Mohamed Ben Abdallah 
email: ben_abdallah_mohamed@yahoo.fr
  
Mounir Ayadi 
email: mounir.ayadi@enit.rnu.tn
  
Frédéric Rotella 
email: rotella@enit.fr
  
Mohamed Benrejeb 
email: mohamed.benrejeb@enit.rnu.tn
  
M Ben 
  
F Rotella Ea 
  
  
  
Ouverte LTV controller flatness-based design for MIMO systems

Keywords: Linear time-varying systems, Multi-input multi-output systems, Trajectory linearization, Flatness, Path tracking, Exact observer, Polynomial controller

In this paper, a flatness-based control strategy for multi-input multi-output linear time-varying systems is proposed in order to track desired trajectories. The control design, based on the use of an exact observer, leads to a polynomial two-degree-of-freedom controller without resolving Bézout's equation in a time-varying framework. The proposed approach is illustrated with the control of a nonlinear model of the satellite SPOT-5.

Introduction

For finite-dimensional and time-invariant linear systems, a well-known control design technique named polynomial two-degree-of-freedom (2DOF) controllers [START_REF] Kučera | Analysis and design of discrete linear control systems[END_REF][START_REF] Aström | Computer controlled systems. Theory and design[END_REF][START_REF] Franklin | Digital control of dynamic systems[END_REF], was introduced fifty years ago by Horowitz [4]. This powerful method is based on pole placement and presents one drawback: it needs to know where to place all the poles of the closed-loop system at the outset. In dealing with polynomial matrices in the case of multi-input multi-output (MIMO) systems, a particular problem which is important for both, mathematical [START_REF] Gantmacher | The theory of matrices[END_REF][START_REF] Gohberg | Matrix polynomials[END_REF] and system theory [START_REF] Kailath | Linear systems[END_REF][START_REF] Stefanidis | Numerical operations with polynomial matrices[END_REF] points of view, is the computation of the solution of the generalized polynomial Bézout's equation. There are many works to solve the diophantine equation [START_REF] Chen | Linear system theory and design[END_REF][START_REF] Lai | An algorithm for solving the matrix polynomial equation A(s)X (s) + B(s)Y (s) = C(s)[END_REF]. Generally, all methods can be classified into three main categories: the state-space related approaches [START_REF] Yamada | On solving Diophantine equations by real matrix manipulation[END_REF][START_REF] Fang | A new method for solving the polynomial generalized Bézout identity[END_REF], the Taylor series treatment [START_REF] Lai | An algorithm for solving the matrix polynomial equation A(s)X (s) + B(s)Y (s) = C(s)[END_REF][START_REF] Feinstein | The solution of the matrix polynomial equation A(s)X (s) + B(s)Y (s) = C(s)[END_REF], and methods involving coefficient matching [START_REF] Chen | Linear system theory and design[END_REF][START_REF] Yeung | Matrix, Diophantine equations by inverting a square nonsingular system of equations[END_REF].

The 2DOF design controller problem is not easy to transcribe in the case of linear time-varying (LTV) systems due to the fact that the coefficients do not commute with the time derivative operator. Besides, the structure of the set of the poles of the closed-loop system is more complex.

In this case, the pole placement problem was solved recently by Marinescu [START_REF] Marinescu | Output feedback pole placement for linear time-varying systems with application to the control of nonlinear systems[END_REF] who proposes some technical methods for the factorization of linear time-varying transfer matrices. These key points lead to solve Bézout's equation written in time-varying framework.

In the case of single-input single-output (SISO) linear time-invariant (LTI) systems, the problem of pole placement which consists in imposing closed loop system dynamics can be related to track desired trajectories using flatness property to design a polynomial controller [START_REF] Rotella | Polynomial controller design based on flatness[END_REF]. A 2DOF controller is then designed with very natural choices with high level performances. In this design, we are led to a solution for Bézout's equation without its resolution.

In order to overcome these two points, namely the choice of desired poles at the outset and the determination of a solution for Bézout's equation, we propose in this paper to extend the flatness-based control strategy developed in [START_REF] Rotella | Polynomial controller design based on flatness[END_REF] to the case of MIMO LTV systems. It will be seen that applying the guideline induced by a flatness based control to a MIMO LTV system leads to express it in a natural 2DOF controller form.

The paper is organized as follows: in Sect. 2, some background notions about MIMO LTV systems and flatness are presented. In Sect. 3, we propose to design a polynomial controller based on flatness using an exact observer of a state vector which is constituted by the flat output and its derivatives. This approach is illustrated, in Sect. [START_REF] Horowitz | Synthesis of feedback systems[END_REF], with the control of a nonlinear model of the SPOT satellite.

Background notions

MIMO linear time-varying systems

Following [START_REF] Marinescu | Output feedback pole placement for linear time-varying systems with application to the control of nonlinear systems[END_REF], in the algebraic framework initiated by [START_REF] Malgrange | Systèmes différentiels à coefficients constants[END_REF] and popularized in systems theory by [START_REF] Fliess | Une interprétation algébrique de la transformation de Laplace et des matrices de transfert[END_REF] and related references, a linear system is a finitely presented module M over the ring R = K [s] of differential operators in s = d/dt with coefficients in an ordinary differential field K (i.e., a commutative field equipped with a unique derivative). If K does not exclusively contain constants (i.e., elements of derivative zero), M is an LTV system. In this paper, the following notations will be used:

u (n) (t) = d n u(t)
dt n = s n u(t). When dealing with LTV systems, polynomials as function of s is skew, i.e., belong to the noncommutative ring R = K [s] equipped with the commutation rule: sa = as + ȧ (a is a time-varying function), which is the Leibniz rule of derivation of a product. Noting the integration operator by s -1 where:

s -1 h (t) = t -∞ h (τ )dτ (1) 
where h(τ ) = 0 for (τ ≤ τ ). This last hypothesis ensures commutativity between s and s -1 . For finite-dimensional, several input-output descriptions have been introduced for MIMO LTV systems. Here, a timevarying linear system is described by the following state space model of dimension n:

ẋ(t) = A(t)x(t) + B(t)u(t) t ∈ T = t 1 t 2 y(t) = C(t)x(t) (2)
where x(t) is an n-dimensional state vector, u(t) is an mdimensional input vector, y(t) is an m-dimensional output vector, and the matrices A(t), B(t) and C(t) are time-variable matrices of proper order. Consider the set of matrices K i (t) for i = 0, 1, . . . such that:

K 0 (t) = B(t) K i (t) = -A(t)K i-1 (t) + K i-1 (t) if i ≥ 1
If there is an integer µ such that the matrix:

K (A(t),B(t)) (t) = K 0 (t) • • • K µ-1 (t) (3) 
is of rank n for every t ∈ T , then the system is uniformly controllable [START_REF] Silverman | Controllability and observability in time-variable linear systems[END_REF] and K (A(t),B(t)) (t) is the controllability matrix. Consider the set of matrices L i (t), for i = 0, 1, . . . such that:

L 0 (t) = C (t) L i (t) = L i-1 (t) A (t) + Li-1 (t) if i ≥ 1
If there is an integer ν such that the matrix:

L (A(t),C(t)) (t) =      L 0 (t) L 1 (t) . . . L ν-1 (t)      (4) 
is of rank n for every t ∈ T , then the system is uniformly observable. In this condition, L (A(t),C(t)) (t) is the observability matrix of the pair (A(t), C(t)). In the case of LTI systems, the indexes µ and ν are equal to n. The result of Silverman-Meadows [START_REF] Silverman | Controllability and observability in time-variable linear systems[END_REF] has shown that, if the system is uniformly controllable then there exists a nonsingular transformation on T , such that:

Z (t) = P C (t)x(t) (5) 
which can be constructed by the Seal-Stuberud algorithm [START_REF] Seal | Canonical forms for multiple-input time-variable systems[END_REF], implies that:

Ż (t) = A C (t)Z (t) + B C (t)u(t) y(t) = C C (t)Z (t) (6) 
where:

C C (t) = C (t) P -1 C (t) , B C (t) = P C (t)B(t) (7) 
A C (t) = P C (t)A(t)P -1

C (t) + ṖC (t)P -1 C (t) = A Ci j (t) i, j=1...m (8) A C,ii (t) =         0 1 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • • • • 0 1 × × × × ×         (9) 
are µ i × µ i matrices such that:

n i=1 µ i = n A C,i j (t) =         0 • • • • • • • • • 0 . . . . . . . . . . . . 0 • • • • • • • • • 0 × × • • • × ×         (10) 
are (µ i × µ j ) matrices, the symbol × is a time-varying function. The scalars µ i for i = 1 to m are the controllability indices determined by the the Seal-Stuberud algorithm [START_REF] Seal | Canonical forms for multiple-input time-variable systems[END_REF].

The interested reader may find more details about this algorithm in the quoted literature and the references therein. Defining a new input vector u C (t) by:

u C (t) = H C (t)u(t) (11) 
where H C (t) is an (m × m) upper triangular matrix with ones along the diagonal and hence invertible. It's constructed by the i j=1 µ j th rows of B C (t):

H C (t) =       1 × • • • × 0 . . . . . . . . . . . . . . . × 0 • • • 0 1       (12) 
Equation ( 6) becomes:

Ż (t) = A C Z (t) + BC u C (t) y(t) = C C Z (t) (13) 
such that:

BC = B C (t)H C (t) -1 =      b c1 0 • • • 0 0 b c2 • • • 0 . . . . . . . . . 0 0 b cm      (14) 
where:

b ci = 0 • • • 0 1 T ( 15 
)
is an µ i vector.

Remark 1 Another problem is that even though the timevarying linear system is controllable and observable, its controllability indices and/or observability indices may not be fixed. Such system is called non-lexicographically-fixed system. For this problem, the algorithm of Seal and Stuberud can't be implemented in an efficient way because the set of vectors which are linearly independent for every t on T change. In this work, we only deal lexicographically-fixed system [START_REF] Shafai | Minimal-order observer designs for linear time-varying multivariable systems[END_REF] where the controllability indices are fixed. In the next section, the flatness property is presented and we will see that the state vector in the previous canonical form is used to determine the flat output and its derivatives.

Short survey on flatness

Flatness property which was introduced by [START_REF] Fliess | Sur les systèmes non linéaires différentiellement plats[END_REF], for continuous-time nonlinear systems, leads to interesting results for control design. The existence of a set of variables called flat outputs permits to define all other system variables. The dynamic of such process can be then deduced without solving the differential equations. Therefore, it is possible to express the state, as well as the input and the output of the system, as differential functions of flat outputs [START_REF] Fliess | Sur les systèmes non linéaires différentiellement plats[END_REF][START_REF] Rotella | Commande des systèmes par platitude[END_REF]. Let us consider the nonlinear system described by the following differential equation:

ẋ(t) = f (x(t), u(t)) ( 16 
)
where x(t) ∈ ℜ n is the state vector and u(t) ∈ ℜ m is the input vector. Roughly speaking, this system is called differentially flat if there exists a set of variables z(t) ∈ ℜ m of the form:

z(t) = h(x(t), u(t), u(t), ..., u (r ) (t)) (17) 
such that the state and the input of the system are given by:

x(t) = A(z(t), ż(t), ..., z (α) (t)) (18) 
u(t) = B(z(t), ż(t), ..., z (α+1) (t)) ( 19 
)
where α is an integer. The set of variables z(t) is called the flat output of the system or the endogenous variables. It makes possible to parameterize any variable of the system [START_REF] Rotella | Commande des systèmes par platitude[END_REF]. The components of z(t) must be differentially independent. The real output of the process is written as follows:

y (t) = g (x (t) , u (t)) (20) 
and from Eqs. ( 18) and ( 19), this output is written in function of the flat output as:

y(t) = C(z(t), ż(t), ..., z (σ ) (t)) ( 21 
)
where σ is an integer. In the linear case, the explicit expressions of the output y(t) and the input u(t) allow to relate the flat output to the partial state which was defined by [START_REF] Kailath | Linear systems[END_REF].

The trajectories of the system are deduced from the definition of the flat output trajectory without integrating any differential equations. All these points, which have been formalized through the Lie-Bäcklund equivalence of systems in [START_REF] Fliess | Linéarisation par bouclage dynamique et transformer de Lie-Bäcklund[END_REF][START_REF] Fliess | A Lie-Bäcklund approach to equivalence and flatness of nonlinear system[END_REF], lead to propose a nonlinear feedback which ensures a stabilized tracking of a desired motion for the flat output. This methodology has been applied on many industrial processes as it was shown previously, for instance, on magnetics bearings [START_REF] Lévine | A nonlinear approach to the control of magnetic bearings[END_REF], chemical reactors [START_REF] Rothfuss | Flatness based control of a nonlinear chemical reactor[END_REF], cranes or flight control [START_REF] Lévine | Are there new industrial perspectives in the control of mechanical systems? Advances in control[END_REF] or turning process [START_REF] Rotella | Flatness based control of a turning process[END_REF], among many other examples. A necessary and sufficient condition for the flatness of a linear system is its controllability involving that the concepts flatness and controllability coincide [START_REF] Fliess | Flatness and defect of nonlinear systems: introductory theory and examples[END_REF]. In this case, the Brunovsky output from the controllable canonical form are considered as flat outputs. The Lie-Bäcklund equivalence [START_REF] Fliess | Linéarisation par bouclage dynamique et transformer de Lie-Bäcklund[END_REF] shown that: dim z(t) = dim u(t). In the case of MIMO linear systems, let us consider the canonical form in Eq. ( 13), the state vector can be expressed in the following form:

Z (t) =                 z 1 (t) . . . z (µ 1 -1) 1 (t) z 2 (t) . . . z m (t) . . . z (µ m -1) m (t)                 (22) 
then the flat output or the Brunovsky output is given by:

z(t) =      z 1 (t) z 2 (t) . . . z m (t)      (23) 
Remark 2 The necessary and sufficient condition for the flatness of a linear system is proved in the LTI case in [START_REF] Fliess | Flatness and defect of nonlinear systems: introductory theory and examples[END_REF]. In the LTV case, uniform controllability implies, according to the results of Malrait et al. in [START_REF] Malrait | Dynamic feedback transformations of controllable linear time-varying systems. Nonlinear Control in the year 2000[END_REF], that the system is equivalent to a linear time invariant system in Brunovsky canonical form (i.e. a chain of n integrators) after a static change of coordinates and a state-dependent re-definition of the control input.

The system is thus differentially flat [START_REF] Sira-Ramirez | Sur des pensers nouveaux faisons des vers anciens[END_REF]. The flat output, or Brunovsky output, is directly obtained as a time-varying linear combination of the original states.

After introducing the flatness property and the determination of a flat output from the controllable form, the flatnessbased control will be presented in the next section.

Flatness-based control

By denoting by u C,i (t) the i-th component of u C (t) and α i, j,k (t) the k-th coefficient of the last row of the matrix A C,i j (t) in Eq. ( 9) and Eq. ( 10), the following relation is satisfied:

u c,i (t) = z (µ i ) i (t) + m j=1   µ i -1 k=0 α i, j,k (t)z (k) j (t)   (24) 
For a given planned trajectory of the flat output, z d (t), the control law based on flatness is as follows:

u c,i (t) = z (µ i ) d,i (t) + µ i k=0 κ i,k z (k) d,i (t) -z (k) i (t) + m j=1   µ j -1 k=0 α i, j,k (t)z (k) j (t)   (25) 
where the κ i,k are chosen such that:

κ i (s) = s µ i + µ i k=1 κ i,k s µ i -k
is a Hurwitz polynomial. By introducing the polynomial matrix:

K (s) = diag (κ i (s)) ( 26 
)
where s is the derivation operator, the previous control law can be written as:

u(t) = (H C ) -1 (t) (K (s)z d (t) -(t)Z (t)) (27) 
where:

(t) = i, j (t) i, j=1•••m =    κ i,0 -α i,i,0 (t) • • • κ i,µ i -1 -α i,i,µ i -1 (t) if i = j -α i, j,0 (t) • • • -α i, j,µ i -1 (t) if i = j (28)
When this control is applied, the tracking error is verifying:

lim t→∞ (z d (t) -z (t)) = 0 ( 29 
)
and the closed-loop dynamics are given by the roots of κ i (s).

To implement the control [START_REF] Rothfuss | Flatness based control of a nonlinear chemical reactor[END_REF], we need to estimate the vector Z (t) with an observer. A full-order observer can be used, but in this solution, the difficulty appears in the choice of the observers poles in the LTV framework. To overcome this point, an enlightening idea suggested in [33] and applied in [START_REF] Marquez | Commande par PID généralisé d'un moteur électrique sans capteur mécanique[END_REF] and [START_REF] Rotella | Polynomial controller design based on flatness[END_REF] can be used. The realization of this controller, using the exact observer, will be the subject of the next part.

Exact observers

By successive derivations of the output plant y(t) in the equation (13) until the order (ν -1), we get:

y (t) = C C (t) Z (t) = O 0 (t) Z (t) ẏ (t) = ĊC (t) + C C (t) A C (t) Z (t) + C C (t) BC u C (t) = O 1 (t) Z (t) + M 1 (t) u C (t) y (2) (t) = Ȯ1 (t) + A C (t) O 1 (t) Z (t) + O 1 (t) BC (t) + Ṁ1 (t) u C (t) + M 1 (t) uC (t) = O 2 (t) Z (t) + M 2 (t) u C (t) + M 1 (t) uC (t) . . . y (ν-1) (t) = O ν-1 (t) Z (t) + M ν-1 (t) u C (t) + M ν-1,2 (t) uC (t) + M ν-1,3 (t) u (2) C (t) + • • • + M 1 (t) u (ν-2) C (t) (30) 
where M i (t) are (m × m)-dimensional matrices given by:

-

M 1 (t) = C C (t) BC , -for i = 2 to ν -1, M i (t) = Ṁi-1 (t) + O i (t) BC , -M ν-1,2 (t) = M ν-2 (t) + ν-3 i=1 M (ν-2-i) i (t) , -M ν-1,3 (t) = M ν-3 (t) + ν-4 i=1 (ν -i -2) M (ν-3-i) i (t), etc.
Equation [START_REF] Fliess | Flatness and defect of nonlinear systems: introductory theory and examples[END_REF] can be written as follows:

Y (t) = O(t)Z (t) + M(t)U (t) (31) 
where

Y T (t) = y T (t) ẏT (t) • • • y (ν-1)T (t) (32) U T (t) = u T C (t) uT C (t) • • • u (ν-2)T C (t) (33) 
O (t) =      O 0 (t) O 1 (t) . . . Oν-1 (t)      (34) 
O (t) is the observability matrix of the pair (A C (t) , C C (t)) and M (t) is the transmission matrix given by:

M(t) =      M 0 M 0 • • • M 0 M 0 M 1 (t) M 0 M 0 . . . . . . . . . . . . M ν-2 (t) M 1 (t) M 0 M ν-1 (t) M ν-1,2 (t) M ν-1,3 (t) • • • M 1 (t)      (35)
such that M 0 is an (m × m)-dimensional zero matrix.

In the next development, we assume the uniform observability of the system leading to:

rank (O (t)) = n (36) such that O (t) is an (mν × n)-dimensional matrix. It appears that: rank (O (t)) = rank O (t) Y (t) -M (t) U (t) = n
thus, following [START_REF] Rotella | Théorie et pratique du calcul matriciel[END_REF], the system of linear equations ( 31) is said compatible having a unique and an exact solution for Z (t) given by:

Z (t) = O T (t) O (t) -1 O T (t) (Y (t) -M (t) U (t)) (37) 
Besides, by integrating Eq. ( 13) of the canonical form, we get:

Z (t) = s -1 (A C (t) Z (t)) + s -1 BC u C (t) (38) 
By replacing, in the right side of Eq. ( 38), Z (t), by the expression from the left side, we obtain:

Z (t) = s -1 A C (t) s -1 (A C (t) Z (t)) + s -1 A C (t) s -1 BC u C (t) + s -1 BC u C (t) (39) 
Reiterating the last operation until the (ν -1) order:

Z (t) = s -1 A C (t)s -1 (A C (t) • • • s -1 (A C (t)Z (t)) + s -1 A C (t)s -1 (A C (t) • • • s -1 A C (t) BC s -1 u C (t) + • • • + s -1 A C (t) BC s -1 u C (t) + BC s -1 u C (t) (40) 
By replacing, in the second term of Eq. (40), Z (t) by the expression from Eq. (37), implies that:

Z (t) = s -1 A C (t)s -1 (A C (t) . . . s -1 A C (t) O T (t) O (t) -1 O T (t) (Y (t)-M (t) U (t)) + s -1 A C (t)s -1 (A C (t) • • • s -1 A C (t) BC s -1 u C (t) + • • • + s -1 A C (t) BC s -1 u C (t) + BC s -1 u C (t) (41) 
By using integration by parts, it leads to the following expression of the state vector:

Z (t) = s -1 (Θ 1 (t) y (t)) + s -2 (Θ 2 (t) y (t)) + • • • • • • + s -ν (Θ ν (t) y (t)) + s -1 (∆ 1 (t) u C (t)) • • • + s -2 (∆ 2 (t) u C (t)) + • • • • • • + s -(ν-1) (∆ ν-1 (t) u C (t)) + BC s -1 u C (t) (42) 
where Θ i (t) and ∆ i (t) are (n × m)-dimensional matrices.

2DOF controller form in the LTV case

By replacing (42) into ( 27), the control law becomes:

u(t) = H C (t) -1 (K (s)z d (t) -(t) s -1 (Θ 1 (t) y (t)) + s -2 (Θ 2 (t) y (t)) + • • • + s -ν (Θ ν (t) y (t)) + s -1 (∆ 1 (t) u C (t)) + s -2 (∆ 2 (t) u C (t)) + • • • + s -(ν-1) (∆ ν-1 (t) u C (t))+ BC s -1 u C (t) (43) 
By denoting:

R s -1 , u (t) = u(t) + (H C (t)) -1 (t) × s -1 (∆ 1 (t) u C (t))+s -2 (∆ 2 (t) u C (t)) + • • • + s -(ν-1) (∆ ν-1 (t) u C (t)) + BC s -1 u C (t) (44) 
and

S s -1 , y (t) = (H C (t)) -1 (t) s -1 (Θ 1 (t) y (t)) + s -2 (Θ 2 (t) y (t)) + • • • + s -ν (Θ ν (t) y(t)) ( 45 
)
the control law (43) can be written finally in the 2DOF controller form as follows:

R s -1 , u (t) = (H C (t)) -1 K (s)z d (t) -S s -1 , y (t) (46) 
The proposed control design can be seen as a 2DOF controller in the LTV framework without the resolution of Bézout's equation. Now the design is focused on the choice of the trajectory z d (t) to follow and the tracking dynamics given by K (s).

Application: control of a nonlinear model of a satellite

Nonlinear model of a satellite

In this section, the proposed approach in the case of MIMO LTV systems is applied to the model of a satellite SPOT-5. SPOT (Système Pour l'Observation de la Terre) is a highresolution, optical imaging Earth observation satellite system operating from space. Spot-5 satellites are the third generation of SPOT satellites. Following [START_REF] Sira-Ramirez | Sur des pensers nouveaux faisons des vers anciens[END_REF]36,37], the nonlinear model of the satellite is given by:

r = r (t) ω 2 (t) - k r 2 (t) + u 1 (t) m ω (t) = -2 ṙ (t) ω (t) r (t) + u 2 (t) mr 2 (t) (47) 
where:

r (t) represents the distance from the center of the Earth.

θ (t) is the angular displacement with respect to an arbitrary but fixed direction in the orbiting plane. m is the mass of the satellite (3,048 kg), k is a gravitational constant determining the Earth force of attraction on the satellite given by k = G M T such that G = 6.672559 × 10 -11 m 3 /s 2 kg and M T = 5.9736 × 10 24 kg is the mass of the Earth. ω (t) is the angular velocity, ω (t) = θ (t).

(r (t) , θ (t)) is the polar coordinates for the position of the satellite. The control inputs u 1 (t) and u 2 (t) represent the radial and tangential thrust forces exercised by the satellite respectively. By denoting:

x 1 (t) = r (t) = y 1 (t) x 2 (t) = ẋ1 (t) = ṙ (t) (48) x 3 (t) = ω = y 2 (t)
the model of the system (47) can be written into the following form:

ẋ1 (t) = x 2 (t) ẋ2 (t) = x 1 (t) x 2 3 (t) - k x 2 1 (t) + u 1 (t) m (49) ẋ3 (t) = -2x 2 (t) x 3 (t) x 1 (t) + u 2 (t) mx 2 1 (t)
and their derivatives. Denoting:

z 1 (t) = r (t) z 2 (t) = θ (t) (50) 
then the system variables can be written as:

x 1 (t) = z 1 (t)
x 2 (t) = ż1 (t)

x 3 (t) = ż2 (t) (51) u 1 (t) = m z1 (t) -z 1 (t) ż2 2 (t) + k z 2 1 (t) u 2 (t) = mz 2 1 (t) z2 (t) + 2ż 1 (t) ż2 (t) z 1 (t)

Linearization around a given trajectory

Consider the desired trajectories for the two flat outputs, sufficiently differentiable, which take the system from an initial state to an equilibrium final state defined by:

z 1d (t) = r d (t) = -cos π t 6084 + 1 × 39 + 7200 z 2d (t) = θ d (t) = -cos π t 6084 + 1 × π (52)
Figure 1 shows the desired trajectories of the flat outputs. From Eq. ( 51), the trajectories

T d (t) = (x 1d (t) , x 2d (t) , x 3d (t) , u 1d (t) , u 2d (t)
) can be then deduced. Figure 2 shows the desired trajectories for the inputs of the nonlinear system.

Let us define in the following the set of variables:

δx i (t) = x id (t) -x i (t) for i = 1, 2, 3 δu i (t) = u 1d (t) -u 1 (t) for i = 1, 2
The linearized model of (51) around the desired trajectories T d (t) is given by A set of flat outputs for (47) can be easily found as (r (t) , θ (t)) then the considered model is flat. Indeed, all the system variables are expressed in terms of these variables 

δ ẋ1 (t) = δx 2 (t) δ ẋ2 (t) = x 2 3d + 2 k x 3 1d δx 1 (t) + (2x 1d x 3d ) δx 3 (t) + δu 1 (t) m δ ẋ3 (t) = - 2u 2d mx 3 1d + 2x 2d x 3d x 2 1d δx 1 (t) - 2x 3d x 1d δx 2 (t) - 2x 2d x 1d δx 3 (t) + 1 mx 2 1d δu 2 (t) (53) 
By denoting:

δx (t) = (δx 1 (t)δx 2 (t)δx 3 (t)) T (54)
the state space representation of the system can be written as:

δ ẋ (t) = A (t) δx (t) + B (t) u (t) δy (t) = C (t) δx (t) (55) 
where:

δy (t) = (δ y 1 (t)δ y 2 (t)) T δu (t) = (δu 1 (t)δu 2 (t)) T (56) A(t) =      0 1 0 (x 2 3d + 2 k x 3 1d ) 0 (2x 1d x 3d ) -2u 2d mx 3 1d + 2x 2d x 3d x 2 1d -2x 3d x 1d -2x 2d x 1d      (57) B(t) =    0 0 1 m 0 0 1 mx 2 1d    (58) C(t) = 1 0 0 0 0 1 (59) 
Clearly that rank (B (t)) = 2. Now, partition B (t) into column vectors:

B (t) = [b 1 (t)b 2 (t)] (60) 
To check the uniform controllability, we construct:

K {2} (t) = (K 0 (t) K 1 (t)) =    0 0 -1 m 0 1 m 0 0 -2x 3d mx 1d 0 1 mx 2 1d 2x 3d mx 1d 2(x 2d -ẋ1d ) mx 3 1d    (61) 
The controllability matrix K {2} (t) has rank 3 ∀ t, then the system (55) is uniformly controllable and the timevarying linearized system (53) is flat. According the procedure referred in [START_REF] Seal | Canonical forms for multiple-input time-variable systems[END_REF], the two indices of controllability are calculated: µ 1 = 2 and µ 2 = 1. We construct the matrix V (t):

V (t) =    0 -1 m 0 1 m 0 0 0 2x 3d mx 1d 1 mx 2 1d    (62) 
Clearly, V (t) is invertible ∀ t. After calculating V -1 (t), the second and third rows of this matrix are extracted to construct the matrix P c (t). The transformation P c (t) reduces the system (55) to the canonical form:

δ Ż (t) = A C (t) δ Z (t) + BC (t) δu C (t) δy (t) = C C (t) δ Z (t) (63) 
where:

A C (t) = P C (t)A(t)P -1 C (t) + ṖC (t)P -1 C (t) A C (t) =   0 1 0 α 11,0 (t) α 11,1 (t) α 12,0 (t) α 21,0 (t) α 21,1 (t) α 22,0 (t)   BC (t) =   0 0 1 0 0 1   , H C = 1 0 0 1 C C (t) = C (t) P -1 C (t)

Trajectory tracking by LTV flatness-based control

Let's denote δ Z (t) the vector containing the flat outputs of the linearized system:

δ Z (t) = (δz 1 (t)δ ż1 (t)δz 2 (t)) T (64)
The previous control law (25) can be written as:

u C1 (t) = z1d (t) + κ 1,0 z 1d (t) + κ 1,1 ż1d (t) -κ 1,0 z 1 (t) + κ 1,1 ż1 (t) + α 1,1,0 (t) z 1 (t) + α 1,1,1 (t) ż1 (t) + α 1,2,0 (t) z 2 (t) (65) 
becomes:

u C1 (t) -u C1,d (t) = κ 1,0 δz 1 (t) + κ 1,1 δ ż1 (t) -α 1,1,0 (t) δz 1 (t) -α 1,1,1 (t) δ ż1 (t) -α 1,2,0 (t) δz 2 (t) (66) 
to obtain:

δu C1 (t) = α 1,1,0 (t) -κ 1,0 δz 1 (t) + α 1,1,1 (t) -κ 1,1 δ ż1 (t) + α 1,2,0 (t) δz 2 (t) (67) 
the same:

δu C2 (t) = α 2,2,0 (t) -κ 2,0 δz 2 (t) + α 2,1,0 (t) δz 1 (t) + α 2,1,1 (t) δ ż1 (t) (68) 
implies that:

δu C (t) = (t) δ Z (t) (69) 
where:

δu C (t) = [δu C1 (t)δu C2 (t)] T ( 70 
) (t) =   α 1,1,0 (t) -κ 1,0 α 2,1,0 (t) α 1,1,1 (t) -κ 1,1 α 2,1,1 (t) α 1,2,0 (t) α 2,2,0 (t) -κ 2,0   T (71) 
We construct the observability matrix of the pair (A(t), C(t)):

L {2} (t) =       1 0 0 0 0 1 0 1 0 -2u 2d mx 3 1d + 2x 2d x 3d x 2 1d -2x 3d x 1d -2x 2d x 1d       (72) 
has rank 3 ∀ t, the system is then uniformly observable. [START_REF] Malrait | Dynamic feedback transformations of controllable linear time-varying systems. Nonlinear Control in the year 2000[END_REF] can be written as:

δY (t) = O(t)δ Z (t) + M(t)δu C (t) (73) 
where:

δY (t) = δy (t) δ ẏ (t) , O(t) = C C (t) ĊC (t) + C C (t) A C (t)
and:

M(t) = M 0 C C (t) BC O(t)
is the observability matrix of the set (A C (t) , C C (t)). By denoting as:

O T (t) O (t) -1 • O T (t) = F (t) (74) 
(75) Equation ( 63) can be written as:

δ Z (t) = s -1 A C (t) δ Z (t) + BC δu C (t) (76) 
By replacing the expression of δ Z (t), from Eq. ( 75), in the right side of Eq. ( 76), we get:

δ Z (t) = s -1 (A C (t) F (t)δY (t)) -s -1 [A C (t) F (t)M(t)δu C (t)] + s -1 Bδu C (t) (77) 
with:

A C (t) F (t) =   τ 1 (t) τ 2 (t) τ 3 (t) τ 4 (t) τ 5 (t) τ 6 (t)   (78) A (t) F (t) M (t) =   β 1 (t) β 2 (t) β 3 (t)   (79) 
where τ i (t) and β i (t) are (1 × 2) time-varying matrices. By using integration by such that δ ẏ(0) = 0, Eq. ( 77) leads to the following expression:

δ Z (t) =   τ 2 (t) τ 4 (t) τ 6 (t)   δy (t) + s -1     τ 1 (t) -τ2 (t) τ 3 (t) -τ4 (t) τ 5 (t) -τ6 (t)   δy(t)   + s -1     -β 1 (t) -β 2 (t) -β 3 (t)   δu C (t)   + s -1 BC δu C (t) (80) 
By replacing the expression of δ Z (t) into the control law (69):

δu (t) = H -1 C (t)     τ 2 (t) τ 4 (t) τ 6 (t)   δy (t) + s -1     τ 1 (t) -τ2 (t) τ 3 (t) -τ4 (t) τ 5 (t) -τ6 (t)   δy(t)   + s -1     -β 1 (t) -β 2 (t) -β 3 (t)   δu C (t)   + s -1 BC δu C (t) (81) 
we deduce that:

δu (t) = S s -1 , δy (t) + R s -1 , δu C (t) (82) 
we get:

δ Z (t) = F (t) (δY (t) -M(t)δu C (t))
where:

S s -1 , δy (t) = H -1 C (t)     τ 2 (t) τ 4 (t) τ 6 (t)   δy (t) + s -1   τ 1 (t) -τ2 (t) τ 3 (t) -τ4 (t) τ 5 (t) -τ6 (t)   δy(t)   (83) R s -1 , δu C (t) = H -1 C (t) ×   s -1     -β 1 (t) -β 2 (t) -β 3 (t)   δu C (t)   + s -1 BC δu C (t) (84) 
Figure 3 illustrates the structure of the proposed method based on the flatness property with the use of an exact observer. The tracking model is set with the two polynomials κ 1 (s) = s 2 + κ 1,1 s + κ 1,0 and κ 2 (s) = s + κ 2,0 .

For the numerical simulations, the tracking model is set with a time response of 100 min for κ 1 (s) and 200 min for κ 2 (s). The errors resulting from the inaccurate measurements perturbations used in the simulations are δy 1 (0) = 10 km and δy 2 (0) = -0.2 rad/s (the initial conditions due to the inaccurate measurements). The results obtained in Figs. 4, 5, 6 and 7, show that the trajectories of the nonlinear system follow the desired trajectories with good performance.

The control law obtained by application of the flatnessbased controller, allows to obtain high performance in terms of path tracking with errors which tend asymptotically to zero (see Fig. 7). These results point out the effectiveness of the use of the flatness-based approach for the LTV systems in a path tracking context.

The robustness of the control scheme is investigated when there is a change in the mass of the satellite, m, from (3,048 kg) to (3,000 kg) and in the gravitational constant, k, from 1443493.11439264 m 3 /s 2 to 1443220.28 m 3 /s 2 at Nonlinear system Exact observer and 10 min for κ 2 (s). Regarding the simulation results, it can be inferred that we have a robust tracking of the desired outputs.

In this design strategy, following Eq. ( 25), the set of flat outputs of the system (r (t) , θ (t)) tracks the desired flat outputs (z 1d (t) , z 2d (t)). So that, the system outputs (y 1 (t) = r (t) , y 2 (t) = ω (t) = θ (t)) track the set of variables (z 1d (t) , ż2d (t)) and we get then a robust tracking of the desired outputs. It can be noted that if there are parametric variations in the relation between the flat outputs and the system outputs then we have a bad performance in terms of tracking of the desired outputs.

The errors on the outputs resulting from its inaccurate measurements perturbations used in the simulations are δy 1 (0) = 10 km and δy 2 (0) = -0.2 rad/s (the initial condition due to the inaccurate measurement). If this inaccurate measurement is big, the outputs will not track the desired trajectory in the case of the use of an exact observer. In fact, it should be clear from the previous developments that the relation linking the integral reconstructor, δ Z (t), and the actual value of the state, is given by [START_REF] Sira-Ramirez | Sliding modes, differential flatness and integral reconstructors[END_REF][START_REF] Sira-Ramirez | Sliding mode control of DC-to-DC power converters using integral reconstructors[END_REF]:

δ Z (t) = δ Ẑ (t) + ν-2 i=1   t 0 A i-1 C (t) δ Z 0 (t) dt   (i-1) (85) 
where δ Z 0 (t) is the initial condition due to the inaccurate measurement. In a further development within the context of flatness and exact observer, our main concern is how to appropriately compensate the effects of the unknown initial conditions when the actual value of the state is replaced by its integral reconstructor in a given state-based feedback controller design.

Conclusion

In this paper, a flatness-based control for tracking desired trajectories in the case of MIMO LTV systems is proposed and developed. The proposed controller is based on an exact observer with a direct calculation of the state vector which contains the flat output and its derivatives. This regulatorobserver permits to the system outputs to track desired trajectories without using observer dynamics. The proposed method leads to a control design which can be seen as a 2DOF controller but without the resolution of Bézout's equation. The control law applied on a nonlinear model of a satellite gives a high level of performances in terms of the trajectory tracking. Beyond the framework of LTV systems, the result presented here open the way to the control of nonlinear systems using their linearizations around given trajectories.

Fig. 9 Outputs of the nonlinear system y 1 (t) and y 2 (t) when there is a change in the parameters and the time response of the tracking model correct (see Fig. 8). We remark a bad performance in terms of tracking of the altitude after the time 3,000 min (see Fig. 8). Figure 9 presented below shows simulation results when there is a change of parameters at the time 3,000 min and the tracking model is set with a time response of 5 min for κ 1 (s)
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