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Hořava gravity breaks Lorentz symmetry by introducing a preferred spacetime foliation, which is
defined by a timelike dynamical scalar field, the khronon. The presence of this preferred foliation makes
black hole solutions more complicated than in General Relativity, with the appearance of multiple distinct
event horizons: a matter horizon for light/matter fields; a spin-0 horizon for the scalar excitations of the
khronon; a spin-2 horizon for tensorial gravitational waves; and even, at least in spherical symmetry,
a universal horizon for instantaneously propagating modes appearing in the ultraviolet. We study how black
hole solutions in Hořava gravity change when the black hole is allowed to move with low velocity relative
to the preferred foliation. These slowly moving solutions are a crucial ingredient to compute black hole
“sensitivities” and predict gravitational wave emission (and, in particular, dipolar radiation) from the
inspiral of binary black hole systems. We find that for generic values of the theory’s three dimensionless
coupling constants, slowly moving black holes present curvature singularities at the universal horizon.
Singularities at the spin-0 horizon also arise unless one waives the requirement of asymptotic flatness at
spatial infinity. Nevertheless, we have verified that at least in a one-dimensional subset of the (three-
dimensional) parameter space of the theory’s coupling constants, slowly moving black holes are regular
everywhere, even though they coincide with the general-relativistic ones (thus implying, in particular, the
absence of dipolar gravitational radiation). Remarkably, this subset of the parameter space essentially
coincides with the one selected by the recent constraints from GW170817 and by solar system tests.

DOI: 10.1103/PhysRevD.99.024034

I. INTRODUCTION

Lorentz symmetry is believed to be a fundamental sym-
metry of nature and has been tested with high precision in a
variety of settings. Indeed, violations of Lorentz symmetry
are tightly constrained in the matter sector through particle
physics experiments [1–4], and parametrized models such as
the Standard Model Extension [5–7] efficiently bound such
violations also in the interaction sector between gravity and
matter [8]. Nevertheless, constraints in the gravitational
sector (i.e., from purely gravitational systems) are much less
compelling. Since Lorentz symmetry is a cornerstone of our
current understanding of fundamental physics, it is worth
exploring ways to improve these purely gravitational con-
straints. Onemay argue that the absence ofLorentz violations
(LVs) in thematter andmatter/gravity sectors probably points
to small LVs in the purely gravitational sector, but that is not
necessarily the case. Indeed, mechanisms allowing large LVs
in gravity to coexist with small LVs in matter have been put
forward and include e.g., the emergence of Lorentz sym-
metry at low energies as a result of renormalization group
running [9–11] (see however also Ref. [12]) or accidental
symmetries [13], or the suppression of the percolation of LVs
from gravity to matter via a large energy scale [14].

In order to bound LVs in gravity, one has to set up a
suitable phenomenological framework. In this paper, wewill
focus not on LVs tout court but rather on violations of boost
symmetry (see e.g., Refs. [15,16] for violations of spatial
rotation symmetry in gravity). A generic way to break boost
symmetry is to introduce a dynamical timelike vector field
(the æther) defining a preferred time direction at each
spacetime event. Restricting the action to be covariant and
quadratic in the first derivatives of the æther, one obtains
Einstein-æther theory [17], which has been extensively used
as a theoretical framework to understand how LVs may
appear in gravitational experiments. If one further requires
that the æther field not only defines a local preferred time
direction but also a preferred spacetime foliation, one ends up
with a different Lorentz-violating theory, khronometric
gravity [18]. The action for this theory is the same as that
of Einstein-æther theory (which is indeed the most generic
action one can write at quadratic order in the derivatives), but
the æther field is constrained to be hypersurface orthogonal,
i.e., parallel to the gradient of a timelike scalar field (the
khronon) defining the preferred spacetime foliation.
Besides providing a theoretical framework to effectively

describe LVs in gravity at low energies, khronometric
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theory gains further interest from coinciding with the low
energy limit of Hořava gravity [19]. The latter is a theory of
gravity that is power counting [19] and also perturbatively
renormalizable [20], thanks to the presence of an anisotropic
scaling (Lifschitz scaling) between the time and spatial
coordinates. Since this anisotropic scaling clearly breaks
boost symmetry, Lorentz (and specifically boost) violations
are crucial for the improved UV behavior of this theory.
Among the places where LVs play a major role is the

structure of black holes (BHs). Indeed, in both Einstein-
æther and khronometric/Hořava gravity, there exist addi-
tional graviton polarizations besides the spin-2 gravitons of
General Relativity (GR). In more detail, the æther vector of
Einstein-æther theory can be decomposed into spin-1 and
spin-0 degrees of freedom (d.o.f.) [21], while the Lorentz-
violating khronon scalar of khronometric/Hořava gravity
gives rise to a spin-0 polarization [22]. These additional
graviton polarizations propagate with speed that is gen-
erally different from the speed of the spin-2 modes, which
in turn does not necessarily match the speed of light.1 As a
result, BHs have multiple horizons: a matter horizon for
photons and other matter fields; a spin-2 horizon for tensor
GWs; a spin-0 horizon for the scalar gravitational mode;
and a spin-1 horizon for the gravitational vector modes, if
they are present. Moreover, at least in spherically sym-
metric, static, and asymptotically flat configurations, BHs
also possess a universal horizon for modes of arbitrary
speed [28,29]. Modes with propagation speed diverging in
the UV do indeed appear in Hořava gravity when one
moves away from its low energy limit (i.e., from khrono-
metric gravity).
The regularity of these multiple event horizons has long

proven a thorny issue in these theories. Already in spherical
symmetry, there exists a one parameter family of BH
solutions with regular horizons (parametrized by the mass,
as in GR) but also a two parameter family of solutions
(parametrized by the mass and a “hair” charge) that are
singular at the spin-0 horizon [28,30]. Numerical simu-
lations seem to suggest that this second family of BHs is
never produced in gravitational collapse [31], but regularity
becomes even more of an issue when one moves away from
spherical symmetry. For instance, while slowly rotating
BHs in khronometric theory pose no particular problem
[32–34], ones in Einstein-æther theory generally present no
universal horizon [35]. Moreover, they are singular at all
but the outermost spin-1 horizon in regions of the

parameter space of the theory’s couplings where multiple
spin-1 horizons exist [35]. There are also suggestions that
the universal horizon found in static spherically symmetric
BHs may be nonlinearly unstable, at least in the eikonal
(i.e., small wavelength) limit and in khronometric gravity,
thus forming a finite-area curvature singularity [29]. This
may be related to the universal horizon being a Cauchy
horizon in khronometric gravity [36].
To further investigate the stability and regularity of BH

horizons in boost-violating gravity, we focus here on
nonspinning BHs moving slowly relative to the preferred
foliation in khronometric theory. This is a highly relevant
physical configuration for understanding GW emission
from binary systems including at least one BH. A generic
feature of gravitational theories extending GR is the
possible presence of dipolar gravitational radiation from
quasicircular binary systems of compact objects, e.g.,
neutron stars (cf. e.g., Refs. [37–43]) or BHs [44,45].
This is experimentally very important because dipolar
emission appears at −1PN order2; i.e., it is enhanced by
a factor ðv=cÞ−2 (with v being the binary’s relative velocity)
compared to the usual quadrupolar emission of GR. As
such, dipolar emission may in principle dominate the
evolution of binary systems at large separations, a pre-
diction that can be tested against binary pulsars data [47,48]
or the latest LIGO/Virgo detections [45,49,50].
In Einstein-æther and khronometric/Hořava gravity,

dipolar emission from systems of two neutron stars was
studied and compared to binary pulsar observations in
Refs. [42,43]. References [41,42] also laid out the
theoretical framework to compute dipolar gravitational
emission in these theories, showing that the effect is
proportional (as in Fierz-Jordan-Brans-Dicke theory
[51–53]) to the square of the difference of the “sensitivities”
of the two binary components [37,38,40]. Reference [42]
then went on to extract neutron star sensitivities from
solutions of isolated stars in slow motion relative to the
æther/khronon. In this paper, we will follow the same
program for BHs in Hořava gravity, extracting their
sensitivities from slowly moving solutions and drawing
the implications for dipolar GW emission.

A. Executive summary, layout, and conventions

The calculation of BH sensitivities turns out to be much
more complicated than for neutron stars, due to the
presence of multiple BH horizons and their tendency to
become singular. Our main findings and conclusions can be
summarized as follows:

(i) For generic values of the three dimensionless cou-
pling constants α, β, and λ of khronometric theory,

1Note that the GW170817 [23,24] coincident detection of a
neutron star merger in gravitational waves (GWs) and gamma
rays constrains the speed of the spin-2 mode to match almost
exactly the speed of light [25]. However, even if one includes
this constraint, Lorentz-violating gravity remains viable [26],
and, in particular, the speed of the spin-0 mode can be very
different from the speed of light [27]. We will examine in detail
the experimental bounds on khronometric theory, including those
from GW170817, in Sec. II.

2The post-Newtonian (PN) expansion [46] is one in v=c, v
being the characteristic velocity of the system under consider-
ation, with terms of order ðv=cÞ2n relative to the leading one
being referred to as terms of “nPN” order.
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BHs slowly moving relative to the preferred foliation
present finite-area curvature singularities. In more
detail, if one imposes that the solution is asymp-
totically flat and regular at the matter horizon (which
turns out to be the outermost one once experimental
constraints on the theory’s couplings are accounted
for), a curvature singularity necessarily arises farther
in, at the spin-0 horizon. Giving up the requirement
of asymptotic flatness allows one to obtain solutions
that are regular at the spin-0 and matter horizons, but
not farther in, at the universal horizon, which
becomes a finite-area curvature singularity.

(ii) If the coupling parameters of the theory are such that
the speed of the spin-2 modes exactly matches that
of light and the predictions of the theory in the solar
system (i.e., at 1PN order) exactly match those of
GR, one is still left with a one-dimensional param-
eter space. In more detail, these conditions set α ¼
β ¼ 0 (which is quite natural since the experimental
bounds on these two parameters are very tight, jαj ≲
10−7 and jβj≲ 10−15), while λ can be as large as
∼0.01–0.1 without violating any experimental con-
straints. In this one-dimensional subset of the
parameter space, slowly moving BHs are regular
everywhere outside the central singularity at r ¼ 0
but coincide with the Schwarzschild solution (be-
cause the khronon profile, albeit nontrivial, has
vanishing stress energy; i.e., the khronon is a stealth
field). Therefore, BH sensitivities are zero, and no
dipolar emission is expected from systems of two
BHs. This result confirms, at the order at which we
are working, the conclusion of Ref. [54], namely that
khronometric theories with α ¼ β ¼ 0 only have
general relativistic solutions in vacuum, if asymp-
totic flatness is imposed. We therefore expect GW
emission to match the general-relativistic predictions
exactly even at higher PN orders (quadrupolar
emission and higher) if α ¼ β ¼ 0.

(iii) Even if the finite-area curvature singularities that
we find at the spin-0 and universal horizons were
due to the breakdown of our approximation scheme,
and moving BHs turned out to exist and be regular
away from the central singularity at r ≠ 0, deviations
away from the GR predictions for GW emission
should be expected to be only of (fractional) order
O½maxðα; βÞ� ∼ 10−7. This is becauseGWgeneration
should be exactly the same as in GR for α ¼ β ¼ 0
even at higher PN orders. Such small differences are
unlikely to be observable with present and future GW
detectors. However, if finite-area curvature singular-
ities exist (possibly smoothed by UV corrections to
the low energy theory [55]), they may give rise to
“echoes” in the postringdown GW signal [56–58]
and/or smoking-gun features in the stochastic GW
background [59].

The paper is organized as follows. In Sec. II, we will
briefly review Hořava/khronometric gravity and the exper-
imental constraints on its free parameters. In Sec. III, we
review how sensitivities of generic compact objects can be
computed from slowly moving solutions and how they are
related to strong equivalence principle violations and more
specifically to dipolar gravitational emission. In Sec. IV, we
review spherical BHs in Hořava/khronometric gravity and
introduce the ansätze for the metric and khronon field of
slowly moving BHs. In Sec. V, we write the field equations
for slowly moving BHs and solve them for generic values
of the coupling constants, while the α ¼ β ¼ 0 case is
discussed in Sec. VI. Our conclusions are drawn in
Sec. VII.
Henceforth, we will set the speed of light c ¼ 1 and

adopt a metric signature ðþ;−;−;−Þ.

II. LORENTZ-VIOLATING GRAVITY

In Hořava gravity [19], Lorentz symmetry is violated by
introducing a dynamical scalar field T, the “khronon,”
which defines a preferred time foliation. As such, the
gradient of the khronon needs to be a timelike vector
(∇μT∇μT > 0 in our notation); i.e., hypersurfaces of
constant khronon (the preferred foliation) are spacelike.
Using coordinates adapted to the khronon (i.e., using T as
the time coordinate), the action for Hořava gravity can be
written as [18,19]

S ¼ 1 − β

16πG

Z
dTd3xN

ffiffiffi
γ

p �
KijKij −

1þ λ

1 − β
K2

þ 1

1 − β
ð3ÞRþ α

1 − β
aiai þ

1

M2⋆
L4 þ

1

M4⋆
L6

�
þ Smatter½gμν;Ψ�; ð1Þ

where Kij, ð3ÞR, and γij are respectively the extrinsic
curvature, three-dimensional Ricci scalar, and 3-metric
of the T ¼ const hypersurfaces; K ¼ Kijγij; N is the lapse;
ai ≡ ∂i lnN; α, β, and λ are dimensionless coupling
constants; and Latin (spatial) indices are raised/lowered
with the 3-metric γij. The bare gravitational constant G is
related to the value measured locally (e.g., via Cavendish
experiments) by [60]

GN ¼ G
1 − α=2

: ð2Þ

The terms L4 and L6, suppressed by a mass scale M⋆,
contain respectively fourth- and sixth-order derivatives
with respect to the spatial coordinates, but no T derivatives.
Their detailed form is not needed for our purposes, but note
that their presence is necessary to ensure power-counting
renormalizability of the theory. Note that this action is not
invariant under generic four-dimensional diffeomorphisms
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(exactly because it violates Lorentz symmetry) but only
under foliation-preserving diffeomorphisms

T → T̃ðTÞ; xi → x̃iðx; TÞ: ð3Þ

The matter fields, collectively denoted asΨ, are assumed
to couple (at the level of the action) with the 4-metric gμν
alone, so as to ensure that test particles move along
geodesics and that no LVs appear in the matter sector
(i.e., in the Standard Model of particle physics), at least at
lowest order. LVs may still percolate to the matter sector
from the gravitational one, and suitable mechanisms
suppressing this effect therefore have to be put in place
in order to satisfy the tight bounds on LVs in the Standard
Model. As already mentioned (and reviewed e.g., in
Ref. [61]), such mechanisms include for instance the
possibility that Lorentz invariance in the matter sector
might be merely an emergent feature at low energies [62],
due e.g., to renormalization group running [9–11] or
accidental symmetries [13]. Alternatively, as pointed out
in Ref. [14], the matter sector and the gravitational sector
could present different levels of LVs, provided that
the interaction between them is suppressed by a high
energy scale.
According to the precise mechanism that prevents the

aforementioned percolation of LVs from gravity to the
Standard Model, the bounds on the mass scale M⋆ may
vary.Assuming that this percolation is efficiently suppressed,
M⋆ needs to be≳10−2 eV to agreewith experimental tests of
Newton’s law at submillimeter scales [63,64] and needs to be
bound from above (M⋆ ≲ 1016 GeV) so that the theory is
perturbative at all scales [65–67], which is a necessary
condition to apply the power-counting renormalizability
arguments of Ref. [19] (see also Ref. [20]).
The effect of the higher-order terms L2 and L4 appearing

in the action (1) is typically small for astrophysical
objects. Simple dimensional arguments show indeed
that the fractional error incurred as a result of neglecting
those terms when studying objects of mass M is
∼OððGNMM⋆Þ−2Þ ¼ OðM4

P=ðMM⋆Þ2Þ (with MP the
Planck mass) [34]. Therefore, given the viable range for
M⋆, the error is ≲10−18ð10 M⊙=MÞ2. For most (astro-
physical) purposes, one can therefore neglect those terms,
even though they are crucial for renormalizability and for
the definition of BH horizons (cf. Refs. [28,34] and the
discussion on universal horizons in Sec. IV).
For these reasons, in this paper, we will focus on the

low-energy limit of Hořava gravity; i.e., we will neglect
the terms L4 and L6 in Eq. (1). The resulting theory is
often referred to as khronometric theory. For our pur-
poses, it will also be convenient to rewrite the action
covariantly, i.e., in a generic coordinate system not
adapted to the khronon field, in terms of an “æther”
timelike vector uμ of unit norm,

uμ ¼
∇μTffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇αT∇αT

p : ð4Þ

Neglecting the L4 and L6 terms, the action (1) then
becomes [68]

Skh ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ λð∇μuμÞ2

þ β∇μuν∇νuμ þ αaμaμÞ þ Smatter½gμν;Ψ�; ð5Þ

where g, R, and ∇ are four-dimensional quantities (the
metric determinant, Ricci scalar, and Levi-Civita con-
nection respectively). Note that this action is invariant
under four-dimensional diffeomorphisms, but the theory is
still Lorentz (i.e., boost) violating due to the presence of
the timelike æther vector uμ, which defines a preferred time
direction.
The field equations of khronometric theory are obtained

by varying the action (5) with respect to gμν and T.
Variation with respect to the metric yields the generalized
Einstein equations [32,34]

Gμν − Tkh
μν ¼ 8πGTmatter

μν ; ð6Þ

where Gμν ¼ Rμν − Rgμν=2 is the Einstein tensor, the
matter stress-energy tensor is defined as usual as

Tμν
matter ¼

−2ffiffiffiffiffiffi−gp δSmatter

δgμν
; ð7Þ

and the khronon stress-energy tensor is given by

Tkh
μν≡∇ρ½JðμρuνÞ−JρðμuνÞ−JðμνÞuρ�þαaμaν

þðuσ∇ρJρσ−αaρaρÞuμuνþ
1

2
Lkhgμνþ2ÆðμuνÞ; ð8Þ

with

Jρμ ≡ λð∇σuσÞδρμ þ β∇μuρ þ αaμuρ; ð9Þ

Æμ ≡ γμνð∇ρJρν − αaρ∇νuρÞ; ð10Þ

γμν ¼ gμν − uμuν; ð11Þ

Lkh ¼ λð∇μuμÞ2 þ β∇μuν∇νuμ þ αaμaμ: ð12Þ

Variation with respect to T gives instead the scalar equation

∇μ

�
Æμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇αT∇αT

p
�

¼ 0: ð13Þ

However, it can be shown that this equation actually
follows from the generalized Einstein equations (6), from
the Bianchi identity, and from the equations of motion of
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matter (which imply, in particular, ∇μT
μν
matter ¼ 0). This fact

is also obvious by considering diffeomorphism invariance
of the covariant action (5), cf. Ref. [68]. In the following, to
derive moving BH solutions, we will therefore solve the
generalized Einstein equations (6) only, in vacuum.
Moreover, in the same way in which diffeomorphism

invariance implies the Bianchi identity in GR, diffeomor-
phism invariance of the covariant gravitational action [i.e.,
Eq. (5) without the matter contribution Smatter] implies the
generalized Bianchi identity,

∇μEμν ¼ κuν; ð14Þ

where we have defined

Eμν ≡ Gμν − Tkh
μν; ð15Þ

κ ≡ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇αT∇αT
p ∇μ

 
Æμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇βT∇βT

p
!
: ð16Þ

A similar identity was derived in Refs. [28,69] for Einstein-
æther theory.

A. Experimental constraints

The coupling parameters α, β, and λ of khronometric
theory need to satisfy a number of theoretical and exper-
imental constraints, which we will now review.
First, let us note that the theory has three propagating

d.o.f., namely a spin-2 mode (with two polarizations) like
in GR and a spin-0 mode. The propagation speeds of these
modes in flat spacetime are respectively given by [22]

c22 ¼
1

1 − β
; ð17aÞ

c20 ¼
ðα − 2Þðβ þ λÞ

αðβ − 1Þð2þ β þ λÞ : ð17bÞ

To avoid classical (gradient) instabilities and to ensure
positive energies (i.e., quantum stability or the absence of
ghosts), one needs to impose c20 > 0 and c22 > 0 [21,22,70].
Moreover, to prevent ultra-high-energy cosmic rays from
decaying into these gravitational modes in a Cherenkov-
like cascade, the propagation speeds must satisfy c20 ≳
1 −Oð10−15Þ and c22 ≳ 1 −Oð10−15Þ [71]. GW observa-
tions also constrain the coupling parameters and the
propagation speeds. Binary pulsar observations bound
the speed of the spin-2 mode to match the speed of light
to within about 0.5% [42,43], while the recent coincident
detection of GW170817 and GRB 170817A [23] constrains
−3 × 10−15 < c2 − 1 < 7 × 10−16 [25]. Overall, all these
constraints imply, in particular,

jβj≲ 10−15: ð18Þ

Further bounds follow from solar system measurements
and specifically from the upper limits on the preferred
frame parameters α1 and α2 appearing in the parametrized
PN expansion, i.e., jα1j ≲ 10−4 and jα2j≲ 10−7 [64].
Indeed, in khronometric theory, these parameters are
functions of the coupling constants through [22,72]

α1 ¼ 4
α − 2β

β − 1
; ð19aÞ

α2 ¼
α1

8þ α1

�
1þ α1ð1þ β þ 2λÞ

4ðβ þ λÞ
�
: ð19bÞ

Taking into account the multimessenger constraint (18),
for jλj ≫ jβj, solar system bounds thus become

4jαj≲ 10−4; ð20aÞ
���� α

α − 2

����
����1 − α

1þ 2λ

λ

����≲ 10−7: ð20bÞ

These constraints are satisfied by jαj≲ 10−7, at least if
jλj ≫ 10−7, or by jαj≲ 0.25 × 10−4 and λ ≈ α=ð1 − 2αÞ.
The latter case [together with Eq. (18)] would imply
therefore very small values for the three coupling constants,
jαj ∼ jλj≲ 10−5 and jβj≲ 10−15, which seem unlikely to
allow for large observable deviations away from the
general-relativistic behavior. The former case, however,
while tightly constraining α and β (jαj≲ 10−7, jβj≲ 10−15),
leaves λ essentially unconstrained.
Indeed, the only meaningful constraint on λ comes from

cosmological observations. For khronometric theory, the
Friedmann equations take the same form as in GR, but with
a gravitational constant GC different from the locally
measured one (GN) and related to it by

GN

GC
¼ 2þ β þ 3λ

2 − α
≈ 1þ 3

2
λ; ð21Þ

where in the last equality we have used the aforementioned
bounds on α and β. In order to correctly predict the
abundance of primordial elements during big bang nucleo-
synthesis, which is in turn very sensitive to the expansion
rate of the Universe and thus to GC, one needs to impose
jGC=GN − 1j≲ 1=8 [60]. This results in 0 ≤ λ≲ 0.1 (note
that λ needs to be positive to avoid ghosts, gradient
instabilities, and vacuum Cherenkov radiation, as discussed
at the beginning of this section; cf. also Ref. [42]).
Further constraints may come from other cosmological
observations [such as those of the large scale structure
and the cosmic microwave background (CMB)] but
have not yet been worked out in detail. Reference [73]
performed some work in this direction, but required that the
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Lorentz-violating field be the dark energy; the resulting
bounds are therefore inapplicable to our case. Similarly,
Ref. [74] constrained 0 ≤ λ≲ 0.01 by using CMB obser-
vations but assumes α and β to be exactly zero.
In summary, a viable region of the parameter space of

khronometric gravity is given by jαj≲ 10−7, jβj≲ 10−15,
and 10−7 ≪ λ≲ 0.01–0.1. This is indeed the region that we
will investigate in the following.

III. VIOLATIONS OF THE STRONG
EQUIVALENCE PRINCIPLE

In theories of gravity beyond GR, the strong equivalence
principle is typically violated. Indeed, such theories gen-
erally include additional d.o.f. besides the spin-2 gravitons
of GR. Even if these additional graviton polarizations do not
couple directly to matter at the level of the action, they are
typically coupled nonminimally to the spin-2 gravitons. As a
result, effective interactions between these extra gravita-
tional d.o.f. and matter reappear in strong-gravity regimes,
mediated by the spin-2 field (i.e., by the perturbations of the
metric). This effective coupling is responsible, in particular,
for the Nordtvedt effect [37,75,76], i.e., the deviation of the
motion of binaries of strongly gravitating objects (such as
neutron stars and BHs) away from the general-relativistic
trajectories. In more detail, these deviations from GR can
appear in both the conservative sector (where they can be
thought of as “fifth forces”) as well as in the dissipative one
(where they can be understood as due to the radiation reaction
of the extra graviton polarizations), and they strongly depend
on the nature of the compact objects under consideration
(e.g., whether they are neutron stars or BHs) and their
properties (e.g., compactness, spin, etc.). The Nordtvedt
effect has indeed been studied thoroughly in theories such
as Fierz-Jordan-Brans-Dicke and other scalar tensor theories
[37,38,40,44,77] and at least for neutron stars also inEinstein-
æther theory and khronometric gravity [41–43]. In this
section, we will review the framework necessary to extend
this treatment to the case of BHs in khronometric gravity.
We refer the reader to Ref. [42] for more details.

A. The sensitivities and their physical effect

The dynamics of a compact object binary can be
described in the PN approximation as long as the character-
istic velocity of the system is much lower than the speed of
light [46]. For khronometric gravity, one has to consider
two velocities, the relative velocity of the binary v12 and the
velocity of the center of mass relative to the preferred frame
VCM [42]. The former is ≪1 in the low-frequency inspiral
phase of the binary evolution. The latter can instead be
estimated by noting that the preferred frame needs to be
almost aligned with the cosmic microwave background
to avoid large effects on the cosmological evolution;
hence, VCM should be comparable to the peculiar velocity
of galaxies, i.e., VCM ∼ 10−3. This argument is further

supported by Ref. [78], which showed that the æther tends
to align with the time direction of the cosmological back-
ground evolution provided that the initial misalignment
(and its time derivative) are sufficiently small.
The binary components are typically described in PN

theory as point particles [46]. To account for the effective
coupling to matter due to the Nordtvedt effect, the point-
particle action of GR is modified, in khronometric theory,
by making the mass vary with the body’s velocity relative
to the preferred frame [41,42],

SppA ¼ −
Z

mAðγAÞdτA; ð22Þ

where dτA is the proper time along the body’s trajectory,
γA ≡ uA · u is the projection of the body’s 4-velocity uA on
the æther vector u, and A ¼ 1, 2 is an index running on the
binary components. Since both v12 and VCM are ≪1, we
can expand the action in γA − 1 ≪ 1 as

SppA ¼ −m̃A

Z
dτAf1þ σAð1 − γAÞ

þ 1

2
σ0Að1 − γAÞ2 þO½ð1 − γAÞ3�g; ð23Þ

where m̃A ≡mAð1Þ is the body’s mass while at rest with
respect to the khronon and where

σA ≡ −
d lnmAðγAÞ

d ln γA

����
γA¼1

;

σ0A ≡ σA þ σ2A þ d2 lnmAðγAÞ
dðln γAÞ2

����
γA¼1

ð24Þ

are the sensitivity parameters [41,42]. These parameters
encode the violations of the strong equivalence principle
and depend on the nature of the bodies and their properties.
Indeed, they can be viewed as additional “gravitational
charges” distinct from the masses, or as “hairs” in the
special case of BHs.
Setting aside for themoment the problemof computing the

sensitivities, one can use the action (23), together with the
modified Einstein equations (6) (expanded in PN orders,
i.e., in VCM, v12 ≪ 1) to compute the binary’s motion.
In particular, the sensitivities modify the conservative gravi-
tational dynamics already at Newtonian order; i.e., the
Newtonian acceleration of body A is given by [41,42]

_viA ¼ −
GmBn̂iAB
r2AB

; ð25Þ

where rAB ¼ jxA − xBj, n̂iAB ¼ ðxiA − xiBÞ=rAB andwherewe
have introduced the active gravitational masses

mB ≡ m̃Bð1þ σBÞ ð26Þ
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and the “strong-field” gravitational constant

G≡ GN

ð1þ σAÞð1þ σBÞ
: ð27Þ

The sensitivities also enter at higher PN orders in the
conservative sector [41,42].
Similarly, the sensitivities also enter in the dissipative

sector, i.e., in the GW fluxes. For quasicircular orbits, they
may cause binaries of compact objects to emit dipole
gravitational radiation. This effect, absent in GR (where the
leading effect is quadrupole radiation), appears at −1PN
order; i.e., it is enhanced by a factor ðv=cÞ−2 relative to
quadrupole radiation. In more detail, the gravitational
binding energy of a quasicircular binary is given [because
of Eq. (25)] by

Eb ¼ −
Gμm
2r12

; ð28Þ

with r12 the binary separation, μ≡m1m2=m, and m≡
m1 þm2 and changes under GWemission according to the
balance law [41,42]

_Eb

Eb
¼ 2

��
GGμm
r312

�	
32

5
ðA1 þ SA2 þ S2A3Þv212

þ ðs1 − s2Þ2
�
C þ 18

5
A3V

j
CMV

j
CM

þ
�
6

5
A3 þ 36B

�
ðVi

CMn̂
i
12Þ2
�

þ ðs1 − s2Þ
24

5
ðA2 þ 2SA3ÞVi

CMv
i
12


�
; ð29Þ

where we have defined the rescaled sensitivities

sA ≡ σA
1þ σA

ð30Þ

and we have introduced the coefficients

A1 ≡ 1

c2
þ 3αðZ − 1Þ2

2c0ð2 − αÞ ; A2 ≡ 2ðZ − 1Þ
ðα − 2Þc30

; ð31Þ

A3 ≡ 2

3αð2 − αÞc50
; B≡ 1

9αc50ð2 − αÞ ; ð32Þ

C≡ 4

3c30αð2 − αÞ ; S ≡ s1
m2

m
þ s2

m1

m
; ð33Þ

Z ≡ ðα1 − 2α2Þð1 − βÞ
3ð2β − αÞ : ð34Þ

Note that dipole emission is proportional to the coefficient
C and to the square of the difference of the sensitivities
ðs1 − s2Þ2, as in scalar tensor theories [37,38,40].

B. Extracting the sensitivities
from the asymptotic metric

In principle, the actual values of the sensitivities for a given
body (e.g., a neutron star or a BH) may be computed from
their very definition, Eq. (24), provided that one can obtain
solutions to the field equations for bodies in motion relative
to the preferred frame, through at least order γ − 1 ¼ Oðv2Þ,
v being the body’s velocity in the preferred frame (i.e., with
respect to the æther/khronon). Reference [42] proposed,
however, a simpler procedure, inspired by a similar calcu-
lation in scalar-tensor theories [38], whereby the sensitivities
can be extracted from a solution to the field equation that is
accurate only through order OðvÞ.
The idea is based on the fact that if one solves the field

equations for a single point particle [as described by the
action (23)] in motion relative to the preferred frame (or,
equivalently, for a point particle at rest and a moving
khronon), the sensitivity appears in the metric and in the
khronon field near spatial infinity already at order OðvÞ;
i.e., in a suitable gauge, one has [42]

ds2 ¼ dt2 − dr2 þ
	
−
2GNm̃

r
ðdt2 þ dr2Þ

− r2ðdθ2 þ sin2θdφ2Þ

− 2v

�
ðB− þ Bþ þ 4ÞGNm̃

r

�
cos θdtdr

þ 2vr

�
ð3þ B− − JÞGNm̃

r

�
sin θdtdθ




×

�
1þO

�
v;
1

r

��
; ð35Þ

uμdxμ ¼ ðdtþ v cos θdr − vr sin θdθÞ

×

�
1 −

GNm̃
r

þO
�
1

r2

��
þOðv2Þ; ð36Þ

where B� and J are defined as

B� ≡� 3

2
� 1

4
ðα1 − 2α2Þ

�
1þ 2 − α

2β − α
σ

�

−
�
2þ 1

4
α1

�
ð1þ σÞ; ð37Þ

J ≡ ð2þ 3λþ βÞ½2ðβ þ σÞ − αð1þ σÞ�
2ðλþ βÞðα − 2Þ : ð38Þ

Therefore, the sensitivity can be read off a strong-field
solution valid through order OðvÞ, i.e., a solution describ-
ing a body moving slowly relative to the khronon. Once
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such a strong-field solution is obtained, one can indeed
extract σ from the gtr and gtθ components of the metric,
through the combinations 3þ B− − J and B− þ Bþ þ 4,
respectively. Both readings must of course yield the same
value, which we will use as a consistency check of our
strong-field solution in Sec. V.
This was indeed the procedure used in Ref. [42] to

estimate the sensitivities of neutron stars. In the following,
we will tackle the problem of finding strong-field solutions
for BHs moving slowly relative to the preferred frame.

IV. BLACK HOLES IN
LORENTZ-VIOLATING GRAVITY

To construct the slowly moving BH solutions needed to
extract the sensitivities, let us start from a static spherically
symmetric solution at rest relative to the khronon. We will
then perturb this solution to account for the (slow) motion
of the BH relative to the preferred frame.

A. Spherical BHs at rest

Regular (outside the central singularity at r ¼ 0), spheri-
cally symmetric, static, and asymptotically flat BHs in
khronometric theory coincide with those of Einstein-æther
theory [34,68] and were extensively studied in Ref. [28]
(see also Ref. [30]). In Eddington-Finkelstein coordinates,
their metric and æther vector take the forms

ds̄2 ¼ fðrÞdv2 − 2BðrÞdvdrþ r2dΩ2; ð39Þ

ūμdxμ ¼
1þ fðrÞAðrÞ2

2AðrÞ dv − AðrÞBðrÞdr; ð40Þ

where the exact functional form of the “potentials” fðrÞ,
BðrÞ, and AðrÞ depends on the coupling constants α, β, and
λ and is obtained by solving (in general, numerically) the
field equations imposing regularity at the (multiple) event
horizons. Note also that we have used an overbar to stress
that these metric and æther configurations will provide the
background over which we will perturb in the following.
Because of asymptotic flatness, all three potentials asymp-
tote to 1 at large radii; i.e., their asymptotic solution is given
by [28,30]

fðrÞ ¼ 1 −
2GNm̃

r
−
αðGNm̃Þ3

6r3
þ � � � ð41Þ

BðrÞ ¼ 1þ αðGNm̃Þ2
4r2

þ 2αðGNm̃Þ3
3r3

þ � � � ð42Þ

AðrÞ ¼ 1þGNm̃
r

þ a2ðGNm̃Þ2
r2

þ ð24a2 þ α − 6Þ ðGNm̃Þ3
12r3

þ � � � ; ð43Þ

where the parameter a2 is determined (numerically) once
the mass m̃ is fixed.
The causal structure of these solutions is highly non-

trivial. Besides a “matter horizon” for photons (and in
general for matter modes), defined as in GR by the
condition f ¼ 0, these BHs also possess distinct horizons
for the gravitational spin-0 and spin-2 modes. Since the
characteristic curves of the evolution equations for these
modes correspond to null geodesics of the effective
metrics [21]

gðiÞαβ ¼ gαβ þ ðc2i − 1Þuαuβ; ð44Þ

where ci is the propagation speed of the mode under
consideration [cf. Eq. (17)], the spin-0 and spin-2 horizons

are defined by the conditions gð0Þvv ¼ 0 and gð2Þvv ¼ 0,
respectively. These horizons are typically located inside
the matter horizon since the Cherenkov bound implies
c20; c

2
2 ≳ 1 −Oð10−15Þ.

While UV corrections—due to the fourth- and sixth-
order spatial derivative terms in the full Hořava gravity
action (1)—to the metric and æther solutions of Ref. [28]
are negligible for astrophysical BHs (cf. the discussion of
the L4 and L6 terms in Sec. II), their presence is crucial, at
least conceptually, for the causal structure of the solutions
[28,29]. Indeed, because of the higher-order spatial deriv-
atives, the dispersion relations for the gravitational modes
includes k4 and k6 terms (k being the wave number); i.e.,
their frequency ω is given by

ω2 ¼ c2i k
2 þ ak4 þ bk6; ð45Þ

where a and b are coefficients with the right dimensions.
As a result, the group velocity of these modes diverges in
the UV. Since matter is coupled to the gravitational modes,
similar nonlinear dispersion relations will also appear in the
matter sector (even though the coefficients a and b are
expected to be much smaller than in the gravitational sector
due to the suppression of the percolation of LVs into matter
and in general because of the weak coupling between
matter and gravity).
It would therefore appear that no event horizons should

exist in the UV limit. However, Refs. [28,29] identified the
presence of a “universal horizon” for modes of arbitrarily
large speed. This horizon appears because the preferred
foliation of Hořava gravity becomes a compact hypersur-
face in the strong-field region of the BH. Modes of any
speed need to move inward at this hypersurface in order to
move in the future preferred-time direction (defined by the
preferred foliation). It can be shown [28,29] that the
location of this universal horizon, which lies within
the matter, spin-0 and spin-2 horizons, is defined by the
condition uv ∝ 1þ fA2 ¼ 0.
Even though the exact form of the functions fðrÞ, BðrÞ,

and AðrÞ can in general be given only numerically, analytic
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solutions exist in a few special cases, e.g., in the case
α ¼ 0 [79]:

fðrÞ ¼ 1 −
2GNm̃

r
−
βr4kh
r4

; BðrÞ ¼ 1; ð46aÞ

AðrÞ ¼ 1

f

�
−
r2kh
r2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ r4kh

r4

r �
; ð46bÞ

rkh ¼
GNm̃
2

�
27

1 − β

�
1=4

: ð46cÞ

It can be easily checked that the universal horizon and the
spin-0 horizon coincide in this particular case [since when
α → 0 the spin-0 speed given by Eq. (17b) diverges] and
both are located at ruh ¼ 3GNm̃=2. Note also that this
solution does not depend on the coupling parameter λ, even
though that is not assumed to vanish.
In the following, we will use spherically symmetric,

static, and asymptotically flat BHs as the starting point for
the construction of our slowly moving solutions. These
spherical BHs are either produced numerically as in
Ref. [28] or given by the explicit solution (46) for α ¼ 0.

B. Slowly moving BHs

Let us now construct ansätze for the metric and khronon
field of a (nonspinning) BH moving slowly relative to the
preferred frame, based on the symmetries of the problem.
Let us first place ourselves in the reference frame comoving
with the BH, i.e., consider the physically equivalent
situation where the BH is actually at rest, while the khronon
(which determines the preferred frame) is moving relative
to it with small velocity −vi along the z axis.3 In order for
the metric to be asymptotically flat, one will therefore have
to impose gμν¼ημνþOð1=rÞ and uμ∂μ¼∂t−v∂zþOðvÞ2
in the Cartesian coordinates ðt; xiÞ.
To exploit the symmetry of the configuration under

rotations around the z axis, it is convenient to adopt
cylindrical isotropic coordinates ðt; ρ; z;ϕÞ, in which the
background OðvÞ0 spherical BHs of Sec. IVA can be
written as

ds̄2 ¼ fðrðr̃ÞÞdt2 − b2ðr̃Þðdρ2 þ ρ2dϕ2 þ dz2Þ; ð47Þ

ūμdxμ ¼ Aðrðr̃ÞÞdtþ ūr̃ðr̃Þdr̃: ð48Þ

Here, ūr̃ is determined by the normalization condition
uμuμ ¼ 1; r̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
is the radial isotropic coordinate,

which is related to the areal radius r used in Eqs. (39) and

(40) by the relation r ¼ r̃bðr̃Þ; and bðr̃Þ is related to BðrÞ
by the relation

BðrÞffiffiffiffiffiffiffiffiffi
fðrÞp ¼ bðr̃Þ

bðr̃Þ þ r̃dbðr̃Þ=dr̃ : ð49Þ

Alsonote that the timecoordinate t is related to theEddington-

Finkelstein time coordinate v by t ¼ v −
R rðr̃Þ
r̄ BðrÞ=fðrÞdr,

where r̄ is a reference radius.
The use of isotropic coordinates makes it simple to

construct the ansätze for the OðvÞ perturbations. Following
the idea briefly outlined in Appendix A of Ref. [42] for
stellar systems, we can observe that the perturbations δgtt
and δut transform as scalars under spatial rotations; δgti and
ui transform as vectors; and δgij transforms as a tensor.
Since we only have two 3-vectors, vi and ni ¼ xi=jxj, to
construct these quantities, we can write, without loss of
generality,

δgtt ¼ α1ðr̃Þn⃗ · v⃗; ð50aÞ

δut ¼ β1ðr̃Þn⃗ · v⃗; ð50bÞ
�
δgtρ
δgtz

�
¼ α2ðr̃Þðn⃗ · v⃗Þn⃗þ α3ðr̃Þv⃗; ð50cÞ

�
δuρ

δuz

�
¼ β2ðr̃Þðn⃗ · v⃗Þn⃗þ β3ðr̃Þv⃗; ð50dÞ

�
δgρρ δgρz
δgzρ δgzz

�
¼ α4ðr̃Þðn⃗ · v⃗Þn⃗ ⊗ n⃗

þ α5ðr̃Þðn⃗ ⊗ v⃗þ v⃗ ⊗ n⃗Þ; ð50eÞ

δuϕ¼δgrϕ¼δgϕϕ¼δgρϕ¼δgzϕ¼0; ð50fÞ
where we have introduced the potentials αiðr̃Þ for i ¼ 1, 2,
3, 4, 5 and βi with i ¼ 1, 2, 3, which must depend only on
the radial coordinate r̃ (and not on ρ and z singularly) to
ensure the right transformation properties under rotations.
Note that actually only six of these eight potentials are
independent, as the (perturbed) æther uμ ¼ ūμ þ δuμ must
satisfy the normalization condition uμuμ ¼ 1 and be hyper-
surface orthogonal, i.e., ϵμναβuν∂αuβ ¼ 0 [cf. Eq. (4)]. Also
note that δuϕ, δgtϕ, δgϕϕ, δgρϕ, and δgzϕ must vanish
because neither vi nor ni possesses a tangential component
in the ϕ direction. (One may in principle obtain nonzero
values for these components by introducing the tangential
pseudovector n⃗ × v⃗, but that would violate parity, which
would be incompatible with the symmetries of the system,
which does not rotate around the z axis.)
Transforming now back to the original Eddington-

Finkelstein coordinates that we will use in this paper,
the most generic form of the metric and æther vector then
becomes

3Note the different script that differentiates this velocity from
the coordinate time v.
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gμνdxμdxν ¼ fðrÞdv2 − 2BðrÞdrdv − r2dΩ2

þ vfdv2fðrÞ2 cos θψðrÞ − 2dθdr sin θ½ΣðrÞ − BðrÞχðrÞ� þ 2drdvfðrÞ cos θ½δðrÞ − BðrÞψðrÞ�
þ dr2BðrÞ cos θ½BðrÞψðrÞ − 2δðrÞ þ 2ΔðrÞ� − 2dθdvfðrÞ sin θχðrÞg þOðv2Þ; ð51Þ

and

uμdxμ ¼ ūvðrÞdv − AðrÞBðrÞdrþ v

	
1

2
fðrÞ cos θ

×

�
2ūrðrÞ

�
BðrÞΔðrÞūrðrÞ

ūvðrÞ
þ δðrÞ − ηðrÞ

�
þ ψðrÞūvðrÞ

�
dvþ 1

2
cos θ

×

�
BðrÞ

�
−
2BðrÞΔðrÞūrðrÞ2

ūvðrÞ
− 2δðrÞūrðrÞ − ψðrÞūvðrÞ

�
þ 2AðrÞfðrÞηðrÞ

�
dr

− sin θΠðrÞūvðrÞdθ


þOðv2Þ; ð52Þ

where the background æther components ūv and ūr are
given by Eq. (40), i.e., ūv ¼ ð1þ fA2Þ=ð2AÞ and ūr ¼
ð−1þ A2fÞ=ð2ABÞ,

ηðrÞ ¼ −
2ūrðrÞ3BðrÞ3ΔðrÞ− 2ūvðrÞ3Π0ðrÞ

2fðrÞūvðrÞ

−
BðrÞ2ūvðrÞūrðrÞ½2δðrÞūrðrÞ þψðrÞūvðrÞ�

2fðrÞūvðrÞ
; ð53Þ

to ensure hypersurface orthogonality, and the six indepen-
dent potentials δ, χ, ψ , Δ, Σ, and Π are algebraically related
to the potentials αi and βi introduced above. This ansatz can
then be further simplified by noting that a gauge trans-
formation with generator ξμ∂μ¼ΩðrÞð−rcosθ∂rþsinθ∂θÞ
can be used, by choosing the function ΩðrÞ appropriately,
to set any one of six potentials (e.g., Δ) to zero, while
leaving the form of the ansatz (52) unchanged (modulo
redefinitions of the remaining potentials). By performing
then a gauge transformation v0 ¼ v − vΠðrÞ cos θ þOðv2Þ,
one can also send Π to zero. In the following, we will
therefore set Δ ¼ Π ¼ 0.
One is therefore left with four independent potentials δ,

χ, ψ , and Σ, which near spatial infinity (r → þ∞) must
satisfy the boundary conditions ψ ;Σ → 0, δ → −1, and
χ=r → −1 in order to ensure asymptotic flatness. Indeed,
it is easy to see that these conditions lead to ds2 ≈
dt2 − dr2 − r2dΩ2 þ 2vdtdz, where we have changed time
coordinate to t ≈ v − r and z ¼ r cos θ. A further coordi-
nate change t0 ¼ tþ vz transforms the line element into the
flat one. As for the æther, the same coordinate trans-
formations yield uμ∂μ ≈ ∂t − v∂z asymptotically; i.e., near
spatial infinity, the æther moves with velocity −v relative to
the flat asymptotic metric. Another way of checking these

boundary conditions is to note that they correspond to
β3 → −1 and β1;2; α1;2;3;4;5 → 0 in terms of the potentials
introduced in Eqs. (50).
As expected from the symmetries of the problem

(see also Appendix A of Ref. [42]), the field equations (6),
when evaluated with these ansätze, become ordinary differ-
ential equations in the radial coordinate; i.e., the depend-
ence on the polar angle θ drops out. This is a highly
nontrivial (but expected, if our ansätze is correct) fact that
simplifies the search for solutions, to be compared for
instance with the procedure followed by Ref. [42], which
involved projecting the field equations onto Legendre
polynomials. It is also useful as an a posteriori check of
our calculations.

V. FIELD EQUATIONS AND
NUMERICAL SOLUTIONS

In this section, we will first analyze the structure of the
vacuum field equations for the OðvÞ potentials δðrÞ, χðrÞ,
ψðrÞ, and ΣðrÞ introduced in the previous section. We will
then analyze the boundary and regularity conditions that
those potentials must satisfy and obtain numerical solutions
for them under various choices of those conditions.

A. Structure of the field equations

By replacing the metric and æther ansätze, Eqs. (51) and
(52), into the vacuum field equations Eμν¼ ĒμνþδEμν¼0
and expanding in v, one obtains ordinary differential
equations for the background potentials f, A, and B at
zeroth order and for δðrÞ, χðrÞ, ψðrÞ, and ΣðrÞ at first order.
Since the background solutions are known from previous
work (cf. Sec. IVA), we will focus here on the first-order
equations.
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Naively, there appear to be six nontrivial field equations
at first order, coming from the perturbations δEv

v,
δEv

θ, δEr
v, δEr

r, δEr
θ, and δEθ

θ of Eq. (15). However,
because of the generalized Bianchi identity Eq. (14), only
four of these equations are actually independent, thus
providing a closed problem for the potentials δðrÞ, χðrÞ,
ψðrÞ, and ΣðrÞ. In more detail, Eq. (14) has three nontrivial
components through linear order in v [the ϕ component
being trivial since both sides of the identity are OðvÞ2].
Since we are not solving the khronon equation (13)
[because that is automatically implied by the modified
Einstein equations, as discussed in Sec. II and as can
also be seen, at least in vacuum, from the identity
Eq. (14) itself], it is convenient to eliminate κ from the
three nontrivial components of Eq. (14). This leads to the
identities

ur∇μEμ
v − uv∇μEμ

r ¼ Oðv2Þ; ð54aÞ

uθ∇μEμ
r − ur∇μEμ

θ ¼ Oðv2Þ; ð54bÞ

which can in turn be rewritten as

∇μðurEμ
v−uvEμ

rÞ¼Eμ
v∇μur−Eμ

r∇μuvþOðv2Þ; ð55Þ

∇μEμ
θ ¼ Oðv2Þ: ð56Þ

where we have used (in the second equation) the fact that
uθ ¼ Oðv2Þ in our gauge.
By expanding the summations in these identities, it is

clear that the Er
θ and the combination urEr

v − uvEr
r must

depend on the potentials f, A, and B (at zeroth order) and δ,
χ, ψ , and Σ (at first order) through one less radial derivative
than the highest derivatives appearing in the rest of the field
equations. Moreover, from the same (expanded) identities,
it follows that these two quantities are initial value con-
straints for evolutions in the radial coordinate; i.e., if they
are set to zero at some finite radius, they remain zero at all
other radii if the remaining field equations (the “evolution
equations”) are solved. As can be seen, this follows from
the generalized Bianchi identity in the same way in which
in GR the Bianchi identity allows for splitting initial value
problems in energy and momentum constraints and evo-
lution equations. The same procedure was also followed
in Ref. [28] to split the field equations of Einstein-
æther gravity into constraints and evolution equations
(in the radial coordinate) in static spherically symmetric
configurations.
The explicit equations for δ, χ, ψ , and Σ are too

complicated to be presented here, but their schematic form
is given as follows. The evolution equations have the
following structure,

e1 ≡ δ00ðrÞ −
X7
n¼1

wδ
nðrÞMn ¼ 0; ð57aÞ

e2 ≡ χ00ðrÞ −
X7
n¼1

wχ
nðrÞMn ¼ 0; ð57bÞ

e3 ≡ ψ 00ðrÞ −
X7
n¼1

wψ
n ðrÞMn ¼ 0 ð57cÞ

e4 ≡ Σ0ðrÞ −
X7
n¼1

wΣ
nðrÞMn ¼ 0; ð57dÞ

where M⃗ ≡ ½δðrÞ; χðrÞ;ψðrÞ;ΣðrÞ; δ0ðrÞ; χ0ðrÞ;ψ 0ðrÞ�, and
wδ
nðrÞ, wχ

nðrÞ, wψ
n ðrÞ and wΣ

nðrÞ (with n ¼ 1;…; 7)
are functions of the radial coordinate, the background
solution f, A, B and the coupling constants. As for the
constraints C1ðM⃗Þ and C2ðM⃗Þ, they satisfy the conserva-
tion equations

dCi

dr
¼
X2
n¼1

wCi
n ðrÞCnþ

X4
n¼1

we;Ci
n ðrÞen; i¼ 1;2; ð58Þ

where again the coefficients wCi
n ðrÞ and we;Ci

n ðrÞ (with
i ¼ 1, 2 and n ¼ 1;…; 4) depend also on the background
solution and the coupling constants. Note that, at least at
large radii, the coefficients wCi

n ðrÞ are negative, which
contributes to damping potential violations of the con-
straints during our radial evolutions.
Finally, let us also note that because Eqs. (57)–(58) are

linear and homogeneous, one is free to rescale any one
solution by a constant factor; i.e., given a solution
½δðrÞ; χðrÞ;ψðrÞ;ΣðrÞ�, also Λ½δðrÞ; χðrÞ;ψðrÞ;ΣðrÞ�, with
Λ ¼ const, is a solution. We will use this fact when setting
the initial/boundary conditions for the system given by
Eqs. (57) in the next section.

B. Solutions regular at the matter horizon

Before solving the system given by Eqs. (57), let us
comment on the boundary/initial conditions that the sol-
ution needs to satisfy. Close inspection of the coefficients
wδ
nðrÞ, wχ

nðrÞ, wψ
n ðrÞ, and wΣ

nðrÞ shows that the system
presents at least three potentially singular points (with
r ≠ 0) where at least one of the coefficients diverges. These
three singularities are located at the matter horizon, at the
spin-0 horizon, and at the universal horizon. Regularity at
these radial positions needs therefore to be enforced. On top
of this, physically relevant solutions should asymptote to
flat space and to a khronon moving with velocity −v near
spatial infinity, which translates into the boundary con-
ditions ψ ;Σ → 0, δ → −1, and χ=r → −1 as r → ∞ as
shown in Sec. IV B.
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Let us first attempt to impose regularity at the outermost
of these positions, the matter horizon. If the potentials are
regular there,4 they can be Taylor expanded as

δðrÞ ¼
X∞
k¼0

δk;hðr − rhÞk; ð59aÞ

χðrÞ ¼
X∞
k¼0

χk;hðr − rhÞk; ð59bÞ

ψðrÞ ¼
X∞
k¼0

ψk;hðr − rhÞk; ð59cÞ

ΣðrÞ ¼
X∞
k¼0

Σk;hðr − rhÞk; ð59dÞ

where rh is the matter horizon’s position, and the coef-
ficients δk;h, χk;h, ψk;h, and Σk;h must be determined by
solving the field equations. Indeed, solving the evolution
and constraint equations perturbatively near r ¼ rh allows
one to express all those coefficients as a function of δ0;h and
Σ0;h alone; i.e., the solution only has two independent d.o.f.
near the matter horizon. Those can then be reduced to just
one by rescaling the solution by a constant factor as
described in the previous section, whereby one can set
e.g., Σ0;h ¼ 1 and keep δ0;h free.5

This parameter then needs to be determined by imposing
asymptotic flatness. We therefore use the perturbative
solution (59) to move slightly away from r ¼ rh and then
integrate numerically the system given by Eqs. (57) up to
large radii. The value of δ0;h is then determined by imposing
that δ and χ=r asymptote to the (same) constant (which
does not need to be -1, because we have rescaled the
solution by a global unknown factor) and that ψ ;Σ → 0 at
large radii. In practice, we perform a bisection procedure on
the value of δ0;h, according to whether δðrÞ diverges to
positive or negative values as r → ∞. This is similar to
what was done in Ref. [28] for the static, spherically
symmetric, and asymptotically flat solutions that we
employ as our background. Reference [35] also used a
similar procedure to find slowly rotating BHs in Einstein-
æther theory.
In more detail, solving the evolution equations pertur-

batively near spatial infinity and assuming that δðrÞ

asymptotes to a constant there, one finds the asymptotic
solution

δðrÞ ¼ δ0 −
2ðβ þ λÞðGNm̃δ0 þ 2χ0Þ

ð1 − 3β − 2λÞr þO
�
1

r2

�
; ð60aÞ

χðrÞ ¼ δ0rþ χ0 þO
�
1

r

�
; ð60bÞ

ψðrÞ ¼ 3βð3 − 2a2ÞðGNm̃Þ2δ0 − 2Σ1

3r2
þO

�
1

r3

�
; ð60cÞ

ΣðrÞ ¼ Σ1

r
þO

�
1

r2

�
; ð60dÞ

where δ0, χ0, χ2, and Σ1 are free parameters that can be
determined from our numerical solutions, once the bisec-
tion has converged. The constraint equations are also
satisfied by this asymptotic solution. Note that we use
the relations between the coefficients of Eq. (60) to test
a posteriori the consistency of our numerical solutions.
Note also that if one inserts the solution (60) into the

metric ansatz (51), the resulting metric can be put in the
same gauge as Eq. (35) by first transforming Eddington-
Finkelstein to Schwarzschild coordinates and by then
applying an infinitesimal coordinate transformation with
generator δt∝vrcosθþOðvÞ2, δr∝−vΩðrÞcosθþOðvÞ2
and δθ ∝ vΩðrÞ sin θ=rþOðvÞ2, with ΩðrÞ ¼ Oð1=rÞ a
suitable function. By comparing the metric obtained in this
way to Eq. (35), one can then relate the sensitivity σ to the
two parameters δ0 and χ0:

σ ¼ α − β − 3αβ þ 5β2 þ λ − 2αλþ 3βλ

ð2 − αÞð1 − 3β − 2λÞ

þ 2ð1 − βÞðβ þ λÞ
ð2 − αÞð1 − 3β − 2λÞ

χ0
GNm̃δ0

: ð61Þ

We have also checked this equation by solving directly the
field equations near spatial infinity for a point particle
described by the action (23), in the gauge of the metric
ansatz, Eq. (51), and then by comparing to the asymptotic
solution given by Eq. (60). Note that this is the same
procedure (although in a different gauge) as that followed
by Ref. [42] to relate sensitivities to coefficients appearing
in the asymptotic metric and æther vector of isolated
neutron stars.
Our numerical solutions confirm that if one imposes

regularity at the matter horizon and asymptotic boundary
conditions corresponding to a flat spacetime and a khronon
moving with velocity −v relative to the BH, the sensitivities
are nonvanishing. We have not performed a systematic
investigation of the viable region of the parameter
space described in Sec. II A because of the difficulty of
obtaining numerical background solutions for the potentials

4One can show that analyticity of the potentials δ, χ, ψ , and Σ
is required to ensure finiteness of the invariants constructed with
the metric, the æther vector, and the Killing vectors ∂v and ∂ϕ

(e.g., R, RμνRμν, RμναβRμναβ, and scalars obtained by contracting
among themselves curvature tensors, Killing vectors, and the
æther).

5Rescaling Σ0;h ¼ 1 is only possible if Σ0;h ≠ 0. However,
setting Σ0;h ¼ 0 does not allow for a solution that is asymptoti-
cally flat when integrating outward.
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f, A, and B for small but nonzero values of α and β. We will
nonetheless study later, in Sec. VI, solutions for α ¼ β ¼ 0
and λ ≠ 0 and extract their sensitivities. For the moment,
let us mention that for values of α ∼ β ∼ 10−2 and λ ∼ 0.1,
we obtain σ ∼ 10−3.
One important caveat, however, is that it is not at all clear

that these solutions (and the corresponding values of the
sensitivities) are physically significant, as the numerical
solutions that we obtain diverge when integrating inward
from the matter horizon to the spin-0 horizon. We have also
checked that this divergence extends to the curvature
invariants; i.e., these solutions seem to present a finite-
area curvature singularity at the spin-0 horizon. Indeed,
when we integrate inward the asymptotically flat and
regular (at the matter horizon) solution, we find that
the curvature invariants diverge at the spin-0 horizon,
already in regions where our numerical scheme is not
yet breaking down. This is shown in Fig. 1, which plots the
fastest growing curvature invariant of the geometry as well
as the constraint violations occurring in the numerical
integration.
Because all free parameters of the solution were deter-

mined by imposing regularity at the metric horizon and by
the boundary conditions at spatial infinity, the spin-0
horizon curvature singularity, which was already visible
in the field equations (57) and (58), seems almost unavoid-
able and reminiscent of similar finite-area curvature sin-
gularities appearing at all but the outermost spin-1 horizons
of slowly rotating BHs in Einstein-æther theory, for
coupling values allowing for such multiple spin-1 horizons
[35]. We will further investigate this singularity, and, in
particular, whether it can be avoided thanks to a field
redefinition, in the next section.

C. Solutions regular at the matter
and spin-0 horizon

Curvature singularities at the spin-0 horizon also appear
when studying spherical BHs in Hořava gravity and
Einstein-æther theory. References [28,30] found a two-
parameter family of asymptotically flat, static, and spheri-
cally symmetric BH solutions in those theories. One of the
two free parameters is the mass of the BH, while the second
is a hair regulating whether the spin-0 horizon is singular or
not. Indeed, after imposing regularity at the matter horizon,
for generic values of this parameter, the spin-0 horizon is
singular, and regularity at that location is obtained only for
one specific, “tuned” value of that parameter. (That value is
a function of the mass and the coupling constants of the
theory.) As argued in the previous section, in our case,
we have no free parameter to tune to impose regularity at
the spin-0 horizon, which we therefore expect to be truly
singular.
To verify even further the existence of a curvature

singularity at the spin-0 horizon, one can follow
Refs. [28,30] and note that the action (5) is invariant under
the field redefinition [80]

g 0
μν ¼ gμν þ ðζ − 1Þuμuν; T 0 ¼ T; ð62Þ

where ζ is a constant, provided that the original α, β, and λ
are replaced by α0, β0, and λ0 satisfying

α0 ¼ α;

β0 þ λ0 ¼ ζðβ þ λÞ;
β0 − 1 ¼ ζðβ − 1Þ: ð63Þ

Choosing, in particular, ζ ¼ c20, the redefined metric g 0

coincideswith the spin-0metric [cf. Eq. (44)]. This therefore
allows one to cast the original problem, characterized by the
metric g and the couplings α, β, and λ, into one involving the
spin-0 metric g 0 ¼ gð0Þ and the new couplings α0, β0, and λ0.
The advantage of this “spin-0 frame” is that the matter and
spin-0 horizons now coincide (as they are both defined in
terms of characteristics of the metric g 0 ¼ gð0Þ, i.e., by the
condition g 0

vv ¼ 0 in spherical symmetry), so one can
easily impose regularity at both. This is indeed the way
Refs. [28,30] impose regularity at both the matter and spin-0
horizon in the spherical static case.
Working therefore in the spin-0 frame, we impose

regularity at the matter/spin-0 horizon location rh by
solving the evolution and constraint equations perturba-
tively with the ansatz given by Eq. (59). (Analyticity of the
potentials δ, χ, ψ , and Σ is again required to ensure
finiteness of the invariants constructed with the metric,
the æther vector, and the Killing vectors.) The number of
free parameters of the resulting solution is, however,
different than what was obtained in Sec. V B. This is
because in the spin-0 frame, one has c0 ¼ 1 [this can be

FIG. 1. OðvÞ contribution to the Ricci scalar near the spin-0
horizon (left axis) and constraint violations (right axis) as a
function of distance from the spin-0 horizon, for the asymptoti-
cally flat solution regular at the matter horizon, and for α ¼ 0.02,
β ¼ 0.01, and λ ¼ 0.1.
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verified explicitly by using the new coupling parameters
given by Eq. (63), with ζ ¼ c20, into Eq. (17b)], which
changes the structure of the equations, because of the
presence of factors c20 − 1 in the denominators. (The
explicit form of the equations is again too long and
cumbersome to show and hardly enlightening.) As a result,
the perturbative solution described by Eq. (59) has one,
rather than two, free parameters.
Setting that parameter (say, δ0;h) to zero yields the trivial

solution δðrÞ ¼ χðrÞ ¼ ψðrÞ ¼ ΣðrÞ ¼ 0. If instead
δ0 ≠ 0, homogeneity allows rescaling it to δ0;h ¼ 1; i.e.,
the near-horizon solution has no free parameter that can be
tuned to ensure that the solution reduces to a khronon
moving with speed −v on flat space at spatial infinity.
Indeed, we have verified that the solution obtained by
imposing regularity at the matter/spin-0 horizon and
integrating outward is not asymptotically flat.
Moreover, as mentioned in Sec. V B, the field equations

for the potentials δ, χ, ψ , and Σ also present a singularity at
the universal horizon. Therefore, even if one is willing to
accept as physically relevant a BH with nonflat asymptotic
boundary conditions, such a solution has no free parameters
to tune to impose regularity at the universal horizon either.
Indeed,we haveverified that, integrating the solution inward
from the (regular) spin-0/matter horizon, the curvature
invariants blow up at the universal horizon (cf. Fig. 2, in
which we also show the violations of the constraints).
To further validate this result, we have also tried to

first impose regularity at the universal horizon and then

integrate outward, trying to match with the solution
obtained by imposing regularity at the spin-0/matter hori-
zon. In practice, we impose regularity at the universal
horizon by solving the field equations perturbatively with
the ansatz given by Eq. (59), where rh is now meant to
denote the universal horizon. (Barring cancellations, ana-
lyticity of the potentials is once again required to ensure
that the æther, the two Killing vectors, and the geometry are
generically regular, i.e., that invariants constructed with the
curvature tensors, the æther, and the Killing vectors remain
finite.)
Rescaling the solution by exploiting again the homo-

geneity of the problem, we are left with just two free
parameters in the perturbative solution near the universal
horizon,6 which we try to tune by matching to the solution
that is regular at the spin-0/matter horizon. The latter
solution being completely determined, up to a global
rescaling, necessary conditions for matching include the
continuity conditions

Δ
�
δ0

δ

�
¼ Δ

�
χ0

χ

�
¼ Δ

�
ψ 0

ψ

�
¼ 0; ð64Þ

where ΔðX0=XÞ denotes the difference between X0=X (with
X ¼ δ, χ, ψ), as given by the two solutions, at some
matching point between the spin-0/matter horizon and the
universal horizon. Note that it does not make sense to
impose continuity of the two solutions (ΔX ¼ 0), since we
have used the rescaling freedom of the problem to renorm-
alize both (with a priori different factors). That rescaling
clearly cancels out when considering the ratios X0=X. Note
also that it does not make sense to impose continuity of
Σ0=Σ, since Σ satisfies a first-order equation [cf. Eq. (57d)].
Quite unsurprisingly, we have verified numerically that

for generic values of the coupling constants, the three
conditions of Eq. (64) cannot be all satisfied by tuning the
two free parameters of the solution regular at the universal
horizon. The conclusion is therefore that, even if one gives
up asymptotic flatness, for generic values of the coupling
constants, the universal horizon is a finite-area curvature
singularity. This is again reminiscent of the occurrence of
similar finite-area singularities at all but the outermost
spin-1 horizon of slowly rotating BHs in Einstein-æther
theory [35]. Quite suggestively, Ref. [29] also found that
the universal horizon is unstable at second order in
perturbation theory and in the eikonal limit in khronometric

FIG. 2. OðvÞ contribution to the Ricci scalar (left axis) and
constraint violations (right axis) near the universal horizon, as a
function of distance from the latter. The results are in the spin-0
frame, for the solution regular at both the matter and spin-0
horizons. The theory’s parameters are α ¼ 0.02, β ¼ 0.01,
and λ ¼ 0.1, corresponding to α0 ¼ 0.02, β0 ¼ −4.161, and
λ0 ¼ 4.735. Note that this solution is not asymptotically flat,
as discussed in the text, and that it is determined up to a global
rescaling. Because of this, we normalize the OðvÞ contribution to
the Ricci scalar by the value of δ at the matter/spin-0 horizon rh.

6More precisely, if we assume Σ0;h ≠ 0, we can use the
rescaling freedom to set Σ0;h ¼ 1. This results in two free
parameters, say, δ0;h and χ0;h. If instead Σ0;h ¼ 0, one is still
left with two free parameters, say, δ0;h and χ0;h, and we can then
use the rescaling freedom to set either to 1. Therefore, if Σ0;h ¼ 0,
one has just one free parameter, which makes the matching to the
solution regular at the spin-0/matter horizon even more difficult
to achieve. We have indeed verified that the matching is not
possible if one assumes Σ0;h ¼ 0.
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gravity and conjectures that it may give rise to a finite-area
curvature singularity. This instability may be related [81] to
the universal horizon being also a Cauchy horizon [36].
While our result is obtained in a completely different
framework, it is interesting that it hints at the same
conclusions.

VI. α= β= 0 CASE

The results of Sec. V on the nonexistence of slowly
moving BH solutions regular everywhere outside r ¼ 0
apply for generic values of the coupling constants, i.e., α, β,
λ ≠ 0. As we have shown, it is possible to attain regularity
of the spin-0 and matter horizons (even though at the cost of
giving up asymptotic flatness) but imposing also regularity
of the universal horizon remains impossible.
However, if the coupling constants are such that the

spin-0 speed c0 diverges, the spin-0 horizon coincides with
the universal horizon (since the latter is the horizon for
modes of infinite speed). Therefore, imposing regularity of
the universal, spin-0, and matter horizons may become
possible in that limit. From Eq. (17b), it follows that
c0 → ∞ when α → 0. This limit is particularly attractive
as experimentally we have jαj≲ 10−7 (cf. Sec. II A).
Assuming α ¼ 0 alone, however, does not avoid the
appearance of finite-area singularities at the universal/
spin-0 horizon, as can be seen from Fig. 3, where we
show the divergence of the curvature invariants of the
asymptotically flat solution regular at the matter horizon.
However, from the experimental limits presented in

Sec. II A, it follows that jβj ≲ 10−15, so it is tempting to
also set β ¼ 0 exactly. Indeed, spherical BH solutions for
α ¼ β ¼ 0 are very simple and known analytically in this
limit and are given by Eqs. (46a)–(46c). Note, in particular,

that the metric matches the Schwarzschild solution in
this limit.
By solving the evolution and constraint equations near

the metric horizon rh by imposing regularity there, i.e., with
the ansatz of Eq. (59), one immediately finds that Σ and ψ
must be exactly zero near rh; i.e., Σ ¼ Oðr − rhÞnmax and
ψ ¼ Oðr − rhÞnmax , where nmax is the order at which the
series of Eq. (59) is truncated. We have indeed verified this
for nmax as large as 10 or more. One reaches the same
conclusions by considering series-expanded solutions to
the field equations around any other radius (different from
the metric horizon). Moreover, to further verify that Σ and
ψ vanish, we have replaced ΣðrÞ ¼ ψðrÞ ¼ 0 in the field
equations (57a)–(57d). The system is in principle over-
determined, but it turns out to consist of just two inde-
pendent equations:

δ0ðrÞ þ 4ð8r4 þ 4GNm̃r3 − 27ðGNm̃Þ4Þ
16r5 − 32GNm̃r4 þ 27ðGNm̃Þ4r δðrÞ

−
32r2

16r4 − 32GNm̃r3 þ 27ðGNm̃Þ4 χðrÞ ¼ 0; ð65Þ

χ0ðrÞ − δðrÞ ¼ 0: ð66Þ

Note that these equations do not depend on λ, which we
have anyway kept different from zero.
Eliminating χ from Eqs. (65)–(66) then yields

�
r2

2
−GNm̃rþ 27ðGNm̃Þ4

32r2

�
δ00ðrÞ

þ
�
2r −

3GNm̃
2

−
81ðGNm̃Þ4

16r3

�
δ0ðrÞ

þ 81ðGNm̃Þ4
8r4

δðrÞ ¼ 0: ð67Þ

Solving this equation near spatial infinity gives

δðrÞ ¼ δ0 þ
δ3
r3

þO
�
1

r4

�
; ð68Þ

where δ0 and δ3 are integration constants. This in turn
implies, through Eq. (65), that χðrÞ behaves asymptoti-
cally as

χðrÞ ¼ δ0rþ χ0 −
δ3
2r2

þO
�
1

r4

�
; ð69Þ

where χ0 ¼ −GNm̃δ0=2. Replacing this relation in
Eq. (61) and evaluating for α ¼ β ¼ 0 gives a vanishing
sensitivity σ ¼ 0. This result had to be expected from the
fact that Eqs. (65)–(67) do not depend on λ and that σ must
go to zero in the general-relativistic limit λ → 0.
Moreover, one can push the argument even further, and

note that, since it is independent of λ and because it must

FIG. 3. OðvÞ contribution to the Ricci scalar (left axis) and
constraint violations (right axis) near the universal/spin-0 hori-
zon, as a function of distance from the latter. The results are for
the asymptotically flat solution regular at the matter horizon and
for α ¼ 0, β ¼ 0.01, and λ ¼ 0.1.
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reduce to the Schwarzschild solution in the general-
relativistic limit λ → 0, the solution to Eqs. (65) and (66)
must simply be the Schwarzschild metric in a weird gauge.
Indeed, it is easy to check that the metric of Eq. (51),
with ψ ¼ Σ ¼ 0, becomes the Schwarzschild metric in
Eddington-Finkelstein coordinates if one performs the
gauge transformation v0 ¼ vþ vχðrÞ cos θ þOðvÞ2 [note
that we also need to use Eq. (66) to set χ0ðrÞ ¼ δðrÞ].
In spite of this, the khronon field profile is nontrivial

[even though its stress energy must vanish through order
OðvÞ to allow for the metric to coincide with the
Schwarzschild solution; i.e., the khronon is a “stealth”
field]. In more detail, even though it is clear that the
universal horizon must be a regular surface (since the
Schwarzschild metric has no curvature singularity at
r ≠ 0), it is interesting to look for an approximate
solution to Eq. (67) near the universal horizon position
ruh ¼ 3GNm̃=2, at which Eq. (67) is singular (because the
coefficients multiplying δ00 and δ0 vanish at the universal
horizon). For r ≈ ruh, Eq. (67) becomes

x2δ00ðxÞ þ 5xδ0ðxÞ þ 2δðxÞ ≈ 0; ð70Þ

with x ¼ r − ruh, which yields the general solution

δðxÞ ≃ Chx−
ffiffi
2

p ð1þ ffiffi
2

p Þ þ Csx
ffiffi
2

p ð1− ffiffi2p Þ; ð71Þ

where Ch and Cs are integration constants (we refer to the
mode with coefficient Ch as the “hard mode” because it
diverges faster than the “soft mode” with coefficient Cs).
While both the soft and hard modes diverge as r → ruh, it

is easy to check that the curvature invariants R, RαβRαβ, and
RαβγδRαβγδ are regular (which must be the case since the
metric is Schwarzschild in disguise). One can look, how-
ever, also at curvature invariants constructed with the æther
vector and with the Killing vectors ∂v and ∂ϕ. The only
nontrivial invariant [at order OðvÞ] among these is

Rμναβuμuαð∂vÞνð∂vÞβ ∝ cos θx3δðxÞ: ð72Þ

Using Eq. (71), this becomes

Rμναβuμuαð∂vÞνð∂vÞβ ∝ cos θðChxnh þ CsxnsÞ; ð73Þ

with nh ¼ 1 −
ffiffiffi
2

p
< 0 and ns ¼ 1þ ffiffiffi

2
p

> 0. Therefore,
the hard mode produces a singularity at the universal
horizon, while the soft mode is physically well behaved.
One can therefore set Ch ¼ 0 in Eq. (71), choose Cs ¼ 1

by rescaling the solution (without loss of generality), and
then use Eq. (71) to provide initial conditions at r ¼
ruhð1þ ϵÞ (with ϵ ≪ 1) for Eq. (67). Integrating that
equation outward and matching to Eq. (68), one can then
extract the integration constants δ0 and δ3. [No shooting
procedure is needed in this case as the initial conditions at
r ¼ ruhð1þ ϵÞ are completely determined.] Finally, one

can rescale the obtained solution by a global factor to
impose the boundary condition δ0 ¼ −1 (cf. Sec. IV B).
and Eq. (65) then allows one to obtain χ. The resulting
solution for

δuv
v cos θ

¼ −
ð1 − AðrÞ2fðrÞÞð1þ AðrÞ2fðrÞÞ2

8AðrÞ3BðrÞ δðrÞ; ð74Þ

δur
v cos θ

¼ 1 − AðrÞ4fðrÞ2
4AðrÞ δðrÞ ð75Þ

is shown in Fig. 4. Note that both quantities are regular at
the universal horizon [as can also be verified analytically
using the soft mode of the solution given by Eq. (71) in
Eqs. (74) and (75)], which confirms that the khronon field
is regular there.

VII. CONCLUSIONS

We have studied nonspinning BHs moving slowly
relative to the preferred foliation of khronometric theory
(the low-energy limit of Hořava gravity). We have done so
by reducing the field equations [through first order OðvÞ in
the velocity relative to the preferred frame] to a system of
ordinary differential equations in the radial coordinate,
thanks to suitable ansätze for the metric and khronon fields,
inspired by the cylindrical symmetry of the system. We
have solved these equations numerically, trying to impose
both asymptotic flatness and regularity at the multiple BH
horizons that exist in Hořava gravity, i.e., the matter
horizon, the horizons for spin-0 and spin-2 gravitons,
and the universal horizon for modes whose speed diverges
in the UV. While regularity at the spin-2 horizon does not
pose any particular issue (as expected), regularity at the
other horizons is more problematic.

FIG. 4. OðvÞ æther perturbations δuμ for the unique regular
solution of the α ¼ β ¼ 0 case, outside the universal/spin-0
horizon.
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We have indeed found that if one imposes regularity at
the matter horizon and asymptotic flatness, slowly moving
BHs necessarily present (for generic values of the dimen-
sionless coupling parameters α, β, and λ) a curvature
singularity at the spin-0 horizon (which lies inside the
matter horizon for experimentally viable values of α, β,
and λ). By waiving the requirement of asymptotic flatness,
solutions that are regular at the matter and spin-0 horizons
can be obtained but are singular farther inside, as they
develop a curvature singularity at the universal horizon.
These pathological features cast doubts on the viability of
the theory for generic values of the coupling parameters,
although these curvature singularities (strictly speaking)
simply signal that our slow-motion approximation (which
assumes implicitly that the potentials are small) breaks
down. Also, these curvature singularities will probably be
smoothed out [55] by the higher-energy UV corrections L4

and L6 in the Hořava gravity action [cf. Eq. (1)].
Nevertheless, adopting generic values of the coupling

parameters α and β is not necessarily justified. The
experimental constraints that we have reviewed in
Sec. II A imply jαj≲ 10−7 and jβj≲ 10−15; hence, it would
be quite natural to assume that α and β are exactly zero. In
that case, slowly moving BH solutions exist and are regular
everywhere outside the central r ¼ 0 singularity. More
importantly, even though the gravitational theory is differ-
ent than GR (because λ ≠ 0), the khronon is a nontrivial
stealth field in these regular BH solutions, the metric of
which therefore reduces exactly to the Schwarzschild one.
This implies, in particular, that BH sensitivities are exactly
zero for α ¼ β ¼ 0, and hence BH binaries do not emit
dipolar radiation in this limit; nor do they deviate from
GR at Newtonian order in the conservative sector
[cf. Eq. (25)].7 Indeed, these results confirm the conclusion
of Ref. [54], namely that vacuum asymptotically flat
solutions to khronometric theories with α ¼ β ¼ 0 coincide
with the general relativistic ones even though λ ≠ 0.

We therefore expect GW generation to agree exactly with
GR even at higher PN orders (quadrupolar emission and
higher) if α ¼ β ¼ 0. This is quite important from an
observational point of view, because it implies that, even if
our results for the appearance of finite-area singularities in
moving BHs were just an artifact of the breakdown of our
approximation scheme and moving BHs turned out to be
regular (away from r ¼ 0), deviations from GR in GW
generation are bound to be small. Indeed, in such a
situation, deviations away from the GR predictions for
GWemission should be expected to be of (fractional) order
O½maxðα; βÞ� ∼ 10−7 for viable values of α, β ≠ 0. Such
small deviations are unlikely to be observable with present
and future GW detectors [45], although the viable param-
eter space for α, β may further be shrunk by observations of
GW and electromagnetic-wave propagation in multimes-
senger events.
However, if finite-area singularities do indeed form in

moving BHs (though perhaps smoothed out by UV
corrections [55]), they could produce firewall-like [82]
surfaces that may, in principle, be tested with GW echoes
[56–58] or stochastic background measurements from
LIGO/Virgo [59]. As for λ, it is likely that improved
constraints on it may come from cosmology. As men-
tioned, Ref. [74] showed that CMB measurements
constrain 0 ≠ λ≲ 10−2 when α ¼ β ¼ 0, and one would
expect this bound to be robust when small but finite
values of α and β are considered. Further improvements
may come from future CMB experiments and/or galaxy
surveys.
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2220 (1993).
[40] C. M. Will and H.W. Zaglauer, Astrophys. J. 346, 366

(1989).
[41] B. Z. Foster, Phys. Rev. D 76, 084033 (2007).
[42] K. Yagi, D. Blas, E. Barausse, and N. Yunes, Phys. Rev. D

89, 084067 (2014); 90, 069901(E) (2014).
[43] K. Yagi, D. Blas, N. Yunes, and E. Barausse, Phys. Rev.

Lett. 112, 161101 (2014).
[44] K. Yagi, L. C. Stein, and N. Yunes, Phys. Rev. D 93, 024010

(2016).
[45] E. Barausse, N. Yunes, and K. Chamberlain, Phys. Rev.

Lett. 116, 241104 (2016).
[46] L. Blanchet, Living Rev. Relativity 17, 2 (2014).
[47] R. A. Hulse and J. H. Taylor, Astrophys. J. 195, L51 (1975).
[48] T. Damour and J. H. Taylor, Phys. Rev. D 45, 1840 (1992).
[49] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-

tions), Phys. Rev. Lett. 116, 221101 (2016).
[50] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-

tions), arXiv:1811.00364.
[51] M. Fierz, Helv. Phys. Acta 29, 128 (1956).
[52] P. Jordan, Z. Phys. 157, 112 (1959).
[53] C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
[54] R. Loll and L. Pires, Phys. Rev. D 90, 124050 (2014).
[55] D. Blas and E. Lim, Int. J. Mod. Phys. D 23, 1443009

(2014).
[56] E. Barausse, V. Cardoso, and P. Pani, J. Phys. Conf. Ser.

610, 012044 (2015).
[57] E. Barausse, V. Cardoso, and P. Pani, Phys. Rev. D 89,

104059 (2014).
[58] V. Cardoso, E. Franzin, and P. Pani, Phys. Rev. Lett. 116,

171101 (2016); 117, 089902(E) (2016).
[59] E. Barausse, R. Brito, V. Cardoso, I. Dvorkin, and P. Pani,

Classical Quantum Gravity 35, 20LT01 (2018).
[60] S. M. Carroll and E. A. Lim, Phys. Rev. D 70, 123525

(2004).
[61] S. Liberati, Classical Quantum Gravity 30, 133001 (2013).
[62] C. D. Froggatt and H. B. Nielsen, Origin of Symmetries

(World Scientific, Singapore, 1991).
[63] D. Blas, O. Pujolas, and S. Sibiryakov, J. High Energy Phys.

04 (2011) 018.
[64] C. M. Will, Living Rev. Relativity 17, 4 (2014).
[65] A. Papazoglou and T. P. Sotiriou, Phys. Lett. B 685, 197

(2010).
[66] I. Kimpton and A. Padilla, J. High Energy Phys. 07 (2010)

014.
[67] D. Blas, O. Pujolas, and S. Sibiryakov, Phys. Lett. B 688,

350 (2010).
[68] T. Jacobson, Phys. Rev. D 81, 101502 (2010); 82, 129901

(E) (2010).
[69] T. Jacobson, Classical Quantum Gravity 28, 245011

(2011).

OSCAR RAMOS and ENRICO BARAUSSE PHYS. REV. D 99, 024034 (2019)

024034-18

https://arxiv.org/abs/hep-ph/9810239
https://arxiv.org/abs/hep-ph/9810239
https://arxiv.org/abs/hep-ph/9810239
https://arxiv.org/abs/hep-ph/9912528
https://arxiv.org/abs/hep-ph/9912528
https://doi.org/10.1103/PhysRevD.83.016013
https://doi.org/10.1103/PhysRevD.83.016013
https://doi.org/10.1016/0550-3213(83)90081-0
https://doi.org/10.1007/JHEP11(2013)064
https://doi.org/10.1007/JHEP11(2013)064
https://doi.org/10.1103/PhysRevLett.119.211301
https://doi.org/10.1103/PhysRevLett.119.211301
http://arXiv.org/abs/1810.07971
https://doi.org/10.1103/PhysRevLett.94.081601
https://doi.org/10.1103/PhysRevLett.94.081601
https://doi.org/10.1103/PhysRevD.85.105001
https://doi.org/10.1088/1126-6708/2004/10/076
https://doi.org/10.1103/PhysRevD.80.044025
https://doi.org/10.1103/PhysRevD.80.044025
https://doi.org/10.1103/PhysRevD.64.024028
https://doi.org/10.1103/PhysRevD.64.024028
https://doi.org/10.1103/PhysRevLett.104.181302
https://doi.org/10.1103/PhysRevLett.104.181302
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevD.93.064022
https://doi.org/10.1103/PhysRevD.70.024003
https://doi.org/10.1103/PhysRevD.70.024003
https://doi.org/10.1103/PhysRevD.84.064004
https://doi.org/10.1103/PhysRevD.84.064004
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.1103/PhysRevD.97.024032
https://doi.org/10.1103/PhysRevLett.120.041104
https://doi.org/10.1103/PhysRevD.83.124043
https://doi.org/10.1103/PhysRevD.83.124043
https://doi.org/10.1103/PhysRevD.84.124043
https://doi.org/10.1103/PhysRevD.84.124043
https://doi.org/10.1088/0264-9381/23/18/009
https://doi.org/10.1088/0264-9381/23/18/009
https://doi.org/10.1088/0264-9381/27/4/049802
https://doi.org/10.1103/PhysRevD.76.024003
https://doi.org/10.1103/PhysRevD.76.024003
https://doi.org/10.1103/PhysRevD.87.087504
https://doi.org/10.1103/PhysRevD.87.087504
https://doi.org/10.1103/PhysRevLett.109.181101
https://doi.org/10.1103/PhysRevLett.109.181101
https://doi.org/10.1103/PhysRevLett.110.039902
https://doi.org/10.1088/0264-9381/30/24/244010
https://doi.org/10.1088/0264-9381/30/24/244010
https://doi.org/10.1103/PhysRevD.93.044044
https://doi.org/10.1103/PhysRevD.93.044044
https://doi.org/10.1103/PhysRevD.93.064056
https://doi.org/10.1086/181744
https://doi.org/10.1088/0264-9381/9/9/015
https://doi.org/10.1088/0264-9381/9/9/015
https://doi.org/10.1103/PhysRevLett.70.2220
https://doi.org/10.1103/PhysRevLett.70.2220
https://doi.org/10.1086/168016
https://doi.org/10.1086/168016
https://doi.org/10.1103/PhysRevD.76.084033
https://doi.org/10.1103/PhysRevD.89.084067
https://doi.org/10.1103/PhysRevD.89.084067
https://doi.org/10.1103/PhysRevD.90.069901
https://doi.org/10.1103/PhysRevLett.112.161101
https://doi.org/10.1103/PhysRevLett.112.161101
https://doi.org/10.1103/PhysRevD.93.024010
https://doi.org/10.1103/PhysRevD.93.024010
https://doi.org/10.1103/PhysRevLett.116.241104
https://doi.org/10.1103/PhysRevLett.116.241104
https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.1086/181708
https://doi.org/10.1103/PhysRevD.45.1840
https://doi.org/10.1103/PhysRevLett.116.221101
http://arXiv.org/abs/1811.00364
https://doi.org/10.1007/BF01375155
https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1103/PhysRevD.90.124050
https://doi.org/10.1142/S0218271814430093
https://doi.org/10.1142/S0218271814430093
https://doi.org/10.1088/1742-6596/610/1/012044
https://doi.org/10.1088/1742-6596/610/1/012044
https://doi.org/10.1103/PhysRevD.89.104059
https://doi.org/10.1103/PhysRevD.89.104059
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.117.089902
https://doi.org/10.1088/1361-6382/aae1de
https://doi.org/10.1103/PhysRevD.70.123525
https://doi.org/10.1103/PhysRevD.70.123525
https://doi.org/10.1088/0264-9381/30/13/133001
https://doi.org/10.1007/JHEP04(2011)018
https://doi.org/10.1007/JHEP04(2011)018
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1016/j.physletb.2010.01.054
https://doi.org/10.1016/j.physletb.2010.01.054
https://doi.org/10.1007/JHEP07(2010)014
https://doi.org/10.1007/JHEP07(2010)014
https://doi.org/10.1016/j.physletb.2010.03.073
https://doi.org/10.1016/j.physletb.2010.03.073
https://doi.org/10.1103/PhysRevD.81.101502
https://doi.org/10.1103/PhysRevD.82.129901
https://doi.org/10.1103/PhysRevD.82.129901
https://doi.org/10.1088/0264-9381/28/24/245011
https://doi.org/10.1088/0264-9381/28/24/245011


[70] D. Garfinkle and T. Jacobson, Phys. Rev. Lett. 107, 191102
(2011).

[71] J. W. Elliott, G. D. Moore, and H. Stoica, J. High Energy
Phys. 08 (2005) 066.

[72] M. Bonetti and E. Barausse, Phys. Rev. D 91, 084053
(2015); 93, 029901(E) (2016).

[73] B. Audren, D. Blas, J. Lesgourgues, and S. Sibiryakov,
J. Cosmol. Astropart. Phys. 08 (2013) 039.

[74] N. Afshordi, Phys. Rev. D 80, 081502 (2009).
[75] K. Nordtvedt, Phys. Rev. 169, 1014 (1968).
[76] K. Nordtvedt, Phys. Rev. 169, 1017 (1968).

[77] E. Barausse and K. Yagi, Phys. Rev. Lett. 115, 211105
(2015).

[78] I. Carruthers and T. Jacobson, Phys. Rev. D 83, 024034
(2011).

[79] P. Berglund, J. Bhattacharyya, and D. Mattingly, Phys. Rev.
D 85, 124019 (2012).

[80] B. Z. Foster, Phys. Rev. D 72, 044017 (2005).
[81] E. Poisson and W. Israel, Phys. Rev. D 41, 1796

(1990).
[82] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, J. High

Energy Phys. 02 (2013) 062.

CONSTRAINTS ON HOŘAVA GRAVITY FROM BINARY… PHYS. REV. D 99, 024034 (2019)

024034-19

https://doi.org/10.1103/PhysRevLett.107.191102
https://doi.org/10.1103/PhysRevLett.107.191102
https://doi.org/10.1088/1126-6708/2005/08/066
https://doi.org/10.1088/1126-6708/2005/08/066
https://doi.org/10.1103/PhysRevD.91.084053
https://doi.org/10.1103/PhysRevD.91.084053
https://doi.org/10.1103/PhysRevD.93.029901
https://doi.org/10.1088/1475-7516/2013/08/039
https://doi.org/10.1103/PhysRevD.80.081502
https://doi.org/10.1103/PhysRev.169.1014
https://doi.org/10.1103/PhysRev.169.1017
https://doi.org/10.1103/PhysRevLett.115.211105
https://doi.org/10.1103/PhysRevLett.115.211105
https://doi.org/10.1103/PhysRevD.83.024034
https://doi.org/10.1103/PhysRevD.83.024034
https://doi.org/10.1103/PhysRevD.85.124019
https://doi.org/10.1103/PhysRevD.85.124019
https://doi.org/10.1103/PhysRevD.72.044017
https://doi.org/10.1103/PhysRevD.41.1796
https://doi.org/10.1103/PhysRevD.41.1796
https://doi.org/10.1007/JHEP02(2013)062
https://doi.org/10.1007/JHEP02(2013)062

