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ON DEFORMATIONS OF C * -ALGEBRAS BY ACTIONS OF K ÄHLERIAN LIE GROUPS

We show that two approaches to equivariant strict deformation quantization of C *algebras by actions of negatively curved Kählerian Lie groups, one based on oscillatory integrals and the other on quantizations maps defined by dual 2-cocycles, are equivalent.

Introduction

The aim of this note is to establish equivalence of two approaches to equivariant strict deformation quantization of C * -algebras equipped with actions of negatively curved Kählerian Lie groups. The first approach is motivated by Rieffel's theory of deformation quantization for actions of R d [START_REF] Rieffel | Deformation quantization for actions of R d[END_REF] and is based on the formalism of oscillatory integrals extended to these groups. This approach has recently been developed by the first two authors [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF] as a culmination of the program initiated in [START_REF] Bieliavsky | Strict quantization of solvable symmetric spaces[END_REF]. The second approach departs from the general theory of deformations of C * -algebras by actions of locally compact quantum groups and dual measurable cocycles, developed by the third and fourth authors [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF]. This theory, in turn, was motivated by Kasprzak's work [START_REF] Kasprzak | Rieffel deformation via crossed products[END_REF] on deformation quantization for actions of abelian groups. It is known by now that for R d the approaches of Rieffel and Kasprzak are equivalent [START_REF] Bhowmick | Deformation of operator algebras by Borel cocycles[END_REF][START_REF] Neshveyev | Smooth crossed products of Rieffel's deformations[END_REF], but all available proofs rely crucially on commutativity of the group R d . In particular, an important feature of deformations by actions of abelian groups is that the deformed algebras are equipped with actions of the same groups, while for non-abelian groups the symmetries of the deformed algebras should rather be quantum groups. This feature will be studied in detail in a subsequent publication. Furthermore, non-unimodularity of the groups we consider pose an additional difficulty, in that the * -structures on dense subalgebras of the deformed C * -algebras obtained by our two deformation procedures become incompatible. Our main result is that nevertheless the C * -algebras are still canonically isomorphic. This gives, in our opinion, a sound justification of both deformation procedures. Our result also provides new tools for studying the deformed quantum groups, by combining the operator algebraic techniques suggested from the approach in [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF] with the fine harmonic analysis of [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF] which, in particular, allows a control at the smooth level too. This will be utilized in subsequent publications. We would also like to stress that most arguments are quite general, so there is reason to believe that once the results in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF] are extended to a larger class of Lie groups, it should not take much effort to show compatibility with [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF].

Preliminaries

From the seminal work [START_REF] Pyateskii-Shapiro | Automorphic functions and the geometry of classical domains, Translated from the Russian[END_REF] of Pyatetskii-Shapiro on bounded homogeneous (not necessarily symmetric) domains of C n it is known that any Kählerian Lie group with negative sectional curvature (negatively curved, for short) can be written as an iterated semi-direct product

. . . G n G n-1 . . . G 2 G 1 (1.1)
of elementary blocks G j isomorphic to the Iwasawa factors AN j of the simple Lie groups SU (1, n j ) = KAN j . Such blocks are called elementary Kählerian Lie groups. Hence, an elementary Kählerian Lie group G = AN is a solvable non-unimodular real Lie group of dimension 2d+2 with Lie algebra g having a basis H, {X j } 2d j=1 , E satisfying the relations [H, E] = 2E, [H, X j ] = X j , [E, X j ] = 0, [X i , X j ] = (δ i+d,j -δ i,j+d )E.

The exponential map g → G is a global diffeomorphism, and we will mainly be working in the global coordinate system given by the diffeomorphism

R × R 2d × R (a, v, t) → exp aH exp 2d j=1 v j X j + tE ∈ G.
(

The group law then takes the form (a, v, t)(a , v , t ) = a + a , e -a v + v , e -2a t + t + 1 2 e -a ω 0 (v, v ) , where ω 0 (v, v ) = d i=1 (v i v i+d -v i+d v i ) is the standard symplectic form on R 2d . In this coordinate system the Lebesgue measure on R 2d+2 defines a (left) Haar measure dg on G with modular function ∆ G (a, v, t) = e -(2d+2)a .

Our convention (opposite to the one in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]) for the modular function is such that the equality

G f (gh) dg = ∆ G (h) -1 G f (g) dg holds.
Let now G be an arbitrary negatively curved Kählerian Lie group with Pyatetskii-Shapiro decomposition (1.1). An important feature of Pyatetskii-Shapiro's theory is that the extension homomorphisms at each step takes values in Sp(R 2d j ) if, as a manifold, G j = R × R 2d j × R. This implies in particular that under the global parametrization of g ∈ G by g = g 1 . . . g n with g i ∈ G i , the product of the Haar measures of the groups G i defines a Haar measure on G.

Unless otherwise specified, the L p -spaces on G will always be considered with respect to the Haar measure. We denote by λ and R the left and right regular representations, and by ρ the unitarization of R:

(λ g f )(g ) := f (g -1 g ) , (R g f )(g ) := f (g g) , ρ g := ∆ 1/2 G (g) R g . (1.3)
By X and X we mean the left-invariant and right-invariant vector fields on G associated to the elements X and -X of g, so

X := d dt t=0 R e tX , X := d dt t=0 λ e tX . (1.4) 
We also extend this notation to the whole universal enveloping Lie algebra U(g).

An important function space on G, denoted by S(G), is the analogue of the Euclidean Schwartz space, where the notion of regularity is associated to left-invariant vector fields, and the decay is measured by the specific smooth function 2 , where Ad denotes the adjoint action of G on g and the norm is the operator norm on the finite dimensional vector space g for any chosen Euclidean structure. We call d G the modular weight (not to be confused with the modular function ∆ G ). By [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]Lemma 1.4] we know that it is a sub-multiplicative weight on G (see also [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]Definition 1.1]), which basically means that it satisfies The Schwartz space S(G) is defined as the Fréchet completion of C ∞ c (G) associated with the family of semi-norms

d G : G → R * + , g → 1 + Ad g 2 + Ad g -1
∆(d G ) ≤ d G ⊗ d G , | Xd G | ≤ C L,X d G , |Xd G | ≤ C R,X d G , ∀X ∈ U(g), for constants C L,X , C
f → d n G Xf ∞ (1.5)
for all n ∈ N and X ∈ U(g) (clearly, it suffices to consider only a basis in U(g)).

Remark 1.1. Since d -1 G ∈ L p (G) for p > 2d + 1, one may use any other L p -norm in the definition of the semi-norms (1.5) without modifying the topology of S(G). One can also replace the leftinvariant vector fields in the semi-norms (1.5) by their right-invariant counterparts (1.4). This follows because left-invariant vector fields are linear combinations of right-invariant vector fields with coefficients given by smooth functions which, together with their derivatives (in the sense of left-or right-invariant vector fields), are bounded by a power of d G , and vice versa.

The Schwartz space S(G) is a nuclear Fréchet algebra stable under group inversion, and the left and right regular actions are strongly continuous. Obviously C ∞ c (G) ⊂ S(G) ⊂ C 0 (G) with continuous dense inclusions. When G is elementary, the space S(G) is densely contained in the ordinary Schwartz space S(R 2d+2 ) in the coordinates chart (1.2).

We will need the following result.

Lemma 1.2. For any negatively curved Kählerian Lie group G, the Schwartz space S(G) is a dense subspace of the Fourier algebra A(G).

Proof. The left regular representation is strongly continuous on S(G). Since by Remark 1.1 we may use right-invariant vector fields instead of left-invariant ones, we see that S(G) is its own subspace of smooth vectors for λ. By the Dixmier-Malliavin Theorem it follows that S(G) also coincides with its Gårding subspace, that is, we have S(G) = S(G) * S(G) (finite sum of convolution products). This proves the lemma, since

A(G) = L 2 (G) * L 2 ρ (G)
, where L 2 ρ (G) is the L 2 -space on G for the right Haar measure, and since S(G) is dense in both L 2 (G) and L 2 ρ (G). Another important function space is the non-Abelian analogue of the Laurent Schwartz's space B:

B(G) := F ∈ C ∞ (G) : XF ∞ < ∞, ∀X ∈ U(g) . (1.6)
When G is elementary, we can equivalently define B(G) using the increasing sequence of norms

F k := max j+j 1 +...j 2d +j ≤k H j X j 1 1 . . . X j 2d 2d E j F ∞ . (1.7)
It is shown in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]Lemma 1.8] that B(G) is Fréchet. In fact, it coincides with the space of smooth vectors for the right regular action R within C ru (G), the C * -algebra of right-uniformly continuous and bounded functions on G. (Our convention for the right uniform structure on a group is the one that yields strong continuity for the right regular action.) However, as opposed to the Schwartz space S(G), one cannot use right-invariant vector fields to topologize B(G) and it is not stable under the group inversion.

Let us finally say a few words about elementary Kählerian Lie groups G. They are endowed with extra geometrical structures not shared by non-elementary ones. Namely, they are also left Gequivariant symplectic symmetric spaces. By this we mean that each g ∈ G has a smooth involution s g : G → G (the symmetry at g), having g as a unique isolated fixed point, such that

s g • s g • s g = s sg(g ) ,
together with a symplectic 2-form ω on G that is invariant s g ω = ω under the symmetries, and such that λ acts by symplectomorphisms on (G, ω) in a covariant fashion

λ g • s g = s g -1 g • λ g
with respect to the symmetries. In the coordinates (1.2) the symmetries are given by

s (a,v,t) (a , v , t ) := 2a -a , 2v cosh(a -a ) -v , 2t cosh(2a -2a ) -t + ω 0 (v, v ) sinh(a -a ) ,
while the invariant symplectic form is given by ω := 2da∧dt + ω 0 . As a symplectic symmetric space, G has a unique midpoint map, that is, a smooth map mid : G × G → G such that s mid(g,g ) (g) = g for all g, g ∈ G. Moreover, the medial triangle map

Φ G : G 3 → G 3 , (g 1 , g 2 , g 3 ) → mid(g 1 , g 2 ), mid(g 2 , g 3 ), mid(g 3 , g 1 ) , (1.8) 
is a global diffeomorphism invariant under the diagonal left action of G.

We also mention the decomposition G = Q P , which reflects the existence of a global (real) polarization on the symplectic manifold (G, ω), where

Q = exp RH + d j=1 RX j and P = exp 2d j=d+1 RX j + RE . (1.9) 
The group Q is non-unimodular and solvable, while P is Abelian.

Deformations of function algebras

In this section we fix an elementary Kählerian Lie group G. We aim to compare the two deformations of function algebras of G studied in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF] and [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF].

2.1. Deformations of C 0 (G). For a fixed parameter θ ∈ R * consider the two-point kernel on G defined by

K θ (g 1 , g 2 ) = 4 (πθ) 2d+2 A(g 1 , g 2 ) exp 2i θ S(g 1 , g 2 ) , (2.1) 
where, with Φ G the medial triangle map given in (1.8), we define

S(g 1 , g 2 ) := Area Φ -1 G (e, g 1 , g 2 ) , A(g 1 , g 2 ) := Jac 1/2 Φ -1 G (e, g 1 , g 2 ).
Here Area(g 1 , g 2 , g 3 ) is the symplectic area of any surface in G admitting an oriented geodesic triangle T (g 1 , g 2 , g 3 ) as boundary. (This is unambiguously defined since as a manifold G has trivial de Rham cohomology in degree two.) In the coordinates (1.2), with g j = (a j , v j , t j ), we have

A(g 1 , g 2 ) = cosh(a 1 ) cosh(a 2 ) cosh(a 1 -a 2 ) d cosh(2a 1 ) cosh(2a 2 ) cosh(2a 1 -2a 2 ) 1/2 , S(g 1 , g 2 ) = sinh(2a 1 )t 2 -sinh(2a 2 )t 1 + cosh(a 1 ) cosh(a 2 )ω 0 (v 1 , v 2 )
. It is sometimes useful to consider the associated three point kernel

K 3 θ (g 1 , g 2 , g 3 ) := K θ (g -1 1 g 2 , g -1 1 g 3 ), which of course is invariant under the diagonal left action of G. But since the functions Area Φ -1 G (g 1 , g 2 , g 3 ) and Jac Φ -1 G (g 1 , g 2 , g 3 ),
are also invariant under the diagonal left action of G as well as under cyclic permutations, we see that K 3 G is also invariant under cyclic permutations. At the level of the two point kernel this implies

K θ (g -1 , g -1 h) = K θ (h, g). (2.2)
In passing we record another important symmetry property

K θ (g, h) = K -θ (g, h) = K θ (h, g). (2.3)
By [4, Proposition 3.10] the formula below endows S(G) with a new involutive and associative Fréchet algebra structure (the involution is still complex conjugation and the topology is unaltered):

f 1 θ f 2 = G×G K θ (g 1 , g 2 ) R g 1 (f 1 ) R g 2 (f 2 ) dg 1 dg 2 .
(2.4)

Property (2.3) entails f 1 -θ f 2 = f 2 θ f 1 .
(2.5) Up to a non-trivial unitary transformation of L 2 (G) that commutes with complex conjugation, this deformed product is, in the chart (1.2), the usual Moyal product on R 2d+2 . More precisely, we have constructed in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF] (see Theorem 6.43 and Lemma 7.10 for the elementary case and Theorem 6.63 and Proposition 7.26 in the general case) a G-equivariant quantization map Op G (which coincides with Ω θ,m 0 in the notations of [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]) which defines a unitary operator from L 2 (G) to the Hilbert algebra of Hilbert-Schmidt operators on L 2 (Q) (the latter carrying a irreducible unitary representation of G). Here Q is the subgroup of G entering the decomposition G = Q P given in (1.9). Then,

f 1 θ f 2 = Op -1 G Op G (f 1 )Op G (f 2 ) and the required unitary transformation of L 2 (G) is given by U θ := Op -1 W • Op G ,
where Op W denotes the Weyl quantization map (U θ is T -1 θ,0 in the notations of [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF] and its explicit form can be easily deduced from [4, Equation (62)]). In particular, the deformed product extends to the space L 2 (G), which then becomes a Hilbert algebra isomorphic to the algebra of Hilbert-Schmidt operators on a separable Hilbert space.

So we have a representation π θ of (S(G), θ ) on L 2 (G) given by

π θ (f 1 )f 2 = f 1 θ f 2 for f 1 , f 2 ∈ S(G).
The operators π θ (f ) are bounded, with π θ (f ) ≤ f 2 , and satisfy π θ (f ) * = π θ ( f ). Of course, this also implies that the C * -algebra generated by π θ (S(G)) is isomorphic to the algebra of compact operators on L 2 (Q). This C * -algebra is a deformation of C 0 (G), which we coin

C 0 (G) θ . Be aware that L 2 (G) ⊂ C 0 (G) θ but C 0 (G) ⊂ C 0 (G) θ (or more precisely, π θ extends to L 2 (G) but not to C 0 (G)).
This definition of C 0 (G) θ is slightly different from the one in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]Proposition 7.26], but it is equivalent to it, in that we use the representation π θ on L 2 (G) instead of the quasi-equivalent irreducible representation on L 2 (Q) employed in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF].

Starting from the product θ there is another natural construction of a C * -algebra deforming C 0 (G), see [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF]. Let W * (G) be the von Neumann algebra generated by the image of the left regular representation λ on L 2 (G). As usual the Fourier algebra

A(G) is identified with the pre- dual W * (G) * of W * (G) using the pairing (f, λ g ) = f (g).
Recall [8, section 5.1] that the kernel K θ defines a dual unitary 2-cocycle Ω θ on G, initially defined as the quadratic form on S(G × G) given by

Ω θ ξ, ζ := G×G K θ (g 1 , g 2 ) (λ g -1 1 ⊗ λ g -1 2 )ξ, ζ dg 1 dg 2 .
(Our scalar products are linear in the first variable.) As it was not proven in [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF] that this form indeed defines a unitary operator on L 2 (G × G), for the reader's convenience we supply a possible argument in Appendix. Thus, Ω θ is a unitary element in W * (G) ⊗W * (G) satisfying the cocycle identity

(Ω θ ⊗ 1)( ∆ ⊗ι)(Ω θ ) = (1 ⊗ Ω θ )(ι ⊗ ∆)(Ω θ ), where ∆ : W * (G) → W * (G) ⊗W * (G) is the comultiplication defined by ∆(λ g ) = λ g ⊗ λ g . Since S(G) = S(G) * S(G) ⊂ A(G) by Lemma 1.2, we have f 1 θ f 2 = (f 1 ⊗ f 2 )( ∆(•)Ω * θ ) for f 1 , f 2 ∈ S(G) ⊂ A(G)
. This identity can be used to extend θ to the whole space A(G), but we are not going to do this and will always work with the dense subspace S(G) of A(G).

Consider now the multiplicative unitary Ŵ ∈ W * (G) ⊗L ∞ (G) of the dual quantum group Ĝ, so

( Ŵ ξ)(g, h) = ξ(hg, h) = (λ -1 h ξ(•, h))(g) for ξ ∈ L 2 (G × G). (2.6) 
According to [8, Sections 2.1 & 3.1] we can define a representation π Ω θ of (S(G), θ ) on L 2 (G) by

π Ω θ (f ) = (f ⊗ ι)( Ŵ Ω * θ )
. The norm closure of π Ω θ (S(G)) becomes a C * -algebra, which we denote by C * r ( Ĝ; Ω θ ). In order to compare the algebras C 0 (G) θ and C * r ( Ĝ; Ω θ ), consider the respective modular conjugations J and Ĵ of the group G and the dual quantum group Ĝ, so

(Jξ)(g) = ξ(g), ( Ĵξ)(g) = ∆ -1/2 G (g) ξ(g -1 ).
Then, as already observed in [8, Sections 4.1 & 5.2], it follows from our definitions that

π Ω θ (f 1 ) f2 = (f 1 θ f 2 )ˇfor f 1 , f 2 ∈ S(G), (2.7) 
where f (g) = f (g -1 ). Consider the involutive unitary given by the product of the two modular conjugations J := J Ĵ = ĴJ. Then (2.7) implies that

π Ω θ (f ) = J ∆ -1/2 G π θ (f )∆ 1/2 G J for f ∈ S(G). (2.8) 
Here we view the modular function ∆ G as the (unbounded) operator of multiplication by ∆ G on L 2 (G).

We are going to show that ∆ G coincides on S(G) with the adjoint action of a θ -multiplier of S(G), for which we need to introduce the following pseudo-differential operator on G:

T θ := 1 -π 2 θ 2 ∂ 2 t 1/2 + iπθ∂ t d+1 .
We observe that T θ commutes with left translations (as ∂ t coincides, in the chart (1.2), with the left-invariant vector field E associated to the element E ∈ g), that it preserves the space S(G), and that

T -1 θ = T -θ . Lemma 2.1. Let α ∈ C. The maps f → L θ (∆ α G )f := ∆ α G θ f and f → R θ (∆ α G )f := f θ ∆ α G
define invertible operators on S(G) which factorize as

L θ (∆ α G ) = ∆ α G • T α θ = T α θ • ∆ α G and R θ (∆ α G ) = ∆ α G • T α -θ = T α -θ • ∆ α G .
Here the expressions ∆ α G θ f and f θ ∆ α G are defined by interpreting (2.4) as an oscillatory integral, as explained in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]Chapter 3]. This requires ∆ α G to be a tempered weight, which indeed follows from the discussion in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF] 

(∆ α G ) = ∆ α G • T α θ .
Indeed, since ∆ G only depends on the variable a, while T θ is a continuous function of i∂ t , the maps ∆ α G and

T α θ commute. Hence L θ (∆ α G ) = T α θ • ∆ α G . Next, the decomposition L θ (∆ α G ) = ∆ α G • T α θ also yields invertibility of L θ (∆ α G ), since T -1 θ = T -θ . Last, the relations for R θ (∆ α G ) also follow, since L -θ (∆ α G ) = R θ (∆ α G ), which, in turn, is a consequence of K -θ (g 1 , g 2 ) = K θ (g 2 , g 1 ). To prove the factorization L θ (∆ α G ) = ∆ α G • T α θ , note first that the left-invariance of the deformed product θ implies that the operator ∆ -α G • L θ (∆ α G ) commutes with left translations, whence it is of the form R(S) for a distribution S ∈ C ∞ c (G) C ∞ c (R 2d+2
) . To determine explicitly this distribution, we proceed with formal computations which, however, can easily be made rigorous. With g = (a, v, t), we have

∆ -α G (g) ∆ α G θ f (g) = ∆ -α G (g) K θ (g 1 , g 2 ) ∆ α G (gg 1 ) f (gg 2 ) dg 1 dg 2 = K θ (g 1 , g 2 ) ∆ α G (g 1 ) f 2 (gg 2 ) dg 1 dg 2 = 4 (πθ) 2d+2 A(a 1 , a 2 )e 2i θ (sinh(2a 1 )t 2 -sinh(2a 2 )t 1 +cosh(a 1 ) cosh(a 2 )ω 0 (v 1 ,v 2 )) e α(2d+2)a 1 × f a + a 2 , e -a 2 v + v 2 , e -2a 2 t + t 2 + 1 2 e -a 2 ω 0 (v, v 2 ) da 1 dv 1 dt 1 da 2 dv 2 dt 2 = 4 π 2 θ 2 cosh(a 1 -a 2 ) d cosh(a 1 ) cosh(a 2 ) d cosh(2a 1 ) cosh(2a 2 ) cosh(2a 1 -2a 2 ) 1/2 × e α(2d+2)a 1 e 2i θ (sinh(2a 1 )t 2 -sinh(2a 2 )t 1 ) f a + a 2 , e -a 2 v, e -2a 2 t + t 2 da 1 dt 1 da 2 dt 2 = 2 πθ cosh(2a 1 ) e α(2d+2)a 1 e 2i θ sinh(2a 1 )t 2 f a, v, t + t 2 da 1 dt 2 = πθa 1 + (1 + (πθa 1 ) 2 ) 1/2 α(d+1) e 2iπa 1 (t 2 -t) f (a, v, t 2 ) da 1 dt 2 ,
which concludes the proof.

Remark 2.2. From the above Lemma it easily follows that ∆

α G θ ∆ β G = ∆ α+β G for all α, β ∈ C. Proposition 2.3. We have C * r ( Ĝ; Ω θ ) = J C 0 (G) θ J . Proof.
From Lemma 2.1 we deduce the following equalities for operators on S(G):

∆ α G = T -α θ • L θ (∆ α G ) = L θ (∆ α G ) • T -α θ and ∆ α G = T -α -θ • R θ (∆ α G ) = R θ (∆ α G ) • T -α -θ . Since T -θ = T -1 θ , we then get ∆ 2α G = L θ (∆ α G ) • R θ (∆ α G ) = R θ (∆ α G ) • L θ (∆ α G ). With ∆ α
G viewed as a densely defined operator on L 2 (G) preserving its domain S(G), the relation above immediately implies

∆ -1/2 G π θ (f )∆ 1/2 G = π θ (∆ -1/4 G θ f θ ∆ 1/4 G ), (2.9) 
as operators on S(G). From this it follows that the map sending the operator π θ (f ) to the closure of the operator ∆

-1/2 G π θ (f )∆ 1/2
G defines an automorphism of the Fréchet space S(G), identified with π θ (S(G)). The result is then an immediate consequence of the identity (2.8).

Define an action

β of G on C * r ( Ĝ; Ω θ ) by β g = Ad ρ g . Recall, see [8, Section 2.4], that the cocycle Ω θ is called regular if C * r ( Ĝ; Ω θ ) β
G is isomorphic to the algebra of compact operators on some Hilbert space. The condition of regularity plays an important role in the theory developed in [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF]. As follows from the recent work of Baaj and Crespo [START_REF] Baaj | Equivalence monoidale de groupes quantiques et K-théorie bivariante[END_REF], for general locally compact quantum groups this condition is equivalent to regularity of G, so in our case it is satisfied for any dual cocycle. This result is proved using the theory of quantum groupoids. For the cocycle Ω θ , here is a more direct proof. 

Recall also that the cocycle Ω

θ is called continuous if Ω θ ∈ M (C * r (G) ⊗ C * r (G)
). Proposition 2.5. The dual cocycle Ω θ is continuous.

Proof. We claim that both Ω θ and Ω * θ preserve the space S(G×G). This is true by a minor extension of [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]Lemma 1.49], where instead of the map R ⊗ R from [4, Lemma 1.42], one considers the maps

C ∞ (G × G) → C ∞ G × G, C ∞ (G × G) , f → (x, y) ∈ G × G → (λ x ⊗ λ y )(f ) := (g, h) ∈ G × G → f (x -1 g, y -1 h) , f → (x, y) ∈ G × G → (λ x -1 ⊗ λ y -1 )(f ) := (g, h) ∈ G × G → f (xg, yh) .
The proof then follows from a minor modification of [8, Proposition 4.5] using the fact that S(G) is dense in L 2 (G).

2.2. Oscillatory integrals and quantization maps. Both deformation procedures work for a larger class of functions than S(G). Let us start by explaining the approach in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF].

The product θ extends to the space B(G) defined by (1.6), by replacing the ordinary integrals appearing in (2.4) with oscillatory ones, see Chapters 1-3 in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]. Moreover, then (S(G), θ ) is an ideal of (B(G), θ ) and the representation π θ extends (necessarily uniquely) to (B(G), θ ). Namely,

π θ (f )ξ = f θ ξ for f ∈ B(G), ξ ∈ S(G).
By [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]Theorems 7.20 & 7.33] we have

π θ (f ) ≤ C f K for f ∈ B(G), (2.10) 
where C > 0 and • K is one of the semi-norms (1.7) of B(G) with K ∈ N depending only on dim(G).

The representation π θ can actually be described without using oscillatory integrals. In order to see this, we need an important property of the product θ called strong traciality, which means that under the integral, deformed and pointwise products coincide. As the simple proof of this was omitted in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF], we include it here. Lemma 2.6. For f 1 , f 2 ∈ S(G), we have

G (f 1 θ f 2 )(g) dg = G f 1 (g) f 2 (g) dg.
Proof. Since the Hilbert algebra (L 2 (G), θ ) is unitarily equivalent to the Hilbert-Schmidt operators on L 2 (Q), cyclicity of the operator trace implies that for any f j ∈ S(G), j = 1, 2, 3, we have

(f 1 θ f 2 , f 3 ) = (f 2 , f1 θ f 3 ).
By [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]Proposition 4.19] (or rather its proof), any bounded approximate unit for the commutative algebra S(G) is also a bounded approximate unit for the non-commutative algebra (S(G), θ ). Hence, letting f 3 run through such an approximate unit, establishes the required equality.

We now give a description of π θ using ordinary integrals. Lemma 2.7. For any f ∈ B(G) and ξ, ζ ∈ S(G), we have

(π θ (f )ξ, ζ) = G f (g) (ξ θ ζ)(g) dg.
Proof. For f ∈ S(G) the result follows from Lemma 2.6. To extend it to all f ∈ B(G), we choose a uniformly bounded sequence

{f n } n in S(G) such that f n → f in B d G (G), that is, max j+j 1 +...j 2d +j ≤k d -1 G H j X j 1 1 . . . X j 2d 2d E j (f -f n ) ∞ → 0 for all k ∈ N,
which is possible by [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]Lemma 1.8 (viii)]. Then f n θ ξ → f θ ξ in S(G) by [4, Theorem 3.9], and the lemma follows by the dominated convergence theorem.

Let us now turn to the approach in [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF]. Let ŴΩ θ be the multiplicative unitary of the locally compact quantum group ĜΩ θ defined as the von Neumann algebra L ∞ ( ĜΩ θ ) = W * (G) with the coproduct ∆Ω θ = Ω θ ∆(•)Ω * θ and invariant weights as defined by De Commer [START_REF] Commer | Galois objects and cocycle twisting for locally compact quantum groups[END_REF]. Using this unitary we can define 'quantization maps'

T ν : L ∞ (G) → B(L 2 (G)), f → (ι ⊗ ν) ŴΩ θ Ω θ (f ⊗ 1) Ω * θ Ŵ * Ω θ , for ν ∈ K(L 2 (G)) * = B(L 2 (G)) * .
Here we identify a function f ∈ L ∞ (G) with the operator of multiplication by f on L 2 (G). From now on we write K for the algebra of compact operators

K(L 2 (G)). It is shown in [8, Lemma 3.2] that C * r ( Ĝ; Ω θ ) = [T ν (f ) : f ∈ C 0 (G), ν ∈ K * ],
where the brackets [ ] denote closed linear span.

In order to exhibit the quantization maps more explicitly, recall that by [1, Proposition 5.4] the multiplicative unitary ŴΩ θ is given, with Ŵ as in (2.6), by

ŴΩ θ = ( J ⊗ Ĵ)Ω θ Ŵ * (J ⊗ Ĵ)Ω * θ .
The involution J here (denoted by J N in [START_REF] Commer | Galois objects and cocycle twisting for locally compact quantum groups[END_REF]) is defined as follows. Consider the von Neumann algebra W * ( Ĝ; Ω θ ) generated by C * r ( Ĝ; Ω θ ). The action β extends to this von Neumann algebra by the same formula as before, so β g = Ad ρ g . This action is integrable and ergodic, hence it defines a n.s.f. weight φ on W * ( Ĝ; Ω θ ) by

φ(x)1 = G β g (x) dg for x ∈ W * ( Ĝ; Ω θ ) + .
The space L 2 (G) can be identified with the space of the GNS-representation defined by φ. Namely, letting as usual

N φ = {x | φ(x * x) < ∞}, we have an L 2 -norm isometric map Λ : N φ → L 2 (G) uniquely determined by Λ((f ⊗ ι)( Ŵ Ω * θ )) = (f ⊗ ι)( Ŵ ) for f ∈ A(G)
such that the right hand side is in L 2 (G). In other words, Λ is uniquely defined by

Λ(π Ω θ (f )) = f for f ∈ S(G).
Then J is the corresponding modular conjugation. Denote the associated modular operator by ∆.

Proposition 2.8. For the modular conjugation we have J = J, while the modular operator ∆ is the closure of the operator

f → (∆ -1 G θ f θ ∆ G )ˇ, f ∈ S(G).
In particular, the modular group of φ is given by σ φ t = Ad ∆ 2it G . Proof. It is more convenient to work with the von Neumann algebra L ∞ (G) θ generated by C 0 (G) θ and equipped with the action Ad

λ g . Since C 0 (G) θ is isomorphic to K(L 2 (Q)), L ∞ (G) θ is isomorphic to B(L 2 (Q)). Denote by φθ the corresponding weight on L ∞ (G) θ , so φθ (x)1 = G (Ad λ g )(x) dg for x ∈ L ∞ (G) θ,+ . Then φθ • (Ad λ g ) = ∆ G (g) -1 φθ .
On the other hand, let ψ θ be the operator trace on B(L 2 (Q)) transported to L ∞ (G) θ . We want to express φθ in terms of ψ θ . For this, we first use the fact that Op G , defined in the paragraph following equation (2.5), is a unitary operator from L 2 (G) to the Hilbert space of Hilbert-Schmidt operators on L 2 (Q). In particular, for f ∈ S(G) we have

ψ θ (π θ ( f θ f )) = Tr Op G (f ) 2 = G |f (g)| 2 dg.
Denote by ∆ θ the image of ∆ G under π θ . More precisely, we define ∆ θ as the generator of the one-parameter unitary group {L θ (∆ it )} t∈R = {L θ (∆) it } t∈R . Therefore ∆ θ is a positive unbounded operator affiliated with L ∞ (G) θ . Note that it easily follows from Lemma 2.1 that for any f ∈ S(G)

the map α → ∆ α G θ f ∈ L 2 (G) is analytic. Hence S(G) is a core for ∆ θ . Consider now the weight ψθ = ψ θ (∆ -1/2 θ • ∆ -1/2 θ
).

Since the product θ is invariant under left translations, we have (Ad

λ g )(∆ θ ) = ∆ G (g) -1 ∆ θ . It follows that ψθ • (Ad λ g ) = ∆ G (g) -1
ψθ . This already implies that φθ = c ψθ for some c > 0. Indeed, as both φθ and ψθ are scaled the same way under the action Ad λ, Connes' Radon-Nikodym cocycle [D φθ : D ψθ ] t is Ad λ-invariant. Since the action Ad λ on L ∞ (G) θ is ergodic, the cocycle must be scalar-valued, and this implies the claim. We will see soon that c = 1.

We can now identify L 2 (G) with the space of the GNS-representation defined by φθ using the isometric map Λθ :

N φθ → L 2 (G) uniquely determined by Λθ (π θ (f )) = c 1/2 f θ ∆ -1/2 G for f ∈ S(G).

The corresponding modular operator ∆θ satisfies ∆it

θ Λθ (x) = Λθ (∆ -it θ x∆ it θ ), hence it is the closure of the operator f → ∆ -1 G θ f θ ∆ G , f ∈ S(G).
Since the modular conjugation satisfies Jθ ∆1/2 θ Λθ (x) = Λθ (x * ) for x ∈ N φθ ∩ N * φθ , we also have Jθ = J.

Let us return to W * ( Ĝ; Ω θ ) = J L ∞ (G) θ J . Since by the identities (2.8) and (2.9) we have

π Ω θ (f ) = J π θ (∆ -1/4 G θ f θ ∆ 1/4 G )J for f ∈ S(G), (2.11) 
we can identify L 2 (G) with the space of the GNS-representation defined by φ using the map

π Ω θ (f ) → J Λθ (π θ (∆ -1/4 G θ f θ ∆ 1/4 G )) = c 1/2 (∆ 1/2 G (∆ -1/4 G θ f θ ∆ -1/4 G ))ˇ= c 1/2 f .
Comparing this with Λ we conclude that c = 1. It follows then that ∆ = J ∆θ J , J = J Jθ J .

Therefore J = J and ∆ is the closure of the operator

f → (∆ -1 G θ f θ ∆ G )ˇ, f ∈ S(G).
Finally, the statement about the modular group follows from

∆ -it θ π θ (f )∆ it θ = π θ (∆ -it G θ f θ ∆ it G ) = ∆ -2it G π θ (f )∆ 2it G , as J ∆ G J = ∆ -1 G .
As a corollary we get

ŴΩ θ Ω θ = (J ⊗ Ĵ)Ω θ Ŵ * (J ⊗ Ĵ).
(2.12)

For f ∈ L 1 (G), we let as usual λ(f ) := G f (g) λ(g) dg be the integrated left regular representation.

Lemma 2.9. For f 1 , f 2 ∈ S(G), consider the function

η f 1 ,f 2 = ∆ 3/4 G θ f2 θ f 1 θ ∆ 1/4 G ∈ S(G). Then for the linear functional ω f 1 ,f 2 = (• f 1 , f 2 ) ∈ K * we have (ι ⊗ ω f 1 ,f 2 )( ŴΩ θ Ω θ ) = λ(η f 1 ,f 2 ).
Proof. Take ξ ∈ S(G). Using (2.12) we compute (the integrals below are absolutely convergent):

( ŴΩ θ Ω θ (ξ ⊗ f 1 ))(x, y) = ∆ G (y) -1/2 (Ω θ Ŵ * (J ⊗ Ĵ)(ξ ⊗ f 1 ))(x, y -1 ) = ∆ G (y) -1/2 K θ (g, h) ( Ŵ * (J ⊗ Ĵ)(ξ ⊗ f 1 ))(gx, hy -1 ) dg dh = ∆ G (y) -1/2 K θ (g, h) (Jξ ⊗ Ĵf 1 )(yh -1 gx, hy -1 ) dg dh = K θ (g, h) ∆ G (h) -1/2 ξ(yh -1 gx) f 1 (yh -1 ) dg dh. It follows that (ι ⊗ ω f 1 ,f 2 )( ŴΩ θ Ω θ )ξ (x) = K θ (g, h) ∆ G (h) -1/2 (λ g -1 hy -1 ξ)(x)f 1 (yh -1 ) f 2 (y) dg dh dy = K θ (g, h) ∆ G (h) -1/2 ∆ G (y) -1 (λ g -1 hy ξ)(x) f 1 (y -1 h -1 ) f 2 (y -1 ) dg dh dy = K θ (g, h) ∆ G (h) -1/2 ∆ G (h -1 gy) -1 (λ y ξ)(x) f 1 (y -1 g -1 ) f 2 (y -1 g -1 h) dg dh dy = η(y) (λ y ξ)(x) dy,
where

η(y) = K θ (g, h) (∆ 1/2 G f 1 )(yg -1 ) (∆ 1/2 G f2 )(yg -1 h) dg dh = K θ (g -1 , h) ∆ G (y) (∆ -1/2 G f 1 )(yg) (∆ 1/2 G f2 )(ygh) dg dh = K θ (g -1 , g -1 h) ∆ G (y) (∆ -1/2 G f 1 )(yg) (∆ 1/2 G f2 )(yh) dg dh. Using (2.2) we get η = ∆ G ((∆ 1/2 G f2 ) θ (∆ -1/2 G f 1 )
), and from (2.9) we deduce

η = ∆ 3/4 G θ f2 θ f 1 θ ∆ 1/4 G = η f 1 ,f 2 , proving the lemma.
With R g as in (1.3) and f ∈ S(G) we define an operator R(f ) = G f (g) R g dg acting on functions on G. Lemma 2.10. For any f, f 1 , f 2 ∈ S(G) we have

T ω f 1 ,f 2 ( f ) = π Ω θ (R(η f 1 ,f 2 )f ).
Proof. By identity (3.1) in [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF] we have

( ŴΩ θ Ω θ ) 23 Ŵ12 ( ŴΩ θ Ω θ ) * 23 = ( Ŵ Ω * θ ) 12 ( ŴΩ θ Ω θ ) 13 . Applying ι ⊗ ι ⊗ ω f 1 ,f 2 to
this, then by the previous lemma we get

(ι ⊗ T ω f 1 ,f 2 )( Ŵ ) = Ŵ Ω * θ (λ(η f 1 ,f 2 ) ⊗ 1)
. Applying now f ⊗ ι, we get the required identity, as (f ⊗ ι)( Ŵ ) = f and the equality

f (• λ(η)) = R(η)f holds in A(G) for any η ∈ L 1 (G).
The maps T ν : L ∞ (G) → B(L 2 (G)) are obviously ultraweakly continuous. On the other hand, for the representation π θ : B(G) → B(L 2 (G)) we have the following result. Lemma 2.11. For any η ∈ S(G), the operator

R(η) maps L ∞ (G) into B(G) and the map L ∞ (G) → B(L 2 (G)), f → π θ (R(η)f ), is ultraweakly continuous. Proof. Take f ∈ L ∞ (G)
. Let X ∈ g and let X and X be the associated left-and right-invariant vector fields defined in (1.4). Then we find that

X R(η)f (g) = d dt t=0 R(η)f (ge tX ) = d dt t=0 G η(g ) f (ge tX g ) dg = d dt t=0 G η(e -tX g ) f (gg ) dg = G Xη (g ) f (gg ) dg = (R(Xη)f )(g),
where we used the dominated convergence to exchange t-derivatives and integrals. By induction we get a similar relation for every X ∈ U(g) and thus finally arrive at the estimates

X R(η)f ∞ ≤ Xη 1 f ∞ , ∀X ∈ U(g). (2.13) Therefore R(η)f ∈ B(G). Set S η (f ) := π θ (R(η)f ), so S η is a map L ∞ (G) → B(L 2 (G))
. By the inequalities (2.13) and (2.10) this map is bounded. Therefore in order to show that it is ultraweakly continuous it suffices to check that for any ξ, ζ ∈ S(G) the linear functional f → (S η (f )ξ, ζ) on L ∞ (G) is ultraweakly continuous. By Lemma 2.7 we have

(S η (f )ξ, ζ) = (R(η)f )(g) (ξ θ ζ)(g) dg = f (gh)(ξ θ ζ)(g) η(h) dg dh. Since (ξ θ ζ) ⊗ η ∈ S(G) ⊗ alg S(G) ⊂ L 1 (G × G) and ∆ : L ∞ (G) → L ∞ (G × G), ∆(f )(g, h) = f (gh), is ultraweakly continuous, we see that the linear functional f → (S η (f )ξ, ζ) on L ∞ (G) is indeed ultraweakly continuous. For η ∈ S(G) put η θ = (∆ -1/4 G θ η θ ∆ 1/4 G )ˇ.
In particular, we have

η θ f 1 ,f 2 = (∆ 3/4 G θ f2 θ f 1 θ ∆ 1/4 G ) θ = (∆ 1/2 G θ f2 θ f 1 θ ∆ 1/2 G )ˇ= ∆ -1 G ( f2 θ f 1 )ˇ.
We are now ready to describe the quantization maps in terms of π θ , which is the main result of this section.

Proposition 2.12. For any f ∈ L ∞ (G) and f 1 , f 2 ∈ S(G) we have

T ω f 1 ,f 2 ( f ) = J π θ R(η θ f 1 ,f 2 )f J . Proof.
Since both sides of the identity in the formulation are ultraweakly continuous in f , it suffices to check it for f ∈ S(G). By Lemma 2.10 it is then enough to show that

π Ω θ (R(η f 1 ,f 2 )f ) = J π θ (R(η θ f 1 ,f 2 )f )J for all f, f 1 , f 2 ∈ S(G).
Let us show that, a bit more generally,

π Ω θ (R(η)f ) = J π θ (R(η θ )f )J for all f, η ∈ S(G).
By identity (2.11) the left-hand side equals

J π θ (∆ -1/4 G θ (R(η)f ) θ ∆ 1/4 G )J . Therefore it remains to check ∆ -1/4 G θ (R(η)f ) θ ∆ 1/4 G = R(η θ )f.
We have R(η)f = λ(f )η. Since θ is invariant under left translations, we also have

∆ -1/4 G θ (λ g η) θ ∆ 1/4 G = λ g (∆ -1/4 G θ η θ ∆ 1/4 G ).
Integrating with respect to the finite measure f (g)dg, the right-hand side becomes

λ(f )(∆ -1/4 G θ η θ ∆ 1/4 G ) = λ(f )η θ ˇ= R(η θ )f.
Thus, all that is left to check, is that integrating the left-hand side yields ∆

-1/4 G θ (λ(f )η) θ ∆ 1/4 G , that is, that conjugation by ∆ -1/4 G
with respect to the product θ commutes with integration. But this is clear, as conjugation by ∆ -1/4 G is a continuous map on S(G).

Deformations of C * -algebras

We now generalize the results of the previous section to actions of Kählerian Lie groups with negative curvature on C * -algebras.

3.1. Elementary case. We start with the case of an elementary Kählerian Lie group G. Consider a C * -algebra A. Then one can define in a straightforward way the A-valued versions of S(G) and B(G). Since S(G) is nuclear as a locally convex topological vector space, one can also define S(G, A) as the unique completion of the algebraic tensor product S(G) ⊗ alg A.

As shown in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF], the oscillatory integrals and the product θ make sense for A-valued functions, so θ is defined on B(G, A) by the same formula (2.4). Furthermore, (S(G, A), θ ) is an ideal in (B(G, A), θ ) and we have a representation π θ ⊗ι of (B(G, A), θ ) on the Hilbert A-module L 2 (G)⊗A defined by

(π θ ⊗ ι)(f )ξ = f θ ξ for ξ ∈ S(G, A) ⊂ L 2 (G) ⊗ A.
By [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]Theorems 7.20 & 7.33] this representation satisfies the same estimate (2.10).

It is almost a tautological statement that the representation π θ ⊗ι of (B(G, A), θ ) can be described in terms of π θ and the slice (or Fubini) maps ι ⊗ ν :

M (K ⊗ A) → M (K) = B(L 2 (G)) for ν ∈ A * .
Namely, we have the following result. Lemma 3.1. For any f ∈ B(G, A), the operator

(π θ ⊗ ι)(f ) ∈ M (K ⊗ A) is the unique element satisfying (ι ⊗ ν) (π θ ⊗ ι)(f ) = π θ (ι ⊗ ν)(f ) for all ν ∈ A * .
Proof. Uniqueness is clear. Replacing, if necessary, A by its unitization, we may assume that A is unital. Take ξ ∈ S(G). Then

(π θ ⊗ ι)(f )(ξ ⊗ 1) = f θ (ξ ⊗ 1).
By definition, the oscillatory integrals commute with the slice maps. Hence, applying ι ⊗ ν to the above equality, we get

(ι ⊗ ν) (π θ ⊗ ι)(f ) ξ = (ι ⊗ ν)(f ) θ ξ,
which is what we need.

Remark 3.2. The above lemma together with Lemma 2.7 show that π θ ⊗ ι can be described entirely in terms of ordinary integrals and slice maps.

Consider now a strongly continuous action α of G on a C * -algebra A. For a ∈ A we denote by α(a) the A-valued right uniformly continuous function g → α g (a). Denote also by A ∞ the Fréchet algebra of smooth elements in A, which is exactly the set of all elements a ∈ A such that α(a) ∈ B(G, A).

Then a new product θ can be defined on A ∞ by α(a θ b) = α(a) θ α(b).

The deformation A θ of A is defined in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]Section 7.5] by

A θ = [(π θ ⊗ ι)α(a) : a ∈ A ∞ ] ⊂ M (K ⊗ A).
Once again we remark that this definition of A θ is slightly different from the one given in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF], but equivalent to it, as we use the representation π θ on L 2 (G) instead of a quasi-equivalent irreducible representation on L 2 (Q).

On the other hand, a deformation of A can be defined using the quantization maps studied in Section 2.2. Namely, following [8, Section 3.2], let

A Ω θ = [(T ν ⊗ ι)α(a) : a ∈ A, ν ∈ K * ] ⊂ M (K ⊗ A),
where α(a) is the A-valued function g → α g -1 (a). In general it is apparently necessary to consider the algebra generated by the elements (T ν ⊗ ι)α(a) before taking the norm closure, but since Ω θ is regular by Corollary 2.4, we don't have to do this in the present case by [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF]Theorem 3.7]. This also follows from the proof of the next theorem.

Theorem 3.3. For any C * -algebra A equipped with a strongly continuous action α of an elementary Kählerian Lie group G, we have

A Ω θ = (J ⊗ 1)A θ (J ⊗ 1) ⊂ M (K ⊗ A).
Proof. Define maps Ťν by Ťν (f ) = T ν ( f ) for f ∈ L ∞ (G). We can then write

A Ω θ = [( Ťω f 1 ,f 2 ⊗ ι)α(a) : a ∈ A, f 1 , f 2 ∈ S(G)]. We claim that Ad(J ⊗ 1)( Ťω f 1 ,f 2 ⊗ ι) = (π θ ⊗ ι)R(η θ f 1 ,f 2 ) on C b (G, A)
, where R g and R(η) are defined in the same way as before, but now on A-valued functions, so (R g f )(h) = f (hg) and R(η) = η(g) R g dg. First of all, note that the same argument as in the proof of Lemma 2.11 

shows that R(η θ f 1 ,f 2 ) maps C b (G, A) into B(G, A)
, so both sides of the above identity are at least well-defined. In order to prove the identity it suffices to show that we get the same operators if we apply ι ⊗ ν to both sides for all ν ∈ A * . When we apply ι ⊗ ν, the left-hand side gives (Ad J ) Ťω f 1 ,f 2 (ι ⊗ ν). On the right-hand side, using Lemma 3.1 and that R(η) commutes with the slice maps, we get

π θ R(η θ f 1 ,f 2 )(ι ⊗ ν). Since (Ad J ) Ťω f 1 ,f 2 = π θ R(η θ f 1 ,f 2 ) on C b ( 
G) by Proposition 2.12, our claim is therefore proved.

Since for a ∈ A we have α(a) ∈ C b (G, A), it follows that

(J ⊗ 1)A Ω θ (J ⊗ 1) = [(π θ ⊗ ι)R(η θ f 1 ,f 2 ) α(a) : a ∈ A, f 1 , f 2 ∈ S(G)
]. Therefore it remains to show that the right-hand side of this identity coincides with A θ . In order to see this, for η ∈ L 1 (G) consider the operator R α (η) on A defined by

R α (η)a = G η(g) α g (a) dg.
Then R(η)α(a) = α(R α (η)a) and therefore we must check that

[(π θ ⊗ ι)α(R α (η θ f 1 ,f 2 )a) : a ∈ A f 1 , f 2 ∈ S(G)] = A θ .
For this it suffices to show that the elements R α (η θ f 1 ,f 2 )a for a ∈ A and f 1 , f 2 ∈ S(G) span a dense subspace of the Fréchet space A ∞ .

By definition, we have

R α (η θ f 1 ,f 2 )a = G ∆ -1 G (g) ( f2 θ f 1 )(g -1 ) α g (a) dg.
By [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF]Proposition 4.19] we have a bounded approximate unit for the Fréchet algebra (S(G), θ ). Letting f2 run through such an approximate unit shows that the closure (with respect to the topology on A ∞ ) of linear combinations of all elements of A ∞ of the form R α (η θ f 1 ,f 2 )a contains all linear combinations of elements of the form R α (f )a with f ∈ S(G) and a ∈ A ∞ . Hence it contains the Gårding subspace of A, which by the Dixmier-Malliavin theorem coincides with A ∞ . 3.2. General case. Consider now an arbitrary negatively curved Kählerian Lie group G with Pyatetskii-Shapiro decomposition (1.1). For g = g 1 . . . g n and g = g 1 . . . g n ∈ G with g i , g i ∈ G i , define a two-point kernel on G by

K θ (g, g ) := n i=1 K G i θ (g i , g i ), (3.1) 
where K G i θ (g i , g i ) is the two-point kernel on the elementary Kählerian Lie group G i as defined in (2.1). Let also A be a C * -algebra endowed with a strongly continuous action α of G. Then, as shown in [START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF], one can define a deformation A θ of A exactly as we did in the case of an elementary Kählerian Lie group. We also have a dual unitary 2-cocycle on G defined by

Ω θ = G×G K θ (g 1 , g 2 ) λ g -1 1 ⊗ λ g -1 2 dg 1 dg 2 ,
and hence can define a deformation A Ω θ of A.

Theorem 3.4. For any C * -algebra A equipped with a strongly continuous action α of a negatively curved Kählerian Lie group G, we have A Ω θ = (J ⊗ 1)A θ (J ⊗ 1) ⊂ M (K ⊗ A).

Proof. Since the action of . . . G n G n-1

. . . G i+1 on G i leaves the Haar measure and the kernel K G i θ invariant, the modular function of G is the product of the modular functions of the factors, and the kernel K θ still satisfies identity (2.2). Routine verifications show then that all the previous arguments extend with only minor changes to general negatively curved Kählerian Lie groups. In fact, the only places, where we used that we worked with elementary Kählerian Lie groups, were Lemmas 2.1 & 2.6 and Proposition 2.8. They can be easily extended to the general case by working with the dense subalgebra S(G 1 ) ⊗ alg • • • ⊗ alg S(G n ) of S(G). We leave the details to the reader.

Integrating out the phase factors produces delta-factors, and we get that the above expression equals 4e (2d+2)(a 1 +a 2 ) cosh(a 3 -a 1 ) cosh(a 4 -a 2 ) cosh(a 3 -a 1 -a 4 + a 2 ) d × cosh(2a 3 -2a 1 ) cosh(2a 4 -2a 2 ) cosh(2a 3 -2a 1 -2a 4 + 2a 2 ) 1/2 × δ 0 t 1 -sinh(2a 4 -2a 2 )e 2a 1 δ 0 t 2 + sinh(2a 3 -2a 1 )e 2a 2 × δ 0 t 3 -sinh(2a 4 -2a 2 )e 2a 1 δ 0 t 4 + sinh(2a 3 -2a 1 )e 2a 2 × δ 0 m 1 -1 2 sinh(2a 4 -2a 2 )e 2a 1 n 3 -cosh(a 3 -a 1 ) cosh(a 4 -a 2 )e a 1 +a 2 (n 4 -n 2 ) × δ 0 m 2 + 1 2 sinh(2a 3 -2a 1 )e 2a 2 n 4 + cosh(a 3 -a 1 ) cosh(a 4 -a 2 )e a 1 +a 2 (n 3 -n 1 ) × δ 0 m 3 -1 2 sinh(2a 4 -2a 2 )e 2a 1 n 1 -cosh(a 3 -a 1 ) cosh(a 4 -a 2 )e a 1 +a 2 (n 4 -n 2 ) × δ 0 m 4 + 1 2 sinh(2a 3 -2a 1 )e 2a 2 n 2 + cosh(a 3 -a 1 ) cosh(a 4 -a 2 )e a 1 +a 2 (n 3 -n 1 ) . After rearrangements this expression becomes 4e (2d+2)(a 1 +a 2 ) cosh(a 3 -a 1 ) cosh(a 4 -a 2 ) cosh(a 3 -a 1 -a 4 + a 2 ) d × cosh(2a 3 -2a 1 ) cosh(2a 4 -2a 2 ) cosh(2a 3 -2a 1 -2a 4 + 2a 2 ) 1/2 × δ 0 t 1 -sinh(2a 4 -2a 2 )e 2a 1 δ 0 t 2 + sinh(2a 3 -2a 1 )e 2a 2 × δ 0 m 1 -1 2 sinh(2a 4 -2a 2 )e 2a 1 n 3 -cosh(a 3 -a 1 ) cosh(a 4 -a 2 )e a 1 +a 2 (n 4 -n 2 ) × δ 0 m 2 + 1 2 sinh(2a 3 -2a 1 )e 2a 2 n 4 + cosh(a 3 -a 1 ) cosh(a 4 -a 2 )e a 1 +a 2 (n 3 -n 1 ) × δ t 1 (t 3 )δ t 2 (t 4 )δ m 1 (m 3 )δ m 2 (m 4 ).

For (a 1 , n 1 , m 1 , t 1 ; a 2 , n 2 , m 2 , t 2 ) ∈ G × G fixed, consider the diffeomorphism Ξ : Q × Q → P × P given by Ξ(a 3 , n 3 ; a 4 , n 4 ) := t 1 -sinh(2a 4 -2a 2 )e 2a 1 , m 1 -1 2 sinh(2a 4 -2a 2 )e 2a 1 n 3 -cosh(a 3 -a 1 ) cosh(a 4 -a 2 )e a 1 +a 2 (n 4 -n 2 ); t 2 +sinh(2a 3 -2a 1 )e 2a 2 , m 2 + 1 2 sinh(2a 3 -2a 1 )e 2a 2 n 4 +cosh(a 3 -a 1 ) cosh(a 4 -a 2 )e a 1 +a 2 (n 3 -n 1 ) . Its Jacobian equals 4e (2d+2)(a 1 +a 2 ) cosh(a 3 -a 1 ) cosh(a 4 -a 2 ) cosh(a 3 -a 1 -a 4 + a 2 ) d cosh(2a 3 -2a 1 ) cosh(2a 4 -2a 2 ).

It follows that [(F P,θ ⊗ F P,θ )Ω θ (F -1 P,θ ⊗ F -1 P,θ )](g 1 , g 2 ; g 3 , g 4 ) = cosh(2a 3 -2a 1 ) cosh(2a 4 -2a 2 )

1/2 cosh(2a .

Thus for ϕ ∈ S(G × G) we have (F P,θ ⊗ F P,θ )Ω θ (F -1 P,θ ⊗ F -1 P,θ )ϕ = Jac 

Corollary 2 . 4 .

 24 The dual cocycle Ω θ is regular.Proof. The isomorphism C * r ( Ĝ; Ω θ ) ∼ = C 0 (G) θ , x → J xJ , intertwines the action β with the action Ad λ g on C 0 (G) θ . Specializing[START_REF] Bieliavsky | Deformation Quantization for Actions of Kählerian Lie Groups[END_REF] Corollary 7.49] to A = C, we know that the crossed product C 0 (G) θ Ad λ G is Morita equivalent to C, hence it is isomorphic to the algebra of compact operators on a Hilbert space.

1 / 2 Φ

 12 ϕ • Φ = U Φ ϕ, which completes the proof.

  R,X depending only on X ∈ U(g). As shown in [4, Lemma 2.27], in the elementary case it is, up to scalar factors, bounded above and below by the function (a, v, t) → cosh a + cosh 2a + |v|(1 + e 2a + cosh a) + |t|(1 + e 2a ).

  just before Definition 1.6 and from Lemma 1.21 there. Furthermore, the operators L θ (∆ α G ) and R θ (∆ α G ) are continuous on S(G) by [4, Proposition 3.10]. Proof of Lemma 2.1. We only need to prove the decomposition L θ

  3 -2a 1 -2a 4 + 2a 2 ) 1/2 × δ (n 3 )δ m 1 (m 3 )δ t 1 (t 3 ) (n 4 )δ m 2 (m 4 )δ t 2 (t 4 ),where α and α are the numbers defined before the theorem. Now, a straightforward computation shows thatJac Φ (g 1 , g 2 ) = cosh(2a 3 -2a 1 ) cosh(2a 4 -2a 2 ) cosh(2a 3 -2a 1 -2a 4 + 2a 2 ) a 3 =a 1 + 12 arcsinh(e -2a 2 t 2 ) ; a 4 =a 2 + 1 2 arcsinh(e -2a 1 t 1 )

	a 1 +	1 2 arcsinh(e -2a 2 t 2 )	(a 3 )δ αt 2 2α n 2 +	t 2 2α m 1 +	α 2 α n 1 -	α α m 2
	× δ a 2 +	1 2 arcsinh(e -2a 1 t 1 )	(a 4 )δ α 2 α n 2 +	α α m 1 -	αt 1 2α n 1 +	t 1 2α m 2
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Appendix A. Unitarity of the dual cocycle

The goal of this appendix is to show unitarity of the dual cocycle Ω θ for any elementary Kählerian Lie group G = Q P . In fact, we will show that Ω θ is a composition of several operators that are on the nose unitary.

Define an operator F P,θ :

so, up to rescaling p by θ and normalization, F P,θ is the partial Fourier transform associated to the maximal Abelian subgroup P R d+1 of G. It is clearly unitary.

Recall that we denote the coordinates of G by (a, v, t). We will write

Consider the corresponding unitary operator U Φ on L 2 (G × G):

Theorem A.1. For any θ ∈ R * , we have

Proof. By definition, Ω θ acts on a vector ϕ ∈ S(G × G) as

Hence, the distributional kernel of the operator Ω θ is given by

which in coordinates reads as

On the other hand, the distributional kernel of F P,θ is given by

From this we deduce the following expression for the kernel of (F P,θ ⊗ F P,θ )Ω θ (F -1 P,θ ⊗ F -1 P,θ ):

[(F P,θ ⊗ F P,θ )Ω θ (F -1 P,θ ⊗ F -1 P,θ )](g 1 , g 2 ; g 3 , g 4 ) = [F P,θ ⊗ F P,θ ](g 1 , g 2 ; g 1 , g 2 )[Ω θ ](g 1 , g 2 ; g 1 , g 2 )[F -1 P,θ ⊗ F -1 P,θ ](g 1 , g 2 ; g 3 , g 4 ) dg 1 dg 2 dg 1 dg 2 = 4 (πθ) 4d+4 e (2d+2)(a 1 +a 2 ) cosh(a 3 -a 1 ) cosh(a 4 -a 2 ) cosh(a 3 -a 1 -a 4 + a 2 )