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Interactions between char and tar during the steam gasification in a 
fluidized bed reactor

Mathieu Morin⁎, Xavier Nitsch, Mehrdji Hémati
Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 allée Emile Monso, 31432 Toulouse, France

A B S T R A C T

The aim of the present work is to understand the different interactions which may occur between the char and a
tar model (toluene) in a fluidized bed reactor during biomass char gasification with steam. Experiments are
conducted at 850 °C and atmospheric pressure with sand particles as solid medium. The influence of steam and
toluene partial pressures on both the char reactivity and the presence of tar in the product gas was investigated
in the range of 0.05–0.4 bars and 0.0025 and 0.0075 bars (10.1 and 30.4 g.Nm−3), respectively. Results showed
that the presence of char in the fluidized bed reactor leads to toluene polymerization (cokefaction) which
produces a carbonaceous deposit (coke) on its surface. This deposit is much less reactive towards steam gasi-
fication than the initial char. For the operating conditions used in this study, it was found that the rate of tars
polymerization (Rp) is always smaller than the one of coke and char gasification ( +R Rsr g). Finally, a com-
parison between the different solid catalysts in the fluidized bed reactor revealed that olivine is the best catalyst
towards toluene conversion when the ratio P P/H H O2 2 is higher than 1.5 in the reactive gas atmosphere.
Otherwise, for a steam partial pressure higher than 0.2 bars, “olivine+ 3% char” and “sand+ 3% char” were
found to be the best compromise to limit the amount of tar in the product gas.

1. Introduction

Gasification is a promising way of converting biomass or waste into
syngas which can be used for different applications such as catalytic
hydrocarbon synthesis and electricity or heat production. However, one
of the main problems which hinders the industrial development of ga
sification processes is the high tar content in the produced syngas [1].
Several approaches for tars removal can be found in the literature and
are classified into two types: tars treatment inside the gasifier itself
(primary methods) or gas cleaning outside the gasifier (secondary
methods) [2]. Tars removal by secondary methods have been widely
investigated and are well established in the literature [1,2]. Primary
treatments may have the advantages in eliminating the use of down
stream cleanup processes and depend on the operating conditions, the
type of bed particles and the reactor design. Therefore, in order to limit
the tars concentration in the produced syngas, it is essential to under
stand the influence of the different solids in the reactor and the reactive
gas atmosphere.

Various catalysts were investigated in biomass gasification for tars
conversion and have been discussed in several reviews [2 5]. Among
them, calcined dolomite and olivine as well as Ni based catalysts were
found to have a strong catalytic activity.

Dolomite is a natural, inexpensive and disposable material. A gen
eral agreement is drawn in the literature on the significant effect of
dolomite as tars removal catalyst [6 9]. This solid showed a large
catalytic activity after calcination at high temperatures which leads to
the decomposition of the carbonate mineral to form MgO CaO. How
ever, this solid is not appropriate in fluidized bed reactors due to its low
attrition resistance.

Olivine is another natural, inexpensive and disposable mineral with
a global formula −(Mg Fe ) SiOx x1 2 4. The main advantage of this material
is its strong mechanical resistance which enables its direct use in a
fluidized bed reactor (i.e. primary methods) [3]. The use of olivine as
tars removal catalyst has been discussed in several studies
[8,10 15,18 20]. Its catalytic activity is related to the presence of
segregated iron on its surface which may have different oxidation states
(i.e. iron(III), iron(II) and native iron). Besides, it was found that iron is
more active towards tars removal when its oxidation state is low
[7,16,17]. In a previous work on toluene conversion in a fluidized bed
reactor [18], it was shown that the reactive gas atmosphere (i.e. oxi
dizing or reducing) is a key parameter for the catalytic activity of oli
vine. In particular, the ratio P P/H H O2 2 controls the oxidation/reduction
of iron on the olivine surface. Hence, it was concluded that the catalytic
mechanism of tars conversion over olivine can be divided into four









• Experiments GS 1 study the effect of steam partial pressure on the
char gasification at 850 °C in the presence of sand particles. This set
of tests is taken as a reference.

• Experiments GS 2 investigate the influence of steam partial pressure
on the char gasification in the presence of sand particles with a
constant toluene partial pressure at the entrance of the reactor fixed
to 0.005 bars.

• Experiments GS 3 carried out the study on the effect of toluene
partial pressure between 0.0025 and 0.0075 bars during the char
gasification with a constant steam partial pressure of 0.2 bars and
sand as fluidized solid.

• Experiments GO 4 is similar to the Experiments GS 2. However,
olivine particles are used as fluidized medium in the fluidized bed
reactor.

• Sets S 1 and O 1 study the effect of steam on toluene conversion
with sand or olivine as fluidized medium and without char in the
reactor. The toluene partial pressure is fixed to 0.005 bars.

• Finally, a set of experiments O 2 was carried out to investigate the
effect of the steam partial pressure with a constant hydrogen partial
pressure of 0.2 bars on toluene conversion in the presence of olivine
particles.

For each experiment, the composition of both the non condensable
gases and the tars are analyzed as a function of time. The nitrogen is not
involved during the char gasification and is only used as an inert gas for
mass balances. From the measured molar percentages of nitrogen at the
reactor outlet, the total molar flow rate is calculated according to the
following expression:
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where n ṫ ( )t is the total molar flow rate (mol.min−1), n ̇N2 represents the
molar flow rate of nitrogen at the entrance of the reactor (mol.min−1)
and x t( )N2 is the measured molar fraction of nitrogen at the reactor
outlet.

The partial molar flow rate of each component is calculated as
follows:

=n t x t n ṫ ( ) ( )· ̇ ( )i i t (2)

where n ṫ ( )i and x t( )i are the instantaneous partial molar flow rate and
molar fraction of component i at the reactor outlet, respectively
(i =H2, CO, CO2, CH4, C6H6, C7H8).

• In the case of char gasification in the presence of steam (set GS 1),
the detected components in the product gas were found to be H2,
CO, CO2 and a small amount of CH4. The carbon containing gases
molar flow rate at the reactor outlet (n ṫ ( )c gasi, ) is determined by the
following equations:
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The normalized carbon containing gases molar flow rate and the
normalized cumulative amount of carbon containing gases at time t are
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where nc char
in
, is the amount of carbon in the introduced char (mol), Xc

and dX dt/c are the carbon conversion rate and the instantaneous gasi
fication rate, respectively.

• In the case of char gasification in the presence of steam and toluene
(sets GS 2, GS 3 and GO 4), the detected components in the product
gas are H2, CO, CO2, CH4, C6H6 and unconverted toluene. The for
mation of benzene is attributed to the hydrodealkylation and the
steam dealkylation reactions according to the following reactions:

+ → +C H H C H CH7 8 2 6 6 4 (IV)

+ → + +C H H O C H CO H27 8 2 6 6 2 (V)

The toluene may also react on the char surface according to
Reaction (I) to produce a carbonaceous deposit which is further con
verted by steam reforming of coke according to Reaction (II). The for
mation of CH4 is very low during each experiment and may originate
from both the hydrodealkylation reaction (Reaction (IV)) and the in
teractions between char and hydrogen [35].

The toluene conversion rate, noted Xtoluene, is defined as the ratio
between the molar flow rate of converted toluene and the one of in
troduced C7H8:
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Table 2
Operating conditions of each experiment, 850 °C and Ftot= 0.35mol.min 1.

Exp. PH2 PH2O PN2 PC7H8 Medium Char
– (bar) (bar) (bar) (bar) – (g)

GS 1a 0 0.05 0.95 0 Sand 17.4
GS 1b 0 0.1 0.90 0 Sand 17.4
GS 1c 0 0.2 0.80 0 Sand 17.4
GS 1d 0 0.4 0.60 0 Sand 17.4

GS 2a 0 0.05 0.945 0.005 Sand 17.4
GS 2b 0 0.1 0.895 0.005 Sand 17.4
GS 2c 0 0.2 0.795 0.005 Sand 17.4
GS 2d 0 0.4 0.595 0.005 Sand 17.4

GS 3a 0 0.2 0.595 0.0025 Sand 17.4
GS 3b 0 0.2 0.795 0.005 Sand 17.4
GS 3c 0 0.2 0.895 0.0075 Sand 17.4

GO 4a 0 0.05 0.945 0.005 Olivine 17.4
GO 4b 0 0.1 0.895 0.005 Olivine 17.4
GO 4c 0 0.2 0.795 0.005 Olivine 17.4
GO 4d 0 0.4 0.595 0.005 Olivine 17.4

S 1a 0 0.4 0.595 0.005 Sand –
S 1b 0 0.2 0.795 0.005 Sand –
S 1c 0 0.1 0.895 0.005 Sand –
S 1d 0 0.05 0.945 0.005 Sand –

O 1a 0 0.4 0.595 0.005 Olivine –
O 1b 0 0.2 0.795 0.005 Olivine –
O 1c 0 0.1 0.895 0.005 Olivine –
O 1d 0 0.05 0.945 0.005 Olivine –

O 2a 0.2 0.4 0.395 0.005 Olivine –
O 2b 0.2 0.2 0.595 0.005 Olivine –
O 2c 0.2 0.1 0.695 0.005 Olivine –
O 2d 0.2 0.05 0.745 0.005 Olivine –

For experiments with char, it was first loaded in the reactor. The 
amount of char was fixed to 17.4 g which represents 3% of the solid 
medium weight and 15% of the bed volume. This value is commonly 
used in the gasifier in FICFB processes. The reactor was heated under a 
pure flow of nitrogen to a temperature of 850 °C. Once a steady state 
was achieved, the gas was switched from nitrogen to a mixture of N2/
H2O to start the steam gasification of char. For tests with toluene, after 
a few minutes of char gasification with steam, the reactive gas atmo
sphere was switched from N2/H2O to a mixture of N2/H2O/C7H8 with 
the same total molar flow rate. Each test was performed during 1 h to 
enable better comparison of the results. Besides, this time is much 
higher than the char residence time in the gasifier during biomass ga
sification in FICFB process which is in the range of 5 to 10 min.

The different operating conditions of each experiment are presented 
in Table 2. Seven sets of experiments were performed:











• First, the use of olivine combined with a ratio >P P/ 1.5H H O2 2 in the
reactive gas atmosphere leads to a toluene conversion rate higher
than 90%.

• For experiments with “sand+ 3%” char and “olivine+3% char”,
results indicated that a steam partial pressure of 0.4 bars gives rise
to a rate of carbon containing tars in the product gas of about 30%.
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deposition (Rc) was found to be lower than the one of char gasification 
(Rg) indicating that the catalytic activity of char is maintained. Besides, 
it was found that an increase in the steam partial pressure yields to a 
raise of the toluene conversion rate and a decrease in the selectivity of 
benzene.

Finally, a comparison between different solid catalysts in the flui
dized bed reactor showed that two operating conditions may be em
ployed to limit the amount of tar in the product gas.




