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Abstract ─ With the density increase of today’s 

printed circuit board assemblies (PCBA), electronic 

test methods such as in-circuit test (ICT) reached 

their limits. In the same time the requirements of 

high reliability and robustness are greater. Original 

equipment manufacturers are obliged to reduce the 

number of physical test points and to find better-

adapted test methods to keep adequate test coverage. 

Current test methods must be rethought to include a 

large panel of physical phenomena that can be used 

to detect- electrical defects, absence, wrong value of 

components, absence and shorts without using test 

points on the board under test (BUT). 

In this paper, a test set-up based on the 

measurement of electromagnetic signature to 

diagnose faulty components contactlessly is 

presented. The technique consists in using magnetic 

field probes, which detect the field distribution over 

powered sensitive components. To evaluate the 

relevance of the method, reference EM signatures are 

extracted from fault-free circuits, which are 

compared to those extracted from a sample PCBA in 

which we introduced a component level defect by 

removing or changing the value of critical 

components. For more robust detection of multiple 

defect scenarios, the principal component analysis 

(PCA) method is used as an outlier detection 

algorithm. 

 

1. Introduction 
During the assembly process of printed circuit 

boards (PCB), defects such as wrong value 

components, missing components, unwanted open 

circuits or short circuits may appear. Manufacturers 

continually look for faster, more accurate and more 

economical ways to identify this kind of defects. 

That’s why performing automated testing of dense 

populated PCBs is a mandatory and cost effective 

solution to ensure manufacturing quality control. 

Testing today’s populated PCBs is becoming 

increasingly challenging and more expensive as the 

use of small size surface mounted devices (SMD) is 

becoming predominant. The emergence of new 

technologies as High-Density Interconnect (HDI), 

embedded chips and Sequential Build-Up (SBU) 

circuit boards will even further increase the 

challenge for the test business. 

Conventional techniques for automated PCBA 

testing involve applying signals through a number of 

test pins and measuring the output signals on the 

other test pins. Functional testing can be performed 

by energizing the PCBA, applying a predetermined 

number of input signals, and determining whether 

the proper output signals are generated by the 

circuitry on the BUT [1]. Alternatively, for a high 

volume manufacturing (HVM) process, a PCBA is 

tested primarily on a “bed-of-nails” fixture called in-

circuit tester (ICT). It comprises pins called “nails” 

which directly contact the metallic traces on the BUT 

so that selected input signals may be applied at 

various test points (TP) on the PCB, and 

corresponding output signals can be measured on 

other TPs. This requires several physical TPs on the 

PCB traces which can compromise the integrity of 

the tested signals. 

This widely used classical technique requires 

tight mechanical tolerances for the board layout, 

easily accessible test points and restricts the 

frequency band at which a board can be tested [2], 

which cannot be afforded anymore on a state of the 

art PCBA. Starting from this need, the idea of taking 

advantage of the HVM nature of the ICT and trying 

to upgrade it with contactless probes to meet current 

test challenges have come. In this paper, we present 

a new testing approach using electromagnetic (EM) 

near field sensors (NFS) to test populated PCBs. A 

state of the art comparison presented in our previous         

article [3] shows that there’s no method existing 

today that takes advantage of the classical ICT 

characteristics and upgrades its “probing by contact” 

structure to a contactless bed-of-nails structure to test 

assembled PCBs. 

The approach presented here aims to upgrade 

in-circuit testers by suppressing some of the ICT 

testing nails which are contact probes used to 

perform electrical test of the components mounted 

on the board, and replace them with contactless 

probes. The principle of the proposed method is 

explained in section 2 in order to understand its large 

scale application. To this aim and to prove the 

effectiveness of the method, we chose a DC/DC 

buck converter module as a case study. The 

converter module, the experimental test bench and 

the used NFS are described in section 3. Simulations 

of value defect scenarios have been carried out on 

Cadence Orcad and validated by measurements on 

DC/DC converter boards in which we introduced 

controlled value defects on the input decoupling 

ceramic capacitors, output capacitors and output 

filter inductance. Simulation and experimental 

results are reported in section 4 to prove that 

component value defects can lead to measurable 

variations of EM signatures.  

 

As explained in section 5, for more robust 

defect detection on component level and thereafter 

PCBA level, we need to take into account 

correlations between the measured EM signatures 

and the different sources of uncertainty that affect 

the signatures measurements. An outlier detection 

algorithm based on Principal Component Analysis 

(PCA) is proposed and detailed in section 6. This 

defect detection method is carried out on Monte-

Carlo simulation data of the DC/DC buck converter 

according to the simulation set-up described in 

section 7. Results are reported in section 8. Finally, 

discussion and perspectives about the upgrading of 

the ICT and the detection method are provided in 

conclusion. 

 

2. Description of the proposed testing approach 
To improve the effectiveness and accessibility 

of current ICTs and gain accessibility to components 

that could not be tested without placing numerous 
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test points, we propose in this article a new test 

approach based on EM inspection using near field 

sensors as an upgrade to the classical In-circuit 

testers. With magnetic field measurements above 

PCBA components, contactless information about 

current distribution can be obtained without access 

limitation on the PCBA surface. 

 

2.1. Principle  

The principle of this method (see Fig.1) is to 

measure the EM near field distribution directly over 

the center of a powered component contactlessly and 

compare the measured electromagnetic signature 

(EMS) to a database of correct signatures pre-

established on fault-free PCBAs. The measured 

electric and magnetic fields (EMF) are generated by 

the distribution of charges and currents respectively 

in the components mounted on the BUT. Accurate 

and repeatable measurements of these fields produce 

a specific time and frequency domain signature for 

each critical component, which can be extended to a 

complete operational block, and then to the complete 

board in a further application. Such signatures are 

then compared to a pre-established non-faulty 

signature pattern of the same type of board to 

determine whether the BUT is faulty or not and 

pinpoint exactly where the faulty component is 

located knowing the position of the NFS on the 

board. 

Thus firstly, the board or the operational block 

of the board is powered and operates normally. The 

EM near-field distribution generated by every 

“critical” component is then detected using NFS 

mounted directly over these components in a bed-of-

nails structure. The registered signature specific to 

the component and excitation conditions of the 

electronic block is registered. Subsequently, the 

measured signature is compared with sample 

signatures of the same block measured on multiple 

non-faulty boards, which were registered in the same 

excitation conditions to determine whether the 

response is in conformance with the known 

reference. 

 
2.2. Types of detected assembly defects  

The defects that can be detected with this 

method are at component level. In other words, it is 

supposed that the bare PCB is fault free guaranteed 

from the manufacturer, or had already been tested 

and certified non-faulty. Assembly defects over 

critical components that can be detected:  

� presence of components,  

� polarity for components that exhibits 

current change when mounted in reverse 

polarizations,  

� value of components,  

� a wrong package that can change the height 

of the component,  

� overstressed/overheating components which 

could be degraded 

� solder defects (open and shorts).  

These components must be carefully chosen in 

advance in order to establish design for testability 

rules (DFT) to minimize the probe count and 

maximize fault detection on a functional block level. 

 

3. Description of the case study: DC/DC buck 

converter 

To validate our approach, we chose a DC/DC 

buck converter because of the important transient 

currents crossing the components when the module 

is powered. Components such as input/output 

filtering capacitors, MOSFET and inductors radiate a 

significant high frequency magnetic field in the near 

field region due to the large transient currents 

crossing them. The currents and the induced 

magnetic fields are related to component values, 

package and mounting. From the analysis of 

measured magnetic fields, the presence and the 

location of assembly defects or wrong components 

can be detected.   

This case study is a typical test scenario of a 

DC/DC converter module in a power management 

block of an industrial high density PCBA. 

We chose an off-the shelf evaluation board of a 

synchronous DC/DC buck converter module with a 

fully integrated controller [4] to run tests, a basic 

electrical diagram is given in figure 2. The powering 

conditions for test are as mentioned in Table 1. 

 
3.1. Simulated defect scenarios 

The defect scenario used to validate this 

approach is the detection of a wrong value of an 

input decoupling capacitor, output capacitor and 

filtering inductor. 

 The approach is tested initially in simulation, 

and then in measurement in order to prove the 

relevance of the measured EM signature variations. 

We modeled the DC/DC buck converter 

evaluation board on Allegro Design Entry [5] using 

the PSPICE model of the controller given by the 

manufacturer (see Fig.2). Estimated values of 

parasitic elements of each critical component were 

used to give a more realistic simulation result. Then, 

we ran multiple parametric simulations with four 

different values of each input capacitor (see Table 2). 

The simulation aims at evaluating how the derivative 

Table 1 

Powering conditions for test 

 

Input voltage Vin 20 V 

Output voltage Vout 12 V 

Load current ILoad 3 A 

Frequency 250 kHz 

 

 
Fig. 1. Principle of the near field probing test approach 
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of the current in each input capacitor reacting to a 

change of value of an input capacitor. The derivative 

of the current flowing through a component is related 

to the magnetic field measured with a commercial 

NF probe over this specific component, as described 

in 3.3. 

 
 

3.2. Test procedure: Experimentation 

We reproduced the same scenario described 

earlier with the same values on the evaluation 

DC/DC buck converter module. We changed the 

value of each input and output filtering capacitor on 

the board several times by soldering and removing a 

different value capacitor separately. Then, we 

collected the time domain signatures over each 

capacitor using an oscilloscope for each of the four 

values evaluated. Collected signatures of each 

capacitor were analyzed to evaluate their variance 

compared to the reference signatures. 

 

3.3. Near-field sensors description  

3.3.1. Near field probes  

Measuring the time domain H-field signatures 

over the powered (see Table 1) DC/DC buck-

converter was carried out using a commercial mini 

(resolution <1mm) Near-Field probe [6] (see Fig.4) 

which measures the derivative of the lateral magnetic 

fields over the components in the range from 30 

MHz to 3 GHz. The probe was directly connected to 

a digital oscilloscope with 50Ω input impedance. 

The NFP was then freely and accurately moved over 

every input capacitor in near-field region at a 2mm 

distance of the center of the component using an 

automatic computer controlled scan table with a 

distance precision of 25µm (see Fig. 3). 

 

3.3.2 GMR Sensors 

Near field probes have a high sensitivity when 

measuring high frequency fields, but, low frequency 

fields are not detected accurately. To compensate the 

lack of sensitivity in low frequency measurements, 

another type of magnetic-field sensors is used: giant 

magnetoresistance (GMR) sensor. 

The GMR effect discovered in 1988 is related 

to field dependent changes in resistance that can be 

observed in thin-film ferromagnetic/non-magnetic 

metallic multilayers. The term GMR was coined due 

to the large change of resistance (10 to 20%) of the 

thin-film materials. GMR sensors have taken an 

important role due to their small size, high signal 

level, high sensitivity, large frequency response and 

low cost [7].  

Contrary to the NFP, this sensor provides better 

sensitivity for relatively low frequency magnetic 

fields (up to 1 MHz) [7]. In a DC/DC converter, such 

low frequency magnetic field dominates above the 

output inductor. The low frequency current ripple 

crossing the inductor can be measured precisely with 

a GMR sensor to detect any variation of the 

inductance. 

In this study, a commercial multilayer GMR 

sensor with a sensitivity of 5.4 mV/V/A for 

frequencies up to 100 KHz from NVE spintronic is 

used [8]. Its use can be extended up to 400 kHz 

because its sensitivity is only 3dB attenuated. 

 

 

 
 

 

 

 

 

 

Fig. 4. Magnetic NFP and the probed components 

Distance=2mm

Tested input capacitors

NFP

 
Fig. 3. Test bench set-up 

Precision automated

scaning arm

EM near field probe

DC/DC buck

converter board

Table 2. 

Input capacitor values in simulation and experiments 

Input 

capacitors 

Correct 

value (µF) 

Incorrect 

values (µF) 

C8 2.2µF 1, 1.5, 3.3, 15 

C9 2.2µF 1, 1.5, 3.3, 15 

C10 2.2µF 1, 1.5, 3.3, 15 

C11 2.2µF 1, 1.5, 3.3, 15 
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Fig. 2. Simplified schematic of simulation 

− Test conditions 

We used the commercial GMR sensor to test a 

2525 SMD inductor mounted on a different DC/DC 

Buck converter evaluation module [9] (see Table 3). 

The measurements were taken at a distance of 

2mm from the surface of the inductor with four 

different values (see Fig. 5). The converter was 

powered on, and the output load current was constant 

at 3A. 

 

 
 

4. Simulation and experimental results 

4.1. Test of the input decoupling capacitors 

4.1.1 Reference signatures 

 

The reference signature is the magnetic field 

captured by the NFP over each input capacitor when 

it has a correct value. 

Figure 6 shows that only around a specific 

frequency we obtain the same significant signature in 

simulation and measurement over input capacitors 

C8, C9, C10, and C11.  

The noticeable difference in amplitude and 

frequency scales between simulation (dashed lines) 

and measurement (solid lines) is due to assumptions 

made on the parasitic parameters of the components 

in the simulation model to be more considered in a 

future work. This is also due to the coupling 

parameter of the NFP that wasn’t taken into account 

in the simulation model. 

 
 

4.1.2 Signatures with wrong values of the input 

capacitors 
In concerns of conciseness, only the signatures 

measured over all input capacitors induced from the 
variation of the value of the input capacitor C8 will 
be presented in this section (see Fig. 7 and Fig. 8). 

The dashed lines show the small signature 
variations of the unchanged input capacitors (C9, 
C10, C11). Bold lines are the variation of C8 
signatures when its value changes. Results from 
simulation and measurements show that the magnetic 
signature of C8 varies significantly, while other 
capacitors signatures change more 
slightly.

 

 
Fig. 7. Simulated current derivatives FFT of input capacitors 

when C8 varies 
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Fig. 6. Simulated current derivatives FFT of input capacitors 

(dashed lines), (vs) measured EM signatures FFT on the buck 

converter PCB 
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Fig. 5. Image of the GMR sensor and the measured SMD 

inductor 

GMR sensor

d=2mm

SMD Inductor

Table 3 

Output inductance test conditions 

Vin_DC/DC 10V 

Vout_DC/DC 1.2V 

Vsupply_GMR 20V 

Fsw 400KHz 

ILoad 3A 

Inductor reference value L=0,47µH 

Inductor wrong values 

to be detected 

L=0,22µH 

L= 82µH 

L= 1,5µH 
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4.1.3 Comparison and analysis 
From the measurement results we can see that 

the capacitor value change induces a significant 
variation on the amplitude spectrum at around 
110MHz of the EM signature of the capacitor being 
changed. This frequency is due to the resonance of 
the input capacitors with the parasitic elements of the 
switching stage of the converter, which depend on the 
board under test and the mounted devices. 

This is still true for all input capacitors when we 
change their value. They all exhibit a significant 
variance of their signature FFT amplitude at around 
110MHz. We summarized all simulation and 
measurement results of all changing capacitors 
(C8,C9,C10,C11) in the graphs below (see Fig. 9.a 
and 9.b).  

A first simple mathematical tool we used to 
prove detection of wrong mounted components 
values through their magnetic signatures is the root 
mean squared deviation (RMSD) (see equation (1)). 
This statistical measure is used to quantify the 
amount of dispersion of the magnetic signatures 
measured over each capacitor around a reference 
signature at the resonance frequency. A low RMSD 
indicates that the signatures tend to be close to the 
reference signature, while a high RMSD indicates 
that they are spread out over a wide range of values. 
The graphs shows that the most scattered signatures 
around the reference are those of the decoupling 
capacitor for which the value was changed.  

 

 

 

We can see that there is a coherence between 
simulation and experimental results. The RMSD of 
the value-changed capacitor is always the highest, 
which allows the detection of a wrong value capacitor 
through the comparison with a reference signature 
without the need of using test points. A robust 
detection method will be presented in section 6. 

4.2. Test of the output filter capacitors 

The output capacitance of a switching DC/DC 
converter is a vital part of the overall feedback 
system. The energy storage inductor and the output 
capacitors form a second-order low-pass filter. The 
output filter’s inductor therefore limits the current 
slew rate. When the amount of current required by the 
load changes, the initial current deficit must be 
supplied by the output capacitors until the regulator 
can meet the load demand [10]. 

In order to measure magnetic field signatures 
over these output capacitors we need to emphasize on 
their effect by pushing them to provide a high 
transient current to the load.  

To do so, we designed a load that provides a 
current step by switching the output current of the 
converter from 50mA to 2.5A, with a rising time of 
1µs and a falling time of 0.5µs [3]. 

4.2.1 Signatures with wrong values of the output 
capacitors 

 

Fig. 9. b. RMSD of the measured FFT amplitude of the 

magnetic signatures in each case where the value of one input 

capacitor is changed separately 

x10 The value of this deviation is 1,8mV, it was 

divided by 10 to fit in the comparison graph. 
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Fig. 9. a. RMSD of the simulated FFT amplitude of the 

magnetic signatures in each case where the value of one input 

capacitor is changed separately  
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each capacitor value 
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Fig. 8. Measured magnetic signatures FFT of the input 

capacitors when C8 varies 
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Magnetic field signature measurements with 
NFP over each changing output capacitor (see Table 
4) show clearly which capacitor’s value is being 
changed. Only the signatures measured over the 
accessible top board capacitors (C16 and C20) are 
presented here (see Fig. 10 and Fig. 11). 

The dashed lines show the small signature 
variations of the unchanged output capacitors. Bold 
lines are signature variations of the changed output 
capacitors, in this case the capacitor C16 and C20. 

 

 

 

We can clearly distinguish the capacitor with a 
wrong value from the amplitude of its signature 
deviating from the reference one. This measured 
signature is the resonance of the loop composed of 
the output capacitors and the current step PCB 
parasitic elements (trace inductances and output load 
parasitic capacitances). In this particular case, we 
observed the resonance at 5.5MHz. 

4.3. Test of the output filter inductance 
The results presented in figure 12 show the 

possibility to detect variations of the value of the 
inductor using a GMR sensor. The peak-to-peak 
amplitude of the sensor’s output voltage doubles as 
the value of the inductor is divided by 2, which is 
coherent since the sensors output has a linear 
relationship with the AC magnetic field (B) which is 

proportional to the current ripple (∆IL) in the inductor 
(see equation (2)).  

 

 

Fsw is the converter’s switching frequency and        
L is the value of the filtering inductance. All 
measurements are in raw conditions. No shielding, 
filtering or amplification were used. 

 

The sensor’s AC output voltages reflects the 
waveform of the current ripple in the inductor, which 
is inversely related to the value of the inductance (see 
equation (3)). Table 5 resumes the results presented 
in Fig. 12. 

The measurement of the magnetic field above 
the inductor, and the comparison with the 
measurement on a reference sample offer a simple 
method to detect a bad mounted inductor value 
without the need for test points. 

 

5. Discussion 

 

In section 4.1.3 a simple statistical indicator was 

used to prove the concept of our test approach. It 

showed that the dispersion of wrong capacitor EM 

signatures around the reference signature in a simple 

defect scenario in which we introduced one wrong 

value component at a time is higher in comparison 

with other capacitors with unchanged values.  

In contrast with the PCB assembly industry, in 

order to test assembled PCBs in production using 

ICT with our approach, we must prove our solution 

in a scenario that takes into account multiple defects 

in the same capacitor set and integrates different 

sources of uncertainty, which affects the magnetic 

signature measurement (see Fig. 13). 

Table 5 

Sensor output voltage according to inductor’s values 
Value of the inductance 

(µH) 

Sensors output voltage 

(mVpp) 

0,22 120 

0,47 (reference value) 62 

0,82 38 

1,5 16 

 

 
Fig. 12. Output voltage of the GMR sensor showing the variation 

of the inductor’s value 
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Fig. 11. Measured EM signatures FFT of the output capacitors 

when C20 varies 
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Fig. 10. Measured magnetic signatures FFT of the output 

capacitors when C16 varies 
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C17

Table 4 

Values used for the output capacitors 

Input 

capacitors 

Correct 

value (µF) 

Incorrect 

values (µF) 

C16 47µF 22, 33, 68 

C20 22µF 10, 15, 33 

 

(3) 

(2) 
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The different sources of uncertainty which can 

affect measurement results are: 

� Dispersion of component values within 

tolerance range: σ (1, 2, 3, 4) 

� NFS position over the components C1 to C4 

and solder process variations: σ (P1, P2, P3, P4) 

� Current Isource variations due to surrounding 

magnetic field coupling: σI  

� Measurement error introduced by the 

measurement equipment: σMeas 

All these error sources must be taken into account 

when processing the measured signatures.  

 

The main uncontrolled uncertainties that vary 

randomly from PCB to another are the component 

value dispersion within the tolerance range and 

excitation current variations. It is clear that adding 

these uncertainties in our system and trying to detect 

defects with a simple dispersion indicator as done in 

the first scenario, cannot give a result with a high 

degree of confidence. Furthermore, signatures 

measured over each component are partially 

correlated. These correlations follow complex laws 

difficult to predict, which makes a defect indicator 

based solely on RMSD insufficient to account for 

these correlations.  

Another reason to use a different fault detection 

method is the large number of measured signatures 

on an industrial assembled PCB during ICT. This 

will make the process of detecting faulty components 

using RMSD very complex and time consuming. 

Hence, the necessity to use a more robust detection 

algorithm. In the next part, a defect detection method 

is presented. 

 

6. Defect detection algorithm 

 

The definition of a component defect in our case 

is every signature measurement which deviates 

significantly from the reference. Small signature 

deviations which result from capacitor value 

tolerance and current variations must not influence 

the detection. In other words, the defect detection 

algorithm must be able to recognize these variations 

in a signature measurement and distinguish them 

from faulty signatures. Only measurements which 

deviates significantly from tolerance ranges should 

be taken as defect signatures. 

Measuring signatures over N components 

mounted on a PCB forms an N dimensional space in 

which abnormal signature values will be single data 

points that lay far from the rest of the distribution, 

and therefore considered as outliers [11]. 

Figure 14 describes the integration of outlier 

detection algorithm for one assembled PCB in the 

production test process. 

 
6.1 Outlier detection 

In the process of collecting, processing and 

analyzing data in an industrial environment, outliers 

can come from many sources and hide in many 

dimensions. That is the reason why detecting defect 

outliers properly is of major importance to assure the 

quality of products. 

There are several methods for detection of outliers 

available in the literature: parametric methods such 

as extreme value analysis, probabilistic and 

statistical modeling:  

� Although they are useful when the 

distribution of measured values in the 

featured space is well known, however, they 

don’t take correlation between variable into 

account which makes them useless in our 

case;  

� non-parametric methods such as density 

based scan (DBscan): a really powerful 

clustering method when dealing with a large 

density of data, nevertheless weak when 

clusters have large differences in densities;  

� linear regression models which include 

projection methods that model the data into 

lower dimensions using linear correlations. 

These projection methods are relatively 

simple to apply and quickly highlight 

extraneous values [12]. 

 Principal Component Analysis (PCA) for 

example is one of the projection methods that take 

the correlation between variable into account to 

lower the dimensions of the featured space. It also 

makes it possible to analyze the influence of 

variation of each variable, which is very interesting 

in our application in order to determine which 

components are the source of the outliers [13]. 

6.2 Outlier detection using Principal Component 

Analysis 
Analogically with the statistics domain, our 

measurement system has: 

� One independent variable (IV), which is the 
dummy defect we introduce and control, in 

 
Fig. 14. Outlier detection algorithm in the production process  
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Fig. 13. Principal sources of uncertainty that affect magnetic 

signature (S to S4) measurements with NF probes for each 
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other words: the value of the components we 
vary. 

� Multiple dependent variables (DV), which are 
the measured magnetic signatures. As we 
explained earlier, we can have multiple 
defects in the same capacitor set, which means 
multiple signatures that change differently at 
the same time. Thereby, our statistical system 
will have multiple dependent variables which 
may present a certain degree of correlation 
between them. 

Since we can’t assume a distribution of values for 
our measured variables, we will suppose that the 
system is non-parametric. 

 Applying our test approach in a PCBA production 
line, we will be surrounded by data with a large 
number of variables, some of which might be 
correlated. This correlation between variables brings 
about a redundancy in the information that can be 
gathered by the data set. Thus, in order to reduce the 
computational and cost complexities, we can use 
PCA to transform the original variables to linear 
combinations of these variables called principal 
components (PC), which are uncorrelated. In this new 
coordinate system, the covariance matrix is diagonal 
and the first PC points into the direction with the 
largest variance within the data set. The PCs are the 
eigenvectors of the covariance matrix and its 
eigenvalues are the variance obtained with these new 
variables. Given the percentage of variation that we 
want to be captured in the abridged data set, we can 
select the number of PCs to be considered without a 
significant loss of information. 

PCA is not only a technique to reduce the number 
of variables but can further be used for classification 
purposes based on the Principal Component Scores. 
Using PCA in our case will allow us to classify data 
into 2 categories: faulty PCBs and good PCBs, which 
will be presented next in an application on simulation 
data extracted from our DC/DC buck converter 
model. 

7. Simulation set-up 

 
Using the simulation model of our DC/DC buck 

converter, six non-faulty PCBs are generated with 
differences in terms of components values. They vary 
randomly according to their tolerance range using a 
uniform Monte-Carlo simulation. Among them, a 
faulty PCB with one or multiple value defects in the 
decoupling capacitors block is inserted. We added as 
well a small random variation in the input supply 
voltage, noted V1 in figure 2.  

The Principal Component Analysis algorithm was 
applied on simulation data using the Statistics and 
Machine Learning Toolbox of Matlab [14]. These 
data are the Fast Fourier Transform (FFT) of the 
currents flowing through in each input decoupling 
capacitor.  

The PCA of raw data function implemented in 
Matlab does the following: 

� Centers variables by subtracting their mean 
value. 

� Does not scale data, which is not really 
relevant in our case because all measurements 
are in the same scale. 

� Creates the Principal Component (PC) vector 
space called ‘Loadings’ which are equal to:  

 

The eigenvectors and eigenvalues are 
calculated from the covariance matrix of the 
measurements. 

� Projecting the original measurement data on 
the PC vector space by multiplying the 
measurements matrix, called data matrix, by 
the PC vectors. As a result, we obtain a matrix 
called PC scores that represents the new 
coordinates of each data point in the new PC 
coordinate system. 

� The eigenvalues calculated from the 
covariance matrix of the data represent the 
variance captured by each Principal 
Component. 

Knowing how to represent this output information 
graphically and interpreting them is key to determine 
which PCB is faulty and even more which component 
is responsible of the defect.  

In our case, we have a data matrix of four 
capacitors. Thus PCA calculates four Principal 
Components and arranges them in a descending order 
of variance. In the following results we choose the 
three highest variance PCs in order to plot the scores 
in a 3D graph for clarity purpose. 

8. Results 
8.1. Detection scenarios 

To be sure that PCA can detect multiple defects on 
the same capacitor block, several possible defect 
cases in the decoupling or output capacitor blocks 
were tested. This defect cases are summarized in 
Table 6. Only results from N°1 and N°2 defect 
scenarios are presented, the other cases gave similar 
results. 

 

Table 6 

Simulated defect scenarios 
N° Defect 

scenarios 

Details 

1 One 

wrong 

value 

capacitor 

a. The wrong value is lower than reference 

 b. The wrong value is higher than reference  

2 All wrong 

value 
capacitors 

c. All wrong values are lower than reference 

 d. All wrong values are higher than reference 

 e. At least one wrong value is lower than 

reference 

 f. At least one wrong value is higher than 

reference 

3 Two 

wrong 

value 

capacitors 

g. first wrong value is higher than reference; 

second is lower than reference 

 h. Both wrong values are higher than reference 

 i . Both wrong values are lower than reference 

4 Three 

wrong 

value 

capacitors 

j. All wrong values are higher than reference 

 k. All wrong values are lower than reference 

 l . At least one wrong value is higher than 

reference 

 m. At least one wrong value is lower than 

reference 

 

 
%&'()*+, = -)+.*/.01&2, ×  -)+.*/'34.,5 (4) 
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8.2. PCA detection frequencies 

Contrarily to the detection method reported earlier 
in this article, the frequency on which we are going to 
detect signature variation, does not show up at first 
sight. A frequency range in which the signal to noise 
ratio (SNR) was at minimum for all measures was 
selected, and a PCA was run on the ten first 
frequencies of the current’s FFT spectrum for each 
and every defect scenario. A cross reference between 
all the results obtained showed that the detection is 
always significant for the even multiples of the 
harmonic frequency at 250 kHz. This frequency is 
therefore chosen to run a PCA. In a more general 
application case, this frequency is to be defined 
upstream with the PCB designer. 

8.3. Defected PCBs detection 

A graphical presentation of the PC scores shows 
clearly which PCBs are faulty and consider them as 
outliers (see Fig.15).  

 

The first Principal Component (PC1) captures the 
most variation of the data- 92.67%- which is the ratio 
between the eigenvalue associated to PC1 and the 
sum of all eigenvalues. This ratio describes the 
contribution of a particular PC to the dispersion of the 
data.  

However, a question arises: which metric to use in 
order to characterize the detection of this outlier on 
the PCA score plot? 

A characteristic quantity of an outlier point in the 
PCA score plot is its distance from the non-faulty 
PCB cluster centroid which is predefined based on 
PC1, PC2 and PC3 score values in a prior phase. 
Expressing this distance as a function of the standard 
deviation of the non-faulty PCB cluster can define a 
detection threshold of an outlier data point. 

A statistical quantity which can be used in this 
case is the Z-score. It describes how much a 
measurement M deviates from the mean µ  of N 
sample (see equation (5))  

 

 It is generally involved with Chauvenet’s criterion 
[15] for rejecting or accepting deviated measurements 
but only when assuming a normal distribution of the 
data. In our case the data distribution is not known 

which prevent from using Chauvenet’s criterion to set 
a detection threshold.  

To define a viable outlier detection threshold, a 
worst case detection scenario was adopted.  

This scenario consists of choosing capacitor 
defective values very close to the tolerance range 
which is a non-defect value range and assess the             
Z-score behavior. The test cases are presented in     
Table 7 and the corresponding results in figure 16. 

 

 

Figure 16 shows that the Z-score of the faulty 
PCB6 evolves nearly symmetrically about the 
reference value which means that whether the faulty 
value is higher or lower than reference the detection 
of the outlier PCB is assured. Furthermore and most 
importantly, this figure shows the threshold of outlier 
detection, which is a Z-score value that equals two. In 
other words, the calculated distance from the centroid 
of the non-faulty PCB cluster must be higher than 
twice the standard deviation of this cluster in order to 
insure a good detection of an outlier PCB. With this 
being the worst case defect scenario, the detection 
using this z-score criterion is always true for all other 
defect scenarios mentioned in Table 6. 

8.4. Defected components detection on a faulty 
PCB 

As mentioned earlier, PC scores are the new 
coordinates of the data matrix in the PC coordinates 
system defined by the ‘Loadings’, which is a square 
matrix containing the PC vectors. The transpose of 
this matrix gives the initial coordinate system vectors 
(IV) coordinates in the new PC coordinate system. 

 
Fig. 16. Z-score evolution of all PCBs for different defect 

capacitor values 

Table 7 

Simulated worst case defect scenarios of capacitor 
Wrong values (µF) Details 

4 

Higher than reference 

values 

3.5 

3.06 

2.84 

2.62  

2.42 

Tolerance range 2.2 

1.98 

1.76 

Lower than reference 

values 

1.54 

1.32 

1 

0.1  

 

 
6,0&2. = 7 − 8

9

 
Fig. 15. PCA results for 6 PCBs with one faulty PCB: PCB3 
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These projected vectors give information about the 
directions in which data is scattered as well as the 
contribution of each principal component in the 
scattering. This will be shown through the defect 
cases presented next, as we project the transpose of 
the ‘Loadings’: Lo1, Lo2, Lo3, and Lo4 in the 3D 
score plot. 

-  Defect scenario N° 1: One wrong value capacitor 
detection: 

A data matrix was generated containing a 
wrong value capacitor C8 inserted in PCB6. After 
running a PCA on the data, results for both cases a 
and b show that PCB6 is isolated from the non-faulty 
PCB cluster. As the calculated Z-score values in both 
cases are higher than the threshold, PCB6 is 
considered an outlier, thus, a defected PCB.  

 

 

For the first case where C8 has a value lower 
than reference (Cref=2.2µF): the projection of the IVs 
shows that only Lo1, which is the projection 
corresponding to the first PC in the PC space, points 
toward the defect plane which is the plane containing 
the faulty PCB6 (see Fig.17). Contrarily to the second 
case where C8 has a value higher than Cref, Lo1 
points away from the defect plane (see Fig.18). 

-  Defect scenario N° 2: All wrong value capacitors 
detection: 

Similarly to case a and b, when all defected 
capacitors have lower values than the reference     
(case c) all the projected IVs point toward the defect 
plane (see Fig. 19). Figure 20 shows that values 
higher than the reference (case d) leads also to 
projected IVs pointing away from this plane. 

 

 

In case e, only capacitor C9 has a wrong value 
lower than reference, the others have higher values. 
Lo2, which is the projected IV corresponding to the 
second PC, points toward the defect plane (see Fig. 
21). 

 

Capacitors C8, C9 and C11, which have lower 
values than the reference, have their corresponding 
projected IVs Lo1, Lo2 and Lo4 pointing directly to 
the defect plane. Lo3 corresponding to C10, which 
has a higher value than the reference, points away 
from this plane (see Fig. 22). 

 
Fig. 21. PCA results for 6 PCBs with PCB6 faulty and all 

defected capacitors C8= 22µF, C9= 1µF, C10= 40µF                

and C11= 10µF /  Z-score=104.42 

 
Fig. 20. PCA results for 6 PCBs with PCB6 faulty and all 

defected capacitors C8= 22µF, C9= 33µF, C10= 40µF              

and C11= 10µF /  Z-score=81.58 

 
Fig. 19. PCA results for 6 PCBs with PCB6 faulty and all 

defected capacitors C8= 0.2µF, C9= 0.5µF,    C10= 0.3µF and 

C11= 0.1µF /  Z-score=33.22 

 
Fig. 18. PCA results for 6 PCBs with PCB6 faulty and one 

defected capacitor C8=8µF /  Z-score= 12.39 

 
Fig. 17. PCA results for 6 PCBs with PCB6 faulty and one 

defected capacitor C8=0.1µF /  Z-score=12.38 
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Defected PCBs have always a Z-score higher 
than the threshold. They are a part of the defect plane 
formed by the axes PC2 and PC3 at the PC1 
coordinate of the defected PCB. Projected IVs 
pointing toward this plane correspond to defected 
capacitors that have a lower value than reference. 
Those that point away from the defect plane 
correspond to either wrong value capacitors that have 
higher values than the reference (see Fig. 21), or non-
faulty in-tolerance capacitors (see Fig. 17).  

The use of PCA and Z-score allows not only a 
detection of a faulty PCB, but also the components 
that might be contributing to this defect. Knowing 
that an operator must intervene to change the defected 
components indicated by projected PC vectors 
pointing toward the defect plane, a quick check on 
components corresponding to the other vectors is 
necessary. 

9. Discussion: 
The investigation of the approach presented in this 

paper aims to upgrade in-circuit testers by replacing 

some of the ICT classical nails used to perform 

electrical test of the components mounted on the 

board, with contactless probes integrating magnetic 

field (MF) sensors which measure the near MF over 

the components and give on-line  assembly defect 

detection. The main advantages of this approach 

consists in: 

� Granting physical accessibility to test 

mounted components using a minimum of 

test points 

� PCB surface reduction 

� Lowering the contact nails and test point 

count on the board 

� Reducing the parasitic influence of the nail 

on the measured signal (i.e. less degradation 

of signal integrity of high speed digital 

signals) 

Considerations that must be taken into account when 

using this technique are: 

� Powering the tested block in order to get 

measurable magnetic signatures over the 

components 

� Only components which have a significant 

MF emission in the near field region are 

testable: we proved that this approach 

works for both ceramic and tantalum 

capacitors and inductors 

� DFT rules establishment is a primary phase 

that must be set-up upstream with the 

design department in order to determine the 

powering conditions of the component 

blocks to be tested. 

Economically speaking, the use of probes integrating 

magnetic sensors will be profitable compared to the 

use of the classical ICT nails in terms of the number 

of the probes used and the saved area on the PCB. 

Nevertheless, a detailed return on investment study 

should be conducted in order to quantify this profit. 

  

10. Conclusion 
We presented the possibility of using magnetic 

field signatures to diagnose faulty components 
contactlessly on a limited physical access PCBA.          
This approach proposed to overcome the limitations 
of classical ICT, uses a detection algorithm based on 
Principal Component Analysis and Z-score to 
reinforce the fault detection on a powered block of 
the BUT. 

In the first part of the paper, we validated the 
principle of our proposed measurement approach 
through the test of the filtering components of a 
DC/DC converter. Miniature near field probes and 
GMR sensors were used to measure magnetic field 
distributions over powered sensitive components and 
to give insight on the value of the component and its 
solder condition (soldered or non-soldered). The 
loading of the BUT was specifically chosen to 
enhance the sensitivity of the EM measurements.  

These first experimental  results  demonstrate  
that  the magnetic field probing approach can provide 
a  viable  option  to  detect specific component level 
defects and decrease the number of  traditional  test 
points  while  still  providing  access. However, the 
magnetic signature measurement must be coupled to 
a robust defect detection method. 

The outlier detection approach used in this first 
part was a simple statistical indicator that compares 
the deviations of measurements around reference 
signatures. It turned to be not really significant in 
complex defect scenarios which may exist in a typical 
industrial PCBA. 

That’s why we introduced the use of Principal 
Component Analysis algorithm in the second part of 
the article. Its purpose is not only the detection of 
defected PCBAs but also the identification of the 
components responsible for the defect. Using data 
measurements from Monte-Carlo simulations run on 
our DC/DC buck converter model, demonstrated that 
this algorithm can give excellent results regarding the 
detection of the defected PCBAs and the components 
responsible for their defect.  

Limitation of this algorithm in faulty 
component identification may appear in some 
particular combination of defect components. For 
example, simulation results showed that, when the 
defected capacitors had both higher and lower values 

 
Fig. 22. PCA results for 6 PCBs with PCB6 faulty and all 

defected capacitors C8= 0.2µF, C9= 0.5µF, C10= 5µF                 

and C11= 0.1µF /  Z-score= 38.56 
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than the reference ones, the identification of faulty or 
non-faulty components can be wrong. However, the 
algorithm identifies the faulty nature of the PCB 
successfully. 

Research is still on-going to improve the 
measurement technique and the detection method 
with the aim of a full integration in industrial ICT. 
The perspectives of this work include: 

� The application of this test approach to 
other types of circuits in order to determine 
all the possible cases of application. 
 

� Improving the measurement sensitivity and 
detection reliability. 
 

� Associating the detection method with a 
machine learning algorithm allowing the 
in-circuit tester to better detect defects 
throughout the test of a series of the same 
product. 
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