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Introduction

Locally compact quantum groups in the setting of von Neumann algebras [START_REF] Kustermans | Locally compact quantum groups[END_REF][START_REF] Kustermans | Locally compact quantum groups in the von Neumann algebraic setting[END_REF] (LCQG in short) is certainly the most comprehensive and well established theory of quantum groups in the framework of operator algebras. However, the theory still suffers from lack of examples. Until recently, there were only five individual examples and two general procedures to construct new locally compact quantum group out of a given one (see for instance [START_REF] Timmermann | An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond[END_REF]Section 8.4]). The situation changed recently after the seminal work of De Commer [START_REF] Commer | Galois objects and cocycle twisting for locally compact quantum groups[END_REF] which, in fact, reveals a strong link between equivariant quantization and LCQG. (The relationships between equivariant quantization on groups and operator algebras has a long history and was first observed by Landstad and Raeburn [START_REF] Landstad | Quantizations arising from abelian subgroups[END_REF][START_REF] Landstad | Traces on noncommutative homogeneous spaces[END_REF][START_REF] Landstad | Twisted dual-group algebras: equivariant deformations of C 0 (G)[END_REF][START_REF] Landstad | Equivariant deformations of homogeneous spaces[END_REF] and by Rieffel [START_REF] Rieffel | Deformation quantization for actions of R d[END_REF][START_REF] Rieffel | Compact quantum groups associated with toral subgroups[END_REF][START_REF] Rieffel | Non-compact quantum groups associated with abelian subgroups[END_REF].) In turn, this paper fits in a research program [START_REF] Bieliavsky | Deformation quantization for Heisenberg supergroup[END_REF][START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF][START_REF] Bieliavsky | Unitary dual 2-cocycle from equivariant quantization[END_REF][START_REF] Bieliavsky | On deformations of C * -algebras by actions of Kählerian Lie groups[END_REF][START_REF] Gayral | Deformation quantization for actions of Q d p[END_REF][START_REF] Gayral | Quantization of the affine group of a local field[END_REF] aiming to construct operator algebraic objects from equivariant quantization on groups.

As a special instance of his general machinery, De Commer promoted cocycle deformation to the von Neumann algebraic setting: one can produce a new LCQG out of a given one and of a unitary 2-cocycle. We are mainly concerned here with unitary dual 2-cocycle on a LCQG (i.e. unitary 2-cocycle on the dual LCQG) which, by combination with quantum group duality [START_REF] Kustermans | Locally compact quantum groups[END_REF][START_REF] Kustermans | Locally compact quantum groups in the von Neumann algebraic setting[END_REF], provides a deformation process for the direct LCQG too. Already for a genuine locally compact group, an explicit construction of a unitary dual 2-cocycle is a very difficult task (while a unitary 2-cocycle is nothing but an ordinary T-valued 2-cocycle on the group). To our knowledge, only one example of a non-classical dual 2-cocycle exists yet. By non-classical, we mean an example which is not associated to an Abelian group (or subgroup) nor to the (quantum group) dual of a non-Abelian group. In both cases, dual 2-cocycles correspond to ordinary group 2-cocycles (see for example [START_REF] Enock | Deformation of a Kac algebra by an abelian subgroup[END_REF][START_REF] Fima | Twisting and Rieffel's deformation of locally compact quantum groups: deformation of the Haar measure[END_REF][START_REF] Kasprzak | Rieffel deformation via crossed products[END_REF][START_REF] Landstad | Quantizations arising from abelian subgroups[END_REF][START_REF] Rieffel | Non-compact quantum groups associated with abelian subgroups[END_REF][START_REF] Wang | Deformations of compact quantum groups via Rieffel's quantization[END_REF] for applications of classical dual 2-cocycle deformations). (We shall also mention [START_REF] Commer | On cocycle twisting of compact quantum groups[END_REF], where a unitary 2-cocycle is constructed on the compact quantum group SU q (2).) Now, the point is that a (nontrivial) dual 2-cocycle on a group is exactly the same thing than a (non commutative) associative and equivariant product on functions on that group, an object which is naturally produced by equivariant quantization on a group. This non-classical example of unitary dual 2-cocycle we mentioned above, comes from the work of two of us [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF], where a deformation theory for C * -algebras (generalizing Rieffel's construction [START_REF] Rieffel | Deformation quantization for actions of R d[END_REF]) for actions of Kälerian Lie groups (with negative sectional curvature) is obtained. (In fact, the observation that the main object we were working with in [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF] -the deformed product -was in fact associated to a unitary dual 2-cocycle is due to Neshveyev and Tuset [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF]Section 5].)

Our construction elaborates on Rieffel's one and we shall describe the main lines of it now. Assume that we have a locally compact group G and (H, π) an irreducible unitary projective representation of G. (Projectivity is fundamental to get nontrivial constructions even when G is Abelian.) Then, by a G-covariant quantization map on the group G, we mean a continuous linear map:

Ω : D(G) → B(H) such that π(g)Ω(f )π(g) * = Ω λ g f , ∀g ∈ G ,
where λ is the left regular representation and D(G) is the Bruhat space of test function (which is C ∞ c (G) if G is a Lie group). When Ω extends to a unitary operator from L 2 λ (G) to L 2 (H) (the Hilbert space of Hilbert-Schmidt operators on H), we can then give to L 2 λ (G) the structure of a (unimodular) Hilbert algebra, for the transported product: f 1 f 2 := Ω * Ω(f 1 )Ω(f 2 ) .

(All the examples of quantization on groups we have encountered meet the unitarity property but, in fact, it is its invertibility that really matters. For instance, one can easily imagine to work the GNS space of an NSF weight instead of the Hilbert-Schmidt operators.) Since the product is G-equivariant on the left, it is easy to see that there exists a distribution K on G × G (in the sense of Bruhat) such that

f 1 f 2 (g) = K λ g -1 f 1 ⊗ λ g -1 f 2 , ∀f 1 , f 2 ∈ D(G) .
This is precisely the distribution K which is the object of main interest for us, for at least two reasons. First, K allows to construct a natural candidate for a unitary dual 2-cocycle on the group G. Indeed, define (with a little abuse of notations):

F λ := G×G K(g 1 , g 2 ) λ g1 ⊗ λ g2 d λ (g 1 )d λ (g 1 ) ,
as an operator (formally) affiliated with the group von Neumann algebra W * (G×G). Then, the associativity of the deformed product is equivalent to the 2-cocycle relation for F * λ , the formal adjoint of F λ on L 2 λ (G×G). That is to say, with ∆ the coproduct of the group von Neumann algebra W * (G), we have

F * λ ⊗ 1 ∆ ⊗ Id F * λ = 1 ⊗ F * λ Id ⊗ ∆ F * λ .
Hence, for a G-equivariant unitary quantization on a group G, to produce a unitary dual 2-cocycle on G it only remains to check the unitarity of F λ . Examples (beyond negatively curved Kählerian Lie groups) where the unitarity property for the dual 2-cocycle holds true, will be presented in [START_REF] Bieliavsky | Unitary dual 2-cocycle from equivariant quantization[END_REF]. Second, the distribution K allows to construct a natural candidate for a deformation theory of C *dynamical systems for G (that is a generalization of Rieffel's construction [START_REF] Rieffel | Deformation quantization for actions of R d[END_REF]). For that, we need to assume that K is regular in the sense of Bruhat (that is, smooth for Lie groups). Let then (A, α) be a C * -algebra endowed with a continuous action of G. One can then try to define a new associative product on A by the formula: a 1 α a 2 = G×G K(g 1 , g 2 ) α g1 (a 1 ) α g2 (a 2 ) d λ (g 1 )d λ (g 2 ) .

Of course, there is little chance to give a direct meaning to α since the two-point function K is generically unbounded. In practice, we first work with oscillatory integrals on a dense Fréchet subspace of A (typically the space of smooth vectors when G is a Lie group) and then define a deformed C * -norm. This program has been successfully carried out in [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF], fully generalizing Rieffel's construction [START_REF] Rieffel | Deformation quantization for actions of R d[END_REF], for all Kählerian Lie groups with negative sectional curvature. (See also [START_REF] Bieliavsky | Deformation quantization for Heisenberg supergroup[END_REF][START_REF] Gayral | Deformation quantization for actions of Q d p[END_REF] for super-symmetric and p-adic Abelian groups.) The aim of this paper is to construct a quantum version of any negatively curved Kählerian Lie groups from the deformation of C 0 (G) through the action λ ⊗ ρ of G × G and from the undeformed coproduct and Haar weight. Our construction is conceptually similar to Rieffel's one [START_REF] Rieffel | Non-compact quantum groups associated with abelian subgroups[END_REF]. But on the technical side, we had to choose a different strategy because Rieffel construction used in a crucial way the commutativity of the group to define the coproduct at the C * -level. Instead, and this is our first main result, we use the deformation theory (of [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]) at the level of Fréchet algebras only to construct directly a multiplicative unitary that we prove to be manageable in the sense of Woronowicz [START_REF] Woronowicz | From multiplicative unitaries to quantum groups[END_REF]. An important feature of this construction is to setup a more general strategy allowing to construct quantum groups from covariant quantizations on locally compact groups, when the underlying dual 2-cocycle is no longer unitary. We also prove, and this is our second main result, that the resulting LCQG is (unitarily) equivalent to the one associated with the underlying unitary dual 2-cocycle via De Commer's construction.

Deformation quantization for actions of Kählerian Lie groups

In this section, we review (and extend) the deformation theory for actions of Kählerian Lie groups built in [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF], but we only need the deformation theory of Fréchet algebras and not of C * -algebras. The only exception is Corollary 4.15. At the level of Fréchet algebras, the results of [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF] are essentially based on a construction of an oscillatory integral (for each Kählerian Lie group) together with previous works of one of us [START_REF] Bieliavsky | Strict quantization of solvable symmetric spaces[END_REF][START_REF] Bieliavsky | Non-formal deformation quantizations of solvable Ricci-type symplectic symmetric spaces[END_REF][START_REF] Bieliavsky | Oscillatory integral formulae for left-invariant star products on a class of Lie groups[END_REF]. Both aspects rely on the geometric structures that Kählerian Lie groups are endowed with. Before explaining all this, we start by fixing general conventions.

Notations

Let G be a Lie group with Lie algebra g. We fix a left-invariant Haar measure on G, which we denote by d λ (g) and we associated to it a right-invariant Haar measure by d ρ (g) := d λ (g -1 ). We let L p λ (G) and L p ρ (G) the L p -spaces for the left and right Haar measures. We define the modular function 1 , χ G , to be such that the following relation holds true:

χ G (g) d λ (g) := d ρ (g) . (2.1)
By λ and ρ, we mean the left and right regular actions of G, defined for a complex valued function f by

λ g f (g ) := f (g -1 g ) , ρ g f (g ) := f (g g) .
Of course, λ is unitary on L 2 λ (G) and ρ is unitary on

L 2 ρ (G). When f is in L 1 λ (G)
or when f is a distribution on G (whenever it makes sense), we let λ(f ) and ρ(f ) be the integrated representations, always with respect to the left Haar measure. By X and X, we mean the left-invariant and right-invariant vector fields on G associated to the elements X and -X of the Lie algebra g of G:

X := d dt t=0 ρ(e tX ) , X := d dt t=0 λ(e tX ) .
Given an element X of the universal enveloping algebra U(g), we adopt the same notations X and X for the associated left-and right-invariant differential operators on G.

When looking at a group as a locally compact quantum group in the von Neumann algebraic setting [START_REF] Kustermans | Locally compact quantum groups[END_REF][START_REF] Kustermans | Locally compact quantum groups in the von Neumann algebraic setting[END_REF], we use standard notations (see e.g. [24, Section 1.1] for a quick summary). In particular, we let ∆ : L ∞ (G) → L ∞ (G × G) and S : L ∞ (G) → L ∞ (G) be the classical coproduct and antipode, defined by ∆f (g, g ) := f (gg ) , Sf (g) := f (g -1 ) .

The modular conjugations of the group G and of its dual (quantum group) G are given by:

Jf (g) := f (g) , Jf (g) := χ 1/2 G (g) f (g -1 ) , ∀f ∈ L 2 λ (G) , (2.2) 
V and W are the multiplicative unitaries of G, acting respectively on

L 2 ρ (G × G) and L 2 λ (G × G), given by V f (g 1 , g 2 ) = f (g 1 g 2 , g 2 ) and W f (g 1 , g 2 ) = f (g 1 , g -1 1 g 2 ) . (2.3)
Algebraic tensor products will be denoted by ⊗, while ⊗ will be used for completed tensor products (that will be specified in each context: von Neumann, Hilbert, C * , Fréchet . . . ). Our convention for scalar products ., . of Hilbert spaces is to be conjugate linear on the left. By a multiplier of a Fréchet algebra A, we mean a pair (L, R) of continuous linear operators on A satisfying L(ab) = L(a)b, R(ab) = aR(b) and aL(b) = R(a)b, for all a, b ∈ A.

Negatively curved Kählerian Lie groups

Let G be a Kählerian group. By this we mean that G is a Lie group which, as a manifold, is endowed with a left-invariant Kählerian structure. From the work of Pyatetskii-Shapiro [START_REF] Pyateskii -Shapiro | Automorphic functions and the geometry of classical domains[END_REF], one knows that every Kählerian Lie group whose sectional curvature is negative (negatively curved Kählerian group in short) is an iterated split extension

G = (S N . . . ) S 1 , (2.4) 
where each elementary block S is isomorphic to the Iwasawa factor AN of the simple Lie group SU (1, n). As a manifold, S is isomorphic to R × V × R, where (V, ω) is a symplectic vector space, with group law

(a, v, t).(a , v , t ) = a + a , e -a v + v , e -2a t + t + 1 2 e -a ω(v, v ) . (2.5)
The Lebesgue mesure on R × V × R therefore defines a left invariant Haar measure on S and the modular function reads χ S (a, v, t) = e dim(S)a .

In particular, every negatively curved Kählerian group is connected and simply connected, solvable, nonunimodular and exponential (by which we mean that exp : g → G is a global diffeomorphism). One of the most important feature (here) about Pyatetskii-Shapiro's theory, is that the extension homomorphisms at each steps in the decomposition (2.4) of a negatively curved Kählerian group in elementary blocks:

R j ∈ Hom (S N . . . ) S j+1 , Aut(S j ) , j = 1, . . . , N -1 , (2.6) 
take values in the linear symplectic group Sp(V j , ω j ). Here (V j , ω j ) denotes the symplectic vector space attached to S j . In particular, the associated automorphisms of S j , R j g , g ∈ (S N . . . ) S j+1 , preserve both left and right Haar measures on S j . This implies that the product of Lebesgue measures on the S j 's is a left Haar measure on G in both parametrizations g = g 1 . . . g N and g = g N . . . g 1 where g ∈ G and g j ∈ S j . This also implies that the modular function of G is χ G (g) = e N j=1 dim(Sj )aj . Each elementary factor S possesses another important geometric structure, namely the formula s(a, v, t; a , v , t

) := 2a -a , 2v cosh(a -a ) -v , 2t cosh(2a -2a ) -t + ω(v, v ) sinh(a -a ) , (2.7) 
endows the manifold S with the structure of a S-equivariant symplectic symmetric space, for the left-invariant symplectic form given in coordinates (2.5) by Ω := 2da ∧ dt + ω. This means that s : S × S → S is a smooth map such that the associated symmetries

s g : S → S , g → s(g, g ) , ∀g ∈ S ,
are involutive diffeomorphisms of S, admitting g as an isolated fixed point, satisfying the relations s g • s g • s g = s sg(g ) and s(gg , gg ) = gs(g, g ) , and leaving the symplectic form Ω invariant. The automorphism group Aut(S, s, Ω) of the symplectic symmetric space (S, s, Ω) is defined as the subgroup of symplectomorphisms ϕ ∈ Symp(S, Ω) which are covariant under the symmetries:

ϕ • s g = s ϕ(g) • ϕ, ∀g ∈ S .
It is a Lie subgroup of Symp(S, Ω) that acts transitively on S. It contains S via left multiplication and the linear symplectic group Sp(V, ω). In fact, Sp(V, ω) Aut(S) ∩ Aut(S, s, Ω).

Moreover, the partial maps s g : S → S, g → s g (g ) are global diffeomorphisms and this implies that the symplectic symmetric space (S, Ω, s) possesses a (unique) midpoint map mid : S × S → S , that is a smooth map such that s mid(g,g ) (g) = g for all g, g ∈ S. It is given by mid(g, g ) := s g -1 (g ). Since every ϕ ∈ Aut(S, s, Ω) intertwines the midpoints: ϕ mid(g, g ) = mid ϕ(g) , ϕ(g ) , we deduce that the "medial triangle" three-point function Φ : S 3 → S 3 , (g 1 , g 2 , g 3 ) → mid(g 1 , g 2 ), mid(g 2 , g 3 ), mid(g 3 , g 1 ) , is invariant under the diagonal left action of S. Being morover a global diffeomorphism of S 3 , we can therefore define

S S (g 1 , g 2 ) := Area Φ -1 (e, g 1 , g 2 )
and A S (g 1 , g 2 ) := Jac

1/2 Φ -1 (e, g 1 , g 2 ) in C ∞ (S × S, R) ,
where Area(g 1 , g 2 , g 3 ) denotes the symplectic area of the geodesic triangle in S with edges g 1 , g 3 , g 3 . In coordinates (2.5), we have with ω the symplectic form on V :

S S (a 1 , v 1 , t 1 ; a 2 , v 2 , t 2 ) = t 2 sinh 2a 1 -t 1 sinh 2a 2 + ω(v 1 , v 2 ) cosh a 1 cosh a 2 , A S (a 1 , v 1 , t 1 ; a 2 , v 2 , t 2 ) = cosh a 1 cosh a 2 cosh(a 1 -a 2 ) dim(V )/2 cosh 2a 1 cosh 2a 2 cosh(2a 1 -2a 2 ) 1/2 .
In the case of an arbitrary negatively curved Kählerian group G, with decomposition (2.4), and parametrizing elements of G as g = g 1 . . . g N , g j ∈ S j (that is with the reversed order), we set

S G (g, g ) = N j=1 S Sj (g j , g j ) and A G (g, g ) = N j=1
A Sj (g j , g j ) .

For θ ∈ R * , consider the two-point function on

G K θ (g 1 , g 2 ) = 4 N (πθ) dim(G) A G (g 1 , g 2 ) exp 2i θ S G (g 1 , g 2 ) .
(2.8)

It has been shown by one of us [START_REF] Bieliavsky | Oscillatory integral formulae for left-invariant star products on a class of Lie groups[END_REF], that the following formula

f 1 θ f 2 := G×G K θ (g 1 , g 2 ) ρ g1 f 1 ρ g2 f 2 d λ (g 1 ) d λ (g 2 ) ,
initially defined on C ∞ c (G), extends uniquely to an associative, continuous and left-G-equivariant product on L 2 λ (G), for which the complex conjugation is an involution.

Functions spaces

In [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF], we constructed two important functions spaces on a negatively curved Kählerian group: S(G) and B µ (G). We review it now. The first one, S(G), is an analogue of the Euclidean Schwartz space where regularity is defined in term of left invariant differential operators and decay is measured by the modular weight 2 d G defined by:

d G (g) := 1 + |Ad g | 2 + |Ad g -1 | 2 1/2 .
(2.9)

Here, |Ad g | is the operator norm of the adjoint action of G on g, for a chosen Euclidean structure on g. In the case of an elementary negatively curved Kählerian group S and within the coordinates (2.5), d S behaves like the function (see [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Lemma 3.27]):

(a, v, t) → cosh a + cosh 2a + |v|(1 + e 2a + cosh a) + |t|(1 + e 2a ) .

2 d G which should not be confused with the modular function χ G .
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In the general case of a negatively curved Kählerian group G, with Pyatetskii-Shapiro decomposition (2.4) and under the parametrization g = g 1 . . . g N ∈ G, g j ∈ S j , we have the lower-bound (see [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Lemma 3.31]):

d G (g) ≥ C N j=1 d Sj (g j ) .
In particular,

d -p G ∈ L 1 λ (G) ∩ L 1 ρ (G)
for all p > dim(G). Our Schwartz space is then defined by:

S(G) := f ∈ C ∞ (G) : ∀X ∈ U(g) , ∀n ∈ N , d n G Xf ∞ < ∞ .
To a given ordered basis {X 1 , . . . , X dim(G) } of g, we let

X β := X β1 1 X β2 2 . . . X β dim(G)
dim(G) , β ∈ N dim(G) be the associated PBW basis of U(g). This induces a filtration U(g) = k∈N U k (g) in terms of the subspaces

U k (g) := |β|≤k C β X β , C β ∈ R , where |β| := β 1 + • • • + β dim(G)
. We then endow the finite dimensional vector space U k (g), with the 1 -norm |.| k within the basis {X β , |β| ≤ k}:

|X| k := |β|≤k |C β | if X = |β|≤k C β X β ∈ U k (g) , (2.10) 
and we let S k (g) be the unit sphere of U k (g) for this norm. Then, one can define a topology on S(G) from the following countable set of seminorms:

f λ k,n := sup X∈S k (g) d n G Xf ∞ , k, n ∈ N . (2.11)
Of course, this topology is independent of the basis chosen. It is proven in [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Lemma 2.41] that the Schwartz space S(G) is then Fréchet and nuclear. It is not hard to see that S, the antipode of L ∞ (G), is an homeomorphism of S(G). Hence, the topology of S(G) can be equally described using a variant of the seminorms (2.11) constructed with right-invariant differential operators instead of left-invariant ones. We will freely use this fact and we denote this new seminorms by . ρ k,n , k, n ∈ N. Finally, note that both parametrizations of g ∈ G = (S N . . . ) S 1 , given by g = g 1 . . . g N or by g = g N . . . g 1 , g j ∈ S j , yield topological isomorphisms S(G) S(S N × • • • × S 1 ).

The second important function space is a non-Abelian and weighted analogue of Laurent Schwartz's space B(R n ). To define it, we need first to recall the notion of weights in the sense of [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]. A function µ > 0 on G is called a weight if for all X ∈ U(g) there exists C 1 > 0 such that | Xµ| + |Xµ| ≤ C 1 µ and if there exists C 2 , L, R > 0 such that for all g, g ∈ G we have µ(gg ) ≤ C 2 µ L (g)µ R (g ). The basic example of a weight is precisely given by the modular weight d G (see [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Lemma 2.4]) where C 2 = L = R = 1. Given a tempered (which means bounded by a power of d G ) weight µ, one can consider the space

B µ λ (G) := f ∈ C ∞ (G) : ∀X ∈ U(g) , µ -1 Xf ∞ < ∞ . (2.
12)

The natural topology that B µ λ (G) may be endowed with, underlies the sequence of seminorms

f λ k;µ := sup X∈S k (g) µ -1 Xf ∞ , k ∈ N . (2.13)
It is shown in [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Lemma 2.8] that B µ λ (G) is Fréchet. For instance, it coincides for µ = 1 with the space of smooth vectors for the right regular action within the C * -algebra of right-uniformly continuous and bounded functions on G. (Our convention for the right uniform structure on a group is the one that yields strong continuity for the right regular action.) However, contrary to the Schwartz space, B µ λ (G) is not stable under the group inversion and one cannot use right-invariant vector fields to define its topology. So we also need the right-invariant version of that space, namely

B µ ρ (G) := f ∈ C ∞ (G) : ∀X ∈ U(g) , µ -1 X f ∞ < ∞ , (2.14) 
endowed with the sequence of seminorms

f ρ k;µ := sup X∈S k (g) µ -1 X f ∞ , k ∈ N . (2.15)
Since the antipode S intertwine left-and right-invariant vector fields, we deduce that B µ ρ (G) is Fréchet and for µ = 1, that it coincides with the set of smooth vectors for the left regular action within the C * -algebra of left-uniformly continuous and bounded functions on G.

We then need the vector valued versions of these functions spaces. So, let E be any Fréchet space. Since S(G) is nuclear, S(G, E) can be unambiguously defined as the completed tensor product S(G) ⊗E. It is convenient to consider on S(G, E) the cross-seminorms:

f λ k,n;j := sup X∈S k (g) sup g∈G d n G (g) Xf (g) j , k, n ∈ N , j ∈ J , if { . j } j∈J is a countable set of seminorms defining the topology of E.
Of course, we may also consider the equivalent family of cross-seminorms:

f ρ k,n;j := sup X∈S k (g) sup g∈G d n G (g) Xf (g) j , k, n ∈ N , j ∈ J .
To define vector valued versions of B µ λ (G) and B µ ρ (G), there is much more degree of freedom and we proceed as follows. We fix a family of tempered weights µ := {µ j } j∈J , labelled by the same countable set that the one labelling the family of seminorms of E. We then set:

B µ λ (G, E) := f ∈ C ∞ (G, E) : ∀X ∈ U(g), ∀j ∈ J , sup g∈G µ -1 j (g) Xf (g) j < ∞ . (2.16) 
Endowed with the seminorms:

f λ k,j;µ := sup X∈S k (g) sup g∈G µ -1 j (g) Xf (g) j , k ∈ N , j ∈ J , (2.17) 
B µ λ (G, E) turns to be Fréchet too (see [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Lemma 2.12]). The space B µ ρ (G, E) is defined in a similar way. Since the antipode S preserves tempered weights, we observe the following obvious but nevertheless important fact: Lemma 2.1. Let E a complex Fréchet space, µ = {µ j } j∈J a family of tempered weights and f ∈ C ∞ (G, E).

Then f belongs to B µ λ (G, E) if and only if Sf belongs to B Sµ ρ (G, E), where Sµ := {Sµ j } j∈J .
Finally, we will need the two-sided version of the spaces

B µ λ (G, E) and B µ ρ (G, E): B µ λ ∩ B ν ρ (G, E) := B µ λ (G, E) ∩ B ν ρ (G, E) ,
endowed with the topology associated to the sum seminorms:

. λ,ρ k,j;µ,ν := . λ k,j;µ + . ρ k,j;ν , k ∈ N, j ∈ J . The space B µ λ ∩ B ν ρ (G, E) is also Fréchet and for E = C we denote it by B µ λ ∩ B ν ρ (G).
Note that when we have µ = ν = 1, it coincides with the space of smooth vectors for the action λ ⊗ ρ of G × G, within the C * -algebra of both left and right uniformly continuous and bounded functions on G. Note also that, in general, the space B µ λ ∩ B ν ρ (G) does not contain many interesting functions, besides elements of S(G). However, it follows from [6, Definition 2.1] that µ ∈ B µ λ ∩ B µ ρ (G) whenever µ is a sub-multiplicative weight on G. This is in particular the case for the modular weight d G and for the modular function χ G (see Lemma 2.4 and the discussion preceding Definition 2.6 in [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]). The two legs versions of these spaces, namely

S(G × G, E), B µ λ (G × G, E), B µ ρ (G × G, E) and B µ λ ∩ B ν ρ (G × G, E)
are defined in a similar way.

Oscillatory integrals and deformation of Fréchet algebras

The main results of [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF], concerning the deformation of Fréchet algebras, are summarised in the next two theorems.

Fix θ ∈ R * , E a Fréchet space and µ an associated family of tempered weights on a negatively curved Kählerian Lie groups G. (That is to say, µ = {µ j } j∈J is indexed by the same countable set than the one indexing the seminorms { . j } j∈J defining the topology of E.) Based on very specific properties of the two-point kernels K θ given in (2.8), it is proven in [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF] (combine Definition 2.31 and Theorem 3.35) that:

Theorem 2.2. The oscillatory integral S(G × G, E) → E, f → K θ (g 1 , g 2 ) f (g 1 , g 2 ) d λ (g 1 ) d λ (g 2 ) ,
extends to a continuous linear map

B µ λ (G × G, E) → E , f → K θ (g 1 , g 2 ) f (g 1 , g 2 ) d λ (g 1 ) d λ (g 2 ) .
The main ideas behind Theorem 2.2 can be carried out for more general Lie groups than those considered here and go as follow. We decompose the kernel K θ in phase and amplitude A e iS and we realise the Fréchet space E as a countable projective limit of Banach spaces j∈J E j . Then, for each family of tempered weights µ = {µ j } j∈J , one looks for a family D := {D j } j∈J of differential operators on G × G satisfying the following two properties. First, it should be such that the map

f → D j A f , sends B µj (G × G, E j ) to L 1 (G × G, E j ) continuously. With D * j the formal adjoint of D j on L 2 λ (G × G), the second required property is that D * j e iS = e iS , ∀j ∈ J .
The oscillatory integral is then defined as the sequence of E j -valued Böchner integrals:

K θ (g 1 , g 2 ) f (g 1 , g 2 ) d λ (g 1 ) d λ (g 2 ) := G×G e iS(g1,g2) D j A f (g 1 , g 2 ) d λ (g 1 ) d λ (g 2 ) j∈J .
At a more concrete level, the operators D j constructed in [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF] are finite products of differential operators of the form

f → X f α X , (2.18) 
where the X's are (specific!) left-invariant differential operators and the α X 's are strictly positive smooth functions defined by α X := e -iS Xe iS .

Remark 2.3. In [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF], we used C ∞ c (G) instead of S(G) for the initial domain of the oscillatory integral but this makes no difference at all. Also, we have shown in [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Proposition 1.32] that this extension of the oscillatory integral depends (essentially) only on µ. We however do not claim that this is the unique continuous extension.

Let now (A, α) be a Fréchet algebra endowed with a strongly continuous action of a negatively curved Kählerian group G. Fix { . j } j∈J a countable family of seminorms defining the topology of A. We say that the action α is tempered if there exists a family µ = {µ j } j∈J of tempered weights on G such that for all (g, a) ∈ G × A we have

α g (a) j ≤ µ j (g) a j .
Important examples of tempered actions are λ and ρ on S(G) (see the proof of Lemma 2.8 below). Let A ∞ be the set of smooth vectors for the action α. By strong continuity, A ∞ is dense in A. On A ∞ , we consider the infinitesimal form of the action α, given for X ∈ g by:

X α (a) := d dt t=0 α e tX (a) , a ∈ A ∞ ,
and we extend it to the whole universal enveloping algebra U(g), by declaring the map U(g) → End(A ∞ ), X → X α to be an algebra homomorphism. The subspace A ∞ carries a finer topology which is associated with the seminorms:

a j,k := sup X∈S k (g) X α (a) j , j ∈ J, k ∈ N . (2.19)
The point is that the action α on A ∞ is still tempered [6, Lemma 5.3] and that the function

[(g 1 , g 2 ) → α g1 (a 1 ) α g2 (a 2 )] belongs to B µ λ (G × G, A ∞ ).
The main result of [6, Section 5] can be summarized as follows:

Theorem 2.4. Let (A, α, G) be a Fréchet algebra endowed with a strongly continuous and tempered action of a negatively curved Kählerian group. Then, there exists a family µ of tempered weights on G × G, such that we have a continuous bilinear mapping:

A ∞ × A ∞ → B µ λ (G × G, A ∞ ), (a 1 , a 2 ) → [(g 1 , g 2 ) → α g1 (a 1 ) α g2 (a 2 )] .
Moreover, for any value of the parameter θ ∈ R * , the bilinear mapping

α θ : A ∞ × A ∞ → A ∞ , (a 1 , a 2 ) → K θ (g 1 , g 2 ) α g1 (a 1 ) α g2 (a 2 ) d λ (g 1 ) d λ (g 2 ) ,
is continuous and associative. We call (A ∞ , α θ ) the Fréchet deformation of the Fréchet algebra A.

We now give a few results not proven in [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF] and that we will need here. The first one concerns the rightcounterpart of Theorem 2.2, that is an extension of the oscillatory integral from

S(G × G, E) to B µ ρ (G × G, E).
To do so, we employ the same strategy as the one sketched right after Theorem 2.2 but with right-invariant differential operators instead of left-invariant one in (2.18), to construct the D j 's. The proof being purely technical, it is relegated to the Appendix A.

Theorem 2.5. Let E be a complex Fréchet space and µ be an associated family of tempered weights on G. Then, the oscillatory integral

S(G × G, E) → E, f → K θ (g 1 , g 2 ) f (g 1 , g 2 ) d λ (g 1 ) d λ (g 2 ) ,
extends to a continuous map

B µ ρ (G × G, E) → E , f → K θ (g 1 , g 2 ) f (g 1 , g 2 ) d λ (g 1 ) d λ (g 2 ) .
Remark 2.6. We keep the same notation for this second extension of the oscillatory integral, because they both coincide on

B µ λ ∩ B ν ρ (G × G, E).
We need now to consider the non formal Drinfel'd twists on S(G × G) given by the oscillatory integral mappings. To this hand, we fix a Fréchet space E together with an associated family of sub-multiplicative (to simplify the picture) tempered weights on G × G, and we make the following observations. First, we see by definition, that B µ λ (G × G, E) is its own space of smooth vectors for the right regular action ρ ⊗ ρ of G × G. Similarly, B µ ρ (G × G, E) is its own space of smooth vectors for the left regular action λ ⊗ λ of G × G. It is then not difficult to see that these actions are tempered. Hence, one may apply [6, Lemma 5.5] (or [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Lemma 2.15] applied to G × G instead of G) to deduce that there exists a family of tempered weights ν such that the map

f → [(g 1 , g 2 ) → (ρ g2 ⊗ ρ g2 )f ] , is continuous from B µ λ (G × G, E) to B ν λ (G × G, B µ λ (G × G, E)).
Similarly, one deduces that the map E)) too (with the same ν as above). Combining this with Theorem 2.2, one gets the following well-defined notion of non-formal Drinfel'd twists: Definition 2.7. For µ any family of sub-multiplicative and tempered weights on G, we set

f → [(g 1 , g 2 ) → (λ g1 ⊗ λ g2 )f ] , is continuous from B µ ρ (G × G, E) to B ν λ (G × G, B µ ρ (G × G,
F ρ θ : B µ λ (G × G, E) → B µ λ (G × G, E) , f → K θ (g 1 , g 2 ) (ρ g1 ⊗ ρ g2 )f d λ (g 1 ) d λ (g 2 ) ,
and

F λ θ : B µ ρ (G × G, E) → B µ ρ (G × G, E) , f → K θ (g 1 , g 2 ) (λ g1 ⊗ λ g2 )f d λ (g 1 ) d λ (g 2 ) .
The next statement (mainly based on the results of [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]) shows that these twists (as well as variants of them) preserves the Schwartz space S(G × G): Lemma 2.8. Both twists F λ θ and F ρ θ defines continuous linear operators on S(G × G). The same is true if in F λ θ one replaces λ ⊗ λ by λ ⊗ ρ or by ρ ⊗ λ, or even if one replaces simultaneously the actions λ or ρ by the anti-actions

[g → λ g -1 ] or [g → ρ g -1 ].
Proof. The actions ρ and λ of G are clearly strongly continuous on S(G). Since right invariant vector fields are finite linear combination of left invariant vector fields with coefficients in the ring of tempered functions, and vice versa, (see [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Remark 2.20]) S(G) is its own space of smooth vectors for both actions. Moreover, ρ are λ are tempered actions. This follows from [6, Lemma 5.3] together with the fact that S(G) coincides with the set of smooth vectors (for any of these actions) of the Fréchet completion of C ∞ c (G) for the topology underlying the seminorms f → d n G f ∞ , n ∈ N and on this Fréchet space, ρ and λ are tempered due to the sub-multiplicativity of the modular weight d G (see [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Lemma 2.4]). Hence, Lemma 5.5 of [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF] entails that for f ∈ S(G), the maps [g → λ g f ] and [g → ρ g f ] belong to B µ λ G, S(G) for a suitable family µ of tempered weights. Obviously, we can repeat this reasoning in the two-legs case, showing that if

f ∈ S(G × G) then the maps [(g 1 , g 2 ) → (λ g1 ⊗λ g2 )f ], [(g 1 , g 2 ) → (ρ g1 ⊗ρ g2 )f ], [(g 1 , g 2 ) → (λ g1 ⊗ρ g2 )f ] and [(g 1 , g 2 ) → (ρ g1 ⊗λ g2 )f ] belong to B µ λ G × G, S(G × G) .
Then, the first part of the proof follows from Theorem 2.2. The cases where one uses anti-actions follow from what precedes combined with (the two legs version of) Lemma 2.1 and Theorem 2.5.

It has been first observed in [24, Section 5] (see also [START_REF] Bieliavsky | On deformations of C * -algebras by actions of Kählerian Lie groups[END_REF]Appendix]

) that F λ θ extends from S(G × G) to L 2 λ (G × G) as a unitary operator. Since F ρ θ = (S ⊗ S)F λ θ (S ⊗ S) on S(G × G), it immediately implies that F ρ θ extends to a unitary operator on L 2 ρ (G × G). Using K θ = K -θ
, the unitarity of the twists combined with the last part of the Lemma 2.8 (that is, when one uses anti-actions), imply that the inverses of F λ θ and F ρ θ preserve S(G × G) and are also expressible as oscillatory integrals:

Proposition 2.9. The twists F λ θ and F ρ θ are homeomorphisms of S(G × G) with inverses given by:

F λ θ -1 f = K -θ (g 1 , g 2 ) λ g -1 1 ⊗ λ g -1 2 f d λ (g 1 ) d λ (g 2 ) , F ρ θ -1 f = K -θ (g 1 , g 2 ) ρ g -1 1 ⊗ ρ g -1 2 f d λ (g 1 ) d λ (g 2 ) .
Using Lemma 2.1, it follows from definition 2.7 that the inverses of the twists, E) to itself continuously. Hence, we deduce in the scalar-valued case:

F λ θ -1 and F ρ θ -1 , sends B µ ρ (G × G,
Proposition 2.10. The twists F λ θ and F ρ θ are homeomorphism of B µ λ ∩ B ν ρ (G × G), for any tempered weights µ, ν on G × G.

Remark 2.11. Unitarity of the twist F λ θ is a very important observation since associativity of θ immediately implies that the adjoint of the twist defines a dual unitary 2-cocycle on G (see [START_REF] Commer | Galois objects and cocycle twisting for locally compact quantum groups[END_REF][START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF] for more informations on dual cocycles for locally compact quantum groups). Now the point is that from De Commer's results [START_REF] Commer | Galois objects and cocycle twisting for locally compact quantum groups[END_REF], we can construct a quantum version (in the von Neumann algebraic setting) of any negatively curved Kählerian group from the dual unitary 2-cocycle F λ θ * . To our knowledge, this is the first and only example of a dual unitary 2-cocycle on a non-compact and non-Abelian group. One of our results here, is that the locally compact quantum group associated with De Commer's construction is unitarily equivalent to the one constructed here from a manageable multiplicative unitary (Theorem 4.12).

Let µ, ν be tempered weights on G. For Lemma 2.12. For f 1 , f 2 ∈ B µ λ ∩ B ν ρ (G), we have an equality of smooth functions on G 4 :

f 1 , f 2 ∈ B µ λ ∩ B ν ρ (G),
(F ρ θ ) 13 ∆f 1 ⊗ ∆f 2 = (F λ -θ ) -1 24 ∆f 1 ⊗ ∆f 2 .
We finish this section by an important property of the twist:

Lemma 2.13. Let f ∈ S(G × G). Then, for g 1 , g 2 ∈ G fixed, the fonction (h 1 , h 2 ) → F λ θ λ h -1 1 ⊗ λ h -1 2 f (g 1 , g 2 ) ,
belongs to S(G × G).

Proof. Since f ∈ S(G × G), we have with absolutely convergent integrals:

F λ θ λ h -1 1 ⊗ λ h -1 2 f (g 1 , g 2 ) = G×G K θ (g 3 , g 4 ) ρ g1 ⊗ ρ g2 f (h 1 g -1 3 , h 2 g -1 4 ) d λ (g 3 ) d λ (g 4 ) .
Setting for fixed g 1 , g 2 ∈ G, ψ g1,g2 := ρ g1 ⊗ ρ g2 f ∈ S(G × G) and returning to a non-evaluated expression (thus to oscillatory integrals), the function we need to control reads:

K θ (g 3 , g 4 ) ρ g -1 3 ⊗ ρ g -1 4 ψ g1,g2 d λ (g 3 ) d λ (g 4 ) .
The proof follows then by (the anti-action part of) Lemma 2.8.

Quantum Kählerian Lie groups

This section is the core of the paper: we construct a multiplicative unitary out of the deformation theory of Fréchet algebras for actions of negatively curved Kählerian Lie group [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF].

Deformations of the Schwartz algebra

We have seen in the proof of Lemma 2.8 that the actions λ and ρ of G on S(G) are strongly continuous and tempered. Obviously, the same is true for the product action λ ⊗ ρ of G × G on S(G). Hence, Theorem 2.4 yields three possible deformations of the Fréchet algebra S(G). The first two are parametrized by θ ∈ R * while the third is parametrized by (θ 1 , θ 2 ) ∈ R * × R * . We shall use the following notations:

• θ for the product on S(G), deformed by the action ρ of G and parameter θ,

• θ for the product on S(G), deformed by the action λ of G and parameter -θ,

• θ for the product on S(G), deformed by the action λ ⊗ ρ of G × G and parameters (-θ, θ).

By construction, θ is equivariant under λ and we call this product the left invariant deformed product. Similarly, θ is equivariant under ρ and we call it the right invariant deformed product. However, θ has no (classical) equivariance property and we call it the doubly deformed product. By [6, Proposition 4.16], the complex conjugation is an involution of the three Fréchet algebras (S(G), θ ), (S(G), θ ) and (S(G), θ ). Remark 3.1. We could have used generic parameters (θ 1 , θ 2 ) to define a more general doubly deformed product. However, the only choice that makes the ordinary coproduct a morphism for such a (θ 1 , θ 2 )-doubly deformed product is (-θ, θ). This comes from Lemma 2.12.

By compatibility of the oscillatory integral with continuous linear mapping (see [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Lemma 2.37]), we get that these three different associative products on S(G) can be be written directely in term of the non formal Drinfel'd twists of Definition 2.7:

Proposition 3.2. With µ : S(G × G) → S(G), f → [g → f (g, g)
] the ordinary multiplication, we have for f 1 , f 2 ∈ S(G):

f 1 θ f 2 = µ F ρ θ (f 1 ⊗f 2 ) , f 1 θ f 2 = µ F λ -θ (f 1 ⊗f 2 ) , f 1 θ f 2 = µ F λ -θ F ρ θ (f 1 ⊗f 2 ) = µ F ρ θ F λ -θ (f 1 ⊗f 2 ) .
By [6, Theorem 4.9], the group G still acts (strongly continuously and temperedly) on the left on (S(G), θ ). Similarly, one can show that the group acts on the right on (S(G), θ ). Hence, one can use Theorem 2.4 one more time to deform (S(G), θ ) and (S(G), θ ). As a special case of [6, Proposition 5.20], we know that these two deformations coincide with the deformation of S(G) for the action λ ⊗ ρ of G × G: Proposition 3.3. The algebra (S(G), θ ) coincides with the deformation of (S(G), θ ) for the action λ and parameter -θ and also with the deformation of (S(G), θ ) for the action ρ and parameter θ.

We now give a more convenient expression for the doubly deformed product θ : Lemma 3.4. For f 1 , f 2 ∈ S(G) and for g ∈ G fixed, we have the ordinary integral formulas:

f 1 θ f 2 (g) = K -θ (g 1 , g 2 ) λ g1 f 1 θ λ g2 f 2 (g) d λ (g 1 ) d λ (g 2 ) = K θ (g 1 , g 2 ) ρ g1 f 1 (g) θ ρ g2 f 2 (g) d λ (g 1 ) d λ (g 2 ) .
Proof. We prove the first formula only, the arguments for the second being similar. By Proposition 3.3, one can view the algebra (S(G), θ ) as the deformation of (S(G), θ ) for the action λ of G and parameter -θ.

Hence by [6, Proposition 5.10], we have

f 1 θ f 2 = K -θ (g 1 , g 2 ) λ g1 f 1 θ λ g2 f 2 d λ (g 1 ) d λ (g 2 ) .
(3.1)

Now, by Proposition 3.2, we have

λ g1 f 1 θ λ g2 f 2 (g) = F ρ θ λ g1 f 1 ⊗ λ g2 f 2 (g, g) ,
which implies since F ρ θ commutes with left translations:

λ g1 f 1 θ λ g2 f 2 (g) = F ρ θ f 1 ⊗ f 2 (g -1 1 g, g -1 2 g) .
By Lemma 2.8,

F ρ θ f 1 ⊗ f 2 belongs to S(G × G). Since S(G × G)
is stable under the group inversion and right translations, we therefore deduce that for g fixed, the function [(g 1 , g 2 ) → λ g1 f 1 θ λ g2 f 2 (g)] belongs to S(G × G). Hence, we can replace the oscillatory integrals in (3.1) by ordinary one and we are done.

The following property is a key step to prove the morphism property of the undeformed coproduct for the doubly deformed product θ . Lemma 3.5. Let f 1 , f 2 ∈ S(G). Then, for a fixed g ∈ G, the function

(g 1 , g 2 ) → λ g -1 1 f 1 θ λ g -1 2 f 2 (g) , belongs to S(G × G).
Proof. We have by Proposition 3.2 and the fact that F ρ θ commutes with left translations:

λ g -1 1 f 1 θ λ g -1 2 f 2 (g) = F λ -θ F ρ θ λ g -1 1 ⊗ λ g -1 2 (f 1 ⊗ f 2 ) (g, g) = F λ -θ λ g -1 1 ⊗ λ g -1 2 F ρ θ (f 1 ⊗ f 2 ) (g, g) .
By Lemma 2.8, F ρ θ (f 1 ⊗ f 2 ) belongs to S(G × G), hence we may apply Lemma 2.13 to get the result.

The following useful property survives:

Proposition 3.6. The undeformed antipode is anti-multiplicative on the Fréchet algebra S(G), θ :

S(f 1 θ f 2 ) = (Sf 2 ) θ (Sf 1 ) , ∀f 1 , f 2 ∈ S(G) .
At first glance this preserved property may be surprising but it is not: S will appear to be the unitary antipode (but not the antipode).

Proof. Note first that K θ (g 1 , g 2 ) = K -θ (g 2 , g 1 ), which implies that we have for all f 1 , f 2 ∈ S(G):

f 1 θ f 2 = f 2 -θ f 1 , f 1 θ f 2 = f 2 -θ f 1 , f 1 θ f 2 = f 2 -θ f 1 . (3.2)
Since moreover the undeformed antipode satisfies S µ = µ (S ⊗ S) and intertwines F ρ θ with F λ θ , we get from Proposition 3.2:

S(f 1 θ f 2 ) = (Sf 1 ) -θ (Sf 2 ) , S(f 1 θ f 2 ) = (Sf 1 ) -θ (Sf 2 ) , S(f 1 θ f 2 ) = (Sf 1 ) -θ (Sf 2 ) . (3.3)
Combining the last equalities in (3.2) and in (3.3), we get the result. Fix µ, ν two tempered weights on G. Note that the action λ ⊗ ρ of G × G on B µ λ ∩ B ν ρ (G) is tempered and strongly continuous and that B µ λ ∩ B ν ρ (G) is its own space of smooth vectors for this action. We can then proceed exactly like in [6, Proposition 4.0] to show B µ λ ∩ B ν ρ (G) acts continuously by θ -multiplication (on the left and on the right) on S(G). Then: Proposition 3.7. Let α ∈ C. The pair of linear mappings

f → χ α G θ f , f → f θ χ α G ,
defines a multiplier of the Fréchet algebra (S(G), θ ). Moreover, the constant unit function is the unit of the multipliers algebra:

1 θ f = f θ 1 = f , ∀f ∈ S(G) .
Proof. Continuity follows from the above discussion together from the fact that χ α G belongs to B Proof. This follows by [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Proposition 5.19] which shows that the Fréchet algebra (S(G), θ ) possesses a bounded approximate unit.

χ (α) G λ ∩ B χ (α) G ρ ( 

The deformed Kac-Takesaki operator

Our starting point is the obvious observation that on elementary tensors, the classical Kac-Takesaki operator may be written as:

V (f 1 ⊗ f 2 )(g 1 , g 2 ) = (λ g -1 1 f 1 )f 2 (g 2 ) .
Replacing the pointwise product by the doubly deformed product θ leads to a natural deformation of V :

Proposition 3.9. The deformed Kac-Takesaki operator

V θ : f 1 ⊗ f 2 → (g 1 , g 2 ) → λ g -1 1 f 1 θ f 2 (g 2 ) ,
sends S(G) ⊗ S(G) to S(G × G) and extends uniquely to a continuous linear map from S(G × G) to itself.

Proof. Note first that for g 1 ∈ G fixed, λ g -1 1 f 1 θ f 2 is well defined as an element of S(G). Moreover, Proposition 3.2 and the fact that F ρ θ commutes with left translations, give:

λ g -1 1 f 1 θ f 2 (g 2 ) = F λ -θ F ρ θ λ g -1 1 ⊗ Id (f 1 ⊗ f 2 ) (g 2 , g 2 ) = F λ -θ λ g -1 1 ⊗ Id F ρ θ (f 1 ⊗ f 2 ) (g 2 , g 2 ) .
Hence, it suffices to show that the map

f → (g 1 , g 2 ) → F λ -θ λ g -1 1 ⊗ Id F ρ θ f (g 2 , g 2 ) ,
sends S(G × G) to itself continuously (and the extension of V θ to the whole S(G × G) will be given by that formula). Note first that by Lemma 2.8, F ρ θ is continuous on S(G × G) and thus it suffices to show that the map

f → (g 1 , g 2 ) → F λ -θ λ g -1 1 ⊗ Id f (g 2 , g 2 ) ,
is continuous from S(G × G) to itself. To see this fact, we first come back to the definition of the twist F λ -θ as oscillatory integrals, to get

F λ -θ λ g -1 1 ⊗ Id f (g 2 , g 2 ) = K -θ (g 3 , g 4 ) f (g 1 g -1 3 g 2 , g -1 4 g 2 ) d λ (g 3 ) d λ (g 4 ) .
Note also that in term of V , the classical Kac-Takesaki operator (2.3), we then have

f (g 1 g -1 3 g 2 , g -1 4 g 2 ) = ρ g -1 3 g4 ⊗ λ g4 V f (g 1 , g 2 ) . Since V preserves S(G × G), it suffices to prove that the map f → K -θ (g 3 , g 4 ) ρ g -1 3 g4 ⊗ λ g4 f d λ (g 3 ) d λ (g 4 ) ,
is continuous from S(G × G) to itself. To see this, note first that for f ∈ S(G × G) and for g 1 , g 2 ∈ G fixed, the map (g 3 , g 4 ) → ρ g -1 3 g4 ⊗ λ g4 f (g 1 , g 2 ) belongs to S(G × G). Hence, provided one evaluates the previous expression at the point (g 1 , g 2 ) ∈ G × G, we may freely replace the oscillatory integral by the ordinary one. Performing then the translation g 3 → g 4 g 3 , followed by the group inversion g 4 → g -1 4 , we are left with

G×G K -θ (g -1 4 g 3 , g -1 4 ) χ G (g 4 ) ρ g -1 3 ⊗ λ g -1 4 f (g 1 , g 2 ) d λ (g 3 ) d λ (g 4 ) .
As shown (for instance) in [8, Equation (2.2)], K -θ (g -1 4 g 3 , g -1 4 ) = K -θ (g 4 , g 3 ). Going back to a non-evaluated expression and hence back to oscillatory integrals, we see that the map we need to control coincides with

f → K -θ (g 4 , g 3 ) χ G (g 4 ) ρ g -1 3 ⊗ λ g -1 4 f d λ (g 3 ) d λ (g 4 ) , f ∈ S(G × G) .
The claim follows then from the last part of Lemma 2.8 and the fact that the modular function χ G is tempered, hence it defines a continuous multiplier of the Fréchet algebra S(G) for the pointwise product.

From the proof of Proposition 3.9, we get the following: Proposition 3.10. The deformed Kac-Takesaki operator factorizes as:

V θ = (1 ⊗ χ -1 G ) Y θ (1 ⊗ χ G ) V F ρ θ , (3.4) 
where Y θ is the continuous (by Lemma 2.8) linear map on S(G × G), defined by:

Y θ f := K -θ (g 2 , g 1 ) ρ g -1 1 ⊗ λ g -1 2 f d λ (g 1 ) d λ (g 2 ) ,
and where the modular function χ G is identified with the associated pointwise multiplication operator.

From this factorization, we deduce:

Corollary 3.11. The deformed Kac-Takesaki operator V θ is an homeomorphism of S(G × G).

Proof. The claim follows because all the operators entering in the factorization (3.4) are homeomorphisms of S(G × G). For 1 ⊗ χ G and V it is obvious, for F ρ θ it follows from Proposition 2.9. For Y θ , we get the following formula for the inverse:

Y -1 θ f := K θ (g 2 , g 1 ) ρ g1 ⊗ λ g2 f d λ (g 1 ) d λ (g 2 ) ,
and the result follows again from Lemma 2.8.

The coproduct

In order to lighten the notations, from now on we will use the notation θ instead of θ ⊗ θ , to denote the doubly deformed product of S(G × G) (that is the deformed product by the action (λ ⊗ ρ)

⊗ (λ ⊗ ρ) of G 2 × G 2 ).
Let ∆ be the ordinary coproduct of L ∞ (G). Our task here is to define, for f ∈ S(G), the element ∆f as a continuous multiplier of the Fréchet algebra (S(G × G), θ ). This turns out to be a delicate question. Indeed, even if, for f ∈ S(G), the function ∆f is tempered on G × G, for f 1 ∈ S(G) and f 2 ∈ S(G × G) there is no direct way to give a meaning to the product ∆f 1 θ f 2 in term of oscillatory integrals.

Not surprisingly, the easiest answer we found uses the deformed Kac-Takesaki operator V θ . Indeed, since the constant unit function is the unit of the algebra of continuous multipliers of the Fréchet algebra (S(G), θ ) (by Proposition 3.7), we may formally write, for f 1 , f 2 , f 3 ∈ S(G):

∆f 1 θ (f 2 ⊗ f 3 ) = ∆f 1 θ (1 ⊗ f 3 ) θ (f 2 ⊗ 1) = (g 1 , g 2 ) → λ g -1 1 f 1 θ f 3 (g 2 ) θ (f 2 ⊗ 1) = V θ (f 1 ⊗ f 3 ) θ (f 2 ⊗ 1) .
The point is that the RHS above now makes sense as an element of S(G × G). Indeed, for f ∈ S(G), the function f ⊗ 1 defines in an obvious way a continuous multiplier of (S(G × G), θ ) and, by Proposition 3.9, V θ is continuous on S(G × G). By the last item of Proposition 3.2, we get with the usual leg numbering notation:

V θ (f 1 ⊗ f 3 ) θ (f 2 ⊗ 1) = (µ ⊗ Id) F ρ θ F λ -θ ⊗ Id (V θ ) 13 (f 1 ⊗ f 2 ⊗ f 3 ) .
Hence, for f 1 ∈ S(G), the map

L θ (∆f 1 ) : S(G) ⊗ S(G) → S(G × G) , f 2 ⊗ f 3 → V θ (f 1 ⊗ f 3 ) θ (f 2 ⊗ 1) ,
extends uniquely as a continuous linear map on S(G × G). The formula of the extension being given by

L θ (∆f 1 )f := (µ ⊗ Id) F ρ θ F λ -θ ⊗ Id (V θ ) 13 (f 1 ⊗ f ) , f 1 ∈ S(G) , f ∈ S(G × G) .
Then, it is not difficult to see that the continuous map L θ (∆f ), f ∈ S(G), is a left multiplier of the algebra (S(G × G), θ ). Indeed, let f 1 , . . . , f 5 ∈ S(G) and, for fixed g 2 ∈ G, consider the function

λ • -1 f 1 θ f 3 (g 2 ) := g 1 → λ g -1 1 f 1 θ f 3 (g 2 ) ∈ S(G) .
With this notation and, for g 1 , g 2 ∈ G, we have by definition:

L θ (∆f 1 )(f 2 ⊗ f 3 ) (g 1 , g 2 ) = λ • -1 f 1 θ f 3 (g 2 ) θ f 2 (g 1 ) .
Hence we get

L θ (∆f 1 )(f 2 ⊗ f 3 ) θ (f 4 ⊗ f 5 )(g 1 , g 2 ) = λ • -1 f 1 θ f 3 f 5 (g 2 ) θ f 2 f 4 (g 1 ) = L θ (∆f 1 ) (f 2 θ f 4 ) ⊗ (f 3 θ f 5 ) = L θ (∆f 1 ) (f 2 ⊗ f 3 ) θ (f 4 ⊗ f 5 ) (g 1 , g 2 ) .
By density of S(G) ⊗ S(G) in S(G × G), we get: Proposition 3.12. Let f ∈ S(G). Then the map

L θ (∆f 1 ) : f 2 ⊗ f 3 → V θ (f 1 ⊗ f 3 ) θ (f 2 ⊗ 1) ,
sends S(G) ⊗ S(G) to S(G × G) and extends uniquely to a continuous left multiplier of (S(G × G), θ ).

Of course, we can proceed similarly to give meaning to R θ (∆f 1 ) : S(G × G) → S(G × G), f 2 → f 2 θ ∆f 1 as a continuous right multiplier. But there is in fact a more direct way to do it, namely using the involution given by the complex conjugation:

R θ (∆f 1 ) : S(G × G) → S(G × G) , f 2 → L θ (∆f 1 )f 2 , f 1 ∈ S(G) .
We are now ready to give the precise definition of the coproduct. Definition 3.13. For f ∈ S(G), we let ∆f be the element of the algebra of continuous multipliers of the Fréchet algebra (S(G×G), θ ) given by the above defined pair of left and right multipliers (L θ (∆f ), R θ (∆f )).

To simplify notations, we will also denote by θ the product in the algebra of continuous multipliers of (S(G×G), θ . Of course, we can then express the deformed Kac-Takesaki operator in term of the coproduct: Lemma 3.14. For f 1 , f 2 ∈ S(G), the following relation

V θ (f 1 ⊗ f 2 ) = ∆f 1 θ (1 ⊗ f 2 ) ,
holds true in the algebra of continuous multipliers of (S(G × G), θ ).

Proof. For f j ∈ S(G), j = 1, . . . , 4, we have in S(G × G):

∆f 1 θ (1 ⊗ f 2 ) θ (f 3 ⊗ f 4 ) = ∆f 1 θ (f 3 ⊗ f 2 ) θ (1 ⊗ f 4 ) = V θ (f 1 ⊗ f 2 ) θ (f 3 ⊗ 1) θ (1 ⊗ f 4 ) = V θ (f 1 ⊗ f 2 ) θ (f 3 ⊗ f 4 ) ,
and all the steps are justified by what precedes.

The last ingredient we need is the morphism property for the coproduct: Proposition 3.15. For all f 1 , f 2 ∈ S(G), we have in the algebra of continuous multipliers of (S(G × G), θ ):

∆f 1 θ ∆f 2 = ∆(f 1 θ f 2 ) .
Proof. Note first that both sides of the equality we want to prove are well defined as continuous multipliers. But in fact, both sides are also well defined as tempered functions on G × G, by which we mean functions that together with there left-(or right-)invariant derivatives, are bounded by a power of the modular weight d G×G . For the RHS this is obvious (since f 1 θ f 2 belongs to S(G)). For the LHS this follows from Lemma 3.5. Indeed for fixed g ∈ G, the function

ψ g := (g 1 , g 2 ) → λ g -1 1 f 1 θ λ g -1 2 f 2 (g) ,
belongs to S(G × G), so we may apply to it the continuous operator F λ -θ F ρ θ : S(G × G) → S(G × G) followed by the ordinary multiplication µ : S(G × G) → S(G). Hence, as a smooth function, we can define

∆f 1 θ ∆f 2 (g 1 , g 2 ) := F λ -θ F ρ θ ψ g1 (g 2 , g 2 ) .
Rewriting the function ψ g in term of the twists yields

∆f 1 θ ∆f 2 = (µ 13 µ 24 ) (F λ -θ ) 13 (F ρ θ ) 13 (F λ -θ ) 24 (F ρ θ ) 24 (∆f 1 ⊗ ∆f 2 ) .
Since all these twists commute, we can use Lemma 2.12, to get (with the usual leg numbering notation):

∆f 1 θ ∆f 2 = (µ 13 µ 24 ) (F λ -θ ) 13 (F ρ θ ) 24 (∆f 1 ⊗ ∆f 2 ) .
Using the facts that F λ -θ commutes with right translations and that F ρ θ commutes with left translations, we get the relation

(F λ -θ ) 13 (F ρ θ ) 24 (∆f 1 ⊗ ∆f 2 ) = (∆ ⊗ ∆)F λ -θ F ρ θ (f 1 ⊗ f 2 ) , to finally deduce ∆f 1 θ ∆f 2 = (µ 13 µ 24 ) (∆ ⊗ ∆)F λ -θ F ρ θ (f 1 ⊗ f 2 ) = ∆ µ F λ -θ F ρ θ (f 1 ⊗ f 2 ) = ∆(f 1 θ f 2 ) ,
which concludes the proof.

We will also need the morphism property between ∆f and ∆χ α .

Proposition 3.16. For f ∈ S(G) and α ∈ C, we have in the algebra of multipliers of (S(G × G), θ ):

∆f θ ∆χ α G = ∆(f θ χ α G ) , ∆χ α G θ ∆f = ∆(χ α G θ f ) .
Proof. We only show the first equality, the second being similar. Recall that given a pair of tempered weights µ and ν, the space B µ λ ∩ B ν ρ (G) acts continuously by θ -multiplication (on the left and on the right) on S(G) and that χ α G belongs to B

χ (α) G λ ∩ B χ (α) G ρ (G). This implies that ∆χ α G = χ α G ⊗ χ α G is a multiplier of (S(G × G), θ ).
Consequently, both sides of the equality we have to prove are well defined as multipliers. (However, it is not true for general F ∈ B µ λ ∩ B ν ρ (G), that ∆(F ) defines as a multiplier.) We proceed similarly to Proposition 3.15 but to use the cancellation property of Lemma 2.12, we need to show that ∆f θ ∆χ α is expressible as (µ

13 µ 24 ) (F λ -θ ) 13 (F ρ θ ) 13 (F λ -θ ) 24 (F ρ θ ) 24 (∆f ⊗ ∆χ α ) .
For that, and for fixed g ∈ G, we start to consider the two-variables function:

(g 1 , g 2 ) → λ g -1 1 f θ λ g -1 2 χ α (g) .
Since χ is a character on G, this function coincides with

(g 1 , g 2 ) → λ g -1 1 f θ χ α (g) χ α (g 2 ) .
Hence, what we need to do is to define the doubly deformed product θ between g 1 → λ g -1 1 f θ χ α (g) and χ α . Since B µ λ ∩ B ν ρ (G) acts continuously by θ -multiplication on S(G), it is sufficient to prove that the function g 1 → λ g -1 1 f θ χ α (g) belongs, for fixed g ∈ G, to S(G). What we know is that for fixed g 1 ∈ G, the five-variables function

Ξ g1 := (h 1 , h 1 , h 2 , h 2 ) → g → λ h1 ρ h 1 λ g -1 1 f (g)λ h2 ρ h 2 χ α (g) , belongs to B µ λ (G 4 , S(G)).
In term of oscillatory integrals (see Theorem 2.2), we then have

λ g -1 1 f θ χ α = K -θ ⊗ K θ (h 1 , h 1 , h 2 , h 2 ) Ξ g1 (h 1 , h 1 , h 2 , h 2 ) d λ (h 1 ) d λ (h 2 ) d λ (h 1 ) d λ (h 2 ) .
Now, we need to permute the roles of the variables g and g 1 . Observe that

Ξ g1 (h 1 , h 1 , h 2 , h 2 , g) = Θ g (h 1 , h 1 , h 2 , h 2 , g 1 ) ,
if, for fixed g ∈ G, we define Θ g to be the five-variables function given by:

Θ g = χ α (g) (h 1 , h 1 , h 2 , h 2 ) → χ α (h 2 )χ α (h 2 )[g 1 → λ h1 ρ h 1 ρ g f (g 1 ) .
Clearly, Θ g ∈ B µ λ (G 4 , S(G)) and since

g 1 → λ g -1 1 f θ χ α (g) = K -θ ⊗ K θ (h 1 , h 1 , h 2 , h 2 ) Θ g (h 1 , h 1 , h 2 , h 2 ) d λ (h 1 ) d λ (h 2 ) d λ (h 1 ) d λ (h 2 ) , Theorem 2.2 shows that g 1 → λ g -1 1 f θ χ α (g) ∈ S(G) as needed.

The invariant weight

In this subsection we are going to prove that the Haar integrals (left and right) define continuous positive invariant functionals on the Fréchet algebra (S(G), θ ). Here positivity underlies the involution given by the complex conjugation and invariance underlies the undeformed coproduct. The situation is completely left/right symmetric but since we have chosen to deform V and not W , see (2.3), we shall mainly work with the right-invariant weight.

From the discussion just before Definition 1.6, from Lemma 1.21 and from Proposition 3.10 of [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF], one knows that complex powers of the modular function act continuously by θ -multiplication on S(G). In fact, it defines a continuous multiplier of the Fréchet algebra (S(G), θ ). Hence, we may consider the following continuous operator:

T θ : S(G) → S(G), f → χ -1/2 G (f θ χ 1/2 G ) . (3.5) 
This operator played a key role in [START_REF] Bieliavsky | On deformations of C * -algebras by actions of Kählerian Lie groups[END_REF]. Here, we also need the right invariant version of it, namely the operator

T θ := S T θ S ,
which, obviously, is also continuous on S(G). In what follows, for α ∈ C, we denote by M (χ α G ) the operator of pointwise multiplication by χ α G , by L θ (χ α G ) the operator of θ -multiplication on the left by χ α G and by R θ (χ α G ) the operator of θ -multiplication on the right by χ α G . For instance, we then have

T θ = M (χ -1/2 G )L θ (χ 1/2 G ). The operators L θ (χ α G ), R θ (χ α G ), L θ (χ α G ) and R θ (χ α G )
are defined in a similar way. By equation (3.3), it follows that L θ (χ α G ) and R θ (χ α G ) acts continuously on S(G). For L θ (χ α G ) and R θ (χ α G ) the same holds true too by Proposition 3.7. We now list the main properties of the operators T θ and T θ , properties coming essentially from [8, Lemma 2.1]. Lemma 3.17. Let θ ∈ R. Then 1. T θ and T θ are homeomorphisms of S(G) and they satisfy

T -1 θ f = T -θ f = T θ f and T -1 θ f = T -θ f = T θ f , ∀f ∈ S(G) ,
2. T θ commutes with left translations and T θ commutes with right translations,

As operators on

S(G), T θ , T θ , M (χ G ), L θ (χ G ), R θ (χ G ), L θ (χ G ) and R θ (χ G ) commute pairwise, 4. For α ∈ C, we have T α θ = L θ (χ -α/4 G ) R θ (χ α/4 G ) , T α θ = L θ (χ -α/4 G ) R θ (χ α/4 G ) and T α θ T α θ = L θ (χ -α/4 G ) R θ (χ α/4 G ) ,
5. Given with the initial domain S(G), T θ and T θ are essentially selfadjoint both on L 2 ρ (G) and on L 2 λ (G).

Proof. Consider the family of numerical functions

f θ (x) := 1 + π 2 θ 2 x 2 1/2 + πθx , θ ∈ R . (3.6) 
Let E be the element of the Lie algebra of S characterized by the relation exp{tE} = (0, 0, t) ∈ S. In the case where G is elementary, that is G = S, it is shown in [8, Lemma 2.1] that, with E the left invariant vector field associated to E, we have:

T θ = f θ (i E) dim(S)/4 .
In the general case, according to the semidirect product decomposition (2.4) of G, we define E j as the element of the Lie algebra of G which coincide with the element E as defined above, for each factor S j . Observe that E 1 , • • • , E N generates an Abelian subalgebra of the Lie algebra of G. Now, a direct generalization of the computations done in [8, Lemma 2.1] yields:

T θ = N j=1 f θ (i E j ) dim(Sj )/4 . (3.7) 
Since the (classical) antipode S intertwines λ and ρ, we get S E j S = E j , and thus

T θ = N j=1 f θ (iE j ) dim(Sj )/4 . (3.8) 
Then, the first item follows from the fact

f θ (-x) = f -θ (x) = f θ (x) -1 .
The second item follows just from the facts that θ is equivariant under left translations while θ is equivariant under right translations and that χ G is a character on G.

We come to the third item. Note first that T θ and T θ commute. Indeed, T θ is of the form ρ(Φ) while T θ is of the form λ(Φ) for Φ a distribution on G. Then, note that T θ and T θ both commute with M (χ G ). Indeed, working in the coordinate system (2.5) for each S j and under the parametrization

g = g 1 • • • g N of G = (S N . . . ) S 1 , we have χ G (g) = e N j=1 dim(Sj )aj , while E j = ∂ tj and E j = -e -2aj ∂ tj . Now, when G is elementary, we can deduce from [8, Lemma 2.1] that L θ (χ G ), R θ (χ G ), L θ (χ G ) and R θ (χ G ) are combinations of T θ , T θ and M (χ G ).
But the computations made in [8, Lemma 2.1] (and thus the relations between all these operators) extend directly for general negatively curved Kählerian Lie group G. Hence the result.

The first relation of the forth item come again from [8, Lemma 2.1] (extended to general negatively curved Kählerian Lie groups). The second relation can be deduced from the first using Equation (3.3) and the fact that S(χ α G ) = χ -α G . For the third relation, we proceed with formal computations which, however, can be rendered rigorous working with oscillatory integrals. Let f ∈ S(G) and α ∈ C. We have:

L θ (χ α G )f = χ G θ f = G 4 K θ (g 1 , g 2 ) K -θ (g 3 , g 4 ) ρ g1 λ g3 χ α G ρ g2 λ g4 f d λ (g 1 )d λ (g 2 )d λ (g 3 )d λ (g 4 ) = χ -α G G 2 K θ (g 1 , g 2 ) ρ g1 χ α G ρ g2 G 2 K -θ (g 3 , g 4 ) λ g3 χ α G λ g4 f d λ (g 3 )d λ (g 4 ) d λ (g 1 )d λ (g 2 ) = χ -α G G 2 K θ (g 1 , g 2 ) ρ g1 χ α G ρ g2 (χ α G θ f ) d λ (g 1 )d λ (g 2 ) = χ -α G χ α G θ χ α G θ f . Hence we get L θ (χ α G ) = M (χ -α G )L θ (χ α G )L θ (χ α G ).
Since the complex conjugation is an involution for all these deformed products, we get

R θ (χ -α G )f = L θ (χ -α G )f = M (χ α G )L θ (χ -α G )L θ (χ -α G )f = M (χ α G )R θ (χ -α G )R θ (χ -α G )f .
From this and the first two relations, we get

L θ (χ α G )R θ (χ -α G ) = L θ (χ α G )R θ (χ -α G )L θ (χ α G )R θ (χ -α G ) = T 4α θ T 4α θ .
The statement in the last item comes from the fact that in the coordinate system (2.5) we have E j = ∂ tj and E j = -e -2aj ∂ tj while the left and right Haar measures read

d λ (g) = da 1 dv 1 dt 1 • • • da N dv N dt N and d ρ (g) = e N j=1 dim(Sj )aj da 1 dv 1 dt 1 • • • da N dv N dt N .
Remark 3.18. The forth item of Lemma 3.17 above implies that T α θ (resp. T α θ ) is an inner automorphism (in the sense of multipliers) of the product θ (resp. θ ). But it will follow from modular theory that T 4 θ and T 4 θ are also automorphisms of the product θ . However, they are probably not inner.

Proposition 3.19. The right Haar integral τ ρ is a continuous, positive and faithful linear functional of the involutive (for the complex conjugation) Fréchet algebra (S(G), θ ). Indeed, we have for all f ∈ S(G):

τ ρ (f θ f ) = τ ρ T θ (f ) 2 .
Proof. Continuity is obvious. It remains to prove positivity and non-degeneracy. By [6, Proposition 5.10], we have for f ∈ S(G):

f θ f = G×G K θ (g 1 , g 2 ) ρ g1 f θ ρ g2 f d λ (g 1 ) d λ (g 2 ) ,
Since τ ρ : S(G) → C is continuous, we can use [6, Lemma 1.37], to get:

τ ρ (f θ f ) = G×G K θ (g 1 , g 2 ) τ ρ (ρ g1 f ) θ (ρ g2 f ) d λ (g 1 ) d λ (g 2 ) .
The right invariant version of [8, Lemma 2.6] (obtained by intertwining everything with the undeformed antipode S) gives τ ρ (f

1 θ f 2 ) = τ ρ (f 1 f 2 ) for all f 1 , f 2 ∈ S(G)
, and thus

τ ρ (f θ f ) = G×G K θ (g 1 , g 2 ) τ ρ (ρ g1 f ) (ρ g2 f ) d λ (g 1 ) d λ (g 2 ) .
Using [6, Lemma 1.37] backwards, one deduces

τ ρ (f θ f ) = τ ρ G×G K θ (g 1 , g 2 ) (ρ g1 f ) (ρ g2 f ) d λ (g 1 ) d λ (g 2 ) = τ ρ (f θ f ) . Since χ G = χ 1/2 G θ χ 1/2
G (which follows from a direct computation -see also [START_REF] Bieliavsky | On deformations of C * -algebras by actions of Kählerian Lie groups[END_REF]Remark 2.2]) we get

τ ρ (f θ f ) = G f θ f (g) χ G (g) d λ (g) = G f θ f (g) χ 1/2 G θ χ 1/2 G (g) d λ (g) .
Then, using a bounded approximate unit argument (see [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Proposition 4.19]) coupled with [8, Lemma 2.6], one can show that

G f θ f (g) χ 1/2 G θ χ 1/2 G (g) d λ (g) = G f θ χ 1/2 G 2 (g) d λ (g) = G (f θ χ 1/2 G )χ -1/2 G 2 (g) d ρ (g) = τ ρ T θ (f ) 2 ,
which implies positivity and non-degeneracy since T θ is invertible on S(G).

We now come to right-invariance of the right Haar integral on (S(G), θ ). We first establish an invariance property for the deformed Kac-Takesaki operator. Proposition 3.20. As continuous linear maps from S(G × G) to S(G), we have

(τ ρ ⊗ Id) V θ = τ ρ ⊗ Id .
More generally, for f ∈ S(G), then we have

τ ρ ⊗ L θ (f ) V θ = τ ρ ⊗ L θ (f ) .
Proof. For the first equality, we need to prove that for all f 1 , f 2 ∈ S(G), we have

G λ g -1 f 1 θ f 2 d ρ (g) = G f 1 (g) d ρ (g) f 2 .
For the second equality, we need to prove that for all f 1 , f 2 , f 3 ∈ S(G), we have

G f 1 θ λ g -1 f 2 θ f 3 d ρ (g) = G f 2 (g) d ρ (g) f 1 θ f 3 .
Algebraically speaking, both equalities are obvious since by invariance under right translations we have

G λ g -1 f d ρ (g) = G f (g) d ρ (g) , ∀f ∈ S(G) ,
and since the constant unit function is the unit for θ (in the sense of multipliers -see Proposition 3.7). But this formal observation can be made rigorous by coming back to the definition of the oscillatory integral and using the ordinary Fubini theorem to commute the integrals. 

Since (Id ⊗ L θ (f 1 )) V θ (f 2 ⊗ f 3 ) = (1 ⊗ f 1 ) θ ∆(f 2 ) θ (1 ⊗ f 3 ),
τ ρ ⊗ τ ρ (1 ⊗ f 1 ) θ ∆(f 2 ) θ (1 ⊗ f 3 ) = τ ρ (f 1 θ f 3 ) τ ρ (f 2 ) , ∀f 1 , f 2 , f 3 ∈ S(G) .
Definition 3.22. We let H θ be the Hilbert space completion of S(G) with respect to the inner product:

f 1 , f 2 θ := τ ρ (f 1 θ f 2 ) .
Endowed with the inner product ., . θ and the involution given by the complex conjugation, we may be tempted to see (S(G), θ ) as a left Hilbert algebra. Indeed, by Proposition 3.8 one knows that S(G) θ S(G) is dense in S(G) with respect to its Fréchet topology, topology that clearly dominates the Hilbert space topology of H θ . Also we have for f 1 , f 2 , f 3 ∈ S(G):

f 1 θ f 2 , f 3 θ = τ ρ f 2 θ f 1 θ f 3 = f 2 , f 1 θ f 3 θ . (3.9)
Moreover, it is not difficult to prove that the complex conjugation is preclosed on H θ . But what is missing at this stage is the fact that S(G) acts by θ -multiplication on the left of H θ by bounded operators. However, we can determine by hand the "modular datas":

Lemma 3.23. Set J θ : S(G) → S(G), f → T -2 θ (f ) and I θ : S(G) → S(G), f → T -4 θ (f ).
Then I θ defines a continuous involution of the Fréchet algebra (S(G), θ ) and, moreover, we have for all f 1 , f 2 , f 3 ∈ S(G):

f 1 , f 2 θ = J θ f 2 , J θ f 1 θ , f 1 , f 2 θ = I θ f 2 , f 1 θ and f 1 θ f 2 , f 3 θ = f 1 , f 3 θ I θ f 2 θ .
Proof. We observe that for f 1 , f 2 ∈ S(G), we have by Lemma 3.17 and Proposition 3.19:

f 1 , f 2 θ = τ ρ T θ f 1 T θ f 2 = τ ρ T -θ f 2 T -θ f 1 = T 2 -θ f 2 , T 2 -θ f 1 θ = T -2 θ f 2 , T -2 θ f 1 θ , and f 1 , f 2 θ = τ ρ T θ f 1 T θ f 2 = τ ρ T -1 θ f 1 T 3 θ f 2 = τ ρ T -3 θ f 2 T θ f 1 = T -4 θ f 2 , f 1 
θ , which are the first two relations we have to prove. Next we prove that I θ is an involution. First, items 1. and 4. of Lemma 3.17 entails that I 2 θ = Id. Then, from the second identity, we have:

I θ (f 1 θ f 2 ), f 3 θ = f 3 , f 1 θ f 2 θ = τ ρ f 3 θ f 1 θ f 2 ) .
On the other hand we get since the complex conjugation is an involution:

I θ f 2 θ I θ f 1 , f 3 θ = I θ f 1 , I θ f 2 θ f 3 θ = f 3 θ I θ f 2 , f 1 θ = I θ f 2 , f 3 θ f 1 θ = f 3 θ f 1 , f 2 θ = τ ρ f 3 θ f 1 θ f 2 . Thus, I θ (f 1 θ f 2 ), f 3 θ = I θ f 2 θ I θ f 1 , f 3 
θ for all f 3 ∈ S(G) and hence we deduce by density of S(G) in H θ that I θ (f 1 θ f 2 ) = I θ f 2 θ I θ f 1 as needed. Last we have to prove the formula for the (formal) adjoint of the operator of θ -multiplication on the right. From what precedes we deduce:

f 1 θ f 2 , f 3 θ = f 3 , I θ f 2 θ I θ f 1 θ = I θ f 2 θ f 3 , I θ f 1 θ = f 3 θ I θ f 2 , I θ f 1 θ = f 1 , f 3 θ I θ f 2 θ ,
which concludes the proof.

Remark 3.24. By analogy with Tomita-Takesaki theory, we call J θ the modular conjugation and N θ := T -4 θ the modular operator. Observe also that the canonical antilinear isomorphism from H θ to its conjugate Hilbert space is then given on S(G) by f → J θ f .

Since the composition of two involutions is an automorphism, we deduce:

Corollary 3.25. The operator T 4 θ is an automorphism of the algebra (S(G), θ ).

Remark 3.26. We believe that the automorphism T 4 θ is outer. Since, T θ = S T θ S, we deduce by Proposition 3.6 that T 4 θ is also an automorphism of (S(G), θ ). We believe that it is outer too. Note last that in the proof of Proposition 3.19, we have obtained

τ ρ (f θ f ) = τ ρ (f θ f ) = τ ρ T θ (f ) 2 , ∀f ∈ S(G) ,
we deduce that T 4 θ is an automorphism of the algebra (S(G), θ ). Composing with the antipode S, we get that T 4

θ is an automorphism of the algebra (S(G), θ ). We also believe that they are outer.

Unitarity and multiplicativity

We come to the main result of this section, which is now a straightforward application of what we have already proven.

Theorem 3.27. The deformed Kac-Takesaki operator V θ extends to a multiplicative unitary on H θ .

Proof. Unitarity : From Proposition 3.15, we get for f 1 , f 2 ∈ S(G):

V θ (f 1 ⊗ f 2 ) θ V θ (f 1 ⊗ f 2 ) = (1 ⊗ f 2 ) θ ∆f 1 θ ∆f 1 θ (1 ⊗ f 2 ) = (1 ⊗ f 2 ) θ ∆(f 1 θ f 1 ) θ (1 ⊗ f 2 ) .
Applying τ ρ ⊗ τ ρ to both sides, Corollary 3.21 shows that V θ extends to an isometry on H θ . By Corollary 3.11, V θ is invertible on S(G), hence its extension to H θ is surjective and, therefore, V θ is unitary on H θ ⊗H θ . Multiplicativity : Remark that, as V θ can be written (Lemma 3.14)

V θ (f 1 ⊗ f 2 ) = ∆f 1 θ (1 ⊗ f 2 ) , for f 1 , f 2 ∈ S(G) ,
in the algebra of continuous multipliers of (S(G × G), θ ), and as θ is associative, ∆ is coassociative and a θ -homomorphism (Lemma 3.15), the pentagonal equation (which characterizes multiplicativity) is automatically fulfilled (see [23, The left and right legs, A(V θ ) and A(V θ ), of a multiplicative unitary are defined as the norm closures of the vector subspaces of B(H θ ) given by3 

A 0 (V θ ) := Id ⊗ ω V θ : ω ∈ B(H θ ) * and A 0 (V θ ) := ω ⊗ Id V θ : ω ∈ B(H θ ) * .
In general, A(V θ ) and A(V θ ) are subalgebras of B(H θ ) but need not to be * -subalgebras. We will prove that it is indeed the case here. For f 1 , f 2 ∈ H θ , we let ω f1,f2 ∈ B(H θ ) * be, as usual, the normal functional given for A ∈ B(H θ ) by ω f1,f2 (A) := f 1 , Af 2 θ . For g ∈ G, we define

ρ θ (g) : S(G) → S(G), f → T -1 θ ρ g T θ f . (4.1) 
By Proposition 3.19 we see that ρ θ extends to a unitary representation of G on H θ . Therefore, it yields a representation (still denoted by ρ θ ) of the convolution algebra (L 1 λ (G), * ) on the Hilbert space H θ . Since G is solvable, it is amenable and thus the norm closure of ρ θ (L 1 λ (G), * ) is isomorphic as C * -algebra to C * (G), the group C * -algebra of G. Since the coproduct ∆ has not been deformed, it is natural to guess that A(V θ ) is isomorphic to C * (G). To prove this, we need some preparatory materials. Lemma 4.1. Let f ∈ S(G). Then we have the equality of tempered functions:

T θ ⊗ Id ∆f = Id ⊗ T -1 θ ∆f .
Proof. For f ∈ S(G), we have ρ g ⊗ Id ∆f = Id ⊗ λ g -1 ∆f , which (with the notations of the proof of Lemma 3.17) implies that

E j ⊗ Id ∆f = Id ⊗ (-E j ) ∆f, ∀j = 1 • • • N .
Therefore, using (3.7) and (3.8) together with the fact that f θ (-x) = f θ (x) -1 , we get

T θ ⊗ Id ∆f = N j=1 f θ (i E j ) dim(Sj )/4 ⊗ Id ∆f = Id ⊗ N j=1 f θ (-iE j ) dim(Sj )/4 ∆f = Id ⊗ N j=1 f θ (iE j ) -dim(Sj )/4 ∆f = Id ⊗ T -1 θ ∆f ,
which completes the proof.

Remember that for f ∈ S(G), ρ(f ) is the continuous operator on S(G) given by ρ(f ) := G f (g) ρ g d λ (g). Similarly, we define ρ θ (f ) := G f (g) ρ θ (g) d λ (g), where rho θ (g) is defined in (4.1). (Note also that the representation ρ of G is not unitary on H θ but ρ θ is unitary on H

θ .) Lemma 4.2. Let f ∈ S(G) and set Q θ := T -2 θ T -2 θ .
As continuous operators on S(G), we have

ρ(f ) = ρ θ Q -1/2 θ f . Proof. Let f 1 , f 2 ∈ S(G). Then ρ θ (f 1 )f 2 (g ) = G f 1 (g) T -1 θ ρ g T θ f 2 (g ) d λ (g) = G f 1 (g) T -1 θ ⊗ Id ∆ T θ f 2 (g , g) d λ (g) .
Hence, Lemma 4.1 gives

ρ θ (f 1 )f 2 (g ) = G f 1 (g) Id ⊗ T θ ∆ T θ f 2 (g , g) d λ (g) .
Now, Lemma 3.17 implies that T θ is symmetric on L 2 λ (G) and T θ (f ) = T -1 θ (f ) for all f ∈ S(G). Thus,

ρ θ (f 1 )f 2 (g ) = G T -1 θ f 1 (g) ∆ T θ f 2 (g , g) d λ (g) = G T -1 θ f 1 (g) λ g -1 T θ f 2 (g) d λ (g) .
Since T θ commutes with left translations, is symmetric on L 2 λ (G) and satisfies T θ (f ) = T -1 θ (f ), we finally get

ρ θ (f 1 )f 2 (g ) = G T -1 θ T -1 θ f 1 (g) λ g -1 f 2 (g) d λ (g) = G T -1 θ T -1 θ f 1 (g) ρ g f 2 (g ) d λ (g) . Therefore ρ θ (f 1 ) = ρ( T -1 θ T -1 θ f 1 ) which implies that ρ(f 1 ) = ρ θ ( T θ T θ f 1 ) as needed. Proposition 4.3. For all f 1 , f 2 ∈ S(G), we have Id ⊗ ω f1,f2 V θ = ρ θ χ G T 2 θ Q -1/2 θ f 2 θ T -2 θ J θ f 1 , Proof. Let f 1 , f 2 , f 3 , f 4 ∈ S(G)
. Then, we have:

f 3 , Id ⊗ ω f1,f2 V θ f 4 θ = f 3 ⊗ f 1 , V θ (f 4 ⊗ f 2 ) θ = f 3 ⊗ f 1 , ∆f 4 θ (1 ⊗ f 2 ) θ = f 3 , g → f 1 , λ g -1 f 4 θ f 2 θ θ ,
where the last equality follows by Fubini. Then, with ., . the usual inner product of L 2 ρ (G), Proposition 3.19 and the last item of Lemma 3.17 give

f 1 , f 2 θ = T 2 θ f 1 , f 2 .
With that relation in mind, we observe:

f 1 , λ g -1 f 4 θ f 2 θ = T 2 θ f 1 , λ g -1 f 4 θ f 2 = f 2 θ λ g -1 f 4 , T 2 θ f 1 = f 2 θ λ g -1 f 4 , T -4 θ f 1 θ = λ g -1 f 4 , f 2 θ T -4 θ f 1 θ = λ g -1 f 4 , T 2 θ f 2 θ T -4 θ f 1 = (λ g -1 f 4 )(g ) T 2 θ f 2 θ T -4 θ f 1 (g ) d ρ (g ) = χ G (g ) T 2 θ f 2 θ T -4 θ f 1 (g ) (ρ g f 4 )(g) d λ (g ) = ρ χ G T 2 θ f 2 θ T -4 θ f 1 f 4 (g) .
Hence, Id ⊗ ω f1,f2 V θ = ρ χ G T 2 θ f 2 θ T -4 θ f 1 , which by Lemma 4.2 and the fact that T θ T θ commutes with the operator of pointwise multiplication by χ G gives the result. By Proposition we know that S(G) θ S(G) is dense in S(G), hence dense in L 1 λ (G) too. This implies that the norm closure of Id ⊗ ω f1,f2 V θ : f 1 , f 2 ∈ S(G) contains ρ θ (L 1 λ (G)) and therefore we deduce (remember that G is solvable hence amenable and thus the reduced and full group C * -algebras coincide):

Corollary 4.4. The left leg A(V θ ) of the multiplicative unitary V θ is isomorphic to C * (G) as C * -algebras.

We next go to the right leg of V θ . Remember that L θ (f ) is defined as the continuous operator on S(G) of left θ -multiplication by f . Proposition 4.5. For all f 1 , f 2 ∈ S(G), we have

ω f1,f2 ⊗ Id V θ = L θ [g → f 1 , ρ g f 2 θ ] .
Proof. Let f 1 , f 2 , f 3 , f 4 ∈ S(G). Then, we have

f 3 , ω f1,f2 ⊗ Id V θ f 4 θ = f 1 ⊗ f 3 , V θ (f 2 ⊗ f 4 ) θ = f 1 ⊗ f 3 , ∆f 2 θ (1 ⊗ f 4 ) θ = f 3 , [g → f 1 , ρ g f 2 θ ] θ f 4 θ ,
which is the formula we were looking for.

Our next task is to show that A(V θ ) is a C * -algebra. We will do this by obtaining an explicit formula for the adjoint of ω f1,f2 ⊗ Id V θ . This formula will also be fundamental to prove manageability of V θ . Proposition 4.6. For all f 1 , f 2 ∈ S(G), we have

ω f1,f2 ⊗ Id V θ * = ω T -2 θ J θ f1, T 2 θ J θ f2 ⊗ Id V θ .
Hence the adjoints of the elements in A 0 (V θ ) still belong to A 0 (V θ ). So, the right leg of the multiplicative unitary V θ , A(V θ ), is a C * -algebra.

Proof. We have by Proposition 4.5 and equation (3.9):

ω f1,f2 ⊗ Id V θ * = L θ [g → f 1 , ρ g f 2 θ ] * = L θ [g → f 1 , ρ g f 2 θ ] .
Hence, we deduce by Lemma 3.23:

f 1 , ρ g f 2 θ = ρ g f 2 , f 1 θ = J θ f 1 , J θ ρ g f 2 θ = T -2 θ J θ f 1 , ρ g f 2 θ = T -2 θ J θ f 1 , ρ g T 2 θ J θ f 2 θ ,
which completes the proof.

Manageability and the antipode

For an Hilbert space H we denote by H the conjugate Hilbert space and by H → H, η → η, the canonical antilinear isomorphism. Recall that a multiplicative unitary V on H is manageable in the sense of Woronowicz [START_REF] Woronowicz | From multiplicative unitaries to quantum groups[END_REF] if there exist a unitary operator V on H ⊗H and a densely defined positive self-adjoint operator Q on H with densely defined inverse Q -1 , such that for all η 1 , η 2 ∈ H and all ξ 1 ∈ Dom(Q), ξ 2 ∈ Dom(Q -1 ), we have

η 1 ⊗ ξ 1 , V η 2 ⊗ ξ 2 = η 2 ⊗ Qξ 1 , V η 1 ⊗ Q -1 ξ 2 and V * (Q ⊗ Q)V = (Q ⊗ Q) .
Note that in our context, the antilinear isomorphism H θ → H θ is implemented by the modular conjugation = e -α 2 dim(Sj )(a j -a j ) = χ Proof of Theorem 4.12. To prove the unitary equivalence between V θ and W θ , we proceed by formal computations which, however, can be rigorously justified working with oscillatory integrals. So, take f 1 , f 2 ∈ S(G).

Then we have

W θ f 1 ⊗ f 2 (g 1 , g 2 ) = (J ⊗ J) F θ W * (J ⊗ J) F * θ f 1 ⊗ f 2 (g 1 , g 2 )
(i) There exists a positive constants C, ρ such that: where the unit sphere S k (g) is defined just after Equation (2.10). Consider now E a Fréchet space, realised as a countable projective limit of Banach spaces j∈J E j , and take any family µ = {µ j } j∈J of tempered weights. It then follows from (A.7) that for any j ∈ J there exists r j ∈ N N +1 such that D rj sends B µ λ (G, E) to L 1 λ (G, E j ) continuously. Hence, we have a well defined oscillatory integral, given by the continuous linear mapping Using right invariant vector fields instead left invariant ones everywhere, one defines the notions of right temperedness and right admissibility. In fact, it is not difficult to see that the notions of left temperedness and right temperedness are equivalent. Indeed, fix {X j } j=1,...,dim(G) a basis of g and consider the two coordinates systems:

x i := X i S(x) and x i := X i S(x) .

Let then A( x) be the matrix of Ad x -1 ( x) expressed in the x-coordinates. Suppose that (G, S) is left-tempered. Since the multiplication and inversion are tempered maps (in the x-coordinates), it follows that the matrix entries A i j ( x) are tempered functions too. Since moreover we have

x j = dim(G) i=1 A i j ( x) x j ,

the coproducts ∆f 1 ,

 1 ∆f 2 are a priori only defined as tempered functions on G × G. But if we treat the first and the third variables or the second and the forth variables in ∆f 1 ⊗ ∆f 2 as parameters, we obtain functions in B µ⊗µ λ ∩ B ν⊗ν ρ (G × G). By Proposition 2.10 (and using usual legs numbering notations), the elements (F ρ θ ) 13 ∆f 1 ⊗ ∆f 2 and (F λ -θ ) -1 24 ∆f 1 ⊗ ∆f 2 are therefore well defined for f 1 , f 2 ∈ B µ λ ∩B ν ρ (G) as a family of functions in B µ⊗µ λ ∩B ν⊗ν ρ (G×G) parametrized by G × G. Now, since ρ g ⊗ Id ∆f = Id ⊗ λ g -1 ∆f , we deduce the following decisive fact:

  G). The fact the constant function is the unit of the multipliers algebra follows from [6, Proposition 4.11]. Finally, we need the following density result: Proposition 3.8. The linear subspace S(G) θ S(G) (finite sums of products) is dense in S(G).

  we deduce: Corollary 3.21. The right Haar integral τ ρ is right-invariant on (S(G), θ , ∆):

Sj

  1 ) Φ α (g) K 3 θ (g 1 , g 2 , g 3 ) d λ (g 1 ) = K θ (g , g ) (g j ) = K θ (g , g ) χ

α n - 1 ≤ 1 +

 11 |x n | -ρ ,x n := x 1 n , . . . , x dim Vn n , (ii) There exists a tempered function µ n > 0 such that:(a) For every A ∈ S n k=0 V k ⊂ U(g) there exists C A > 0 such that, denoting A * the formal adjoint on L 2 λ (G) of the left invariant differential operator A, we have:A * α n < C A |α n | µ n , (A.4) (b)The function µ n is independent of the variables {x jr r } jr=1,...,dim Vr with r ≤ n:∂µ n ∂x ir r = 0 , ∀r ≤ n , ∀i r = 1, . . . , dim(V r ) . (A.5)Within the previous notations, we now define the operators on C ∞ (G):D λ n Φ := X * n Φ α n .and, for every (N + 1)-tuple of integers r = (r 0 , . . . , r N ) ∈ N N +1 , we setD λ r := (D λ 0 ) r0 (D λ 1 ) r1 • • • (D λ N ) r N . (A.6)Of course, we haveD λ r * e iS = e iS , ∀ r ∈ N N +1 .But what is really remarkable (see[START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF] Proposition 2.28]), is that for any R ∈ N N +1 , there exist r ∈ N N +1 , k ∈ N and C > 0 such that for every Φ ∈ C ∞ (G), we have the estimate D λ r Φ ≤ C (1 + |x 0 |) R0 . . . (1 + |x N |) R N sup X∈S k (g) X.Φ , (A.7)

  , E) → E , f → e iS(g) F (g) d λ (g) := G e iS(g) D λ rj F (g) d λ (g) j∈J .

We insist on the terminology "modular function" because "modular weight" will be used later to define another function.

We use the definition of Baaj and Skandalis[START_REF] Baaj | Unitaires multiplicative et dualité pour les produits croisés de C * algèbres[END_REF] for the left leg and not the one of Woronowicz[START_REF] Woronowicz | From multiplicative unitaries to quantum groups[END_REF]. But since we will prove stability under adjunction, both definitions coincide here.

We normalize the Fourier transform by F f (t) = e 2iπξt f (ξ)dξ.

g 3 g 1 ) f 2 (g -1 6 g 2 g -1 4 )d λ (g 3 )d λ (g 4 )d λ (g

)d λ (g

) , which is exactly(4.3). This completes the proof of Theorem 4.12.This unitary equivalence between V θ and W θ combined with the main result of[START_REF] Bieliavsky | On deformations of C * -algebras by actions of Kählerian Lie groups[END_REF] has an important consequence:

Next we observe that, by Equation (3.3), we have:

We then compute:

K -θ (g 3 , g 4 ) K θ (g 5 , g 6 ) f 1 (g -1 5 g 2 g 3 g 1 ) f 2 (g -1 6 g 2 g 4 ) d λ (g 3 )d λ (g 4 )d λ (g 5 )d λ (g 6 ) = G 4

K -θ (g 3 , g -1 4 ) K θ (g 5 , g 6 ) χ G (g 4 ) f 1 (g -1 5 g 2 g 3 g 1 ) f 2 (g -1 6 g 2 g -1 4 ) d λ (g 3 )d λ (g 4 )d λ (g 5 )d λ (g 6 ) = G 4

K -θ (g -1 4 g 3 , g -1 4 ) K θ (g 5 , g 6 ) χ G (g 4 ) f 1 (g -1 5 g 2 g -1 4 g 3 g 1 ) f 2 (g -1 6 g 2 g -1 4 ) d λ (g 3 )d λ (g 4 )d λ (g 5 )d λ (g 6 ) =

G 4 K θ (g 3 , g 4 ) K θ (g 5 , g 6 ) χ G (g 4 ) f 1 (g -1 5 g 2 g -1

where the last equality comes from the fact that K -θ (g -1 4 g 3 , g -1 4 ) = K -θ (g 4 , g 3 ) = K θ (g 3 , g 4 ) (see for instance [START_REF] Bieliavsky | On deformations of C * -algebras by actions of Kählerian Lie groups[END_REF]Equations 2.2 & 2.3]). The striking point is that the only difference between Equations (4.3) Corollary 4.15. Let θ ∈ R. Then, the right leg A(V θ ) of the multiplicative unitary V θ is isomorphic to C 0 (G) -θ,θ , the deformation in the sense of [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF] of the C * -algebra C 0 (G) for the action λ ⊗ ρ of G × G and parameters (-θ, θ) ∈ R 2 .

Proof. By Theorem 4.12 (with the notations given at the beginning of subsection 4.1), we have A(V θ ) A( W θ ). Now, W θ is the multiplicative unitary of the locally compact quantum group G θ deforming the quantum group G (the dual of the group G) by the unitary 2-cocycle F λ θ * via De Commer's method [START_REF] Commer | Galois objects and cocycle twisting for locally compact quantum groups[END_REF].

By duality, A( W θ ) is isomorphic to A(W θ ), where W θ is the multiplicative unitary of the locally compact quantum group G θ (the dual of G θ ). It follows then by [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF]Example 3.11 iii] that A(W θ ) (which is denoted by C 0 (G θ ) there) is isomorphic to the deformation of C 0 (G) in the sense of [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF] by the unitary dual 2-cocycle [START_REF] Bieliavsky | On deformations of C * -algebras by actions of Kählerian Lie groups[END_REF]Theorem 3.4], the deformation in the sense of [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF] is isomorphic to the deformation in the sense of [START_REF] Neshveyev | Deformation of C * -algebras by cocycles on locally compact quantum groups[END_REF], hence the result.

It now makes sense to talk about modular element and scaling constant. It is clear that the modular element is given by L θ (χ G ). But since that operator commutes with Q θ , it commutes with the automorphism group of the right Haar weight. Hence we get: Proposition 4.16. The scaling constant of the non-compact LCQG G θ is trivial.

A Proof of Theorem 2.5

In [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF], two of us constructed an oscillatory integral for admissible tempered groups, a construction that we first review. A left tempered group is a pair (G, S) where G is a connected and simply connected Lie group with Lie algebra g, and S is a real-valued smooth function on G, satisfying the following temperedness conditions:

is a global diffeomorphism.

(ii) In these (dual-Lie-algebra-)coordinates, the multiplication and inverse of G are tempered (or slowly increasing) functions.

To introduce the notion of admissibility for tempered groups, we need more notations. First, to a vector space decomposition

and, for every n = 0, . . . , N , an ordered basis {e n in } in=1,...,dim Vn of V n , we can associate coordinates on G:

Identifying the universal enveloping algebra U(g) with the symmetric algebra S(g) of g through the Poincaré-Birkoff-Witt linear isomorphism, we may view S(V n ) as a linear subspace of U(g). Then, a left tempered pair (G, S) is called left admissible if there exists a decomposition (A.2) with associated coordinate system (A.3) such that for every n = 0, . . . , N , there exists an element X n ∈ S(V n ) ⊂ U(g) whose associated multiplier α n := e -iS X n e iS , satisfies the following properties:

it follows that (G, S) is right-tempered as well. Similarly, right-temperedness implies left-tempered. However, the notions of left and right admissibility may differ. Nevertheless, for a right admissible right tempered pair one can repeat the the arguments of [6, Proposition 2.29] with the operators

to get the right-handed version of [6, Proposition 2.29]:

Proposition A.1. Let (G, S) be a right admissible tempered pair, E be a complex Fréchet space with seminorms { . j } j∈J and let µ = {µ j } j∈J be an associated family of tempered weights. Then for all j ∈ J, there exist r j ∈ N N +1 , C j > 0 and k j ∈ N, such that for every element

From this, it follows oscillatory integral mapping makes perfect good sense on B µ ρ (G, E) too:

Let now G be a negatively curved Kählerian Lie group and S G ∈ C ∞ (G × G, R) be the phase function of the kernel (2.8). It is proven in [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF]Chapter 3] that (G × G, S G ) it left tempered (hence right too) and left admissible. We will now prove that (G × G, S G ) right admissibility too. Therefore, the proof of Theorem 2.5 will be an immediate consequence of the Proposition A.1.

Proposition A.2. Let G be a negatively curved Kählerian Lie group. Then, the tempered pair (G × G, S G ) is right admissible.

Proof. Using the same induction argument (over the number of elementary factors of G in its Pyatetskii-Shapiro decomposition (2.4) and based on the fact that the extension homomorphisms are tempered and take values in the linear symplectic group), it suffices to treat the case where G is elementary, that is G = S within our notations.

We fix a symplectic basis {e j , f j } of the symplectic vector space V , i.e. it satisfies ω(e i , f j ) = δ ij and equals zero everywhere else. According to the associated Lagrangian decomposition we let v = (n, m) ∈ V . An easy computation shows that we have the following expressions for the right-invariant vector fields on the group S (which are all skew-adjoint with respect to the left Haar measure):

Now, we consider the following associated basis of s ⊕ s:

and we define for = 1, 2:

and set

Accordingly, we consider the coordinates:

that we combine as vectors:

sinh(a 1 ) , and γ = (cosh(a 1 ) sinh(a 2 ), cosh(a 2 ) sinh(a 1 )) , δ = e -2a1 sinh(2a 2 ), -e -2a2 sinh(2a 1 ) .

Straightforward computations then lead to the following expressions for the coordinates (A.9):

Cyclicity of the derivatives of the hyperbolic functions yields the following observations:

1. There exist finitely many matrices B r ∈ M 2 (R[e a1 , a a2 ]) such that for all integers N 1 and N 2 , the element

B consists in a linear combination of the B r 's.

2. There exist finitely many matrices A r ∈ M 2 (R[e a1 , a a2 ]) such that for all integers N 1 and N 2 , the element

A consists in a linear combination of the A r 's.

3. There exist finitely many vectors γ r ∈ R 2 [e a1 , a a2 ] such that for all integers N 1 and N 2 , the element

γ consists in a linear combination of the γ r 's.

Also, the expressions (A.8) for the invariant vector fields imply that for every

which yields in particular that for all X ∈ S ≥2 (V 1 ⊕ V 2 ), we have X x 1 = X x 2 = 0. Note that from the expressions of x 3 , = 1, 2, one easily deduces that e ±a is a tempered function of the x 3 's. Therefore the above discussion implies that there exist finitely many tempered functions m 2,r depending on the variables x 3 only, = 1, 2, such that, for every X ∈ S(V 0 ⊕ V 1 ⊕ V 2 ), the elements X x k (k = 1, 2) belong to the space spanned by the m 2,r 's. Observing that t = -1 2 A -1 x 0 + ω(v 1 , v 2 ) γ , the above observation 3 then yields: 4. There exist finitely many matrices M r ∈ M 2 (R[e a1 , a a2 ]) and finitely many vectors v s ∈ R 2 [e a1 , a a2 ] such that for all integers N 1 and N 2 , one has

We may therefore summarize the above discussion by 5. For every k = 0, . . . , 3, there exists a tempered function m k , with ∂ x i m k = 0 for every i ≤ k, = 1, 2 and such that for every X ∈ S(

Defining

the corresponding multipliers α k := e -iS G X k e iS G yields right admissibility for the tempered pair (G×G, S G ). Indeed, we start by observing the following expression of the multiplier:

-iβ where β := X 1k x 1k + X 2k x 2k .

Then:

Let now X ∈ S k i=0 V i , then observation 5 above combined with the Leibniz rule yields:

This completes the proof of Proposition A.1 and thus the proof of Theorem 2.5 too.