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1. INTRODUCTION

This study deals with model and Pulse Width Modulation
- PWM strategy of Voltage Source Inverters - VSI. For
many applications, such as utility interface of renewable
energy, voltage regulation or variable drive in transporta-
tion systems, the use of multilevel VSI is under inter-
est, (Gemmell, 2008). Many studies that demonstrates
their ability to match the requirements can be found,
for instance in (Rodriguez, 2007). Indeed, it exists a lot
of studies where the relationship between topology and
application is detailed. Moreover, one can find what is the
best PWM to apply for a given topology as illustrated in
(Choi, 2014). Nevertheless, it appears to our knowledge
that it does not exist any generic way to model every VSI
architecture to establish the PWM scheme that will be
later applied. The purpose of this study is to establish a
generic model of N-level VSI that can be used to generate
PWM strategy, whatever N value is. The defined model
should match the following criteria:

• to be applied to carrier based PWM;
• to be extended to SVM principles;
• to highlight how to implement a generic modulation

scheme;
• to define modulation admissible solutions.

The first part of the paper is devoted to describe an
elementary structure and proposes a mathematical model.
The second part details how to extend the elementary
model to three-phase VSI. The third is about to generalize
the given model to N-level VSI as far as the three main
N-level VSI topologies are concerned. Then, the determi-
nation of control strategies by using a generic mathemat-
ical method is demonstrated. Finally, among the whole
solution set and for a given 3-Level H-bridge, a specific
modulation strategy is highlighted and discussed.

2. FROM AN ELEMENTARY SWITCHING CELL

Let us consider an elementary switching cell. It is com-
posed of 2 semiconductor switches which are stated to be
controlled through a gate signal.

2.1 Description

As illustrated in figure. 1, the switching cell is connected
to a constant Direct Current - DC voltage source such
as VDC = E. Each ideal switch, denoted Kj or K

′

j , is

E

Kj

K
′

j vio

ii

Fig. 1. Elementary switching cell structure.

considered to be assigned an ON/OFF control signal cj c
′

j

respectively. To fulfill the electrical sources use conditions,
cj and c

′

j are complementary. The figure 2 depicts the leg
voltage obtained for a given control signal sequence. It
is obvious that Kj is ON when cj = 1. A carrier based
PWM defines the control signal, ∈ {0, 1} according to the
comparison of a linear carrier signal denoted h(t) and a
desired duty cycle named αi. In symmetric PWM, h(t) is
usually taken as a triangle signal, αi is sampled and hold
over a switching period, and finally cj is computed such
as :

{

cj = 1 c
′

j = 0 if αi ≥ h(t),

cj = 0 c
′

j = 1 if αi ≤ h(t)
(1)
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Fig. 2. Example of desired switching sequence.

2.2 Switching cell modelling

Thus, αi is the desired duty cycle of the output voltage
vio(t). The mean value over a switching period < vio >Ts

is denoted Vio, and expressed as

< vio(t) >Ts
= Vio =

1

Ts

∫ t+Ts

t

vio(t)dt

= Eαi ,

(2)

where

αi =
ti

Ts

. (3)

Indeed in such elementary structure the PWM variable, αi

is directly linked to the desired mean voltage value, Viref

so that

αi =
Viref

E
. (4)

Finally, in most applications and following the load time
constant, a controller can produce Viref and finally moni-
tor the duty cycle obtained at the leg output. For instance
in variable drive applications, for alternating current out-
put, the reference signal is

Viref = Vimax
cos(2πf0t) +

E

2
, (5)

where f0 is the fundamental frequency. The duty cycles
are expressed as,

αi =
Vimax

E
cos(2πf0t) +

1

2
, (6)

where
Vimax

E
is ∈

[

0,
1

2

]

.

3. TO A THREE-PHASE INVERTER

For variable speed drive applications, the mostly used
inverter structure is a three-phase one, as illustrated in
figure 3. A previous study, (Vidal, 2013), has demonstrated
the potential use of the generalized inverses to generate the
PWM solution set. Nevertheless, in the following section
the model will be adapted in order to match the generic
modeling purpose of this study.

3.1 Three-phase inverter model

The same relationship as (2), is also established for each
leg, where i ∈ {a, b, c}. They are combined in a column
vector Vlo = [Vao Vbo Vco]

T such as

Vlo = E

[

αa

αb

αc

]

. (7)
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Fig. 3. Three-phase inverter structure.

For generic purpose, the previous expression is wrote in
a more complex way. A matrix named S is defined. It
is deduced from the series - parallel connection analysis
of elementary switching cells within a given leg. As the
inverter depicted is the most simplest one - a single
elementary cell per leg, S = 1. Combined with each part
of the duty cycle vector, it produces the line voltages as,

Vio = E S αi. (8)

Then the Kroneker product ⊗ extends the model to a
three-phase inverter.

Vlo = E (I3 ⊗ S)

[

αa

αb

αc

]

. (9)

The Kronecker product performs a weighted duplication
of the matrix S on each component of I3. Obviously in
our case this goes to

I3 ⊗ S =

[

S 0 0
0 S 0
0 0 S

]

=

[

1 0 0
0 1 0
0 0 1

]

. (10)

As depicted in figure 3, assuming a resistance R, and
inductance L as a three-phase and balanced load, the load
neutral voltage is given by

Vno =
1

3
(Vao + Vbo + Vco)

=
1

3
[1 1 1]Vlo .

(11)

Finally, the three load voltages are expressed in a single
vector Vln such as

Vln =

[

Van

Vbn

Vcn

]

=

[

Vao

Vbo

Vco

]

−

[

1
1
1

]

Vno =
1

3

[

2 −1 −1
−1 2 −1
−1 −1 2

]

Vlo.

(12)
The PWM variable is then expressed when (12) is associ-
ated with (7) as

Vln =
E

3

[

2 −1 −1
−1 2 −1
−1 −1 2

]

α. (13)

The matrix M is then defined such as

M =
1

3

[

2 −1 −1
−1 2 −1
−1 −1 2

]

. (14)

Consequently, a reduced expression of (13) is obtained :

Vln = MVlo = EMα. (15)



3.2 Preliminary remark

M stands for three-phase inverters. It means that for
other structures, e.g. penta-phase structure etc., another
matrix should be defined and combined to (2). Moreover
in the previous generalized description, a leg structure
representative matrix is defined: S. This will be reused
later for multilevel converters.

Unfortunately, while the solution is directly expressed in
(4) for a switching cell, the three-phase structure does not
allow to obtain α as a function of Vln with a simple matrix
inversion. Effectively, M is a singular matrix which does
not admit an inverse. The link between experimental and
implemented PWM and a generic mathematical solution
to express the duty cycle solution set will be demonstrated
further.

4. UP TO MULTI-LEVEL INVERTERS

The model defined in the case of an elementary switching
cell will be extended to the main three N-level inverter
topologies:

• A H-Bridge inverter denoted H-bridge;
• A Neutral Point Clamped inverter denoted NPC;
• A Flying Capacitor inverter, denoted FC.

A generic approach will be considered as the number of
level, named N , will not be fixed. As stated in figure 2, an
elementary switching cell stands for an output leg voltage
with two possible levels: vio ∈ {0, E}. Consequently for
N-level architecture,

N > 2. (16)

For the following N-level inverter the average model estab-
lished previously will be extended. The model for a single
leg is developed by defining the corresponding S matrix.
The model of the three-phase inverter will be obtained
using the same technique given in (10) and (11).

4.1 H-bridge

A H-bridge is a basic structure made of two elementary
switching cells. The potential of the middle points of
the two cells may take two values each, leading to three
levels for the voltage between these points. This voltage
is tuned by modulating the duty cycle of each cell. To
produce N-level inverters, several H-bridge are linked one
to the other. All the H-bridges are connected in series
through the middle points of their switching cells. The
load is connected between the remaining middle point of
the top and bottom of the H-bridge chain, as depicted in
4. Inverters involving such a topology has a odd number
of level N

The voltage between the two legs of a basis structure of
the leg i of H-bridge inverters is

Vkl =
2E

N − 1
(αi2k+1 − αi2k) =

2E

N − 1
[1 −1]

[

αi2k

αi2k+1

]

.

(17)
where 2k is the number of the first switching cell of the
H-bridge basis structure considered.
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Fig. 4. Isolated leg of a N-level H-bridge inverter.

As soon as all basis structures are serialized, the leg
voltage sums up the voltage between the two legs of all
the structure of a leg

Vio=

N−1
2

∑

j=1

2E

N − 1
(αi2k+1 − αi2k)

=

N−1
2

∑

j=1

2E

N − 1
[1 −1]

[

αi2k

αi2k+1

]

.

(18)

Notice here that the Vio voltage make sense only for a leg
study because for a multi-phased inverter, the reference
potential point has to be determined commonly for all the
legs.

Aggregating all the duty cycles αij of the leg i within a

single vector column αi = [αi1 . . . αij . . . αiN−1]
T

leads
to

Vio =
2E

N − 1
[1 −1 . . . 1 −1]
︸ ︷︷ ︸

N−1

αi. (19)

Defining the vector SH corresponding to the H-bridge
topology simplifies expression (19)

Vio =
2E

N − 1
SHαi. (20)

Considering distinct reference potential oi, such a leg
model can be duplicated thank to the Kronecker product
to get the three phase line voltages

Vloi =
2E

N − 1
(I3 ⊗ SH)α (21)
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Fig. 5. Isolated leg of a N-level NPC inverter.

where α aggregates the αi vectors of the 3 legs within a
single column vector.

Finally, defining the neutral point N connecting all the
oi together, the model of the line voltages is obtained
involving the M matrix introduced in section 3

Vln = MVlo =
2E

N − 1
M(I3 ⊗ SH)α. (22)

The maximal amplitude Vmax such an inverter modulates
is E.

4.2 NPC

The N-levels NPC leg of an inverter is composed of N − 1
nested switching cells as depicted in figure 5 . Each cell
switches a E

N−1
voltage source. The network of clamping

diodes relays the potential to allow their multiplexing by
the switching cells.

The particularity of such a topology is that cij = 0
and cij+1 = 1 is not desirable because in such a case,
the line voltage of the leg i depends on the sign of its
current. As soon as we do not consider the current for
the control of the inverter, these configurations are called
undetermined configurations and avoided. Let us denote
αij the duty cycle of the jth switching cell of the leg i.
Defining that all the command order cij of a given leg i
are generated by comparing a single carrier waveform to
all the duty cycles αij of the switching cell j of the leg i,
the undetermined configurations are avoided by ensuring
the following condition

αij ≤ αij+1. (23)

With such constrain, the ith leg voltage is
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Fig. 6. Isolated leg of a N-level FC inverter.

Vio =
N−1
∑

j=1

VKj
=

N−1
∑

j=1

E

N − 1
αij . (24)

The αi vector is defined such as:

αi =
[

αi1 . . . αij . . . αi(N−1)

]T
. (25)

This duty cycle vector is combined with the (1× (N − 1))
matrix SNPC = [1 . . . 1] to simplify (24)

Vio =
E

N − 1
SNPCαi (26)

As in (10), the three-phase line voltages are then obtained
by duplicating the leg model thanks to the Kronecker
product

Vlo =
E

N − 1
(I3 ⊗ SNPC)α (27)

where α aggregates the αi vectors of the 3 legs within a
single column vector.

Finally, the model of the line voltages involves the M
matrix as

Vln = MVlo =
E

N − 1
M(I3 ⊗ SNPC)α. (28)

4.3 FC

The N-level FC is composed of nested elementary switch-
ing cells, with per level capacitor as illustrated figure 6
. p = N − j stands for the ratio value of the voltage
source E applied to the concerned capacitor. Within the
jth switching cell, made ofKij andK

′

ij and two capacitors,

the difference between the two capacity voltage is
E

N − 1
.

For a given leg, the line voltage Vio is

Vio =
N−1
∑

j=1

VKij
=

N−1
∑

j=1

E

N − 1
αij . (29)

Where αij is the duty cycle defined for Kij . Finally an
overall duty cycle column vector αi is defined such as

αi =
[

αi1 . . . αij . . . αi(N−1)

]T
. (30)

Furthermore, for each leg i, a (1× (N − 1)) matrix SFC is
defined as SFC = [1 . . . 1] to allow simplifying (29) as

Vio =
E

N − 1
SFCαi. (31)



Finally an equivalent expression of (7) is obtained using
the Kronecker product.

Vlo =
E

N − 1
(I3 ⊗ SFC)α. (32)

The line voltages are finally computed so that

Vln = MVlo =
E

N − 1
M (I3 ⊗ SFC)α. (33)

5. SOLUTION SET EXPRESSION

All of linear systems obtained, (28), (33) and (22), express
the line voltages Vln as linear functions of the duty cycles
α. The M matrix is also used as it corresponds to three-
phase inverters. The use of the Kronecker product ⊗,
combined with the same sized (1× (N − 1)) SH , SNPC or
SFC matrices, implies that the linear system is singular.

5.1 The Generalized inverse notion

It is well known that each square and non-singular matrix
A has a unique inverse, named A−1, which satisfies

AA−1A = A. (34)

At the beginning of the XXth century, needs for some
kind of generalized inverse were pointed out for differential
operator (Fredholm, 1903). Then, for every matrix A, a
generalized inverses of A, denoted A[1], fulfills

AA[1]A = A . (35)

Some features of generalized inverses are mentioned in
(Ben-Israel, 1974): they are not unique; they exist for every
matrices; they have some of the properties of the usual
inverse. When A is non-singular, A−1 is the generalized
inverse of A.

Based on work of Moore, (Moore, 1920), (Ben-Israel,
2002) and Penrose (Penrose, 1955),a particular generalized
inverse, the Moore-Penrose inverse or pseudo-inverse of
every matrix A, denoted, A†, is defined, satisfying the four
Penrose properties

AA†A = A , (P1)

A†AA† = A† , (P2)

(AA†)∗ = A†A , (P3)

(A†A)∗ = A†A , (P4)

where A∗ denotes the conjugate transpose of A. The main
property of pseudo-inverse is that A† always exists and
is unique. It is obvious that A† is a particular general-
ized inverse of A and equals the usual inverse for non-
singular matrices. Its main interest is that stable numeric
algorithms have been defined to obtain the pseudo-inverse
(Golub, 1996).

The application of generalized inverse theory is to get the
solution set of a linear system (Lovass-Nagy, 1978). Let us
consider a linear system described by

AX = B (36)

where A is a (n × m) matrix and B is a (n × p) matrix.
Then, if (36) is consistent, the solution set of (36) is

{

A[1]B + (Im −A[1]A)Y , Y ∈ IRm×p
}

, (37)

where A[1] is a generalized inverse of A. It is obvious that Y
can be chosen in order to satisfy at the outset, some fixed

constraints. The A[1]B part in (37) stands for the fixed
solution, namely obtained with Y = 0. It depends on the
particular choice for A[1]. As A† is a particular generalized
inverse, a solution can be generated as

X = A†B + (Im −A†A)Z , (38)

where Z is an arbitrary (m× p) matrix.

The Sylvester theorem states that the number of d.o.f. is
related to the size of the kernel of A as,

nd.o.f. = dim (ker (A)) . (39)

For further simplification of the solution expression, Z will
be later developed to best highlight the number of d.o.f.

5.2 Generalized inverse applied to N-level three-phases
inverter model

From the problem description highlighted in (22) (28), and
(33), it is obvious that the N-level VSI model is a linear
system. It implies several singular matrices: M , and (I3 ⊗
SH), (I3 ⊗ SNPC), and (I3 ⊗ SFC), where usual inverses
can not be defined. Nevertheless, as stated previously a
generalized inverse can be obtained. As SH , SNPC , and
SFC have similar size : (1 × (N − 1)), the solution set is
expressed for the H-bridge structure. A similar resolution
may be used for other inverter topologies. A Kronecker
product property, highlighted in (Van-Loan, 2000), states
that the line voltages can be simplified as follows

Vln =
2E

N − 1
M(I3 ⊗ SH)α =

2E

N − 1
(M ⊗ SH)α. (40)

The linear system described in Eq. (40) is consistent and
admits an infinity of solution. Indeed,

{

rank(M ⊗ SH) = rank(M ⊗ SH Vln)

rank(M ⊗ SH) < Number of row of Vln.
(41)

Effectively, rank(M⊗SH) = rank(M)∗rank(SH) = 2∗1,
as stated in (Feng, 2011). (M ⊗ SH) is singular thus and
its pseudo inverse can be established

(M ⊗ SH)† = M† ⊗ S
†

H , (42)

Finally, the solution is expressed as

α =
N − 1

2E
(M ⊗ SH)†Vref

+
(

I3(N−1) − (M ⊗ SH)†(M ⊗ SH)
)

z,

(43)

where IN−1 is the identity matrix and z an arbitrary
((N − 1)× 1) vector. The use of the following property

(A⊗B)(C ⊗D) = AC ⊗BD , (44)

allows a simplified expression of (43)

α =
N − 1

2E
(M† ⊗ S

†

H)Vref

+
(

I3(N−1) −M†M ⊗ S
†

HSH

)

z.

(45)

Indeed, the solution set of every N-level VSI is established.
The Sylvester theorem establishes the number of degree of
freedom (d.o.f.) associated with the solution established in
Eq. (45):

nd.o.f. = dim (ker(M ⊗ SH)) (46)

where ker(A) is the kernel of the linear application A. (46)
is also expressed as

nd.o.f. =Number of row of (M ⊗ SH)− rank(M ⊗ SH)

=3(N − 1)− 2 = 3N − 5.
(47)



Finally, it is concluded that the 3(N − 1) components of
α will be expressed following 3N − 5 d.o.f. To highlight
these d.o.f, a maximal rank factorization is used. Firstly,
the d.o.f. are grouped into a column vector denoted λ such
as

λ = [λ1, . . . , λ3N−5]
T
. (48)

Secondly, two matrices F(3(N−1)×(3N−5)) and
G((3N−5)×3(N−1)) are chosen as

(

I3(N−1) −M†M ⊗ S
†

HSH

)

= FG . (49)

Then, as Gz = λ the solution is

α =
N − 1

2E
(M† ⊗ S

†

H)Vref + Fλ. (50)

The solution expressed is composed of

• a fixed solution denoted αf :

αf =
N − 1

2E
(M† ⊗ S

†

H)Vref ; (51)

• a variable part:
Fλ. (52)

6. SOLUTION OF A 3-LEVEL H-BRIDGE VSI

The model of the 3-level H-bridge VSI is given in (22)
where the matrix of the inverter topology SH = [1 −1].

Once the pseudo-inverse of M(I3(N−1) ⊗ SH) computed,
the fixed solution (51) associated with the assumption of
a three-phase balanced load leads to the duty cycles











αfi1 =
1

2

Vrefi

E

αfi2 = −
1

2

Vrefi

E

. (53)

Considering now the variable part, the maximal rank

factorization of (IN−1 −M†M ⊗ S
†

HSH) chosen leads to

F =















1 0 0 1
1 0 0 −1
0 1 0 1
0 1 0 −1
0 0 1 1
0 0 1 −1















. (54)

Such a full rank factorization points out that one d.o.f (λ4)
sets the gap between the duty cycles of the legs.

As soon as αij ∈ [0 1], αi1−αi2 ∈ [−1 1]. Due to the values
of the duty cycles (54), the maximal range of the d.o.f λ4

is

−
1

2
max(αf ) ≤ λ4 ≤

1

2
+max(αf ). (55)

The three other d.o.f λi i ∈ [1, 2, 3] are associated with
the leg 1, 2 and 3 of the inverter respectively. These d.o.f
λi i ∈ [1, 2, 3] add the same offset to the corresponding
duty cycles αij . The λi i ∈ [1, 2, 3] d.o.f range is then
defined according to the reference voltage Vrefi and to the
common d.o.f λ4.

max(αf ) + λ4 ≤ λi ≤ 1− (max(αf ) + λ4). (56)

7. CONCLUSION

The study demonstrates how to establish a generic model
for pulse Width Modulation Voltage Source Inverters. The
model aims to be applied to N-level topologies whatever
the structure, or N are. The use of the Kronecker product
combined with the average model of an elementary switch-
ing cell eases to depict a generic N-level linear relationship
between the mean output voltage and the duty cycle.
Obviously this model is mainly dedicated to carrier based
PWM scheme, even if its ability to be adapted for time
positioning, when Space Vector Modulation is concerned,
should easily be done. Finally the generalized inverse is
used to express the generic duty cycle solution set. Among
these solutions and for a given example, the use of the de-
tailed theory is driven and illustrated by some simulation
results.
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