and
H3 diminishes with the increase of DT power. Fig. 5 explores
the effect of the noise power on the classifier performance. It
can be noted that a large noise power increases the probability
of error in detecting the onset of DT (P (H2 |H0), P (H3 |H1),
P (H0 |H2), P (H1 |H3)), as the performance is a function of the
DT to noise ratio σ2

1/σ2
0 . This effect, however, is very small for

ratios larger than 3 dB, which is typical in practice. Simulations
for the one-sample case with different DT and noise powers are
available in the supplementary document of this paper. Although
the results obtained for the one-sample case show (as expected)
a stronger influence of DT and noise power in the classification
performance when compared to the results for p = 32, they
corroborate the above conclusions.

IV. MONTE CARLO SIMULATIONS

In this section Monte Carlo (MC) simulations are performed
and compared with the theoretical expressions derived in the
previous section. These results are also valuable to assess
the effect of the independence approximation on the analysis
accuracy.

To generate the statistics d(n) by sampling the (2p)-
dimensional vectors z2d(n) from N (0,Σi2), we need to define
the covariance (Σx ) and correlation (Rkx ) matrices. Consider-
ing the input signal to be auto-regressive of order 1 (AR-1), Σx

was chosen as follows [19]:

Σx = σ2
x

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρ · · · ρN −1

ρ 1 · · · ρN −2

...
...

. . .
...

ρN −1 ρN −2 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(26)

where ρ controls the input signal correlation. Thus, the entries
of Rkx = E

[
x(n)x�(n − k)

]
can be written as

[Rkx ]ij = σ2
xρ|i−j−k |. (27)

Note that by fixing the vectors h0 and h1 , Hx depends only
on σ2

x , and ρ. Thus, for a given c2
x , σ2

x can be easily computed



Fig. 3. Theoretical performance curves for single- and multi-sample cases (σ2
1 = 1, σ2

0 = 0.001).

Fig. 4. Theoretical performance curves for different values of DT power (p = 32, σ2
0 = 0.001).

using (26) and (7). The vectors h0 and h1 were assumed to
have 1024 samples, and were constructed using the one-sided
exponential channels (see [19] and [20])

hi(k) =

{
c(0.95)k−Δ i , k ≥ Δi

0, otherwise
(28)

where Δi is a relative delay of the channel hi and the parameter
c is defined by the filter gain G = h�

0 h0 = h�
1 h1 . Two differ-

ent scenarios are studied here corresponding to G = −10 dB
(electrical application) and G = 6 dB (acoustic application).3

3Since the performance of the MC simulations using G = 6 dB are in agree-
ment with the simulations using G = −10 dB we suppressed their results from

Fig. 6 presents the MC simulations obtained by averaging
106 runs for G = −10 dB, with c2

x varied in the range [0, 10],
ρ = 0.5, σ2

1 = 1, and σ2
0 = 0.001, leading to an SNR of 30 dB.

When comparing Fig. 6 with theoretical results (Fig. 3), only
a very small degradation in classification accuracy is noted,
mainly for H2 and H3 , and p > 1. This small difference is
attributed to the use of the independence approximation.

MC simulations for different values of the correlation coeffi-
cient ρ are available in the supplementary document. Although
varying ρ has little impact on the classification performance, it

this manuscript. However, the interested reader can find them in the supplemen-
tary document.



Fig. 5. Theoretical performance curves for different values of noise power (p = 32, σ2
1 = 1).

Fig. 6. MC performance curves assuming AR-1 input signal, zpd (n) sampled from N (0, Σip ), G = −10 dB (electric application), σ2
1 = 1, σ2

0 = 0.001,
ρ = 0.5.

is interesting to notice that increasing ρ slightly improves the
classification performance in all classes, but especially for H2
and H3 . This behavior is expected since, for a given σ2

x , increas-
ing the correlation of the far-end signal tends to emphasize the
effect of the difference (h1 − h0) on the values of ‖z1(n)‖2

and ‖z2(n)‖2 , facilitating detection of hypotheses in (22).

V. APPLICATION TO ECHO CANCELLERS

A. Control Strategy

The classification hypotheses presented in (2) considered that
in each case the adaptive filter had time to converge or diverge.

This becomes a critical point for designing the control block
(see, Fig. 1) since the probabilities of error are high for low val-
ues of c2

x . Two direct consequences related to this characteristic
are the following:

1) (H0/H1) : Whenever h0 is copied to h1 c2
x becomes zero

and the probability of error becomes large between classes
H0 and H1 . In fact, if h0 = h1 the vector d(n) will be
exactly in the frontier between the two classes (see, Fig. 2).

2) (H1/H2 ,H3) : When CC happens, h0 and h1 may as-
sume values very far from the new true filter response
hnew. If this is the case, classification errors (H2 |H1 or



H3 |H1) are expected since both norms ‖zi(n)‖2 , i = 1, 2,
may become larger than T .

To address these problems, we propose a control strategy that
combines tuning of the adaptive stepsize μ, defining an appro-
priate frequency for the realization of the tests, and introducing
a delay before actually changing the system state after each
decision.

Adaptation step
The shadow filter h0 is always adapting, even during DT,

since the difference between h0 and h1 is crucial for improving
classification rates. However, different adaptation stepsizes can
be adopted for each class:

1) DuringH0 , μ = μ0 should be low since the aim is to make
a fine tuning of the filter coefficients.

2) During H1 , μ = μ1 should be set as high as possible to
speed-up convergence of the adaptive algorithm.

3) During H2 , μ = μ2 should be set to a small value so that
h0 can diverge slowly under DT, start to converge once
DT is over or in the occurrence of CC.

4) Class H3 is critical since it corresponds to the occurrence
of CC with or without DT signal. Our practical experience
indicates that setting μ = μ3 to a value between μ0 and
μ1 leads to good classification results.

Frequency of tests
The difference filter h0 − h1 plays a central role in classifica-

tion accuracy. Hence, it is advisable to allow a minimum number
Nt of samples between two tests to allow a clear differentiation
of the two responses.

Filter copy
Whenever classes H0 or H1 are detected, the shadow filter

h0 should be copied to h1 if ‖z0(n)‖2 < ‖z1(n)‖2 . To account
for transients occurring after the exit of a given state (especially
when DT stops), it is advisable to consider a delay of Nc < Nt

samples between the decision moment and the actual filter copy.
Decisions in the neighborhood of ‖z0(n)‖2 = ‖z1(n)‖2

Decision between H0 and H1 , and between H2 and H3
are rather arbitrary in practical situations when ‖z0(n)‖2 ≈
‖z1(n)‖2 . To address this issue, we propose to allow changes
between classes H0 and H1 , or between H2 and H3 only if

1 − ε ≤ ‖z0(n)‖2

‖z1(n)‖2 ≤ 1 + ε

where ε ∈ [0, 1).

B. Synthetic Data

This section considers the AR-1 (ρ = 0.5) data discussed in
Section IV, and also used in [19], [20]. We considered filter
responses h0 and h1 with N = 1024 samples, and fixed the
parameters p = 32, σ2

0 = 0.001, and σ2
1 = 1. The signal y(n)

consisting of 140 K samples (K = 1000) was formulated as

y(n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g�
0 x(n) + n0(n), n ∈ I1

g�
1 x(n) + n0(n), n ∈ I2

g�
1 x(n) + n1(n) + n0(n), n ∈ I3

g�
2 x(n) + n1(n) + n0(n), n ∈ I4

g�
2 x(n) + n0(n), n ∈ I5

(29)

Fig. 7. Performance of the echo canceller system (G = −10 dB). From top
down, the panels present the evolution of the classification result (top), adap-
tation stepsize μ, SE in dB for h0 and h1 (bottom). σ2

1 = 1, σ2
0 = 0.001,

ε = 0.25, Nt = 1024, Nc = 512.

with intervals I1 = [0, 20 K], I2 = (20 K, 80 K], I3 =
(80 K, 100 K], I4 = (100 K, 120 K], and I5 = (120 K, 140 K],
and gi , i ∈ {1, 2, 3}, being different echo path responses.
Hence, CC occurs at sample 20,001, DT occurs between
samples 80,001 and 120,000, and a second CC occurs during
the DT period at sample 100,001. For comparison, we consider
also the GLRT-based strategy proposed in [20]. The adaptive
algorithm employed for both methods was the Normalized
Least Mean Square (NLMS) algorithm, whose maximum
convergence speed is known to be attained for μ = 1 [24].
The control parameters for the proposed strategy were set to
Nt = 1024, Nc = 512, μ0 = μ2 = 0.1, μ1 = 1, μ3 = 0.3, and
ε was set to 0.25 for G = −10 dB. The GLRT parameters were
set following recommendations in [20], with p = 500, and
the detection threshold γ selected to avoid filter copies during
DT. For both strategies the adaptive filter coefficients were
initialized equal to zero and the adaptation step was initialized
as μ = μ1 (CC). The simulation results for one realization of
the synthetic signal are shown in Fig. 7, where blue curves
correspond to the proposed method and gray curves to the
GLRT. The top panel presents the classes attributed by the
classifier to each sample in time. The second panel presents
the step-size corresponding to each class. The squared excess
errors (SE) e2

i (n) = (y(n) − h�
i x(n) − n0(n))2 , i = {0, 1},

for h0 and h1 follow in the bottom two panels. Although the
good classification performance is evident in this example, the
H1/H2 ,H3 issue discussed in Section V-A can be noticed
after the CC at sample 20 K. The samples are classified as
H3 before ‖z0(n)‖2 becomes smaller then Tp . Then the
correct class H1 is selected before sample 30 K. However,
since the adaptive filter never stops adapting, this problem is
satisfactorily mitigated without severe deterioration of the echo
canceler performance, as can be verified by the SE results in the
two bottom panels. These results clearly show the performance
improvement resulting from the generalization of the approach
proposed in [19], [20]. The improvement shows especially



Fig. 8. Performance of the echo canceller system for voice over real channels.
From top down, the panels present the evolution of the classification result (top),
adaptation stepsize μ, SE in dB for h0 and h1 (bottom). ε = 0.25, Nt = 1024,
Nc = 512. Results for the proposed method (blue) and using the method in [18]
(gray).

during the single-talk periods. As DT or CC do not occur
during these periods, the proposed solution leads to a reduction
of the stepsize μ, clearly improving the quality of channel
estimation. Note, for instance, that the stepsize reduction that
happens at iteration 35 K due to the acceptance of hypothesis
H0 leads to a drop in SE that reaches 12 dB at iteration 80 K.
A decision threshold could not be found for the GLRT method
that avoided CC classification during DT and at the same
time allowed accurate classification after sample 120 K. Any
threshold leading to the correct classification of this portion of
the signal also led to H1 classification during the H3 periods in
interval I4 . This also shows the benefits of modeling this extra
hypothesis.

Simulations with G = 6 dB yielded similar results, and are
available in the supplementary document [23].

C. Voice Data Over a Real Channel

For the simulation presented in this section we used the same
voice data and channels considered in [19], [20]. The data is
approximately 144 K samples long, with two CC’s occurring
at sample 50 K and 123 K, and an intense DT occurring be-
tween 57–123 K. The simulation results presented in Fig. 8
compare the proposed decision framework (blue) with the se-
quential classification strategy presented in [18] (gray). To deal
with the power fluctuation inherent in speech signals, we used
p = 500 and set the detection threshold Tp = 1 × 10−5 chosen
empirically to avoid H0 and H1 errors during DT. The remain-
ing control strategy parameters were kept the same used in the
synthetic simulation presented in Fig. 7. The parameters used
for the method in [18] were set to the same values used by the
authors. Although the detector presented in [18] also considers
different classes, the authors did not consider the influence of
multiple samples nor used a shadow filter configuration, which
clearly impacts the results. The results displayed in Fig. 8 can
be also compared with the result obtained in [20, Fig. 9], which

indicates that the proposed classification and control strategies
perform at least as well as previous echo cancellation systems.

VI. RESULTS AND CONCLUSIONS

In this manuscript we presented a low computational cost
multi-class classifier with a coupling control strategy for the
echo cancellation problem. The proposed classification rule ini-
tially proposed for one-sample was easily extended to the multi-
sample scenario. Error probabilities were also analytically com-
puted under the assumption of independence among vectors
z(n − k). This assumption led to bivariate gamma distributions
for the sufficient statistics d(n) and performance curves that
proved accurate when confronted with Monte Carlo Simula-
tions. The results showed that the greater flexibility provided by
the multi-class approach could be well explored by the control
strategy which considered different step-sizes under each hy-
pothesis. The simulations with synthetic data showed that the
multi-class strategy is viable if accurate double-talk and noise
power can be estimated, improving the filter convergence dur-
ing long periods of single-talk. Simulations in a more realistic
scenario (voice over real channels) showed that the proposed
strategy works as well as other methods in the literature even
ignoring the power fluctuation of speech signals and using a
fixed threshold Tp .

APPENDIX A
CLASSIFICATION RULE

This appendix derives the classification rule (10) for the one
sample case. This rule corresponds to accepting hypothesis
Hi if

z�(n)
(
Σ−1

j1 − Σ−1
i1

)
z(n) > ln

( |Σi1 |
|Σj1 |

)
(30)

for all j �= i. As a consequence hypothesis H0 is accepted if the
three following conditions are satisfied

z�(n)
(
Σ−1

11 − Σ−1
01
)
z(n) > ln

( |Σ01 |
|Σ11 |

)

z�(n)
(
Σ−1

21 − Σ−1
01
)
z(n) > ln

( |Σ01 |
|Σ21 |

)

z�(n)
(
Σ−1

31 − Σ−1
01
)
z(n) > ln

( |Σ01 |
|Σ31 |

)
.

By replacing the matrix inverses and determinants in these
expressions, the following results are obtained

z2
0 (n) − z2

1 (n) > 0

z2
1 (n)

(
1

σ2
0 + σ2

1
− 1

σ2
0

)
> ln

(
1 +

σ2
1

σ2
0

)

z2
0 (n)

σ2
0 + σ2

1
− z2

1 (n)
σ2

0
> − ln

(
1 +

σ2
1

σ2
0

)
.

These three conditions are equivalent to

z2
1 (n) < z2

0 (n) and z2
1 (n) <

σ2
0 (σ2

0 + σ2
1 )

σ2
1

ln
(

1 +
σ2

1

σ2
0

)
.



Hypothesis H1 is accepted if the three following conditions
are satisfied

z�(n)
(
Σ−1

01 − Σ−1
11
)
z(n) > ln

( |Σ11 |
|Σ01 |

)

z�(n)
(
Σ−1

21 − Σ−1
11
)
z(n) > ln

( |Σ11 |
|Σ21 |

)

z�(n)
(
Σ−1

31 − Σ−1
11
)
z(n) > ln

( |Σ11 |
|Σ31 |

)
.

Equivalently

z2
1 (n) − z2

0 (n) > 0

z2
1 (n)

σ2
0 + σ2

1
− z2

0 (n)
σ2

0
> − ln

(
1 +

σ2
1

σ2
0

)

z2
0 (n)

(
1

σ2
0 + σ2

1
− 1

σ2
0

)
> − ln

(
1 +

σ2
1

σ2
0

)
.

These three conditions are equivalent to

z2
1 (n) > z2

0 (n) and z2
0 (n) <

σ2
0 (σ2

0 + σ2
1 )

σ2
1

ln
(

1 +
σ2

1

σ2
0

)
.

Hypothesis H2 is accepted if the three following conditions
are satisfied

z�(n)
(
Σ−1

01 − Σ−1
21
)
z(n) > ln

( |Σ21 |
|Σ01 |

)

z�(n)
(
Σ−1

11 − Σ−1
21
)
z(n) > ln

( |Σ21 |
|Σ11 |

)

z�(n)
(
Σ−1

31 − Σ−1
21
)
z(n) > ln

( |Σ21 |
|Σ31 |

)
.

Equivalently

z2
1 (n) >

σ2
0 (σ2

0 + σ2
1 )

σ2
1

ln
(

1 +
σ2

1

σ2
0

)

z2
1 (n)

σ2
0 + σ2

1
− z2

0 (n)
σ2

0
< − ln

(
1 +

σ2
1

σ2
0

)

z2
0 (n) > z2

1 (n).

These three conditions are equivalent to

z2
1 (n) < z2

0 (n) and z2
1 (n) >

σ2
0 (σ2

0 + σ2
1 )

σ2
1

ln
(

1 +
σ2

1

σ2
0

)
.

Hypothesis H3 is accepted if the three following conditions
are satisfied

z�(n)
(
Σ−1

01 − Σ−1
31
)
z(n) > ln

( |Σ31 |
|Σ01 |

)

z�(n)
(
Σ−1

11 − Σ−1
31
)
z(n) > ln

( |Σ31 |
|Σ11 |

)

z�(n)
(
Σ−1
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31
)
z(n) > ln

( |Σ31 |
|Σ21 |

)
.

Equivalently

z2
1 (n)
σ2

0
− z2

0 (n)
σ2

0 + σ2
1

> ln
(

1 +
σ2

1

σ2
0

)

z2
0 (n) >

σ2
0 (σ2

0 + σ2
1 )

σ2
1

ln
(

1 +
σ2

1

σ2
0

)

z2
0 (n) < z2

1 (n).

These three conditions are equivalent to
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0 (n) and z2
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0 (σ2

0 + σ2
1 )

σ2
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ln
(

1 +
σ2

1

σ2
0

)
.

APPENDIX B
MULTIVARIATE GAMMA DISTRIBUTION

Define p independent random vectors of R2 denoted as
vk (�) = [v0(� − k), v1(� − k)]� ∼ N (0,Σ), k = 0, . . . , p −
1, and the 2 × p matrix V (�) = [v0(�),v1(�), . . . ,vp−1(�)].
Then, the 2 × 2 matrix A = V (�)V �(�) is known to be dis-
tributed according to a Wishart distribution W2(p,Σ) with p
degrees of freedom and covariance matrix Σ [22, Th. 3.2.4, p.
91]. Now, define the vector d composed by the elements of the
main diagonal of A. Then, it was shown in Proposition 1.3.3
in [25, p. 32] that d is distributed according to a multivari-
ate gamma distribution denoted G(q, P ) with shape parameter
q = p/2 and scale parameter P = {p1 , p2 , p12}, with

p1 = 2Σ(1, 1)

p2 = 2Σ(2, 2)

p12 = 4 [Σ(1, 1)Σ(2, 2) − Σ(1, 2)Σ(2, 1)] (31)

where Σ(1, 1), Σ(1, 2) = Σ(2, 1) and Σ(2, 2) are the elements
of the covariance matrix Σ.

Now, making vk (n) = z(n − k) = [z0(n − k), z1(n −
k)]� ∼ N (0,Σip), k = 0, . . . , p − 1, for each hypoth-
esis Hi , and assuming the independence of z(n − i)
and z(n − j) for i �= j4, the above results show that
d(n) = [‖z0(n)‖2 , ‖z1(n)‖2 ]� is distributed according to a
multivariate gamma distribution with shape parameter q = p/2
and scale parameter P = {p1 , p2 , p12} evaluated from (31)
with Σ = Σip .
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