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Context

Wind Energy growth
Wind energy capacity is
exponentially growing, involving
billions of e.
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Slight decrease on Wind Turbine
(WT) operational cost can result in
saving millions of e.
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The idea

Control

Individual Pitch Control (IPC)

In addition to Collective Pitch
Control (CPC)
Many works implemented, with
different control architectures
Trade offs between pitch activity,
blade fatigue reduction and tower
fatigue increase
The most efficient controller
architecture might depend on the
disturbance characteristics
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Tradeoffs

Cost function

Wind

Wind resource assessment

Wind turbulent spectrum varies
with diurnal and synoptic
variations [Van der Hoven, 1957]

[Clifton et al., 2013] clustered
WT inflow winds on one site

Turbulent
spectrum
variations

Assess controller
wind combinations

WT fatigue load prediction

Fatigue load prediction from inflow
wind using probabilistic and machine
learning methods [Dimitrov et al., 2018,
Schröder et al., 2018].

Fatigue
prediction Ĉ = f(w, k) On-line controller

selection
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Economic cost function computation

Cost function

C =
∑

i

πiDi

C Cost of the simulation in e
πi Component i price of replacement (construction + transportation +

installation)
Di Component i damage under the simulation, Di = 1→ the component

is broken
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Relating wind to fatigue with machine learning

Wind features
Wind characteristics likely to explain
fatigue variance:

RAWS Rotor Averaged Wind Speed
δy Horizontal shear
δz Vertical shear
θy Tilt misalignment
θz Yaw misalignment

RATI Rotor Averaged Turbulence
Intensity

Mean and standard deviation over
time are taken as features.

Controller-candidates
CPC Proportional Integral (PI)

controller designed as in
[Jonkman et al., 2007]

IPC Double SISO PI controller,
with varying parameters KP

and KI

This results in 588 winds× 100 controllers = 58,800 simulations, which takes 2 weeks
on a standard computer parallelized on CPU.
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Preliminary results

4 controllers
complementary to each
other are selected among
the 100 candidates

The regression algorithm
manages to predict fatigue
cost from wind features
A relative fatigue cost
decrease of 23% could be
achieved from the best
candidate
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Conclusion & perspectives

Achievements
An economic cost function accounting for WT fatigue cost has been
established

A regression from wind features to cost function is done for each
candidate
The regression allows to select efficiently the best suited controller to
wind conditions

Perspectives
On-line validation in simulation on realistic wind scenarios with varying
spectrum parameters

Step up to advanced control techniques
Extend wind space definition and improve regression scores
Study more thoroughly wind evolution on long time scales (day, week)
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Thank you for your attention!



Data Generation

Wind generation
NREL wind generator TurbSim
Coherent turbulent wind field generated from a wind spectrum
Modification of spectrum parameters (direction, speed, turbulence intensity)
588 winds generated

Simulations
NREL WT aeroelastic simulator FAST
Each controller candidate is simulated with all the winds
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Fatigue theory

Palmgrem-Miner rule

D =
∑

i

ni

Ni(Li)

D ∈ [0, 1] is the damage endured D = 1→ The component is broken
ni is the number of hysteresis cycle i
Ni is the number of hysteresis cycle i that the component can endure

in its lifetime
Li is the amplitude of hysteresis cycle i

Hysteresis cycles are counted with a rainflow-counting algorithm.
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Controller selection

A ’close-to-the-first’ parameter q is defined to consider as equally first the controller
minimizing the cost and a close second or first.

A selection procedure is defined:
1. Give a value for q and a number of controllers n
2. The controller which is first most of the times is selected
3. Keep the winds where the latter controller was not first
4. Return to 2 until n controllers are chosen

Parameters chosen: q = 0.1 and n = 4
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