
HAL Id: hal-01945034
https://hal.science/hal-01945034v1

Preprint submitted on 5 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Upper Confidence Reinforcement Learning exploiting
state-action equivalence

Odalric-Ambrym Maillard, Mahsa Asadi

To cite this version:
Odalric-Ambrym Maillard, Mahsa Asadi. Upper Confidence Reinforcement Learning exploiting state-
action equivalence. 2018. �hal-01945034�

https://hal.science/hal-01945034v1
https://hal.archives-ouvertes.fr

Upper Confidence Reinforcement Learning exploiting
state-action equivalence

Mahsa Asadi
Inria Lille – Nord Europe
Villeneuve d’Ascq, France
mahsa.asadi@inria.fr

Odalric-Ambrym Maillard
Inria Lille – Nord Europe
Villeneuve d’Ascq, France

odalricambrym.maillard@inria.fr

Abstract

Leveraging an equivalence property on the set of states of state-action pairs in an
Markov Decision Process (MDP) has been suggested by many authors. We take
the study of equivalence classes to the reinforcement learning (RL) setup, when
transition distributions are no longer assumed to be known, in a discrete MDP with
average reward criterion and no reset. We study powerful similarities between
state-action pairs related to optimal transport. We first analyze a variant of the
UCRL2 algorithm called C-UCRL2, which highlights the clear benefit of leveraging
this equivalence structure when it is known ahead of time: the regret bound scales
as Õ(D

√
KCT) where C is the number of classes of equivalent state-action pairs

and K bounds the size of the support of the transitions. A non trivial question is
whether this benefit can still be observed when the structure is unknown and must
be learned while minimizing the regret. We propose a sound clustering technique
that provably learn the unknown classes, but show that its natural combination with
UCRL2 empirically fails. Our findings suggests this is due to the ad-hoc criterion
for stopping the episodes in UCRL2. We replace it with hypothesis testing, which
in turns considerably improves all strategies. It is then empirically validated that
learning the structure can be beneficial in a full-blown RL problem.

1 Introduction
LetM = (S,A, p, ν) be an (undiscounted) MDP where S denotes the discrete state space, A the
discrete action space, p the transition kernel such that p(s′|s, a) denotes the probability of transiting
to state s′, starting from state s and executing action a, and ν is a reward distribution function on
R = [0, 1] with mean function denoted µ.
Many MDPs exhibit strong similarities between different transitions. This is typically the case in a
grid-world MDP when taking action Up from state s or right from state s′ when both are far from any
wall results in similar transitions (typically, move to the target state with probability p and stay still or
transit to other neighbors with the remaining probability), see Figure 1.

Figure 1: A grid-world MDP showing similar tran-
sitions from state-action pairs (6,up) and (8,right).

Leveraging an equivalence structure is popular in the MDP literature (see Abel et al. (2016), Li et al.
(2006) or Ravindran & Barto (2004)). However, most notions are unfortunately not well adapted
to a reinforcement learning (RL) setup when the transition probabilities are unknown to the learner.

Preprint. Work in progress.

We further want not only to compute a near-optimal policy but to minimize the cumulative regret
incurred while interacting with the MDP, in a never ending single stream of observations, against an
optimal policy for the average regret criterion. This problem has received a lot of attention in the
recent literature after the seminal work of Jaksch et al. (2010) introduced the UCRL2 algorithm that
uses the optimism in face of uncertainty principle coming from the multi-armed bandit literature Auer
et al. (2002) presents a regret guarantee of Õ(DS

√
AT) after T steps for any unknown MDP with S

states, A actions per state, and diameter D. Obviously, the regret is dependent on the number of states
and actions and increases as these parameters grow. Our goal in this paper is to leverage similarity
structures to reduce this dependency. We consider to that end the following key definition:
Definition 1 (Similar state-action pairs) The pair (s′, a′) is ε-similar to the pair (s, a), for ε =
(εp, εµ)∈R2

+, if ‖p(σs,a(·)|s, a)− p(σs′,a′(·)|s′, a′)‖1 6 εp , (similar profile)
and |µ(s, a)− µ(s′, a′)| 6 εµ , (similar rewards)

where σs,a : {1, . . . , S} → S indexes a permutation of states such that p(σs,a(1)|s, a) >
p(σs,a(2)|s, a) > . . . > p(σs,a(S)|s, a). We call it a profile mapping.
Remark 1 The similarity is not only stated about states, but about state-action pairs.
Remark 2 (0, 0)-similarity is an equivalence relation. It thus induces a canonical partition of S×A,
which we denote C. In appendix A, we show that in typical grid-world MDPs, the number of classes
of state-action pairs using Definition 1 stays small even for large SA. This is no longer the case
without the ordering. Also the ordering makes the notion more robust, see Lemma 2.
Remark 3 The profile mapping σs,a is not unique in general, especially if distributions are sparse.
We assume in the sequel that the restriction of σs,a to the support of p(·|s, a) is uniquely defined.

The goal of this paper is to adapt the UCRL2 strategy to take advantage of this structure which
outperforms it when acting in MDPs with few number of classes and large number of state and
actions. We do so by aggregating the information of similar state-action pairs when estimating MDP’s
transitions.
Literature overview The literature relevant to our standpoint can be categorized into two main parts.
First, the rich literature on state-aggregation and state-abstraction. We refer to Abel et al. (2016)
for a good survey of recent approaches, Li et al. (2006) on earlier methods, Ravindran & Barto
(2004) that introduces interesting definitions but with no algorithm or regret analysis, and Anand
et al. (2015), similar to our work in that it considers state-action equivalence, but unlike us does not
consider orderings, transition estimation errors or regret analysis; Interesting works revolving around
complementary RL questions include the work on selection amongst different state representations
in Ortner et al. (2014) or on state-aliasing from Hallak et al. (2013). The most relevant works to
our approach are the work of Ortner (2013) on aggregation of states (but not of pairs, and with
no ordering) based on concentration inequalities, a path that we follow, and of Dean et al. (1997)
considering partitions of the state-space. Further, Ferns et al. (2004) and Ferns et al. (2006) work
on the bi-simulation metrics suggests to resort to optimal transport, which is intimately linked with
Definition 1 when using the Hamming metric c(i, j) = I{i 6= j} defined on i, j ∈ {1, . . . , S} to
define the transport cost (see details in Appendix B). However they consider an MDP, not RL setup.
Second, the articles regarding UCRL2-style algorithms for discrete MDPs following Jaksch et al.
(2010) and inspired from multi-armed bandits. Let us mention the Regal algorithm Bartlett & Tewari
(2009), KL-UCRL that replaces Weissman concentration with a better-behaved Kullback Leibler
concentration Filippi et al. (2010), another powerful replacement of Weissman bounds suggested in
Maillard et al. (2014), and a recent Thompson sampling approach inspired from bandits Agrawal &
Jia (2017). Some analysis have tried to reduce the regret dependency on the number of states, such as
in Azar et al. (2017) (restricted to a fixed, known and small horizon), or in Dann et al. (2017), using
refined time-uniform concentration inequalities similar to that of Lemma 1 below.
Although the concept of equivalence is well-studied in MDPs, no work seems to have investigated
the possibility of defining an aggregation first based on state-action pairs instead of states only for
reinforcement learning problems, and second using optimal transportation maps combined with
statistical tests. Especially, the use of profile maps seems novel and we show it is also effective.
Outline and contribution We first introduce a similarity measure of state-action pairs based on
equivalence of profile distributions, see Definition 1. To our knowledge, while other notions of
equivalence have been introduced, it is the first time profile (ordering) of distributions is explicitly
used in a discrete reinforcement learning (as opposed to MDP) setup.
Section 3, studies the potential benefit of exploiting this structure. We introduce C-UCRL2(C, σ), a
natural variant of UCRL2 that has access to the equivalence classes. We prove in Theorem 1 that its

2

regret scales as that of UCRL2, except by replacing a
√
SA factor with

√
C, where C is the number of

classes. More convincingly we provide numerical illustration that this improvement can be massive,
reducing by one to several order of magnitudes the accumulated regret.
In Section 4, we move to the more realistic situation when the profiles σ are unknown. We modify
C-UCRL2(C, σ) to estimate the mappings, provide illustration as well as a novel theoretical regret
guarantees thanks to a non-expensive property of the ordering operator (Lemma 2).
Section 5 then deals with the fully agnostic and most challenging scenario, when the partition must
be learned from data. While it is intuitive clear that an important regret reduction is achievable when
knowing C and C � SA, we ask the following non-trivial question: can such an improvement still
be observed without any prior knowledge on the structure? The cost of learning C could indeed be
prohibitive. To answer this question, we first provide an online clustering-based algorithm (agnostic
to the number of classes) that provably guarantees valid cluster probability distribution estimations
(see Lemma 3). We naturally modify C-UCRL2(C, σ) in a sound way and highlight the fact that this
strategy still outperforms the vanilla UCRL2 algorithm on experiments, thus showing the advantage of
considering the classes. However, we also note that the straightforward derivation of the algorithm
from UCRL2 suffers from a much higher regret than its oracle counter part knowing C. While it
suggests the price for learning C is too high, we show the high regret is in fact caused by the stopping
criterion of UCRL2, that was actually a trick, as acknowledged by the authors, and reveals to be
sub-optimal when handling the unknown classes.
This leads us to the second main contribution of this paper, that is to revisit the stopping criterion used
in UCRL2. The old intuition was to “recompute the policy when confidence bounds have changed
a lot” following a simple “doubling trick” heuristics. We proposed instead a mathematically more
rigorous stopping rule by testing whether “the optimistic model corresponding to the chosen policy
is still correct”. This very simple idea is illustrated on numerical experiments in section 6, where it
proves to be massively beneficial, reducing the regret by several order of magnitudes again, even in
the most challenging scenario (unknown C). Interestingly, the modification also benefits UCRL2.
While the main goal of the paper is to numerically illustrate the benefit of these two powerful ideas,
we provide some theoretical results for soundness of the approach, thus paving the way towards a
sharper understanding of regret minimization in discrete structured Markov Decision Processes.

2 UCRL2 setup and notations
Let π : S → P(A) denote a possibly stochastic policy and µπ(s) = EZ∼π(s)[µ(s, Z)] denote the
mean reward after following policy π in state s. Let p(s′|s, π(s)) = EZ∼π(s)[p(s′|s, Z)] and write
Pπf to denote the function s 7→

∑
s′∈S p(s

′|s, π(s))f(s′).
Definition 2 (Value) The expected cumulative reward of policy π when run for T steps from initial
state s1 is denoted as:

V πT (s1) = E
[T∑
t=1

r(st, at)

]
=

T∑
t=1

(P t−1π µπ)(s1) .

where at∼π(st), st+1∼p(·|st, at), and r(s, a)∼ν(s, a).

Definition 3 (Average gain) The average transition operator is Pπ = limT→∞
1
T

∑T
t=1 P

t−1
π . The

average gain gπ is:
gπ(s1) = lim

T→∞

1

T
Rπ,T (s1) = (Pπµπ)(s1) .

Definition 3 requires some mild assumption on the MDP for the limits to makes sense. It is shown
(see, e.g. Puterman (2014)) that the average gain achieved by executing a stationary policy π in a
communicating MDP M is well-defined and does not depend on the initial state, i.e., gπ(s1) = gπ.
For this reason, we restrict to such MDPs in the rest of this paper. Let ? denote an optimal policy,
that is such that1 g? = maxπ gπ. The following definition captures the dominant term of the regret of
any algorithm, as justified by the first steps of the regret analysis from Jaksch et al. (2010),
Definition 4 (Effective-regret) we define the effective-regret of any learning algorithm A after T
steps as:

R(A, T) :=

T∑
t=1

g?(s1)−
T∑
t=1

µ(st, at) where

at = A(st, ({st′ , at′ , rt′})t′<t) and s1 is the initial state.

1The maximum is reached since there are only finitely many deterministic policies.

3

We now briefly present and revisit the UCRL2 algorithm from Jaksch et al. (2010). At a high level,
UCRL2 follows the optimistic principle by trying to compute π+

t = argmax
π:S→A

max{gMπ :M∈Mt}

where gMπ is the average-gain for policy π in MDPM, and

Mt =

{
(S,A, p̃, ν̃) : ∀(s, a) ∈ S×A, |µNt(s,a)(s, a)− µ̃(·|s, a)| 6 b̃Ht (s, a,

δ

2SA
)

and ‖pNt(s,a)(·|s, a)− p̃(·|s, a)‖1 6 b̃Wt (s, a,
δ

2SA
)

}
.

This is achieved approximately by an Extended Value Iteration (EVI) algorithm that builds a near-

optimistic policy π+
t and MDPM+

t such that gM
+
t

π+
t

> maxπ,M∈Mt
gMπ − 1√

t
.

Here µn(s, a) denotes the empirical mean built using n i.i.d. rewards from ν(s, a), pn(·|s, a) is the
empirical distribution built using n i.i.d. observations from p(·|s, a), Nt(s, a) is the total number of
observations of state action pair (s, a) up to time t, and finally b̃Ht and b̃Wt are the two functions

b̃Ht (s, a, δ)=

√
3.5 log(t/δ)

Nt(s, a)∨1
, b̃Wt (s, a, δ)=

√
7S log(t/Sδ)

Nt(s, a)∨1
,

respectively based on a Hoeffding and Weissman inequality where ∨ represents max operator. Finally,
UCRL2 does not recompute π+

t at each time step. Instead, it proceeds in internal episodes k = 0, . . .
and computes π+

t only at the starting time tk of each episode, defined as t1 = 1 and for all k > 1,

tk = min
{
t>tk−1;∃s, a : ntk:t(s, a)>max{Ntk(s, a), 1}

}
,

where nt1:t2(s, a) denotes the number of observations of state-action pair (s, a) between time t1 and
t2. We provide the detailed code of UCRL2 in Appendix D for reference.
Remark 4 The bounds b̃H and b̃W are obtained from simple union bounds with a slightly loose
analysis. A more careful bound using similar arguments suggests to use

bHt (s, a, δ)=

√
log(2t2(t+1)/δ)

2Nt(s, a)∨1
, bWt (s, a, δ)=

√
2 log(t2(t+1)(2K − 2)/δ)

Nt(s, a)∨1
,

where K > |Support(p(·|s, a))|, instead to insure thatM∈Mt holds w.p.h. than 1−δ uniformly ∀t.
Tighter bounds An easy improvement is to further modify these naive bounds based on a union-
bound argument over all time steps with proper time-uniform concentration bounds using self-
normalization (following the Laplace method to replace optimization with integration see Peña et al.
(2008); Abbasi-Yadkori et al. (2011)), that we provide below for completeness.

Lemma 1 (Time-uniform concentration) ∀(s, a) ∈ S × A and any [0, 1]-bounded distribution
with mean µ(s, a):

P
(
∀t ∈ N |µNt(s,a)(s, a)− µ(s, a)| > bHNt(s,a)(δ)

)
6 δ ,with bHn (δ)=

√
(1+ 1

n) log(2
√
n+1/δ)

2n
.

Further, for any discrete distribution p(·|s, a) on S with support2 of size K 6 |S|

P
(
∀t∈N ‖pNt(s,a)(·|s, a)−p(·|s, a)‖ > bWNt(s,a)(δ)

)
6δ ,with bWn (δ)=

√
2(1+ 1

n) log
(√
n+12K−2

δ

)
n

.

Hence we replace bHt (s, a, δ
2SA) with bHNt(s,a)(

δ
2SA), and bWt (s, a, δ

2SA) with bWNt(s,a)(
δ

2SA) in the
definition of Mt. As the bounds for rewards and transitions are similar, from now on, we assume the
mean function µ is known, to simplify the presentation.

Remark 5 In contrast a peeling argument would lead to a seemingly better log log scaling in place
of the log square-root scaling, but with increased multiplicative constants compared to (1 + 1/n).
The bound using the Laplace method is better in practice (for n<2.109 when δ=0.01).

3 Class-UCRL : known class and profiles
We now introduce the first natural modification of UCRL2, that takes into account the similarity of
state-action pairs. We assume that an oracle provides us with a perfect knowledge of the equivalence
classes C plus profile maps σ = (σs,a)s,a of all state-action pairs. In this ideal situation, our goal is
to illustrate the potential benefit of taking the similarity into account. We explain the modification of
the algorithm, provide a bound on the regret and illustrate its behavior on numerical experiments.

2In all this paper, we consider K = S, that is, we have no prior information on the support.

4

Class-UCRL2 The most obvious modification is to aggregate observations from all state-action pairs
in the same class in order to build more accurate estimates. Formally (i) for a class c ⊂ S ×A, with
Nt(c) =

∑
s,a∈cNt(s, a) many observations, we define for each index ∈ {1, . . . , S},

pσNt(c)(i|c) =

∑
s,a∈cNt(s, a)pNt(s,a)(σs,a(i)|s, a)

Nt(c)
.

Then, (ii) for a partition C of S ×A in equivalence classes,

Mt(C)=

{
(S,A, p̃, ν̃) : p̃∈Pw(C),∀c∈C∀(s, a)∈c, ‖pσNt(c)(σ

−1
s,a(·)|c)− p̃(·|s, a)‖1 6 bWNt(c)

(δ

2C

)}
.

where Pw(C) denotes the state-transition functions that are piecewise constant on C (p̃(·|s, a) has
same value for all (s, a)∈c). Finally (iii), we redefine the stopping criterion as

tk+1 = min
{
t>tk;∃c ∈ C : ntk:t(c)>max{Ntk(c), 1}

}
.

The precise modified steps of the algorithm are presented in Algorithm 1 in appendix D.

Definition 5 (Class-UCRL2) C-UCRL2(C, σ) is defined as UCRL2 using modifications (i,ii,iii).
Remark 6 It is crucial to remark that the algorithm is not using classes as "meta" states (that is,
replacing the states with classes); Rather, the classes are only used to group observations from
different sources and build more refined estimates for each state-action: The plausible MDPs are
built using the same underlying state S and action space A, unlike e.g. in Ortner (2013).
Regret guarantee A modification of the analysis from Jaksch et al. (2010) yields:
Theorem 1 (Regret of C-UCRL2(C, σ)) With probability higher than 1− 2δ, uniformly over all time
horizon T ,

Regret(C-UCRL2(C, σ), T) 6
(
D

√
4 ln

(2C
√
T + 1(2K − 2)

δ

)
+ 2
)(√

2 + 1
)√

CT

+D

√
2(T + 1) log(

√
T + 1/δ) +DC log2(

8T

C
)

6 17D

√
CTK ln(C

√
T/δ) ,

where K bounds the support of the transition maps, and the proof is provided in appendix F.

The regret of this algorithm that knows the structure (but not the distributions) thus scales with the
number of classes C, hence achieving a massive reduction when C � SA. This is the case in many
grid-worlds thanks to our definition using orderings, see Appendix A. Also in such grid-worlds
where transitions are local, K<5 is a small constant. A comparison of the regret accumulated after
T = 2× 104 steps on a 2-room MDP with 25 states (see Section 7), shows that C− UCRL2 has regret
in 149.0± 33.8 while UCRL2 has regret in 19487± 0.0 Now on a 4-room MDP with 49 states, we
get a regret in 179.6± 35.7 versus 97131.8± 1003.3 for UCRL2 .

4 Known classes, unknown profile mappings
In this section, we consider a more realistic setting when the oracle provides the classes C to the
learner but none of the profile mappings (σs,a functions) are available.
In this more challenging situation, the algorithm C-UCRL2(C, σ) must be amended to use estimates
of the profile mappings σs,a for each s, a; we call the resulting algorithm C-UCRL2(C).
Modified aggregation Let σ̂s,a be any profile mapping σ such that at time t, pNt(s,a)(σ(1)|s, a) >
pNt(s,a)(σ(2)|s, a) > . . . > pNt(s,a)(σ(S)|s, a). We build the modified empirical estimate as:

p̂σ̂Nt(c)(i|c) =

∑
s,a∈cNt(s, a)pNt(s,a)(σ̂s,a(i)|s, a)

Nt(c)
.

Modified set of plausible MDPs We then modify the definition of Mt(C) to use for p̃∈Pw(C),

‖pσ̂Nt(c)(σ̂
−1
s,a(·)|c)− p̃(·|s, a)‖1 6 bWNt(c)

(δ

2C

)
.

The previous construction is justified by the following non-expansive property of the ordering operator,
as it ensures the Weissman concentration inequality also applies to the ordered empirical distribution.
This also ensures that Theorem 1 also applies to C-UCRL2(C) with same regret bound.
Lemma 2 (Non-expansive ordering) Let p ∈ P(S) with profile map σ. Let pn be its empirical
version built from n samples, with profile map σn. Then (see appendix G),

‖pn(σn(·))− p(σ(·))‖1 6 ‖pn(σ(·))− p(σ(·))‖1 .

5

5 Unknown classes: clustering
We finally address the most challenging situation when both the classes and profile mappings are
unknown to the learner. To this end, we first introduce an optimistic clustering procedure that groups
distributions based on statistical tests and is provably consistent.
Then, we introduce a natural modification of C-UCRL2(C) that uses a clustering algorithm to estimate
the classes; We call this algorithm simply C-UCRL2, in contrast with C-UCRL2(C) which knows the
classes, and C-UCRL2(C, σ) that also knows the profile mappings.
Since the non-trivial question is whether a benefit can be observed in practice, we illustrate this
strategy on numerical experiments (Figure 2 and Section 7). They show that this strategy is promising
as it does outperform UCRL2. But also that it suffers a much higher regret than its oracle counterpart,
and is thus unable to leverage the unknown structure of the MDP. We realize this does not come from
the clustering part that is sound, but rather from the episodes that stop too late. We thus introduce in
Section 6 a key modification of the stopping rule, replacing the original heuristics from UCRL2 with
hypothesis testing. This considerably improves its behavior on several illustrative examples, and also
benefits the vanilla UCRL2 strategy.
Estimated clusters The clustering algorithm is inspired from Khaleghi et al. (2012) and does not
require to know the number of clusters in advance. This approach provides sound estimations by
using tight concentration bounds from Lemma 1. Let J = {1, . . . , J} be an indexation of S × A,
where J = SA. If index j corresponds to the pair (s, a), we write N(j) for Nt(s, a) and introduce
q(·|j) = pσ̂Nt(s,a)(σ̂s,a(·)|s, a). We extend these notations to sets c ⊂ J with N(c) =

∑
j∈cN(j)

and q(·|c) =
∑
j∈c

N(j)q(·|j)
N(c) . Now, starting from the trivial partition of J into singletons C0 ={

{1}, . . . , {J}
}

, Algorithm 3 builds a coarser partition, by iteratively merging sets of the partitions.
Two sets (clusters) are merged if and only if they are statistically close. For a given partition C of J
and c ∈ C, we define the statistically closest set c0 ∈ C from c (when it exists) as:

Near(c, C) = argmin

{
d(c, c0) : c0 ∈ C \ {c} s.t.d(c, c0) 6 0 and ∀j ∈ c, j0 ∈ c0 d(j, j0) 6 0

}
,

where we introduced the penalized dissimilarities with the bound εC(n) = bWn (δ
2|C|)

d(c, c0) = ‖q(·|c)−q(·|c0)‖1−εC(N(c))−εC(N(c0)),

d(j, j0) = ‖q(·|j)−q(·|j0)‖1−εJ (N(j))−εJ (N(j0)) .
The clustering algorithm then proceeds as follows: From C0, the sets c ∈ C0 are ordered in decreasing
order of N(c), so as to promote sets with tightest confidence intervals. Then, starting from c with
largest N(c), it finds c′ = Near(c, C0) and merge it with c, thus creating the new cluster c ∪ c′ in the
novel partition C1, and removing c and c′ from C0. The algorithm continues this procedure with the
next set in C0, until exhaustion, thus producing a novel partition C1 of J . The algorithm iterates this
refinement process until iteration i when Ci+1 = Ci (convergence). It finally outputs at time tk the
clustering Ctk

def
= Ci built from all the observations for episode k. At each iteration, either two or

more clusters are grouped or the algorithm stops. Thus, it takes at most |J | − 1 = SA− 1 steps for
the algorithm to converge. The clustering algorithm is presented in Algorithm 3 and further details
about merging and convergence are provided in appendix H.
Remark 7 (Optimistic clustering) Algorithm 3 thus produces a partition Ct of J that clusters the
distributions whose grouping satisfies the confidence bounds. As a result, when N(s, a) is small for
all pairs, all distributions tend to be grouped; non-similar state-action pair are then separated only
when more evidence is collected.
The correctness of the clustering algorithm is ensured under the following required assumption:
Assumption 1 (Separation between classes) There exists some ∆ > 0 such that
∀c 6= c′ ∈ C ∀(s, a)∈c, (s′, a′)∈c′, ‖p(σs,a(·|s, a))− p(σs′,a′(·|s′, a′))‖1 > ∆ .

Lemma 3 Under assumption 1, provided that mins,aNt(s, a)>f−1(∆), where f : n→2bWn (δ
SA)

the clustering algorithm outputs the correct partition C of state-action pairs with high probability.
Having introduced a clustering mechanism to find classes, the rest of the procedure is similar to
C-UCRL2(C) with a modified set of plausible MDPs (details in Algorithm 2 and Appendix D):

Mt(Ct)=

{
(S,A, p̃, ν̃) : p̃∈Pw(Ct),∀c∈Ct, (s, a)∈c, ‖pσ̂Nt(c)(σ̂

−1
s,a(·)|c)− p̃(·|s, a)‖16bWNt(c)

(δ

2|Ct|

)}
,

and a modified stopping condition coming from the fact we are using concentration bounds both for
the classes and for the pairs when building an estimated clustering (and thus Mt(Ct)):
tk+1 = min

{
t>tk;∃c∈Ck : ntk:t(c)>max{Ntk(c), 1}or ∃s, a : ntk:t(s, a)>max{Ntk(s, a), 1}

}
.

6

Figure 2: Regret as a function of time in an illustrative 4-room MDP with 25 states (left) and 2-room
with 49 states (right). Note that UCRL2 gets sub-linear regret only after 1.2 and 2.5× 105 time steps.

Remark 8 Contrary to Mt(C), this set is not guaranteed to be optimistic due to the fact Ct may differ
from C. However, it provides a computationally cheap way to build a set of MDPs, compared to a
more complex algorithm that would consider all plausible partitions C̃.
Figure 2 reveals that the clustering algorithm is improving over UCRL2, but is little able to handle
unknown classes. One possible cause is that Mt(Ct) may is not guarantee to contain M with
high probability. However, extending Mt(Ct) to handle all plausible clustering as well seems
computationally heavy. Also, we observe numerically that the classes are correctly estimated. We
thus call for another explanation.

6 A sound and effective stopping criterion using hypothesis testing
In this section, we revisit the criterion used to stop an episode in UCRL2.
A novel stopping criteria: inconsistency checking Since the plausible MDPs of UCRL2 algorithm
are defined based on confidence intervals, the initial heuristic idea that guides the stopping time
is to recompute a policy when these bounds have changed a lot. In other words, when number of
observations is doubled for at least one state-action pair.
However, we suggest an alternative view, which is the second main contribution of this paper: since
the optimistic policy in episode k corresponds to an optimistic MDPM+

t = (S,A, p+t , ν+t) built at
time tk it is natural to check whether this optimistic MDP is still consistent with the observations at
subsequent time steps t > tk, and to stop when this is no longer the case. Thus, should we be able to
detect the inconsistency of empirical estimation and the optimistic one, we would be able to detect
this phenomenon sooner and update the policy instead of waiting for a long time. We actually observe
that the episodes in C-UCRL2 last much longer even after novel observations show clear inconsistency
ofM+

t , which suggests this is the main reason for the observed regret.
A closer look at Extended Value Iteration A close look at Extended Value Iteration from Jaksch
et al. (2010) reveals that it identifies a specific "optimistic" state s+ with maximal optimistic value.
This state is then used in order to build the optimistic transition model p+(·|s, a), by putting maximal
mass compatible with the empirical observations to transit to s+. In grid-world MDPs, this often
means that p+ puts a large positive mass for transiting to a state s+ from every (s, a), even when it is
not reachable in one step from (s, a). This suggests detecting inconsistency of the optimistic model
by looking at such specific transitions.
Modified stopping criterion Formally, we make use of concentration inequalities for a single entry
p(s′|s, a), and check if p+tk is compatible with the empirical transition at any time t > tk, until the
test fails. More precisely, for any pair s, a and s′, it would make sense to use the test:

|pNt(s,a)(s
′|s, a)− p+tk(s′|s, a)| 6 (1 + ε)bHNt(s,a)

(δ

S2A

)
,

where ε > 0 is a small margin. Indeed when ε = 0 and p+tk = p, the previous inequality is valid
uniformly over all t, s, a, s′ with probability higher than 1− δ. Considering ε > 0 allows to handle
the case when p+tk differs a little from p. Further grouping the probabilities to transit to a target
state s′ on all pairs enables to get some refinement: For any s′ ∈ S,g ⊂ S ×A, and state-transition
function q, we define the notation q(s′|g) =

∑
s,a∈g q(s

′|s, a). We then define gtk(s0) = {s, a :

s0 ∈ argmaxs′ q(s
′|s, a)}, for q = p+tk . Since p+tk ∈ Pw(Ctk), the set Gtk = {gtk(s0) : s0 ∈ S}

7

contains at most |Ctk | different groups. Thus, assuming that |Ctk | 6 C holds with high probability
for some known constant C, the following test is valid uniformly over all t, s′, g∈Gtk

|pNt(g)(s
′|g)− p+tk(s′|g)| 6 (1 + ε)|g|bHNt(g)

(δ

SC

)
,

with high probability upon replacing p+tk with p and setting ε=0.
This justifies to test at time t + 1, after playing st, at, whether for the (random) state stg

def
=

argmaxs,a p
+
tk

(st, at) and the (random) group g = gtk(stg) it holds

|pNt(g)(stg|g)− p+tk(stg|g)| 6 (1 + ε)|g|bHNt(g)
(δ

SC

)
, (1)

leading to the following modified stopping time tk+1 = min{t > tk : (1) fails}.
We show in appendix I that a positive ε ensures that episodes for which p+tk is close to p, do not stop
too early. Thus ensures a form of doubling stopping criterion (as for UCRL2) while the performed test
enables an episode to terminate when an obvious mismatch between p+tk and p is detected. We use
the value ε = 1 in the experiments, which is further discussed in appendix I.
Remark 9 This novel stopping criterion is defined for an optimistic model p+t built at time t = tk.
Thus, it applies without further modification to p+t ∈ Mt, p+t ∈ Mt(C) or p+t ∈ Mt(Ct) and all
algorithms including UCRL2 can be compared by replacing “doubling” stopping criterion.

7 Numerical experiments: Empirical regret reduction in the agnostic case
We report in Figure 2 (see also appendix C) the outcome of running the algorithms on a few tasks
(each averaged over 10 experiments). We consider: a) Four-Room MDP on a 5× 5 grid world with
four doors, and a total of SA = 100 pairs. and b) Two-Room MDP (wall in the middle) that is a
7× 7 grid world, with one door. None of the algorithms is aware of the specific fact that the MDPs
are grid-world, thus, instead of using support of K = 4, they all assume distributions with support S .
We compare the UCRL2 algorithm using Laplace bounds with the semi-oracles C-UCRL2(C, σ), C-
UCRL2(C) and the agnostic strategy C-UCRL2. Then, for each of these 4 algorithms, we consider their
variants using the modified stopping criterion from section 6; they are denoted with suffix "replan".
Discussion We note that the agnostic C-UCRL2-replan is outperforming UCRL2 by a huge margin
and is also outperforming UCRL2-replan. This clearly indicates that using the notion of similarity
between state-action pairs can benefit learning even in the fully agnostic case, which answers our
initial question in a non-trivial way.
In the two room environment (Figure 2), the algorithm has learned after about 2500 steps, given that
there are about 50 states and 4 actions, this corresponds to about 12.5 observations per state-action
pair on average, while UCRL2 is still suffering a linear regret event after 20000 steps (about 100
observations per state-action pair). UCRL2 indeed requires a much larger time horizon to converge on
such experiments, of order 105 (see Appendix C).
The improvement is achieved while using the same tools as UCRL2, which opens interesting area of
research, in view of the KL-UCRL (see Filippi et al. (2010)) and Thompson-Sampling alternatives.
Conclusion
While we believe it is more convincing to provide empirical evidence that one can leverage the
structure of an MDP in the fully agnostic case to benefit regret minimization, our empirical findings
obviously call for a theoretical regret analysis. We leave this intricate, but somehow secondary
question for an extended version of this already dense article.
We introduced a state-action pair similarity, borrowed from optimal transport, in a reinforcement
learning setup. This similarity is based on discrete optimal transport between distributions and
produces large equivalence classes, thus effectively reducing the number of parameters to be learned.
First, we have shown on numerical experiments and in theory that taking advantage of this structure
can massively reduce the cumulative regret of a simple UCRL2 algorithm. In the challenging scenario
when the partition is unknown, a non-trivial question is whether such an improvement can still be
observed. Interestingly, our findings have led us to consider a second important idea: changing
the stopping criterion of UCRL2 to take into account the possible mismatch between the optimistic
environment and the observed one. This simple idea is illustrated on numerical experiments, where it
proves to be massively beneficial, reducing the regret by several orders of magnitude. Whether this
improvement can be seen on regret bounds (whose constants are typically loose in such setups) is an
intriguing open question.
While the main goal of the paper is to illustrate the benefit of these two powerful ideas, we have
provided several theoretical results regarding the soundness of the approach, thus paving the way
towards a sharper understanding of regret guarantees in discrete Reinforcement Learning.

8

References
Abbasi-Yadkori, Yasin, Pál, Dávid, and Szepesvári, Csaba. Improved algorithms for linear stochastic

bandits. In Advances in Neural Information Processing Systems, pp. 2312–2320, 2011.

Abel, David, Hershkowitz, David, and Littman, Michael. Near optimal behavior via approximate
state abstraction. In International Conference on Machine Learning, pp. 2915–2923, 2016.

Agrawal, Shipra and Jia, Randy. Optimistic posterior sampling for reinforcement learning: Worst-case
regret bounds. In Advances in Neural Information Processing Systems 30 (NIPS), pp. 1184–1194,
2017.

Anand, Ankit, Grover, Aditya, Singla, Parag, et al. Asap-uct: Abstraction of state-action pairs in uct.
In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

Auer, Peter, Cesa-Bianchi, Nicolò, and Fischer, Paul. Finite time analysis of the multiarmed bandit
problem. Machine Learning, 47(2-3):235–256, 2002.

Azar, Mohammad Gheshlaghi, Osband, Ian, and Munos, Rémi. Minimax regret bounds for reinforce-
ment learning. In Precup, Doina and Teh, Yee Whye (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
263–272, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL
http://proceedings.mlr.press/v70/azar17a.html.

Bartlett, Peter L and Tewari, Ambuj. REGAL: A regularization based algorithm for reinforcement
learning in weakly communicating MDPs. In Proceedings of the 25th Conference on Uncertainty
in Artificial Intelligence (UAI), pp. 35–42, 2009.

Dann, Christoph, Lattimore, Tor, and Brunskill, Emma. Unifying PAC and regret: Uniform PAC
bounds for episodic reinforcement learning. In Advances in Neural Information Processing Systems
30 (NIPS), pp. 5711–5721, 2017.

Dean, Thomas, Givan, Robert, and Leach, Sonia. Model reduction techniques for computing
approximately optimal solutions for markov decision processes. In Proceedings of the Thirteenth
conference on Uncertainty in artificial intelligence, pp. 124–131. Morgan Kaufmann Publishers
Inc., 1997.

Ferns, Norm, Panangaden, Prakash, and Precup, Doina. Metrics for finite markov decision processes.
In Proceedings of the 20th conference on Uncertainty in artificial intelligence, pp. 162–169. AUAI
Press, 2004.

Ferns, Norm, Castro, Pablo Samuel, Precup, Doina, and Panangaden, Prakash. Methods for computing
state similarity in markov decision processes. In Proceedings of the Twenty-Second Conference on
Uncertainty in Artificial Intelligence, pp. 174–181. AUAI Press, 2006.

Filippi, Sarah, Cappé, Olivier, and Garivier, Aurélien. Optimism in reinforcement learning and
Kullback-Leibler divergence. In Proceedings of the 48th Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), pp. 115–122, 2010.

Hallak, Assaf, Di-Castro, Dotan, and Mannor, Shie. Model selection in markovian processes. In
Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 374–382. ACM, 2013.

Jaksch, Thomas, Ortner, Ronald, and Auer, Peter. Near-optimal regret bounds for reinforcement
learning. The Journal of Machine Learning Research, 11:1563–1600, 2010.

Khaleghi, Azadeh, Ryabko, Daniil, Mary, Jérémie, and Preux, Philippe. Online clustering of processes.
In Artificial Intelligence and Statistics, pp. 601–609, 2012.

Li, Lihong, Walsh, Thomas J, and Littman, Michael L. Towards a unified theory of state abstraction
for mdps. In ISAIM, 2006.

Maillard, Odalric-Ambrym, Mann, Timothy A, and Mannor, Shie. How hard is my MDP? “the
distribution-norm to the rescue”. In Advances in Neural Information Processing Systems 27 (NIPS),
pp. 1835–1843, 2014.

9

http://proceedings.mlr.press/v70/azar17a.html

Ortner, Ronald. Adaptive aggregation for reinforcement learning in average reward markov decision
processes. Annals of Operations Research, 208(1):321–336, 2013.

Ortner, Ronald, Maillard, Odalric-Ambrym, and Ryabko, Daniil. Selecting near-optimal approximate
state representations in reinforcement learning. In International Conference on Algorithmic
Learning Theory, pp. 140–154. Springer, 2014.

Peña, Victor H, Lai, Tze Leung, and Shao, Qi-Man. Self-normalized processes: Limit theory and
Statistical Applications. Springer Science & Business Media, 2008.

Puterman, Martin L. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Ravindran, Balaraman and Barto, Andrew G. Approximate homomorphisms: A framework for
non-exact minimization in markov decision processes. 2004.

10

A Other examples of MDPs
We consider a grid-world MDP with four actions a ∈ {u, d, l, r}. Playing action a = u moves the
current state up with probability 0.8, does not change the current state with probability 0.1, and
moves left or right with same probability 0.05 (it never goes down). When the resulting state is a
wall, the distribution is modified: the probability mass is reported on the current state. Other actions
have similar effect. Finally, the goal-state is put in the bottom-right corner of the MDP.

We now illustrate the scalability of the state-action pair similarity notion, of Definition 1 involving
permutations. We show below four examples of grid-worlds defined according to the above scheme,
with different number of state-action pairs.

Grid-world Figure 3 Figure 4 Figure 5 Figure 6
SA 84 800 736 ∼ 104

|C| 6 6 7 7

Moreover, the number of state-action pairs in the introduced 4-room and 2-room MDPs changes as
the grid state size grows, while the number of classes is fixed:

States 5*5 7*7 9*9 100*100
4Room-SA 100 196 324 4 ∗ 104

4Room-|C| 3 3 3 3
2Room-SA 100 196 324 4 ∗ 104

2Room-|C| 4 4 4 4

We note, in stark contrast that other notions from the RL literature do not scale well. For instance, in
Ortner (2013), a partition S1, . . .Sn of the state space S is considered to define an aggregated MDP,
in case it satisfies

∀s, s′ ∈ Si,∀a ∈ A, µ(s, a) = µ(s′, a) and ∀j,
∑
s′′∈Sj

p(s′′|s, a) =
∑
s′′∈Sj

p(s′′|s′, a) .

This readily prevents any two states s, s′ such that p(·|s, a) and p(·|s′, a) have disjoint support from
being in the same set Si. Thus, since in grid-world MDP where transitions are local, the number
of pairs with disjoint support is (about linearly) increasing with S, this implies a potentially large
number of classes for grid-worlds with many states. A similar criticism can be formulated for Anand
et al. (2015), even though it considers sets of state-action instead of states only, thus slightly reducing
the total number of classes.

Figure 3: Left: Two-room grid-world (left) with walls in black, and goal state in yellow. Right:
equivalence classes for state-action pairs (one color per class).

11

Figure 4: Left: Four-room grid-world (left) with walls in black, and goal state in yellow. Right:
equivalence classes for state-action pairs (one color per class).

Figure 5: Left: A more complex grid-world (left) with walls in black, and goal state in yellow. Right:
equivalence classes for state-action pairs (one color per class).

B Link with optimal transport

We now draw a connection between Definition 1 and optimal transport. Let us consider two discrete
distributions p and q on S of size S. Let σ : {1, . . . , S} → S be such that p(σ(1)) > . . . > p(σ(S)).
Likewise, we consider a permutation τ such that q(τ(1)) > . . . > q(τ(K)), and define yi = τ(i).
Note that this can also be seen as considering the different level sets of the discrete distributions, a
key notion when considering optimal transport.

An optimal transportation plan Γ between p ◦ σ and q ◦ τ for a cost c minimizes over Γ

S∑
i,j=1

c(i, j)Γ(i, j) where
S∑
j=1

Γ(i, j) = p ◦ σ(i) and
S∑
i=1

Γ(i, j) = q ◦ τ(j) .

When c(i, j) = I{i 6= j}, the minimal value coincides with the total variation cost between p ◦ σ
and q ◦ τ , that is ‖p ◦ σ − q ◦ τ‖1/2. Introducing s = σ(i) and s′ = τ(j) explicitly, the optimal

12

Figure 6: Left: A more complex grid-world (left) with walls in black, and goal state in yellow. Right:
equivalence classes for state-action pairs (one color per class).

transportation problem now rewrites∑
s,s′∈S

c(σ−1(s), τ−1(s′))Γ(σ−1(s), τ−1(s′))

where
∑
s′∈S

Γ(σ−1(s), τ−1(s′)) = p(s) and
∑
s∈S

Γ(σ−1(s), τ−1(s′)) = q(s′) ,

which corresponds to a cost C(s, s′) = I{σ−1(s) 6= τ−1(s′)} defined on S.

C Further experiments

Figure 7: Regret as a function of time for an ilustrative for-room MDP, (standard, and loglog plot)

Let us also report below the number of observations required for UCRL2 to converge in different
MDPs:

2-Room, 5× 5 = 25 states: 8 ∗ 104 4-Room, 5× 5 = 25 states: 1.2 ∗ 105

2-Room, 7× 7 = 49 states: 2.5 ∗ 105 4-Room, 7× 7 = 49 states: 5 ∗ 105

2-Room, 9× 9 = 81 states: 9 ∗ 105 4-Room, 9× 9 = 81 states: 106

13

D C-UCRL2 detailed pseudo-code

In this section, we provide further details about the implementation of C− UCRL2

Algorithm 1 Modified steps for Known Class & Mapping C-UCRL2(C, σ)
In Initialize episode k at time tk:
∀c∈C : set νk(c) := 0and compute
Ntk(c), pσNk(c)(.|c), µNk(c)(c).

In Compute Policy:
Apply Extended Value Iteration to Mtk(C) to get compute (near) optimistic policy π+

tk
.

In Execute policy π+
tk

:
while νk(ct) < max{1, Ntk(ct)} where ct ∈ C is the class containing (at, st) do

Choose at = π+
tk

(st),
Update ct, and νk(ct) := νk(ct) + 1
Obtain reward rt, observe next state st+1

t := t + 1
end while

Algorithm 2 Modified steps for Unknown Class & Mapping C-UCRL2
Find Similarity Classes and update:
p̂k ← σ̂ ◦ p̂k {Reorder all probability distributions according to their permutation function}
Ck ← clustering p̂k
{An entity with all clustering information}
rGkN ← Ck.Centersr
pGkN ← Ck.Centersp
Nk(c) := #{τ < tk : sτ = s, aτ = a, (s, a) ∈ c}
Compute Policy:
Let Mk be the set of all MDPs with states and actions as in M, and with transition probabil-
ities p̄+(.|c) close to pGkNk(.|c) and rewards r̄+(c) ∈ [0, 1] close to rGkNk (c), where ∀(s, a)∃c ∈
Ck.Centers : (s, a) ∈ GC .Elementsc that is,

‖p̄+(.|c)− pGkNk(.|c)‖1 6 bWNt(s,a)(δ)
|r̃(c)− r̂Gk(c)| 6 bWn (δ)

E Time-uniform concentration inequalities

Theorem 2 (Hoeffding-Laplace concentration) Let µn be the empirical mean built from n i.i.d.
observations from a [0, 1]-bounded distribution with mean µ. For any random stopping time τ with
respect to the filtration of the past observations,

P
(
|µτ − µ| >

√
(1+ 1

τ) log(2
√
τ+1/δ)

2τ

)
6 δ .

Corollary 1 (Weissman-Laplace concentration) For any random stopping time τ with respect to
the filtration of the past observations, and any discrete distribution p on S with support of size
K 6 |S|,

P
(
‖pτ−p‖1 >

√
2(1+ 1

τ) log
(√
τ+12K−2

δ

)
τ

)
6δ .

Proof of Corollary 1:

For discrete measures, P
(
‖pτ − p‖1 > ε

)
6
∑
B⊂S

P
(
pτ (B)− p(B) >

1

2
ε

)
. �

14

Algorithm 3 Confident Clustering

1: C← [p(1), . . . , p(k)]
{Each sample is it’s own cluster center}

2: N← [n1, . . . , nk]
3: size← [1, . . . , 1] {k-element array of one}
4: Changed← True
5: while not Converged and Changed do
6: Changed← False
7: Ordering ← argsort(N)
8: for all i ∈ Ordering do
9: if ni = 0 then

10: break
11: end if
12: k← Near(i, C) {Find the closest cluster to i}
13: if k = −1 then
14: Continue
15: end if
16: merge(k, i, C, N, size)
17: Changed← True
18: end for
19: end while

Algorithm 4 Combines two cluster centers
1: Function merge(k, i, C,N, size):
2: Ck ← Ck∗sizek+Ci∗sizei

sizek+sizei
3: Nk ← Nk +Ni
4: sizek ← sizei + sizek
5: size← size− sizei
6: N ← N −Ni
7: C ← C − {Ci}

Algorithm 5 Find Closest Cluster
1: Function Near(index,C):
2: k ← −1
3: distmin ←∞
4: for all i ∈ getIndex(C), i! = index do
5: dist = ‖Ci − Cindex‖1 − εCi − εCindex
6: if dist < 0 and dist < distmin and isValid(i, index) then
7: distmin ← dist
8: k = i
9: end if

10: end for
11: return k

Algorithm 6 Checks both cluster points to have valid distant
Function isValid(i, j) :
samplesi ← getSamples(i)

{samples of ith cluster}
samplesj ← getSamples(j)
for all si ∈ samplesi do

for all sj ∈ samplesj do
if ‖si − sj‖1 − εi − εj > 0 then

Return False
end if

end for
end for
Return True

15

Corollary 2 Let Nt(s, a) be the number of observation of a state action pair (s, a) at time t. Then

P
(
∃t ∈ N, |µNt(s,a)(s, a)− µ(s, a)| >

√
(1+ 1

Nt(s,a)
) log(2

√
Nt(s, a)+1/δ)

Nt(s, a)

)
6 δ .

P
(
∃t ∈ N, ‖pNt(s,a)(·|s, a)−p(·|s, a)‖1 >

√
2(1+ 1

Nt(s,a)
) log

(√
Nt(s, a)+1 2K−2

δ

)
Nt(s, a)

)
6 δ .

Proof of Corollary 2:

P
(
∃t : |µNt(s,a)(s, a)− µ(s, a)| 6

√
(1+ 1

Nt(s,a)
) log(2

√
Nt(s, a)+1/δ)

Nt(s, a)

)

6 P
(
∃t,∃n 6 t : |µn(s, a)− µ(s, a)| 6

√
(1+ 1

n) log(2
√
n+1/δ)

n

)

6 P
(
∃n ∈ N : |µn(s, a)− µ(s, a)| 6

√
(1+ 1

n) log(2
√
n+1/δ)

n

)
,

Now, we recognize a uniform concentration inequality for the observations of the pair (s, a), which
can be controlled by introducing the variable

τ = min

{
n : |µn(s, a)− µ(s, a)| 6

√
(1+ 1

n) log(2
√
n+1/δ)

n

}
,

which is a stopping time with respect to the observations generated by the pair (s, a). �

F Effective regret analysis of C-UCRL2(C, σ)

The analysis is based on the analysis of UCRL2 given by Jaksch et al. (2010). We are going to
investigate “State-Aggregated UCRL2” by analyzing the regret of the algorithm. The effective regret
naturally decomposes episode-wise

R(A, T) =

T∑
t=1

g?(s1)−
T∑
t=1

µ(st, at)

=

m(T)∑
k=1

∑
s,a∈S×A

tk+1∑
t=tk+1

I{st = s, at = a}︸ ︷︷ ︸
νk(s,a)

(
g? − µ(s, a)

)

=

m(T)∑
k=1

∑
c∈C

tk+1∑
t=tk+1

I{(st, at) ∈ c}︸ ︷︷ ︸
νk(c)

(
g? − µ(c)

)
=

m(T)∑
k=1

∆k .

where we used that µ(s, a) has constant value µ(c) for all (s, a) ∈ c and introduced the effective
regret in episode k

∆k =
∑
c∈C

νk(c)
(
g? − µ(c)

)
.

We say an episode is good ifM∈Mtk (that is, the set of plausible MDPs contains the true model)
and bad otherwise.

16

Control of the regret due to bad episodes: M /∈ Mtk Due to using time-uniform instead of
time-instantaneous confidence bounds, we can show that with high probability, all episodes are good
for all horizons. More precisely, with probability higher than 1− δ, for all T , bad episodes do not
contribute to the regret:

m(T)∑
k=1

∆kI{M /∈Mtk} = 0 ,

where m(T) is the number of episodes up to time T .

Control of the regret due to good episodes:M∈Mtk

We closely follow Jaksch et al. (2010) and decompose the regret to control the transition and reward
functions. At a high level, the only modifications that we do are 1) to use a time-uniform bound to
control the martingale difference sequence that appears in the proof, using the following result:

Lemma 4 (Time-uniform Azuma Hoeffding) For any martingale difference sequence (Xt)t
bounded by D (that is, |Xt| 6 D for all t) it comes, by application of time-uniform Laplace
concentration inequality for bounded variables,

P
(
∃T ∈ N,

T∑
t=1

Xt > D
√

2(T + 1) log(
√
T + 1/δ)

)
6 δ .

2) to control the number of episodes differently, due to the use of the partition C

Lemma 5 (Number of episodes) The number of episodes of C-UCRL2(C, σ) up to step T > C,
denoted by m(T) is upper bounded by:

m(T) 6 C log2(
8T

C
)

Proof of lemma 5:

Having defined NT and νk as the total number of state-action observations, up to step T and in
episode k respectively, there is a state-action class(c) in each episode k < m with νk(c) = Ntk(c).
Let K(c) be the number of episodes with νk(c) = Ntk(c) and Ntk(c) > 0 for all c. It is worth
mentioning that if Ntk(c) > 0 and νk(c) = Ntk(c), Ntk+1

(c) = 2Ntk(c), therefore:

N(c) =

m(T)∑
k=1

νk(c) > 1 +
∑

k:νk(c)=Ntk (c)

Ntk(c) > 1 +

K(c)∑
i=1

2i−1 = 2K(c) (2)

If N(c) = 0, K(c) = 0, therefore, N(c) > 2K(c) − 1 for all pair classes. Thus,

T =
∑
c∈C

N(c) >
∑
c∈C

(
2K(c) − 1

)
(3)

On the other hand, an episode has happened when either Ntk(c) = 0 or Ntk(c) = νk(c). Therefore,
m 6 1 + C +

∑
c∈CK(c) and consequently,

∑
c∈CK(c) > m− 1− C. As a result:∑

c∈C
2K(c) > C2

∑
c∈C

K(c)
C > C2

m−1
C −1 (4)

Using the last two equations:
T > C

(
2
m−1
C −1 − 1

)
(5)

Therefore,

m 6 1 + 2C + C log2(
T

C
) 6 3C + C log2(

T

C
) 6 C log2(

8T

C
) (6)

And the lemma is proved. �

17

Details SinceM∈Mtk by assumption and by choosing π+
tk

andM+
tk

by following the algorithm,

we get that gk
def
= g

M+
tk

π+
tk

> g? − 1√
tk

. Thus, it can be said that:

∆k 6
∑
c∈C

νk(c)
(
g? − µ(c)

)
6
∑
c∈C

νk(c)
(
gk − µ(c)

)
+
∑
c∈C

νk(c)√
tk

(7)

Besides, according to the proof of extended value iteration in UCRL2we also have, for the output value
at iteration i

max
s
ui(s)−min

s
ui(s) 6 D (8)

where D is the diameter of the MDP. Moreover, when the convergence criterion of extended-value
iteration holds we have:

|ui+1(s)− ui(s)− gk| 6
1√
tk
∀s ∈ S (9)

where gk is the average reward of the policy π+
tk

chosen on the optimistic MDPM+
tk

. Using Bellman
operator on the optimistic MDP:

ui+1(s) = µ+
tk

(s, π+
tk

(s)) +
∑
s′

p+tk(s′|s, π+
tk

(s)).ui(s
′)

which can be written as:
ui+1(s) = µ+

tk
(cs,π+

tk
(s)) +

∑
s′

p+tk(s′|cs,π+
tk

(s)).ui(s
′)

where cs,a ∈ C s.t. ∃c ∈ C : (s, a) ∈ c. Employing the above equation alongside with 9 leads to:

|
(
gk − µ+

tk
(cs,π+

tk
(s))
)
−
(∑

s′

p+tk(s′|cs,π+
tk

(s)).ui(s
′)− ui(s)

)
| 6 1√

tk

By defining the column vector of gk = (gk(s))s, r̃k :=
(
µ+
tk

(cs,π+
tk

(s))
)
s

for π+
tk

policy, P̃k :=(
p+tk(s′|cs,π+

tk
(s))
)
s,s′

and υk :=
(
νk(cs,π+

tk
(s))
)

we can rewrite the above equation as:

|
(
gk − r̃k

)
s
−
(

(P̃k − I)ui

)
s
| 6 1√

tk
Therefore, equation 7 can be rewritten as:

∆k 6
∑
c∈C

νk(c)
(
gk − µ(c)

)
+
∑
c∈C

νk(c)√
tk

=
∑
c∈C

νk(c)
(
gk − µ+

tk
(c)
)

+
∑
c∈C

νk(c)
(
µ+
tk

(c)− µ(c)
)

+
∑
c∈C

νk(c)√
tk

6 υk(P̃k − I)ui +
∑
c∈C

νk(c)
(
µ+
tk

(c)− µ(c)
)

+ 2
∑
c∈C

νk(c)√
tk

Since each row of P̃k sums up to one, we can add a constant to ui and still have the same equation.
So, we are going to replace it with wk:

wk(s) := ui(s)−
mins ui(s) + maxs ui(s)

2
At this point we are going to bound the reward part using reward confidence bound. Knowing that
M ∈ Mtk , then µ+

tk
(c) − µ(c) 6 |µ+

tk
(c) − µNtk (c)(c)| + |µNtk (c) − µ(c)| can be bounded by 2.

Therefore,

∆k 6 υCk(P̃k − I)wk + 2
∑
c∈C

νk(c)bHNtk (c)
(
δ

2C
) + 2

∑
c∈C

νk(c)√
tk

6 υCk(P̃k − I)wk + 2
∑
c∈C

νk(c)

√√√√(1+ 1
Ntk (c)

) log(4C
√
Ntk(c)+1/δ)

2Ntk(c)
+ 2

∑
c∈C

νk(c)√
tk

18

Since max{1, Ntk(c)} 6 tk 6 T ,

∆k 6 υCk(P̃k − I)wk +
(√

4 ln(
2C
√
T

δ
) + 2

)∑
c∈C

νk(c)√
max{1, Ntk(c)}

(10)

Afterwards we have to bound the first part of the above equation, υk(P̃k− I)wk, which is going to be
done by using the confidence bound on the transition probability distribution introduced in 2. Having
defined Pk :=

(
p(s′|cs,π+

tk
(s))
)
s,s′

:

υk(P̃k − I)wk = υk(P̃k −Pk + Pk − I)wk = υk(P̃k −Pk)wk + υk(Pk − I)wk (11)

Assuming thatM∈Mtk while knowing that ‖wk‖ 6 D
2 and taking advantage from holder inequality

and 2:

υk(P̃k −Pk)wk =
∑
s

∑
s′

νk(cs,π+
tk

(s))
(
p+tk(s′|cs,π+

tk
(s))− p(s

′|cs,π+
tk

(s))
)
wk(s′)

6
∑
s

νk(cs,π+
tk

(s))‖p
+
tk

(.|cs,π+
tk

(s))− p(.|cs,π+
tk

(s))‖1‖wk‖∞

6
∑
s

νk(cs,π+
tk

(s))2b
W
Ntk (cs,π+

tk
(s)

)

(δ

2C

)D
2

6
∑
s

νk(cs,π+
tk

(s))D

√√√√√2(1+ 1
Ntk (cs,π+

tk
(s)

)) log
(
2C
√
Ntk(cs,π+

tk
(s))+1 2S−2

δ

)
max(1, Ntk(cs,π+

tk
(s)))

6 D

√
4 ln

(2C
√
T + 1(2|S| − 2)

δ

)∑
c

νk(c)

max{1, Ntk(c)}
(12)

and to bound the second term in equation 11, we are going to use lemma 4 and lemma 5. Let us define
Xt := (p(.|ct)− est+1)wk(t)1M∈Mtk

∀t = 1, . . . , T . For any k withM∈Mtk , we have that:

υk(Pk − I)wk =

tk+1−1∑
t=tk

(p(.|ct)− est)wk =

tk+1−1∑
t=tk

(
p(.|ct)− est+1

+ est+1
− est

)
wk

tk+1−1∑
t=tk

Xt + wk(st+1)− wk(st) 6
tk+1−1∑
t=tk

Xt +D

Knowing that |wk(t)|∞ = D
2 and using holder inequality, |Xt| 6 |p(.|ct)−est+1

|1D2 6
(
|p(.|ct)|1 +

|est+1
|1
)
D
2 = D. So, Xt is bounded by D and also E{Xt|s1, a1, . . . , st, at} = 0, so that Xt is a

sequence of martingale differences. Therefore by using lemma 4 we get:

P(∃T :

T∑
t=1

Xt > D
√

2(T + 1) log(
√
T + 1/δ)︸ ︷︷ ︸

εp2

)
6 δ .

Using lemma 5, we know that m 6 C log2

(
8T
C

)
. By summing over all episodes we get:

m(T)∑
k=1

υk(Pk − I)wk1M∈Mtk
6

T∑
t=1

Xt +m(T) 6 εp2 +m(T)D 6 εp2 +DC log2(
8T

C
) (13)

with probability 1 - 2δ.

Final control Using a union bound over the event that M is plausible at any time, and over the
control of the martingale difference sequence (Xt)t appearing in the control of good episodes, we
deduce that the regret is controlled with probability higher than 1− 2δ, uniformly over all T ∈ N.

19

More precisely, using 10, 11, 12 and 13 and summing over all episodes:
m∑
k=1

∆k1M∈Mtk
6

m∑
k=1

υk(P̃k −Pk)wk1M∈Mtk
+

m∑
k=1

υk(Pk − I)wk1M∈Mtk

+

m∑
k=1

(√
4 ln(

2C
√
T + 1

δ
) + 2

)∑
c∈C

νk(c)

max{1, Ntk(c)}

6
(
D

√
4 ln

(2C
√
T + 1(2|S| − 2)

δ

)
+

√
4 ln(

2C
√
T + 1

δ
) + 2

) m∑
k=1

∑
c

νk(c)

max{1, Ntk(c)}

+D

√
2(T + 1) log(

√
T + 1/δ) +DC log2

(
8T

C

)
(14)

To bound the above equation, we are going to introduce the below lemma:

Lemma 6 For any sequence of numbers z1, z2, . . . , zn with 0 6 zk 6 Zk−1 := max{1,
∑k−1
i=1 zi}

n∑
k=1

zk√
Zk−1

6
(√

2 + 1
)√

Zn (15)

which is proved in Jaksch et al. (2010). Knowing that NT (c) :=
∑
k νk(c),

∑
cNT (c) = T and

Ntk(c) =
∑
i<k νi(c) and using the above lemma we get:∑

c∈C

m∑
k=1

νk(c)

max{1, Ntk(c)}
6
∑
c∈C

(√
2 + 1

)√
NT (c)

On the other hand, using Jensen’s inequality we get:(√
2 + 1

)∑
c∈C

√
NT (c) 6

(√
2 + 1

)
C

∑
c∈C
√
NT (c)

C
6
(√

2 + 1
)√

CT

Therefore, ∑
c∈C

m∑
k=1

νk(c)

max{1, Ntk(c)}
6
(√

2 + 1
)√

CT

And by using the above result in equation 14, we get:
m(T)∑
k=1

∆k1M∈Mtk
6 D

√
2(T + 1) log(

√
T + 1/δ) +DC log2(

8T

C
)

+
(
D

√
4 ln

(2C
√
T + 1(2|S| − 2)

δ

)
+

√
4 ln(

2C
√
T + 1

δ
) + 2

)(√
2 + 1

)√
CT (16)

with probability of at least 1− δ − δ.
Finally, the regret of C-UCRL2(C, σ) is controlled on an event of probability higher than 1 − δ,
uniformly over all time T , by

R(C-UCRL2(C, σ), T) 6
(
D

√
4 ln

(2C
√
T + 1(2|S| − 2)

δ

)
+

√
4 ln(

2C
√
T + 1

δ
) + 2

)(√
2 + 1

)√
CT

+D

√
2(T + 1) log(

√
T + 1/δ) +DC log2(

8T

C
) .

We conclude by polishing the bound to highlight the main terms of the regret:

R(C-UCRL2(C, σ), T) 6 [6(
√

2 + 1) +
√

2 + 1]D

√
CTS ln(C

√
T/δ)

6 17D

√
CTS ln(C

√
T/δ) .

The bound in the main body of the paper removes the
√

4 ln(2C
√
T+1
δ) when assuming the mean

rewards are known.

20

G Ordered Weissman

Proof of Lemma 2:

Let us consider the case when a switch occurs between index 1 and 2, that is σn(1) = σ(2) and
σn(2) = σ(1). In this situation, we thus have p(σ(1)) > p(σ(2)) but p(σn(1)) 6 p(σn(2)). Then,
we study

∑
i=1,2 |p(σ(i))− pn(σn(i))|.

First, we note that if pn(σn(1)) < p(σ(1)) and pn(σn(2)) < p(σ(2)), then

|p(σ(1))− pn(σn(1))|+ |p(σ(2))− pn(σn(2)))| = p(σ(1))− pn(σn(2)) + p(σ(2))− pn(σn(1))

= |p(σ(1))− pn(σ(1))|+ |p(σ(2))− pn(σ(2))| .

Likewise, the same equality occurs if pn(σn(1)) > p(σ(1)) and pn(σn(2)) > p(σ(2)).

Now, in the remaining intermediate cases (that is pn(σ(1)) < p(σ(2)) < pn(σ(2)) < p(σ(1)),
p(σ(2)) < pn(σ(1)) < pn(σ(2)) < p(σ(1)) and p(σ(2)) < pn(σ(1)) < p(σ(1)) < pn(σ(2))), it is
immediate to check that

|p(σ(1))− pn(σn(1))|+ |p(σ(2))− pn(σn(2)))| 6 |p(σ(1))− pn(σ(1))|+ |p(σ(2))− pn(σ(2))| .

Thus, proceeding iteratively for all switch that occurs, and decomposing the permutations σ, σn into
elementary switches, this shows that almost surely

‖pn(σn(·))− p(σ(·))‖1 6 ‖pn(σ(·))− p(σ(·))‖1 .

�

H Clustering Guarantees

H.1 Problem Definition

Consider the problem of having k different sequences x(1),x(2), . . . ,x(k) generated using k prob-
ability distributions Q(1), Q(2), . . . , Q(k) where all of them share the same |χ| alphabets and
some of them may even have the same probability distribution. Therefore, one can say that
they may have k′ different classes of probability distributions where k′ 6 k. In other words:
∀x ∼ Q(i) ∈ {Q(1), . . . , Q(k)}∃k′ < k : x ∼ Q(j) ∈ {Q(1), . . . , Q(k′)}.
For instance, {x(1)

1 ,x
(1)
2 , . . . ,x

(1)
n } are elements of x(1) which are drawn i.i.d. according to Q(1).

Px represents the empirical probability distribution of a sequence x1,x2, . . . ,xn and obviously, n
is the length of the sequence. Therefore, we define N = {n1, . . . , nk} to represent the number of
sampling steps our k sequences have. More concretely, Px is a vector with size of the alphabet |χ| that
gives the number of occurrences of each element divided by sequence length, i.e. Px(a) = N(a|x)

n .
In our problem setting, we receive a sample from one of the k different groups at each step. However,
neither the probability distributions(Q(i)s) nor the number of different classes(k′) is known.
We are going to propose a clustering approach so as to find this k′ classes of probability distribution
using the samples obtained from k initial distributions.

H.2 Confident Clustering (proof of Lemma 3)

Given {Px(1) , . . . , Px(k)} which would be called “samples” from now on and represented by
p(1), . . . , p(k) for simplicity. In this section, we are going to propose a clustering approach to group
samples and find the k′ distinct classes of probability distribution.
More concretely, we can say that for k′ 6 k, ∀Q(i) ∈ {Q(1), . . . , Q(k)}∃Q(j) ∈
{Q(1), . . . , Q(k′)} s.t. Q(i) ∼ Q(j). It is worth mentioning that we do not know the number
of classes and probability distributions beforehand. We are provided with merely k different samples
and we require to find an acceptable grouping in the last resort.

21

Initially, each sample is considered to be the center of a cluster and we have k clusters at the
beginning. We sort the samples according to their corresponding value in N so as to guarantee that
samples with higher confident are chosen sooner. Gaining advantage from the provided bounds, we
search for the closest cluster assuring not only that the cluster centers are close enough, but also
that all the cluster pairs satisfy 21 inequality. Thus, the clusters would be grouped when we have
enough evidence to merge and would be left unchanged otherwise. The procedure is continued till
the algorithm converges meaning that no cluster center alters. More exact procedure of the algorithm
is demonstrated in 3.

Since the used samples for clustering are empirical probability distributions and there exists a
deviation between empirical probability distributions and their corresponding true distribution, the
measures are not exact and in order to bound error we are going to use Weissman concentration
inequality measures to bound error.
To find whether two samples should be grouped or not, we have to find the distance of their probability
distributions. So,

‖p̃(i) − p̃(j)‖1 6 ‖p(i) − p(j)‖1 + ‖p̃(i) − p(i)‖1 + ‖p̃(j) − p(j)‖1
6 ‖p(i) − p(j)‖1 + εi + εj

In case that two samples have the same probability distribution, the difference of their true probability
distribution is zero:

‖p̃(i) − p̃(j)‖1 − εi − εj 6 0 (17)
Using Laplace inequality and knowing that it should hold for all state-action pairs of a cluster i, we
can write:
∀(s, a) ∈ Ci :

P(||p̃(.|s, a)− p(.|s, a)||1 > ε) 6
δ

2k
(18)

Moreover, we also have to test the cluster centers to satisfy time uniform laplace inequality. Knowing
that the number of clusters either reduces at least by one at each step or the clustering algorithm is
converged, therefore the number of clusters for iterationth step would be at most “k - iteration + 1”.
So, ∀Ci ∈ C :

P(||p̃(.|Ci)− p(.|Ci)||1 > ε)

6
δ

2(k − iteration+ 1)
(19)

Therefore, using the above equation alongside with union bounds:

P(∀(s, a) ∈ Ci : ||p̃(.|s, a)− p(.|s, a)||1 > ε)

+P(∀Ci ∈ C : ||p̃(.|Ci)− p(.|Ci)||1 > ε)

=
∑

(s,a)∈Ci

P(||p̃(.|s, a)− p(.|s, a)||1 > ε)

+
∑
Ci∈C

P(||p̃(.|Ci)− p(.|Ci)||1 > ε)

6
∑

(s,a)∈Ci

δ

2k
+
∑
Ci∈C

δ

2(k − iteration+ 1)

6
∑

(s,a)∈Ci

δ

2k
+
∑
Ci∈C

δ

2(k − iteration+ 1)

=
|Ci|
2k

δ +
|C|

2(k − iteration+ 1)
δ

6
k

2k
δ +

k − iteration+ 1

2(k − iteration+ 1)
δ=δ (20)

The last step of the above equation is due to the fact that Ci and number of elements in Ci are both a
random variables and we do not know their exact value. So, we can replace them by the worst case

22

scenario. However, this bound is still not accurate and can be improved knowing the fact that the
worst case for both parts can not happen simultaneously. For instance, when a cluster contains k
elements, the number of clusters will not be k - iteration and would be 1.
Consequently, we can say that i and j should be grouped with high probability if inequality 17 is
satisfied having used 18 to compute εi and εj :

εi =

√
2

ni
ln
(2|χ| − 2

δ
2k

)
(21)

where T is the maximum possible number of samples for a sequence.
Following the same procedure, we can compare the distance of two clusters, Ci and Cj , using:

εCi =

√
2

NCi
ln
(2|χ| − 2

δ
2(k−iteration+1)

)
(22)

where NCi =
∑
j∈Ci nj is the number of samples included in cluster i and iteration is the number of

current iteration of clustering algorithm.

Moreover, following the same procedure for the reward part we would reach:

||r̃(i) − r̃(j)||1 − εri − εrj 6 0 (23)

And taking advantage from time uniform inequality for all state-action pairs we can find:

P
{
∀(s, a) ∈ Ci : r̃(s, a)− r(s, a)||1 > εri

}
6
δr
2k

(24)

Considering the same condition as for probability distributions:

P(∀Ci ∈ C : ||r̃(Ci)− r(Ci)||1 > εri) 6
δ

2(k − iteration+ 1)
(25)

Consequently, we can find

εri =

√
1

2ni
ln
(2k

δ

)
(26)

and

εrCi =

√
1

2NCi
ln
(2(k − iteration+ 1)

δ

)
(27)

and the idea is complete.
It is worth mentioning that this approach is only suitable when different class distributions are not
overlapping which is the case of our reinforcement learning problem since in case of overlapping,
they are having the same behavior and should be grouped consequently.

I A modified stopping criterion

The goal of the statistical test is to detect early enough a possible mismatch between the optimistic
MDPM+

tk
identified at time tk and the correct MDPM.

For a state s0 ∈ S and a group of state-action pairs g ⊂ S ×A and any state-transition distribution
q, we denote by q(s0|g) =

∑
s,a∈g q(s0|s, a) the probability of reaching s0 from any of the pair

s, a ∈ g. Likewise, we denote N(g) =
∑
s,aN(s, a) for a counter N .

Proof :

Let gtk(s0) = {s, a : s0 ∈ argmaxs′ q(s
′|s, a)}, for q = p+tk . Then, Gtk = {gtk(s0) : s0 ∈ S}

contains at most |Ctk | different groups.

23

At each time t + 1, after playing st, at, the test checks whether for the (random) state stg
def
=

argmaxs,a p
+
tk

(st, at) and the (random) group g = gtk(stg) it holds

|pNt(g)(stg|g)− p+tk(stg|g)| 6 (1 + ε)|g|bHNt(g)
(δ

SC

)
, (28)

We say episode k is good if there exists some (s0, g) such that |p+tk(s0|g)− p(s0|g)| 6 |g|Gg, and
bad otherwise, for Gg to be defined later.

Closeness of p̂t and p. We first show that for all t > tk for the (random) state s̃t
def
=

argmaxs,a p
+
tk

(s′|st, at) and the (random) group g̃t = gtk(s̃t) ∈ Gtk ,

P
(
∃k, tk : ∃t > tk|p(s̃t|g̃t)− pNt(g̃t)(s̃t|g̃t)| > |g̃t|b

H
Nt(g̃t)

(δ

SC

))
6 δ .

Indeed, considering all the possible states s̃t ∈ S and groups g̃t ∈ Gtk , we get

P
(
∃k, tk : ∃t > tk|p(s̃t|g̃t)− pNt(g̃t)(s̃t|g̃t)| > |g̃t|b

H
Nt(g̃t)

(δ

SC

))
6 P

(
∀k, tk : ∃s′ ∈ S, g ∈ Gtk : |p(s′|g)− pNt(g)(s

′|g)| > |g|bHNt(g)
(δ

SC

))
.

Since there are at mostC many groups and S states, we simply use a union-bound argument over them.
We then conclude by application of a time-uniform concentration bound for bounded distribution

P
(
∀k, tk : |p(s′|g)− pNt(g)(s

′|g)| > |g|bHNt(g)
(δ

SC

))
6

δ

SC
.

Bad episodes The test (1) is satisfied at the last time before the end of the episode (t = tk+1 − 1).
Thus, by closeness of p̂t and p at that time and definition of the test being passed, we deduce that at
the last time before the end of the episode,

|p+tk(s̃t|g̃t)− p(s̃t|g̃t)| 6 (2 + ε)|g̃t|bHNt(g̃t)
(δ

SC

)
.

In particular, on an event of high probability, episode k is bad only if

(2 + ε)bHNt(g̃t)

(δ

SC

)
> Gg̃t ,

that is if Nt(g̃t) is small at the last time before the episode stops; typically Nt(g̃t) = Õ
(

(2+ε)2

Gg̃t

)
.

This ensures that we stop the episode early enough and recompute a better model in that case.

Good episodes Let us consider now a good episode such that |p+tk(s0|g)− p(s0|g)| 6 |g|Gg for all
s0, g. We want to show that such an episode is not stopped too early. Indeed in that case, we have on
an event of high probability,

|p+tk(s̃t|g̃t)− pNt(g̃t)(s̃t|g̃t)| 6 |g̃t|Gg̃t + |g̃t|bHNt(g̃t)
(δ

SC

)
.

Thus, the episode does not stop unless

Gg̃t > εbHNt(g̃t)

(δ

SC

)
.

Tuning Let Gg = βbHNtk (g)

(
δ
SC

)
. This ensures that a good episode stops only when

βbHNtk (g)

(δ

SC

)
> εbHNt(g̃t)

(δ

SC

)
thus typically when Nt(g) & ε2

β2Ntk(g) for some g.

24

In particular, the specific value ε =
√

2 implements a criterion similar to the doubling stopping
criterion of UCRL2 for good episodes.

On the other, an episode k is bad only if

(2 + ε)bHNt(g̃t)

(δ

SC

)
> βbHNtk (g̃t)

(δ

SC

)
thus typically if (2+ε)2

β2 Ntk(g) & Nt(g) for all g.

Thus, we deduce that a "good" episode stops when Nt(g) & ε2

β2Ntk(g) for some g, while a "bad"

episode stops when Nt(g) & (2+ε)2

β2 Ntk(g) for some g.

For L1 norm, we can further show that for g ∈ Gtk it holds

|p+tk(s0|g)− p(s0|g)| 6 ‖p+tk(·|g)− p(·|g)‖1 6 2|g|bWNtk (g)
(δ

SC

)
This leads to the natural choice to rule out all bad episodes with high probability:

G =
2bWNtk (g)

(
δ
SC

)
bHNtk (g)

(
δ
SC

) bHNtk (g)(δ

SC

)
.

This in turns suggests to choose

ε =
2
√

2bWNtk (g)

(
δ
SC

)
bHNtk (g)

(
δ
SC

) .

�

Number of episodes To conclude, it thus remains to compute a bound on the number of episodes and
ensures that is stays logarithmic in the time horizon. This is done similarly to the count of episodes in
UCRL2, since in each episode at least one group g gets a total number of observations multiplied by a
constant factor.

25

	Introduction
	UCRL2 setup and notations
	Class-UCRL : known class and profiles
	Known classes, unknown profile mappings
	Unknown classes: clustering
	A sound and effective stopping criterion using hypothesis testing
	Numerical experiments: Empirical regret reduction in the agnostic case
	Other examples of MDPs
	Link with optimal transport
	Further experiments
	C-UCRL2 detailed pseudo-code
	Time-uniform concentration inequalities
	Effective regret analysis of C-UCRL2(C,)
	Ordered Weissman
	Clustering Guarantees
	Problem Definition
	Confident Clustering (proof of Lemma 3)

	A modified stopping criterion

