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However, the recursive LS algorithms for constrained prob-

lems is available after the work presented in [24]. Indeed,

variety works have been studied for solving the LS problem

with linear-equality constraints (see [2], [4], [7], [11], [19],

[20], [21], [23], [24]). In the work [24], they have shown that

the solution of LS problem with linear constraints equations

and the solution of linear RLS algorithm without constraints

have a recursive identical form. The only difference between

these two solutions lies in their initial conditions (initial

solutions).

In this paper, we propose a sliding window identification

algorithm which satisfied linear-equality constraints. This al-

gorithm improves, on the one hand, the tracking of parameter

variation by removing the influence of oldest data and, on

the other hand, is robust such that the constraints are always

guaranteed to be satisfied no matter how large the numerical

errors are.

This paper is organized as follows. Section 2 is devoted

to the sliding window identification without constraints by

presenting the two steps of update. In Section 3, the sliding

window identification with linear-equality constraints is pre-

sented and analyzed. In addition, the solution to the linear

LS problem with linear-equality constraints is given in this

section. The simulation results of parameters identification of

DC motor are given in Section 4. Finally, some concluding

remarks are drawn in Section 5.

II. SLIDING WINDOW IDENTIFICATION WITHOUT

CONSTRAINTS

In order to identify the model described in discrete-time by

the following linear form:

yk = hkθ (1)

where θ is the vector of unknown parameters to be identified

of dimension (n× 1), yk is the system output at time k-

dimensional (1× 1) and hk is the data vector of dimension

(1× n), we are faced with the resolution of a global linear

system grouping N batches of measures, defined as:

YN = HNθ (2)

Sliding Window Identification with Linear-Equality 
Constraints

Abstract—In this paper, we present a new algorithm of slid-
ing window identification with linear-equality constraints. This 
algorithm consists in firstly deleting the oldest set of data and in 
secondly adding the last set of data. The method developed in 
this paper allows to consider at every step a set of new data by an 
extension of their result. The proposed algorithm is based on the 
recursive calculus of the pseudo-inverse matrix from the forms of 
Albert and Sittler. A simple and easily implementable initializa-
tion of the constrained algorithm is proposed. An improvement 
is obtained by removing the influence of oldest set of data and 
by satisfying the linear-equality constraints. It is shown that the 
solutions of the sliding window identification algorithm converge 
to the true parameter that satisfies the equality constraints. 
Numerical example is provided to show the effectiveness of the 
proposed method.

Index Terms—Identification, Recursive Algorithms, Sliding 
Window, Linear-Equality Constraints.

I. INTRODUCTION

The Recursive Least Squares (RLS) algorithm is widely 
used approach for real-time applications in various areas such 
as signal and data processing, communications and control 
systems. However, the treatment of linear system leads to 
an estimation based on infinitely increasing horizon and the 
main drawback of the Least Squares (LS) solution obtained, 
directly or recursively, lies in the persistent influence of the 
first measurements. In order to overcome this drawback, it was 
suggested the forgetting factor (constant or variable) technique 
[12], [16], or the sliding window identification with constant 
length [5], [15], [18], [22]. An intermediate version between 
these two solutions was proposed in [13]. The purpose of 
considering a fixed length of window lies not only in the ability 
to track rapid changes of parameters or building the defect 
detectors sufficiently and quickly sensitive, it keeps adaptive 
gains in recursive formulation which does not tend to zero. An 
advantage of the sliding window identification is its natural 
forgetting factor which allows to follow slow changes in the 
parameters. Thus it can be used in adaptive control systems. 
Some applications of sliding windows algorithms are useful 
for signal processing [6] or for image processing [17].

In many practical problems in which the sliding window 
identification method is applied, the resulting solutions must 
satisfy certain constraints. For this reason, the study of LS 
problems with constraints has received considerable attention.



where HN and YN are respectively a matrix and a vector

obtained from measurements and their dimensions are respec-

tively (m× n) et (m× 1):

YN =







y1
...

yN






, HN =







h1

...

hN






(3)

Let us consider the case where the estimation was made

on a sliding window of fixed length horizon L of batch

measurements which satisfy the following relationship:

YN,L = HN,Lθ (4)

with YN,L and HN,L having (mL× 1) and (mL× n) size:

YN,L =







yN−L−1

...

yN






, HN,L =







hN−L−1

...

h
N






(5)

Assume that HN,L is a full columns rank matrix, then H+

N,L

the pseudo-inverse or the Moore-Penrose generalized inverse

of HN,L, is defined by this formula [3], [14]:

H+

N,L =
(

HT
N,LHN,L

)−1
HT

N,L (6)

If the system (2) is compatible, then there exists a set of least

squares (LS) solutions which minimizes the Euclidean norm

and is written as:

θ̂N,L = H+

N,LYN,L +
(

I −H+

N,LHN,L

)

z (7)

where z is an arbitrary vector. For z = 0, we obtain the unique

solution of minimal Euclidean norm:

θ̂N,L = H+

N,LYN,L

(

HT
N,LHN,L

)−1
HT

H,LYN,L (8)

if and only if the matrix
(

HT
N,LHN,L

)

is invertible. This

is a batch solution and it is thus not suitable for real-time

applications because its computational complexity increases

with N .

In the case where HN,L and HN+1,L are a full columns rank,

we have:

HN+1,L =







hN−L

...

hN+1






, YN+1,L =







yN−L

...

yN+1






(9)

the estimation is then:

θ̂N+1,L =
(

HT
N+1,LHN+1,L

)−1
HT

N+1,LYN+1,L (10)

By considering the following partitioning:

HN,L =

[

hN−L−1

HN,L−1

]

, YN,L =

[

yN−L−1

yN,L−1

]

,

HN+1,L =

[

HN,L−1

hN+1

]

, YN+1,L =

[

YN,L−1

yN+1

]

the sliding window identification is effected in two steps of

update:

• Removing the oldest set of data.

• Adding the new set of data.

A. First Step: Removing the Oldest Set of Data

Assume that the matrices are always of full rank in columns.

To pass from (HN,L, YN,L) to (HN+1,L, YN+1,L), we will use

an intermediate set of data, which is obtained by removing

the oldest data (hN−L−1, yN−L−1). Assuming that the length

L of the sliding window remains constant, the intermediate

estimate θ̂N,L−1 is defined by:

θ̂N,L−1 =
(

HT
N,L−1HN,L−1

)−1
HT

N,L−1YN,L−1 (11)

where the matrix (HT
N,L−1HN,L−1) is assumed non singular.

Singularity will constitute an entry point of the non regular

algorithm. We can then write:

θ̂N,L−1 =
(

HT
N,LHN,L − hT

N−L−1hN−L−1

)−1

(

HT
N,LYN,L − hT

N−L−1hN−L−1

) (12)

where Pi,j =
(

HT
i,jHi,j

)−1
and PN,L is considered non

singular. The matrix inversion lemma [7] led to the following

update of the covariance matrix:

PN,L−1 = PN,L +ΦN,Lh
T
N−L−1

(

Im − hN−L−1PN,Lh
T
N−L−1

)−1
hN−L−1PN,L

(13)

After well-known algebraic manipulations, we are led to the

following adaptive algorithm which gives the intermediate

estimation written as follows:

θ̂N,L−1 = θ̂N,L −K1
N,L−1ε

1
N,L−1 (14)

where the prediction error ε1N,L−1 and the adaptation gain

K1
N,L−1 are given by:

ε1N,L−1 = yN−L−1 − hN−L−1θ̂N,L

K1
N,L−1 = PN,Lh

T
N−L−1

(

Im − hN−L−1PN,Lh
T
N−L−1

)−1

(15)

B. Second Step: Adding the New Set of Data

The next step consists in adding the new data (hN+1, yN+1)
to HN,L−1 and YN,L−1. Assuming here that the matrices are

always of full rank in columns, the estimation is defined as

follows:

θ̂N+1,L =
(

HT
N,L−1HN,L−1 + hT

N+1hN+1

)−1

(

HT
N,L−1YN,L−1 + hT

N+1yN+1

) (16)

The matrix inversion lemma and the same manipulations lead

to the adaptive algorithm:

θ̂N+1,L = θ̂N,L−1 +K2
N+1,Lε

2
N+1,L (17)

where the prediction error ε2N+1,L and the adaptation gain

K2
N+1,L are given by :

ε2N+1,L = yN+1 − hN+1θ̂N,L−1

K2
N+1,L = PN,L−1h

T
N+1

(

Im + hN+1PN,L−1h
T
N+1

)−1

(18)

and the update of the covariance matrix is obtained as follows:

PN+1,L = PN,L−1 − PN,L−1h
T
N+1

(

Im + hN+1PN,L−1h
T
N+1

)−1
hN+1PN,L−1

(19)



III. SLIDING WINDOW IDENTIFICATION WITH

LINEAR-EQUALITY CONSTRAINTS

A. Linear-Equality Constraints

In practice, it is often necessary to impose additional linear-

equality constraint on the parameter values. The solution θ has

to satisfy the following system of linear algebraic equations:

Aθ = B (20)

where A and B are respectively a matrix and a vector of

respective dimensions (d× n) and (d× 1). We assume that

(20) is consistent and underdetermined. Hence, applying the

theory of pseudo-inverse matrix [14], we have:

AA+B = B

Theorem 1: If there exists a matrix A{1} such that

AA{1}B = B, then ∀A{1}, we obtain AA{1}B = B.

Theorem 2: If we have AA+B = B, then ∀A{1}, we obtain

AA{1}B = B such that A+ ∈ A {1}.

In the compatible case, the general solution of system (20)

is:

θ̂ = A+B +
(

I −A+A
)

ξ (21)

where ξ is an arbitrary vector of size (n× 1).
Let:

P = I −A+A (22)

an orthogonal projection (since P 2 = P = PT ) and is not full

rank (since rank (P ) = n− rank (A), where n is the columns

number of A). By using an orthogonal basis of the null space

of A, the LS problem with linear-equality constraints has been

shown to have a general solution defined by [8], [11]:

θ̂N = A+B +
(

PHT
NHNP

)+
HT

N

(

YN −HNA+B
)

+ PZ

(23)

where Z (n× 1) is an arbitrary vector satisfying:

HNPZ = 0 (24)

The unique solution is then given by:

θ̂N = A+B +
(

PHT
NHNP

)+
HT

N (YN −HNA+B) (25)

if and only if
(

AT HT
N

)T
is full columns rank.

Note that if HT
NHN is nonsingular then

(

AT HT
N

)T
has

full rank but the inverse is not true in general. In addition,

if A = 0 and B = 0, then P = I , and (25) reduces

to the unconstrained solution θ̂N =
(

HT
NHN

)−1
HT

NYN . If
(

AT HT
N

)T
does not have full rank, then (25) is the

minimum-norm solution.

The unique solution given in (25) is equivalent to:

θ̂N = A+B + (HNP )
+
(

YN −HNA+B
)

(26)

with:

(

PHT
NHNP

)+
P =

[

(

PHT
NHNP

)T (

PHT
NHNP

)

]+

(

PHT
NHNP

)T
P =

(

PHT
NHNP

)+

(HNP )
+
=

[

(HNP )
T
(HNP )

]+

(HNP )
T

=
(

PHT
NHNP

)+
HT

N

In this paper, we are now faced to obtain a recursive sliding

window estimation satisfying a linear-equality constraints. The

estimation algorithm is then decomposed in two steps, the

oldest removed set of data and the newest added one.

B. Deleting the Oldest Set of Data

For a sliding window estimation, the solution given in (25)

with equality constraints becomes in the form of the following

relationship:

θ̂N,L = A+B + (HN,LP )
+
(

YN,L −HN,LA
+B

)

(27)

if and only if
(

AT HT
N,L

)T
is full columns rank. The

intermediate estimation θ̂N,L−1 becomes:

θ̂N,L−1 = A+B + (HN,L−1P )
+

(YN,L−1 −HN,L−1A
+B)

= A+B +
(

I +K1
N,L−1hN−L−1 −K1

N,L−1

)

(

(HN,LP )
+

0
0 1

)(

YN,L −HN,LA
+B

yN−L−1 − hN−L−1A
+B

)

= A+B +
(

I +K1
N,L−1hN−L−1 −K1

N,L−1

)

(

(HN,LP )
+
YN,L −HN,LA

+B

yN−L−1 − hN−L−1A
+B

)

= A+B + (HN,LP )
+
(YN,L −HN,LA

+B)
−K1

N,L−1yN−L−1 +K1
N,L−1hN−L−1A

+B

−K1
N,L−1 (HN,LP )

+
(YN,L −HN,LA

+B)

= θ̂N,L −K1
N,L−1

(

yN−L−1 − hN−L−1θ̂N,L

)

(28)

The recursive algorithm of deleting the oldest data with linear-

equality constraints is:

θ̂N,L−1 = θ̂N,L −K1
N,L−1ε

1
N,L−1 (29)

ε1N,L−1 = yN−L−1 − hN−L−1θ̂N,L (30)

K1
N,L−1 = PN,Lh

T
N−L−1

(

Im − hN−L−1PN,Lh
T
N−L−1

)−1

(31)

PN,L−1 =
(

PHT
N,L−1HN,L−1P

)−1

=
(

I +K1
N,L−1hN−L−1

)

PN,L

(32)



C. Adding the New Set of Data

The estimation of the vector θ̂N+1,L becomes:

θ̂N+1,L = A+B + (HN+1,LP )
+
(

YN+1,L −HN+1,LA
+B

)

(33)

Besides, as the expression (33) verifies the relationship (17),

we have:

θ̂N+1,L = A+B + (HN+1,LP )
+
(YN+1,L −HN+1,LA

+B)

= A+B +
(

I −K2
N+1,LhN+1 K2

N+1,L

)

(

(HN,L−1P )
+

0
0 1

)(

YN,L−1 −HN,L−1A
+B

yN+1 − hN+1A
+B

)

= A+B +
(

I −K2
N+1,LhN+1 K2

N+1,L

)

(

(HN,L−1P )
+
YN,L−1 −HN,L−1A

+B

yN+1 − hN+1A
+B

)

= A+B + (HN,L−1P )
+
(YN,L−1 −HN,L−1A

+B)
+K2

N+1,LyN+1 −K2
N+1,LhN+1A

+B

+K2
N+1,L (HN,L−1P )

+
(YN,L−1 −HN,L−1A

+B)

= θ̂N,L−1 +K2
N+1,L

(

yN+1 − hN+1θ̂N,L−1

)

(34)

The recursive algorithm of adding the recent data with

linear-equality constraints is as follows:

θ̂N+1,L = θ̂N,L−1 +K2
N+1,Lε

2
N+1,L (35)

ε2N,L−1 = yN+1 − hN+1θ̂N,L−1 (36)

K2
N+1,L = PN,L−1h

T
N+1

(

I + hN+1PN,L−1h
T
N+1

)−1
(37)

PN+1,L =
(

PHT
N+1,LHN+1,LP

)−1

=
(

I +K2
N+1,LhN+1

)

PN,L−1

(38)

D. Proposed Adaptive Algorithm

It is possible to group the two previous steps by eliminating

the intermediate estimation. This point of view leads to the one

step adaptive algorithm :

θ̂N+1,L = θ̂N,L −Kr
N+1,Lε

r
N+1,L +Ka

N+1,Lε
a
N+1,L (39)

by using the following notations:

εrN+1,L = yN−L−1 − hN−L−1θ̂N,L (40)

Kr
N+1,L = K1

N,L−1 −K2
N+1,LhN+1K

1
N,L−1 (41)

εaN+1,L = yN+1 − hN+1θ̂N,L (42)

Ka
N+1,L = K2

N+1,L (43)

In the next section, a simple initialization of constrained

algorithm is presented to facilitate the convergence towards

the true parameters (the exact solution).

E. Initialization of Constrained Algorithm

The only difference between the two solutions without

constraints and with linear-equality constraints, in the sliding

window identification algorithm, lies in their initial values. If

the initial values are θ̂N0,L =
(

HT
N0,L

HN0,L

)−1
HT

N0,L
YN0,L

and PN0,L =
(

HT
N0,L

HN0,L

)−1
, θ̂N,L is the solution

without constraints. If the initial values are θ̂N0,L =

A+B +
(

PHT
N0,L

HN0,LP
)+

HT
N0,L

(YN0,L −HN0,LA
+B)

and PN0,L =
(

PHT
N0,L

HN0,LP
)+

, θ̂N,L is then the solution

with linear-equality constraints.

In practice this initialization is undesirable or even unaccept-

able. For this raison, using a simple initialization which was

proposed in [24]. Defining:

H̃N,L
def
= [H0,L, HN,L] , ỸN,L

def
= [Y0,L, YN,L]

and considering the following LS problem subject to linear

constraints (20):

min
θ̃N,L

S̃N =
(

ỸN,L − H̃N,Lθ̃N,L

)(

ỸN,L − H̃N,Lθ̃N,L

)T

=
(

Ỹ0,L − H̃0,Lθ̃N,L

)(

Ỹ0,L − H̃0,Lθ̃N,L

)T

+
(

YN,L −HN,Lθ̃N,L

)(

YN,L −HN,Lθ̃N,L

)T

(44)

where θ̃N,L is the solution of this problem which is not the

exact recursive solution θ̂N,L. Note that H0,L and Y0,L are

chosen in a way to obtain this simple initialization:

P0,L =
(

PHT
N0,L

HN0,LP
)+

= (PRP )
+

(45)

θ̃0,L = A+B +
(

PHT
0,LH0,LP

)+
HT

0,L (Y0,L −H0,LA
+B)

= A+B + P ξ̃
(46)

where ξ̃ is an arbitrary vector of suitable dimension and

R is any Hermitian positive definite matrix. For reasons of

simplicity, we can choose:

HT
0,LH0,L = R = αI, α > 0 (47)

Clearly, HT
0,LH0,L is non singular. Based on (45), (47) and

P 2 = P (since P is a projector), we have P+

0,L = αP

and P0,L = α−1P+. Therefore, the solution θ̃N,L converges

to the solution θ̂N,L with linear-equality constraints when N

increases, and θ̂N,L converges to the true parameters.

IV. NUMERICAL SIMULATIONS

In order to show the performance comparison of the con-

strained estimators discussed above, we consider an example

of a DC motor (adopted in [9] and [10]) whose dynamic

behavior can be described using the two following equations:

u = Kemω +Ri+ L
di

dt
(48)

J
dω

dt
= Kemi− fω (49)



TABLE I
ALGEBRAIC SYMBOLS DEFINITIONS.

Symbol Unit Definition

u V Electric terminal voltage
i A Electric armature current
ω 1/s Rotational frequency
R Ω Ohmic ferrule resistor

Kem NmA−1 Generator constant
L H Inductivity

J kgm2 Moment of inertia
f Nms Sliding friction

The algebraic symbols are represented in the following table

I.

The transition to the Laplace domain of temporal equations

(48) and (49), gives the transfer function of DC motor defined

in the following form:

H (s) =
Kem

R+Kem
2 + (RJ + Lf) s+ LJs2

(50)

where s is the Laplace operator. The sampling period Te of

the discrete-time model is chosen such that:

Te 6
T

2

where T is the time constant of system. For a sampling period,

Te = 0.1s, the discrete-time linear model of a DC motor is

defined by the following transfer function:

H
(

z−1
)

=
b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(51)

where z is the discrete-time operator. The real parameters

values of the discrete model (a1 = −1.1753, a2 = 0.8153,

b1 = 0.0072 and b2 = 0.0054) are obtained with the numerical

values of the linear model (50) given in the table II.

TABLE II
PARAMETER VALUES.

Parameter Unit Value

R Ω 1.3658
L mH 0.63

Kem NmA−1 45.15 10−3

J kgm2 10−4

f Nms 2.5 10−6

In order to show the benefits of the proposed algorithm, a

comparison between the sliding window identification algo-

rithm with linear-equality constraints (SWLE) and the Recur-

sive Least Squares algorithm (RLS) is carried. The difference

between the solution of SWLE algorithm and that of the RLS

algorithm lies in their initial conditions.

The sliding window identification algorithm θ̃N,L is initialized

at N = 0, according to (45) and (46), by:

Y0,L = 0,

θ̃0,L =
(

I − α2P
)

A+B,

P0,L = α−1P+

with α = 10−4 and the sliding window L = 7 s. In this

example, we show the convergence of the SWLE algorithm

when the true parameter θ satisfies Aθ = B. The following

were used:

θ =
[

0.0072 0.0054 −1.1753 0.8513
]T

,

A =
[

3 −2 −4.5 9
]

,

B = 12.6374.

In the simulations, the system is excited by a Pseudo Random

Binary Sequence (PRBS) signal. The simulation results are

given in the following figures. The figures 1 and 2 clearly

indicate the good tracking performance of the identified system

output with respect to the real system output. The shapes of

measured errors between the actual and estimated outputs are

given in the figures 3 and 4. We can see that the variations

of the system error in the case of RLS algorithm are more

important than those in the case of SWLE algorithm.

The figure 5 shows the four elements of the vector

θ̂ (be1, be2, ae1, ae2) converge quickly to the true parameters

θ (b1, b2, a1, a2) in around 20 s. This indicates that the linear

equality constraints Aθ̃N,L = B are always satisfied. Never-

theless, in the case of RLS algorithm, the convergence of the

estimated parameters θ̂ to the true parameters is very slow

compared to that of the SWLE algorithm. The figure 6 shows

that the estimated parameters converge to the actual parameters

in approximately 70 s.

Thus, it is demonstrated that the equality constrained algorithm

developed in this paper for simple initial values is more

convergent and efficient than the RLS algorithm. The table

III shows a comparison between the latest estimated and true

parameter values of system.

TABLE III
VALUES OF TRUE AND ESTIMATED PARAMETERS.

Parameter b1 b2 a1 a2

True value 0.0072 0.0054 -1.1753 0.8153

Latest estimated
value (RLS) 0.0072 0.0054 -1.1712 0.8121

Latest estimated
value (SWLE) 0.0072 0.0054 -1.1753 0.8153

V. CONCLUSION

We have proposed in this paper a new algorithm of sliding

window identification which uses a batch procedure. The

main benefit of this proposed algorithm is that it satisfies the

linear-equality constraints no matter how large the numerical

errors are. The advantage of the presented procedure for

sliding window identification consists its natural forgetting

factor, which allows to follow the slow parameter changes.

It is not necessary to consider a forgetting factor outside the
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Fig. 1. Actual and estimated system outputs in the case of SWLE algorithm.
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Fig. 2. Actual and estimated system outputs in the case of RLS algorithm.
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Fig. 3. System error in the case of SWLE algorithm.
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Fig. 4. System error in the case of RLS algorithm.
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Fig. 5. Convergence of estimated parameters in the case of SWLE algorithm.
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Fig. 6. Convergence of estimated parameters in the case of RLS algorithm.



window [13], because it seems less interesting. Therefore,

because, we obtain in this case an infinite horizon algorithm.

The unique solution of sliding window algorithm with linear-

equality constraints can always be calculated by a recursion

which is identical to the unconstrained algorithm solution.

Consequently, the proposed algorithm is numerically robust

allowing to ensure the recursive solution obtained by sliding

window which satisfies the linear-equality constraints. The

simple initialization of our algorithm allows to converge the

obtained solution with linear-equality constraints to the true

parameters. The numerical example considered of DC motor

confirms the above analytical results.
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