A machine learning approach for online IPC controller selection based on wind features

D Collet $^{1,2}\text{, }$ M Alamir $^1\text{, }$ D Di Domenico 2 and G Sabiron 2

 $^1{\rm Gipsa-Lab},$ CNRS, University of Grenoble-Alpes, France $^2{\rm IFP}$ Energies Nouvelles Lyon, 69360 Solaize, France

September 18, 2018

Introduction

- Motivation
- The idea

2 Methodology

- Cost function
- Relating wind to fatigue

3 Conclusion

- Results
- Perspectives
- References

●O	00	00

Context

Wind Energy growth

Wind energy capacity is **exponentially growing**, involving billions of €.

Figure: Cumulative installed capacity of wind energy (ourwoldindata.org).

Context

Wind Energy growth

Wind energy capacity is **exponentially growing**, involving billions of €.

Figure: Cumulative installed capacity of wind energy (ourwoldindata.org).

Cost reduction

Slight decrease on Wind Turbine (WT) operational cost can result in saving millions of \in .

Context

Wind Energy growth

Wind energy capacity is **exponentially growing**, involving billions of €.

Figure: Cumulative installed capacity of wind energy (ourwoldindata.org).

Cost reduction

Slight decrease on Wind Turbine (WT) operational cost can result in saving millions of \in .

Introduction	
The idea	
Individual Pitch Control (IPC)	Control

A machine learning approach for online IPC controller selection based on wind features

A machine learning approach for online IPC controller selection based on wind features

The idea

Individual Pitch Control (IPC)

- In addition to Collective Pitch Control (CPC)
- Many works implemented, with different control architectures
- **Trade offs** between pitch activity, blade fatigue reduction and tower fatigue increase

The idea

Individual Pitch Control (IPC)

- In addition to Collective Pitch Control (CPC)
- Many works implemented, with different control architectures
- **Trade offs** between pitch activity, blade fatigue reduction and tower fatigue increase

The idea

Individual Pitch Control (IPC)

- In addition to Collective Pitch Control (CPC)
- Many works implemented, with different control architectures
- **Trade offs** between pitch activity, blade fatigue reduction and tower fatigue increase
- The most efficient controller architecture might depend on the disturbance characteristics

The idea		
Wind	Tradeoffs Cost function	Control
	 Wind resource assessm Wind turbulent sp with diurnal and variations [Van de 	ent pectrum varies synoptic er Hoven, 1957]

Wind resource assessment

 Wind turbulent spectrum varies with diurnal and synoptic variations [Van der Hoven, 1957]

Wind resource assessment

- Wind turbulent spectrum varies with diurnal and synoptic variations [Van der Hoven, 1957]
- [Clifton et al., 2013] clustered WT inflow winds on one site

Economic cost function computation

Cost function

$$\mathcal{C} = \sum_i \pi_i D_i$$

- ${\mathcal C}~\operatorname{{\bf Cost}}$ of the simulation in \in
- π_i Component *i* price of replacement (construction + transportation + installation)
- $D_i\;$ Component $i\;$ damage under the simulation, $D_i=1 \rightarrow$ the component is broken

Wind features

Wind characteristics likely to **explain fatigue variance**:

Wind features

Wind characteristics likely to **explain fatigue variance**:

 $RAWS\,$ Rotor Averaged Wind Speed

- δ_y Horizontal shear
- δ_z Vertical shear
- θ_y Tilt misalignment
- θ_z Yaw misalignment
- RATI Rotor Averaged Turbulence Intensity

Wind features

Wind characteristics likely to **explain fatigue variance**:

 $RAWS\,$ Rotor Averaged Wind Speed

- δ_y Horizontal shear
- δ_z Vertical shear
- θ_y Tilt misalignment
- θ_z Yaw misalignment
- RATI Rotor Averaged Turbulence Intensity

Mean and standard deviation over time are taken as features.

Wind features

Wind characteristics likely to **explain fatigue variance**:

RAWS Rotor Averaged Wind Speed

- δ_y Horizontal shear
- δ_z Vertical shear
- θ_y Tilt misalignment
- θ_z Yaw misalignment
- RATI Rotor Averaged Turbulence Intensity

Mean and standard deviation over time are taken as features.

Controller-candidates

CPC Proportional Integral (PI) controller designed as in [Jonkman et al., 2007]

IPC Double SISO PI controller, with varying parameters K_P and K_I

This results in 588 winds \times 100 controllers = 58,800 simulations, which takes 2 weeks on a standard computer parallelized on CPU.

Wind features

Wind characteristics likely to **explain fatigue variance**:

 $RAWS\,$ Rotor Averaged Wind Speed

- δ_y Horizontal shear
- δ_z Vertical shear
- θ_y Tilt misalignment
- θ_z Yaw misalignment
- RATI Rotor Averaged Turbulence Intensity

Mean and standard deviation over time are taken as features.

Controller-candidates

- CPC Proportional Integral (PI) controller designed as in [Jonkman et al., 2007]
 - IPC Double SISO PI controller, with varying parameters K_P and K_I

This results in 588 winds \times 100 controllers = 58,800 simulations, which takes 2 weeks on a standard computer parallelized on CPU.

Introduction

Preliminary results

• 4 controllers complementary to each other are selected among the 100 candidates

Introduction

Preliminary results

- 4 controllers complementary to each other are selected among the 100 candidates
- The regression algorithm manages to predict fatigue cost from wind features

Scatter plot of fatigue cost

A machine learning approach for online IPC controller selection based on wind features

Introductio

Preliminary results

- 4 controllers complementary to each other are selected among the 100 candidates
- The regression algorithm manages to predict fatigue cost from wind features

Scatter plot of fatigue cost

Real values

Controller	R_2	Decrease
1	0.93	0.23
2	0.96	0.35
3	0.93	0.36
4	0.92	0.26

Introductio 00

Preliminary results

- 4 controllers complementary to each other are selected among the 100 candidates
- The regression algorithm manages to predict fatigue cost from wind features
- A relative fatigue cost decrease of 23% could be achieved from the best candidate

Scatter plot of fatigue cost

Real values

Controller	R_2	Decrease
1	0.93	0.23
2	0.96	0.35
3	0.93	0.36
4	0.92	0.26

Achievements

• An economic cost function accounting for WT fatigue cost has been established

Achievements

- An economic cost function accounting for WT fatigue cost has been established
- A regression from wind features to cost function is done for each candidate

Achievements

- An economic cost function accounting for WT fatigue cost has been established
- A regression from wind features to cost function is done for each candidate
- The regression allows to **select efficiently the best suited controller** to wind conditions

Achievements

- An economic cost function accounting for WT fatigue cost has been established
- A regression from wind features to cost function is done for each candidate
- The regression allows to **select efficiently the best suited controller** to wind conditions

Perspectives

On-line validation in simulation on realistic wind scenarios with varying spectrum parameters

Achievements

- An economic cost function accounting for WT fatigue cost has been established
- A regression from wind features to cost function is done for each candidate
- The regression allows to **select efficiently the best suited controller** to wind conditions

Perspectives

- On-line validation in simulation on realistic wind scenarios with varying spectrum parameters
- Step up to advanced control techniques

Achievements

- An economic cost function accounting for WT fatigue cost has been established
- A regression from wind features to cost function is done for each candidate
- The regression allows to **select efficiently the best suited controller** to wind conditions

Perspectives

- On-line validation in simulation on realistic wind scenarios with varying spectrum parameters
- Step up to advanced control techniques
- Extend wind space definition and improve regression scores

Achievements

- An economic cost function accounting for WT fatigue cost has been established
- A regression from wind features to cost function is done for each candidate
- The regression allows to **select efficiently the best suited controller** to wind conditions

Perspectives

- On-line validation in simulation on realistic wind scenarios with varying spectrum parameters
- Step up to advanced control techniques
- Extend wind space definition and improve regression scores
- Study more thoroughly wind evolution on long time scales (day, week)

References I

- Clifton, A., Schreck, S., Scott, G., Kelley, N., and Lundquist, J. K. (2013). Turbine inflow characterization at the national wind technology center. *Journal of Solar Energy Engineering*, 135(3):031017.
- Dimitrov, N., Kelly, M., Vignaroli, A., and Berg, J. (2018). From wind to loads: wind turbine site-specific load estimation using databases with high-fidelity load simulations. *Wind Energ. Sci. Discuss.*
- Jonkman, J. M. et al. (2007). Dynamics modeling and loads analysis of an offshore floating wind turbine. *National Renewable Energy Laboratory*.
- Schröder, L., Dimitrov, N. K., Verelst, D. R., and Sørensen, J. A. (2018).
 Wind turbine site-specific load estimation using artificial neural networks calibrated by means of high-fidelity load simulations.
 In *Journal of Physics: Conference Series*, volume 1037, page 062027. IOP Publishing.

References II

Van der Hoven, I. (1957).

Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour.

Journal of meteorology, 14(2):160–164.

Thank you for your attention!

Innovating for energy

Find us on:

- www.ifpenergiesnouvelles.com
- @IFPENinnovation

Data Generation

Wind generation

- NREL wind generator TurbSim
- Coherent turbulent wind field generated from a wind spectrum
- Modification of spectrum parameters (direction, speed, turbulence intensity)
- 588 winds generated

Simulations

- NREL WT aeroelastic simulator FAST
- Each controller candidate is simulated with all the winds

Fatigue theory

Palmgrem-Miner rule

$$D = \sum_{i} \frac{n_i}{N_i(L_i)}$$

 $D \in [0,1]$ is the damage endured D = 1
ightarrow The component is broken

- n_i is the number of hysteresis cycle i
- N_i is the number of hysteresis cycle i that the component can endure in its lifetime
- L_i is the amplitude of hysteresis cycle i

Hysteresis cycles are counted with a rainflow-counting algorithm.

Controllers index

A 'close-to-the-first' parameter q is defined to consider as equally first the controller minimizing the cost and a close second or first.

Controllers index

A 'close-to-the-first' parameter q is defined to consider as equally first the controller minimizing the cost and a close second or first.

Controllers index

A 'close-to-the-first' parameter q is defined to consider as equally first the controller minimizing the cost and a close second or first.

A selection procedure is defined:

1. Give a value for q and a number of controllers n

A 'close-to-the-first' parameter q is defined to consider as equally first the controller minimizing the cost and a close second or first.

- 1. Give a value for \boldsymbol{q} and a number of controllers \boldsymbol{n}
- 2. The controller which is first most of the times is selected

A 'close-to-the-first' parameter q is defined to consider as equally first the controller minimizing the cost and a close second or first.

- 1. Give a value for q and a number of controllers n
- 2. The controller which is first most of the times is selected
- 3. Keep the winds where the latter controller was not first

A 'close-to-the-first' parameter q is defined to consider as equally first the controller minimizing the cost and a close second or first.

- 1. Give a value for q and a number of controllers n
- 2. The controller which is first most of the times is selected
- 3. Keep the winds where the latter controller was not first
- 4. Return to 2 until n controllers are chosen

A 'close-to-the-first' parameter q is defined to consider as equally first the controller minimizing the cost and a close second or first.

- 1. Give a value for \boldsymbol{q} and a number of controllers \boldsymbol{n}
- 2. The controller which is first most of the times is selected
- 3. Keep the winds where the latter controller was not first
- 4. Return to 2 until n controllers are chosen

A 'close-to-the-first' parameter q is defined to consider as equally first the controller minimizing the cost and a close second or first.

A selection procedure is defined:

- 1. Give a value for q and a number of controllers n
- 2. The controller which is first most of the times is selected
- 3. Keep the winds where the latter controller was not first
- 4. Return to 2 until n controllers are chosen

Parameters chosen: q = 0.1 and n = 4

