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SOME NEW STANDPOINTS IN THE DESIGN OF ASYMPTOTIC

FUNCTIONAL LINEAR OBSERVERS.

DIE EULE DER MINERVA BEGINNT ERST MIT DER EINBRECHENDEN DÄMMERUNG

IHREN FLUG.

F. Rotella and I. Zambettakis1

Abstract. The owl of Minerva spreads its wing only with the falling of the dusk. The aim of this

work is to provide some new trends in the observation for linear systems. In the general framework of

designing linear functional observers for linear systems the necessary and sufficient existence conditions

are well known. Whether in the O’Reilly textbook or in the recently published ones on this topic, and,

roughly speaking, the design methods can be categorized in two kinds. The first one is based on the

solution of a Sylvester equation and a projection of the observed linear functional. The second one,

based on the recent notion of functional observability, starts from the Darouach criterion which is an

Popov-Belevitch-Hautus type one. Nevertheless, the main drawback of the deduced methods is that

they cannot be used for linear time-varying systems. These models are of primary importance, for

instance with linearization about a trajectory. Consequently, we cope with this problem by considering

a new point of view for the design of linear functional observers. We see also that Darouach observers

or Cumming-Gopinath observers are particular cases of the proposed methodology. For simplicity sake

we suppose the system has no unknown inputs and is not described by a distributed parameters model

as well. Nevertheless, these cases can be thought as possible extensions of the presented standpoints.

Résumé. La chouette de la connaissance ne vole qu’à la nuit tombée. L’objet de cet article est de

proposer des pistes pour l’observation dans le cadre des systèmes linéaires. De façon plus générale, en

considérant l’observation de fonctions linéaires de l’état d’un modèle linéaire, les conditions nécessaires

et suffisantes d’existence de ces observateurs sont connues depuis longtemps. Que ce soit dans l’ouvrage

de base de O’Reilly ou dans les ouvrages plus récents qui traitent de ce sujet, les différentes méthodes

de conception d’un observateur de fonctionnelle linéaire peuvent, schématiquement, être rassemblées

en deux groupes. Celles qui demandent la résolution d’une équation de Sylvester et d’une équation

de projection et celles basées sur l’extension du critère d’existence de Darouach, ces dernières utilisant

un critère de type Popov-Belevitch-Hautus. Ainsi les méthodes déduites de ces critères peuvent être

difficilement étendues aux systèmes linéaires non stationnaires. De façon à contourner cet inconvénient

majeur lorsque l’on songe à la linéarisation autour d’une trajectoire, nous proposons une technique

pratique et systématique de conception d’un observateur. On montre par exemple que les observateurs

de Darouach ou de Cumming-Gopinath n’en sont que des cas particuliers. Bien sûr, pour ne pas

compliquer inutilement la présentation nous n’envisagerons que des modèles linéaires stationnaires de

dimension finie à entrées toutes connues, les autre situations pouvant être envisagées à titre d’extension.

1 Laboratoire de Génie de Production, 65016, Tarbes CEDEX, France.
rotella@enit.fr, izambettakis@iut-tarbes.fr



Introduction

The subtitle we have chosen for this paper may seem peculiar at first sight, and calls for explanations. We
claim no authorship. This sentence is quoted from the German philosopher Georg Wilhelm Friedrich Hegel’s
book Grundlinien der Philosophie des Rechts, Nicolai, Berlin, 1820. Starting our presentation with such a
quotation is our way of paying homage to all the researchers who adopted a new approach and opened new
prospects to their subject, Automatic Control in particular, when their discipline was turning into academic
routine. Abdelhacq El Jai is definitely one of the Elect. Allow us to point out that Hegel uses the phrase Eule
der Minerva (Minerva’s Owl), synonymous with wisdom in mythology. But as another such researcher claimed
(he might recognize his statement), of all subjects, Automatic Control being the one we are the least ignorant
of, we will stick to it.

What comes before is not the only reason why we have chosen such a title as we are now going to focus on
observers of linear functional of the state of a linear system. Indeed, some interesting variables in a system are
not measured. The owl’s nocturnal sight leads to a piece for an analogy with the observation process, namely,
to design a system to estimate hidden variables in the darkness of information. The observation of a linear
functional of the state is motivated by the facts that, most of the time to know all the variables can be useless,
or, the order of the observer must be as small as possible. For instance, the implementation of a static state
feedback control u(t) = v(t) − Kx(t) where K is a matrix gain, x(t) the state vector and v(t) the reference
trajectory, by estimating directly Kx(t) allows to get a smaller observer than a Cumming-Gopinath observer
which is an entire state observer. Nevertheless, the observation of a linear functional of the state can be useful
for other applications in control systems as diagnostic, fault detection and isolation [20]. From this viewpoint,
an observer is used to generate residues that allow to take a decision inside a supervision and diagnostic level of
the system when disturbances or faults occur on the process. Indeed, these variables influence the system but
cannot be measured. The aim is then to build residues that will be, as the case may be, sensitive to faults or
insensitive to disturbances. So the purpose is here to give a systematic design method for a linear observer of
a linear functional in case of a linear model.

Since initial works of [10, 17, 18] two kinds of design techniques of such observers can be distinguished. On
the one hand, we find those who start with the solution of the Sylvester equation which appears in the existence
conditions of such an observer. Let us mention for example [30, 33]. On the other hand, we have the methods
as those proposed in [6,7] which build, by using the result of [5], the observer of a bigger size functional, which
includes of course the functional to observe. Finely, notice that a lot of solutions need the initial model to be
on a canonical form (e.g. [16]) and often consider the dynamics of the observer to be fixed at the outset as well.
Nevertheless, whatever approach may be chosen, these techniques didn’t lead, until now, to major progress for
the design of a minimum size stable observer neither for the possible extension to other class of models. The
reader can refer to [15,22,31] for more details on the different techniques considered to build a linear functional
observer. The main interest of our approach is to avoid drawbacks of usual methods to design, quite directly,
an asymptotic observer of a linear functional of the state of a linear system.

The origin of the developments we propose starts, for their principle, with the paper [9] of Michel Fliess where
the design of a state observer is based on the notion of derivation. Two main ideas come out here. First, the
design is not based on pole placement. These one being fixed a priori, their choice is not easy without any other
constraint. Secondly, this technique can be extended to the case of linear time varying models, without too much
difficulties, if the coefficients are enough derivable time functions. Moreover, this extension has been proposed
first in [1], then by mean of the flat model of the system in [8] and in [29] using the algebraic approach [21] to
estimate signals derivatives. In the first place necessary and sufficient conditions are outlined for the existence
of an asymptotic observer of a linear time invariant system. These conditions need to solve a Sylvester equation
inside which the linear transformation between the state of the system and the state of the observer is unknown.
This Sylvester equation is not easy to solve because some design parameters of the observer (order, poles, etc.)
are unknown a priori, and moreover, the solution is linked to the decomposition of the linear functional to
observe. That’s why the conditions of compatibility are difficult to verify [11, 27]. To avoid this problem we
propose in a second part an original way to design an observer, based on the use of successive derivatives of the



measured outputs and of the functional to observe as well. An usual realization method allows then to get the
structure of the observer. The last point of this part deals with the stability analysis of the so-build observer
which allows to conclude the design. A part is then devoted to some particular cases. Finally we show, in the
appendix, how the method we propose induces a solution to the Sylvester equation related to the observer. This
allows to show that the presented method generalizes the Darouach and Cumming-Gopinath observers.

1. Observation of a state linear functional

We consider a system modelized, after linearization around the set point [3, 23], by the state model :

ẋ(t) = Ax(t) +Bu(t),
m(t) = Mx(t),

(1)

where, for every t in R, x(t), is the n-dimensional state vector, u(t), the p-dimensional control supposed to be
accessible, and m(t), the m-dimensional measure. Notice that these variables have to be distinguished from
the variables to drive. A, B and C are constant matrices with convenient dimensions. The aim is to estimate,
at least asymptotically, from measurements on the system, that is to say inputs u(t) and measures m(t) from
every sensors, a vector described by :

v(t) = Lx(t), (2)

where L is an (l × n) matrix whose size is fixed by the user. The observation of v(t) can be carried out with
the design of a linear functional observer or Luenberger observer [19] :

ż(t) = Fz(t) +Gu(t) +Hm(t),
w(t) = Pz(t) + V m(t),

(3)

whre z(t) is its q-dimensional state vector and w(t) an l-dimensional vector. Constant matrices F , G, H, P , V
and order q are determined such that limt→∞(v(t)− w(t)) = 0. In order to simplify the design of the observer
we can suppose, without loss of generality, that :

rank

([

M

L

])

= m+ l.

In a first step we look for conditions ensuring, at least asymptotically, a linear relationship between x(t) and
z(t) as z(t) = Tx(t). Let us denote ε(t) = z(t)− Tx(t), we get :

ε̇(t) = ż(t)− T ẋ(t),

= Fz(t) +Gu(t) +Hm(t)− TAx(t)− TBu(t),

= Fε(t) + (G− TB)u(t) + (FT − TA+HM)x(t).

so if :
G = TB,

TA− FT = HM,

when F is a Hurwitz matrix we have limt→∞ ε(t) = 0.
Now, the estimation error e(t) = v(t)− w(t), can be written :

e(t) = Lx(t)− Pz(t)− V m(t),

= (L− PT − VM)x(t)− Pε(t).

If L = PT + VM , the conditions which lead to limt→∞ ε(t) = 0 ensure limt→∞ e(t) = 0.



So we prove here that if there exists a matrix T such that the following linear equations hold :

G = TB,

TA− FT = HM,

L = PT + VM,

(4)

with F a Hurwitz matrix, then an asymptotic estimation of the linear functional v(t) = Lx(t) can be get by a
Luenberger observer (3) whose parameters are determined to ensure the existence of matrices T and F . A lot
of methods exist to find, in some particular cases, a minimum q-order observer with the eighenvalues of matrix
F fixed at the outset [22, 31]. But the general problem of the design of an asymptotic observer which order is
as small as possible has not found a complete solution yet.

2. Design of a Luenberger observer

The main feature of the design technique we present here is to start from the solution of a linear consistent
system. The principle of the design of the observer uses successive derivatives of v(t). We get then, for k = 0,
1, . . . :

v(k)(t) = LAkx(t) +

k−1
∑

i=0

LAk−1−iBu(i)(t).

Suppose there exist an index ν and matrices FL,i, i = 0 to ν − 1, and FM,i, i = 0 to ν, such that :

LAν =

ν−1
∑

i=0

FL,iLA
i +

ν
∑

i=0

FM,iMAi, (5)

then :

v(ν)(t) =

ν−1
∑

i=0

FL,iLA
ix(t) +

ν
∑

i=0

FM,iMAix(t) +

ν−1
∑

i=0

LAν−1−iBu(i)(t). (6)

2.1. Construction of matrices F to V .

The second step is to eliminate the state x(t) until v(t), y(t) and their derivatives come into view. We use
then the derivatives of v(t) = Lx(t) and of m(t) = Mx(t). It leads to :

• for i = 1 to ν − 1 : v(i)(t) = LAix(t) +
∑i−1

j=0 LA
jBu(i−1−j)(t), so :

LAix(t) = v(i)(t)−

i−1
∑

j=0

LAi−1−jBu(j)(t);

• for i = 1 to ν : m(i)(t) = MAix(t) +
∑i−1

j=0 MAjBu(i−1−j)(t), so :

MAix(t) = m(i)(t)−
i−1
∑

j=0

MAi−1−jBu(j)(t).

Putting these expressions in (6) we get :

v(ν)(t) =
ν−1
∑

i=0

FL,iv
(i)(t) +

ν
∑

i=0

FM,im
(i)(t) +

ν−1
∑

i=0

Giu
(i)(t), (7)



where matrices Gi can be calculated by means of the data. Indeed, after some algebraic manipulations we get
Gν−1 = (L− FM,νM)B and for ν ≥ 2 and j = 0 to ν − 2 :

Gj =



LAν−1−j −

ν−1
∑

i=j+1

FL,iLA
i−1−j −

ν
∑

i=j+1

FM,iMAi−1−j



B. (8)

The third step consists of building a first order state order equation related to relation (7). Among all the
realization techniques for usual differential equations [14,23] the most appropriate one is based on factorization,
after operational coding, of the differential equation (7). Using the Heaviside coding of the time derivative
operator p, so the coding of the time integration operator p−1 as well, this differential equation can be written :

v(t) = FM,νm(t)+ p−1 [FL,ν−1v(t) + FM,ν−1m(t) +Gν−1u(t)

+p−1 [FL,ν−2v(t) + FM,ν−2m(t) +Gν−2u(t)

...

+p−1 [FL,1v(t) + FM,1m(t) +G1u(t)

+p−1 [FL,0v(t) + FM,0m(t) +G0u(t)]
]

· · ·
]

.

Let us define the following vectors :

z0(t) = p−1 [FL,0v(t) + FM,0m(t) +G0u(t)] ,

z1(t) = p−1 [FL,1v(t) + FM,1m(t) +G1u(t) + z0(t)] ,

z2(t) = p−1 [FL,2v(t) + FM,2m(t) +G2u(t) + z1(t)] ,

...

zν−1(t) = p−1 [FL,ν−1v(t) + FM,ν−1m(t) +Gν−1u(t) + zν−2(t)] .

As v(t) = zν−1(t) + FM,νm(t) we get :

z0(t) = p−1 [FL,0zν−1(t) +HM,0m(t) +G0u(t)] ,

z1(t) = p−1 [FL,1zν−1(t) +HM,1m(t) +G1u(t) + z0(t)] ,

z2(t) = p−1 [FL,2zν−1(t) +HM,2m(t) +G2u(t) + z1(t)] ,

...

zν−1(t) = p−1 [FL,ν−1zν−1(t) +HM,ν−1m(t) +Gν−1u(t) + zν−2(t)] ,

where, for i = 0 to ν − 1, HM,i = FM,i + FL,iFM,ν . The vector z(t) defined by :

z(t) =











z0(t)
z1(t)
...

zν−1(t)











.



is then the state of the Luenberger observer (3) with :

F =















FL,0

Il FL,1

. . .
...

Il FL,ν−2

Il FL,ν−1















, G =















G0

G1

...
Gν−2

Gν−1















, H =















HM,0

HM,1

...
HM,ν−2

HM,ν−1















,

P =
[

0 · · · 0 Il
]

et V = FM,ν .

When F is a Hurwitz matrix, we have then get an asymptotic observer of the linear functional Lx(t). When
the so-obtained observer is stable or either if it has not the right eigenvalues, a good idea is to increase index ν

and to carry on again the realization for a higher order. Moreover, we can notice that the designed observer is
observable.

2.2. Fundamental linear system

We can remark that all this design is based on relation (5). Let us define the matrix :

Σν =



























MAν

LAν−1

MAν−1

...
LA

MA

L

M



























,

then (5) shows that :

rank

([

LAν

Σν

])

= rank (Σν) ,

which means that the system :

LAν = ΦΣν , (9)

where Φ is an unknown matrix, is compatible. The set of solutions of this system provides then the matrices
FM,i et FL,i by :

[

FM,ν FL,ν−1 FM,ν−1 · · · FL,0 FM,0

]

= LAνΣ{1}
ν +Ω

(

Iρ − ΣνΣ
{1}
ν

)

, (10)

where ρ = m+ ν(m+ l), Ω is an arbitrary l× ρ-matrix and Σ
{1}
ν any generalised inverse of Σν , that is to say a

matrix of the set [2] :
{

X ∈ Rn×ρ, ΣνXΣν = Σν

}

.

Of course in case where rank (Σν) = ρ this solution is unique and independent of the choice of a particular
generalized inverse. Anyway the solution of system (9) provides matrices FL,i, for i = 0 to ν−1, which allow to
build matrix F for which the stability remains to be verified. We know then if we can carry on with the design
of the observer or if we have to increase ν.



2.3. Stabilizability of F

We suppose here that rank (Σν) = r < ρ. For sake of simplicity, let us choose, from the singular values
decomposition of Σν [12] :

Σν = UνSνV
⊤
ν ,

where Uν and Vν are two orthonormal matrices with size (ρ× ρ) and (n× n) respectively, and Sν is the ρ× n

diagonal matrix of singular values of Σν :

Sν = diag {σ1, . . . , σr, 0, . . . , 0} ,

with σ1 ≥ · · · ≥ σr > 0, its pseudo-inverse [2] as generalized inverse of Σν is given by :

Σ{1}
ν = Σ†

ν = VνS
−⊤
ν U⊤

ν ,

where S−⊤
ν = diag

{

σ−1
1 , . . . , σ−1

r , 0, . . . , 0
}

. Then we get :

Iρ − ΣνΣ
†
ν = Iρ − Uν

[

Ir 0
0 0

]

U⊤
ν = Uν

[

0 0
0 Iρ−r

]

U⊤
ν .

Let us denote U⊤
2,ν the ρ− r last lines of U⊤

ν , Γ2, the ρ− r last columns of the arbitrary matrix Γ = ΩUν and :

Φb =
[

F b
M,ν F b

L,ν−1 F b
M,ν−1 · · · F b

L,0 F b
M,0

]

= LAνΣ†
ν .

Thus :
[

FM,ν FL,ν−1 FM,ν−1 · · · FL,0 FM,0

]

= Φb + Γ2U
⊤
2,ν .

After partitioning U⊤
2,ν according to :

U⊤
2,ν =

[

ΥM,ν ΥL,ν−1 ΥM,ν−1 · · · ΥL,0 ΥM,0

]

,

where the size of matrices ΥM,i and ΥM,i are ((ρ− r)×m) and ((ρ− r)× l) respectively, we can write F as
follows :

F =















F b
L,0 + Γ2ΥL,0

Il F b
L,1 + Γ2ΥL,1

. . .
...

Il F b
L,ν−2 + Γ2ΥL,ν−2

Il F b
L,ν−1 + Γ2ΥL,ν−1















. (11)

So the asymptotic observer exists if it is possible to find Γ2 such that (11) is a Hurwitz matrix.

2.4. Summary

The previous result is summed up in the following theorem.

Theorem 1. If there exists Ω such that matrices given by (10) lead to a Hurwitz matrix :

F =















FL,0

Il FL,1

. . .
...

Il FL,ν−2

Il FL,ν−1















,



then the Luenberger observer (3) with :

G =















G0

G1

...
Gν−2

Gν−1















, H =















FM,0

FM,1

...
FM,ν−2

FM,ν−1















+















FL,0

FL,1

...
FL,ν−2

FL,ν−1















FM,ν ,

P =
[

0 · · · 0 Il
]

and V = FM,ν ,

where matrices Gj, j = 0 to ν − 1, are defined in (8), is an asymptotic observer of Lx(t).

The proof follows from previous arguments added to the determination of a matrix T . From the expressions
(8) for the matrices Gj and the relationship G = TB, we can induce the form of following(lν × n) matrix T :

T =

















LAν−1 −
∑ν−1

i=1 FL,iLA
i−1 −

∑ν

i=1 FM,iMAi−1

...

LAν−j −
∑ν−1

i=j FL,iLA
i−j −

∑ν

i=j FM,iMAi−j

...
L− FM,νM

















.

It can be readily seen, with some teddious calculations, that this matrix fulfills the necessary existence conditions
(4).

When this theorem is satisfied, the dimension of the designed observer is νl. If rank (T ) < νl, an easy last
step to reduce this dimension is still necessary. Indeed, using the maximal rank factorization of T , we quickly
get an observer of order q = rank (T ), with (ν − 1) l < q ≤ νl. For sake of shortness this step is not detailed
here. Finally, if ν is the smallest integer such that F is stable, we get the minimum order stable observer of
Lx(t).

3. Some interesting but well-known particular cases

3.1. single linear functional observer

This approach has allowed to propose stable Luenberger observers with minimal order to estimate a linear
form of the state in [24]. It has been shown there that increasing index ν in the fundamental relation (5) allows
to design a stable observer for which more and more poles can be fixed. The technique we used is generalized
in this paper through the relations of the previous section but we can notice the two following features. Firstly,
there is no step to reduce the order of the observer because each time just one component is added to the state
of the observer. Secondly, the stability of F is expressed as the output feedback stabilisation of a particular



system. Indeed, for l = 1, we get :

F =















F b
L,0 + Γ2ΥL,0

Il F b
L,1 + Γ2ΥL,1

. . .
...

Il F b
L,ν−2 + Γ2ΥL,ν−1

Il F b
L,ν−1 + Γ2ΥL,ν−1















,

=















F b
L,0 +Υ⊤

L,0Γ
⊤
2

Il F b
L,1 +Υ⊤

L,1Γ
⊤
2

. . .
...

Il F b
L,ν−2 +Υ⊤

L,ν−2Γ
⊤
2

Il F b
L,ν−1 +Υ⊤

L,ν−1Γ
⊤
2















,

=















F b
L,0

Il F b
L,1

. . .
...

Il F b
L,ν−2

Il F b
L,ν−1















+















Υ⊤
L,0

Υ⊤
L,1
...

Υ⊤
L,ν−2

Υ⊤
L,ν−1















Γ⊤
2

[

0 · · · 0 1
]

.

This implies that if an output feedback can stabilize the system :

ξ̇ =















F b
L,0

Il F b
L,1

. . .
...

Il F b
L,ν−2

Il F b
L,ν−1















ξ +















Υ⊤
L,0

Υ⊤
L,1
...

Υ⊤
L,ν−2

Υ⊤
L,ν−1















υ,

η =
[

0 · · · 0 1
]

ξ,

then Γ2 exists such that F is a Hurwitz matrix.

3.2. Darouach observer

It is a Luenberger observer (3) for which q = l and P = Il. The existence condition for this observer, proved
in [5], is :

∀s ∈ C, ℜe(s) ≥ 0, rank





M

MA

L(sIn −A)



 = rank





MA

L

M



 = rank









LA

MA

L

M









. (12)

This condition can be split in two different conditions with different analysis. The last part of (12) :

rank





MA

L

M



 = rank









LA

MA

L

M









,

is related to the existence of structure (3) with q = l, so it leads immediately to the consistency of system (9)
if ν = 1. After treatment this relation provides the decomposition, possibly non unique :

LA = FM,1MA+ FL,0L+ FM,0M. (13)



Now, let us use this decomposition in the first part of the Darouach condition :

∀s ∈ C, ℜe(s) ≥ 0, rank





M

MA

L(sIn −A)



 = rank





MA

L

M



 . (14)

It comes :

rank





M

MA

L(sIn −A)



 = rank





M

MA

sL− FM,1MA− FL,0L− FM,0M



 ,

= rank





M

MA

sL− FL,0L



 = rank





M

MA

(sIl − FL,0)L



 ,

= rank











Im
Im

sIl − FL,0









MA

L

M











.

Finally condition (14) gives

∀s ∈ C, ℜe(s) ≥ 0, rank
[

sIl − FL,0

]

= l,

which prove that FL,0 is a Hurwitz matrix, so the Luenberger observer is asymptotically stable. Therefore,
theorem 1 is a generalization of the Darouach result. Nevertheless, we can notice the following difference
between these two results. While our procedure is based on matrix calculus, the Darouach approach is based
on a frequency criterion of Popov-Belevitch-Hautus type [14], criterion which is difficult to use out of the linear
time invariant systems class.

3.3. Cumming-Gopinath observer

This observer, called reduced observer as well, is an n −m-order observer which allows to estimate, for an
observable model, the whole state of system (1) [4, 13]. We show here how our approach allows to find this
structure as well.

Let us suppose now that M =
[

Im 0
]

and consequently L =
[

0 In−m

]

, so we want to estimate the
n−m last components of the state of (1) which are not measured. These partitions lead to the state partition :

x(t) =

[

x1(t)
x2(t)

]

where x1(t) = y(t) regroups the m first components of x(t). We define also the matrix partitions :

A =

[

A11 A12

A21 A22

]

et B =

[

B1

B2

]

with A11(m×m) and B1(m× r).

3.3.1. Reduced observer

From relations :

ẏ(t) = A11y(t) +A12x2(t) +B1u(t),

ẋ2(t) = A21y(t) +A22x2(t) +B2u(t),

y(t) = x1(t),



well-tested methods lead to the Luenberger observer :

ż(t) = (A22 − ΛA12)z(t) + (B2 − ΛB1)u(t)

+(A21 − ΛA11 +A22Λ− ΛA12Λ)y(t),

x̂(t) =

[

y(t)
z(t) + Λy(t)

]

=

[

0
In−m

]

z(t) +

[

Im
Λ

]

y(t),

where Λ is a ((n−m)×m)-matrix called the output innovation gain.
It is well known that when the pair (A,M) is detectable, which is equivalent to the pair (A22, A12) is

detectable, we can always find a matrix Λ such that matrix A22 − ΛA12 is a Hurwitz matrix.
When a variable change has be done by means of a non singular matrix Π to satisfy hypothesis on L and M ,

the last relation has just to be changed into :

x̂(t) = Π−1

[

0
In−m

]

z(t) + Π−1

[

Im
Λ

]

y(t).

The link with the Luenberger observer (3) is then ensured by :

F = A22 − ΛA12, G = B2 − ΛB1,

H = A21 − ΛA11 +A22Λ− ΛA12Λ, P = Π−1

[

0
In−m

]

,

V = Π−1

[

Im
Λ

]

.

3.3.2. Direct design of this observer

This section is devoted to the design of the Cumming-Gopinath observer with the derivative-based presented
method. Let us take L =

[

0 In−m

]

and M =
[

Im 0
]

, we get :

LA =
[

A21 A22

]

and MA =
[

A11 A12

]

.

as rank

([

L

M

])

= n, it comes :

rank

















LA

MA

L

M

















= rank









MA

L

M







 .

Thus, we have ν = 1 here. On the one hand, the unique decompositions :

LA = A21M +A22L,

MA = A11M +A12L,

and, on the other hand :

LA = Φ





MA

L

M



 ,



where the unknown matrix is Φ =
[

FM,1 FL,0 FM,0

]

, is consistent. The matrices FM,1, FL,0 and FM,0

fulfill :

A21M +A22L = FM,1 (A11M +A12L) + FL,0L+ FM,0M,

= (FM,0 + FM,1A12)M + (FL,0 + FM,1A11)L.

The LA and MA unique decompositions lead to :

A22 = FL,0 + FM,1A12,

A21 = FM,0 + FM,1A11.

The first one gives :
FL,0 = A22 − FM,1A12.

Thus, if the pair (A22, A12) is detectable, there exists a matrix FM,1 such that A22 − FM,1A12 is a Hurwitz
matrix. A particular choice for FM,1, which ensures stability of FL,0, gives also FM,0 = A21 − FM,1A11.

As ν = 1, the calculus leads to :

F = FL,0 = A22 − FM,1A12,

G = G0 (L− FM,1M)B = B2 − FM,1B1,

H = HM,0 = FM,0 + FL,0FM,1,

= A21 − FM,1A11 +A22FM,1 − FM,1A12FM,1,

P = In−m,

V = FM,1.

Letting FM,1 = Λ, we get the Cumming-Gopinath observer directly.

4. Conclusion

In this work we have proposed a constructive procedure to design a linear functional observer in a linear
framework. The used method allows to extend some previous results on this topic. Particularly, we generalize the
Darouach existence condition [5]. Nevertheless, the main interest, due to the fact that we don’t use frequency-
based methods or eigenvalues-based methods, is the possibility to consider linear time-varying models. This
point has been presented in [25, 26]. These models are of primary importance due to some recent advances in
automatic control, for instance in trajectory tracking [8, 28] with a flatness-based control strategy and time-
varying linearization.
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