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An interior boundedness result for an elliptic equation

Introduction and Main Results

We set ∆ = ∂ 11 + ∂ 22 on open set Ω of R 2 with a smooth boundary.

We consider the following equation:

(P )        -∆u = 1 -log |x| 2d V e u in Ω ⊂ R 2 , u = 0 in ∂Ω.
Here:

0 ≤ V ≤ b, Ω 1 -log |x| 2d e u dx ≤ C, u ∈ W 1,1 0 (Ω),
and,

d = diam(Ω), 0 ∈ Ω
Equations of the previous type were studied by many authors, with or without the boundary condition, also for Riemannian surfaces, see [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF][START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF][START_REF] Bahoura | About Brezis Merle problem with Lipschitz condition[END_REF][START_REF] Bartolucci | sup+Cinf" inequality for Liouville-type equations with singular potentials[END_REF][START_REF] Bartolucci | sup+Cinf" inequality for the equation -∆u = V e u /|x| 2α[END_REF][START_REF] Bartolucci | A sup+inf inequality for Liouville type equations with weights[END_REF][START_REF] Bartolucci | A sup × inf-type inequality for conformal metrics on Riemann surfaces with conical singularities[END_REF][START_REF] Bartolucci | The Liouville equation with singular data: a concentration-compactness principle via a local representation formula[END_REF][START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF][START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF][START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF][START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF][START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF][START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF][START_REF] Dautray | Part 2, Laplace operator[END_REF][START_REF] Yy | Blow-up analysis for solutions of -∆u = V e u in dimension two[END_REF][START_REF] Yy | Harnack Type Inequality: the method of moving planes[END_REF][START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF][START_REF] Tarantello | A Harnack inequality for Liouville-type equation with Singular sources[END_REF], where one can find some existence and compactness results.

Among other results, we can see in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] the following important Theorem

Theorem A(Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).If (u i ) is a sequence of solutions of problem

(P ) with (V i ) satisfying 0 < a ≤ V i ≤ b < +∞ and without the term 1 -log |x| 2d
, then, for any compact subset K of Ω, it holds:

sup K u i ≤ c,
with c depending on a, b, K, Ω One can find in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] an interior estimate if we assume a = 0, but we need an assumption on the integral of e ui , namely, we have: Theorem B(Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).For (u i ) i and (V i ) i two sequences of functions relative to the problem (P ) without the term 1

-log |x| 2d
and with,

0 ≤ V i ≤ b < +∞ and Ω e ui dy ≤ C,
then for all compact set K of Ω it holds;

sup K u i ≤ c,
with c depending on b, C, K and Ω.

If we assume V with more regularity, we can have another type of estimates, a sup + inf type inequalities. It was proved by Shafrir see [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], that, if (u i ) i is a sequence of functions solutions of the previous equation without assumption on the boundary with V i satisfying 0 < a ≤ V i ≤ b < +∞, then we have a sup + inf inequality.

Here, we have:

Theorem For sequences (u i ) i and (V i ) i of the Problem (P ), for all compact subsets K of Ω we have:

||u i || L ∞ (K) ≤ c(b, C, K, Ω), Remark: Remark that we have a C 0 weight 1 -log |x| 2d
, the solutions are not C 2 , but if we add some assumptions on V i one can consider C 2 solutions and C 2 convergence of sequences. On can have the regularity C 2 of the solutions and the C 2 convergence of the solutions if we suppose for example V i ∈ C 0,ǫ , ǫ > 0 and for the convergence V i → V in the space C 0,ǫ , ǫ > 0. Indeed, one can reduce the problem to regularity and convergence of the Newtonian potential of a radial distribution f

(x) = f (|x|) = V i (0)e ui(0) -log |x| 2d 
η(|x|), with η a cutoff function (η ≡ 1 in a neighborhood of 0 with compact support and radial), see for example the book of Dautray-Lions, chapter 2, Laplace operator.

By a duality theorem one can prove that (see [START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF]):

||∇u i || q ≤ C q , ∀ 1 ≤ q < 2.
If we add the assumption that

||∇V i || ∞ ≤ A,
then by a result of Chen-Li of "moving-plane" we have a compactness of (u i ) i near the boundary, see [START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF].

We ask the following question about inequality of type sup + inf, as in the work of Tarantello, see [START_REF] Tarantello | A Harnack inequality for Liouville-type equation with Singular sources[END_REF] and Bartolucci-Tarantello, see [START_REF] Bartolucci | The Liouville equation with singular data: a concentration-compactness principle via a local representation formula[END_REF]:

Problems. 1) Consider the Problem (P ) without the boundary condition (without Dirichlet condition) and assume that:

0 < a ≤ V ≤ b < +∞, Does exists constants C 1 = C 1 (a, b, K, Ω), C 2 = C 2 (a, b, K, Ω) such that: sup K u + C 1 inf Ω u ≤ C 2 ,
for all solution u of (P ) ? 2) If we add the condition ||∇V || ∞ ≤ A, can we have a sharp inequality:

sup K u + inf Ω u ≤ c(a, b, A, K, Ω)?

Proof of the Theorem

We have:

u i ∈ W 1,1 0 (Ω), and 1 
-log |x| 2d e ui ∈ L 1 (Ω).
Thus, by corollary 1 of Brezis and Merle we have:

e ui ∈ L k (Ω), ∀ k > 2.
Using the elliptic estimates and the Sobolev embedding, we have:

u i ∈ W 2,k (Ω) ∩ C 1,ǫ ( Ω).
By the maximum principle u i ≥ 0. Also, by a duality theorem or a result of Brezis-Strauss, we have:

||∇u i || q ≤ C q , 1 ≤ q < 2.
Since,

Ω 1 -log |x| 2d V i e ui dx ≤ C,
We have a convergence to a nonegative measure µ:

Ω 1 -log |x| 2d V i e ui φdx → Ω φdµ, ∀ φ ∈ C c (Ω).
Let's consider (by a variational method):

z i ∈ W 1,2 0 (B R (x 0 )), -∆z i = f i = 1 -log |x| 2d
V i e ui in B R (x 0 ), et z i = 0 on ∂B R (x 0 ).

By a duality theorem:

z i ∈ W 1,q 0 (B R ), ||∇z i || q ≤ C q . By the maximum principle, u i ≥ z i in B R (x 0 ). 1 -log |x| 2d e zi ≤ 1 -log |x| 2d e ui ≤ C. (4) 
On the other hand, z i → z a.e. (uniformly on compact sets of B R (x 0 )-{x 0 }) with z solution of :

-∆z = µ in B R (x 0 ), et z = 0 on ∂B R (x 0 ).
Also, we have up to a subsequence, z i → z in W 1,q 0 (B R (x 0 )), 1 ≤ q < 2 weakly, and thus z ∈ W 1,q 0 (B R (x 0 )). Then by Fatou lemma:

1 -log |x| 2d e z ≤ C. (5) 
As x 0 ∈ S is not regular point we have µ({x 0 }) ≥ 4π, which imply that, µ ≥ 4πδ x0 and by the maximum principle in W 1,1 0 (B R (x 0 )) (obtainded by Kato's inequality)

z(x) ≥ 2 log 1 |x -x 0 | + O(1) if x → x 0 .
Because,

z 1 ≡ 2 log 1 |x -x 0 | + 2 log R ∈ W 1,s 0 (B R (x 0 )), 1 ≤ s < 2.
Thus,

1 -log |x| 2d e z ≥ C -|x -x 0 | 2 log |x| 2d
, C > 0.

Both in the cases x 0 = 0 and x 0 = 0 we have: 

We set S the following set: S = {x ∈ Ω, ∃ (x i ) ∈ Ω, x i → x, u i (x i ) → +∞}. We say that x 0 is a regular point of µ if there function ψ ∈ C c (Ω), 0 ≤ ψ ≤ 1, with ψ = 1 in a neighborhood of x 0 such that:

We can deduce that a point x 0 is non-regular if and only if µ(x 0 ) ≥ 4π.

A consequence of this fact is that if x 0 is a regular point then:

We deduce (2) from corollary 4 of Brezis-Merle paper, because we have by the Gagliardo-Nirenberg-Sobolev inequality:

We denote by Σ the set of non-regular points.

Step 1: S = Σ. We have S ⊂ Σ. Let's consider x 0 ∈ Σ. Then we have:

Suppose contrary that:

For R small enough, which imply (1) for a function ψ and x 0 will be regular, contradiction. Then we have (3). We choose R 0 > 0 small such that B R0 (x 0 ) contain only x 0 as non -regular point. Σ. Let's x i ∈ B R (x 0 ) scuh that:

We have x i → x 0 . Else, there exists x i k → x = x 0 and x ∈ Σ, i.e. x is a regular point. It is impossible because we would have [START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF].

Since the measure is finite, if there are blow-up points, or non-regular points, S = Σ is finite.

Step 2: Σ = {∅}. Now: suppose contrary that there exists a non-regular point x 0 . We choose a radius R > 0 such that B R (x 0 ) contain only x 0 as non-regular point. Thus outside Σ we have local unfirorm boundedness of u i , also in C 1 norm. Also, we have weak *-convergence of V i to V ≥ 0 with V ≤ b.