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ABSTRACT

Dielectrophoresis (DEP) and electrorotation (ROE) tavo electrokinetic phenomena exploiting
non-uniform electric fields to exert a force orgoe on biological particles suspended in liquid
media. They are widely used in lab-on-chip devilmesthe manipulation, trapping, separation
and characterization of cells, microorganisms atiteroparticles. The DEP force and ROT
torque depend on the respective polarizabilitiehefparticle and medium, which in turn depend
on their dielectric properties and on the fieldjfrency. In this paper, we present a new software,
MyDEP, which implements several particle modelsedasn concentric shells with adjustable
dielectric properties. This tool enables to stuugy variation in DEP and ROT spectra according
to different parameters such as the field frequemcy medium conductivity. Such predictions of
particle behavior are very useful for choosing appate parameters in DEP experiments. The
software also enables to study the homogenizedeptiep of spherical or ellipsoidal multishell
particles and provides a database containing phediscell properties. Equivalent electrical
conductivity and relative permittivity of the cellone and in suspension can be calculated. The
software also offers the possibility to create dsapf the evolution of the crossover frequencies

with the electric field frequency. These graphs lsamirectly exported from the software.



INTRODUCTION

The term “dielectrophoresis™ was first introducgdRphl in 1951 (1) to describe the motion
of dielectric particles due to interaction with anruniform electric field. Depending on the
frequency of the applied field and on the dielecpioperties of the particle and its immersion
medium, different polarization mechanisms come pity, the main mechanisms being related
to the formation of a double electric layer at tparticle/liquid interface and to charge
accumulation at interfaces between media of diffeedectrical properties (Maxwell-Wagner
interfacial polarization effect) (2). The force uédsg from the interaction between the induced

dipole momenim and the field gradient is expressed by:
Fpgp = —VUg = (m.V)E (1)
whereUg,; refers to the electric potential energy &ntb the electric field.
For a spherical particle of radius,;, the induced dipolar moment is given by:
m = 4me,,egCM()13E (2)
whereCM (f) is the Clausius-Mossotti factor:

& — & (3)
CM(f) = F——
) & + 2,

&, andey, refer to the complex permittivities of particledamedium, which depend on their
respective electrical conductivities and relatiegnpittivities and on the field angular frequency

w:

& =gey—j— (4)



whereg; is the relative permittivityg, the vacuum permittivityg; the electrical conductivity

andw = 2rf with f the frequency.

Development of Eg. 1 leads to the expression ofgeémeeralized time-averaged DEP force
3):
l:"DEP = 27T€m€0Te3xt(Re[CM(f)]VE}%MS + Im[CM(f)] (E§V¢x + E321v¢y (5)

+ E2V,))

where ¢, ¢, and ¢, are the phase shifts of the field components & @artesian

coordinates.

Conventional Dielectrophoresis
If the electric field applied is stationary, Egsitnplifies to:
Fepep = 2memeotoxc Re[CM (f)]VE Ry (6)

This phenomenon is sometimes referred to as “cdiorel dielectrophoresis”, abbreviated
cDEP. The force depends on the gradient of thersduaectric field intensity and exists only in
the presence of a non-uniform electric field. lpeportional to the volume of the particle, as
well as to the real part of the Clausius-Mossatitdr, Re[CM(f)]. This term, reflecting the
polarizability contrast between the particle ansl ilnmersion medium, also determines the

direction of the force:

* When the particle is more polarizable than its imsieen medium(Re[CM(f)] > 0), the
force acts in the gradient direction and therefdreves the particle towards areas of

maximum field intensity. This correspondspiositive dielectrophoresi@DEP).



* On the contrary, when the particle is less polatzathan its immersion medium
(Re[CM(f)] < 0), the force moves the particle against the gradiemtards the regions of

minimum field intensity, which is referred to asgative dielectrophores{eiDEP).

Electrorotation

While conventional dielectrophoresis is based oe tise of stationary electric fields,
electrorotation, abbreviated ROT, induces a rotaogion on a polarizable particle exposed to a
rotating field. This technique was developed in 1880s by Arnold and Zimmermann (4), who
proposed to use a four-pole electrode structurgetwerate the field by applying 90° phase-

shifted signals between two adjacent electrodes.

When a polarizable particle is suspended in a ingiatlectric field, a dipole forms and
should rotate synchronously with the field. In pi@e, when the angular frequency of the field is
sufficiently high, the dipolar relaxation time motlong to allow this synchronism. The temporal
shift (or phase delay) between the dipole and id fesults in a torque exerted on the patrticle,

of expression:
(Tg) = m X E = —4nr epeom[CM(f)]E?e, (7)

wheree, represents the unit vector normal to the electygdae andCM (f) the Clausius-

Mossotti factor (cf. Eq. 3).

As the particle rotates, it experiences a resistigeous torque from the surrounding fluid of

expression (5):

<rn) = _87ane3xtQOez (8)



wherey is the dynamic viscosity of the medium dglis the constant angular velocity of the

particle.
At the equilibrium between induced torque and tessviscous torque, the rotation rate for a
spherical particle is given by:

€0€Em (9)
2 Im[CM(f)]E?

N(w) = —

The minus sign indicates that the particle rotaggnst the field direction fam[CM (f)] >
0. Otherwise the direction of rotation is with theld. Curve fitting procedures may be used to
obtain the dielectric parameters of a cell, by miging the deviation between the experimental
ROT spectrum (plot of the rotation rate with reggecthe field frequency) and the theoretical

spectrum predicted by the appropriate multi-sheltel.

Travelling-Wave Dielectrophoresis (TWD)

The Travelling-Wave Dielectrophoresis force, abbaad TWD, acts on a particle subjected
to a travelling electric field. It is related toetlphase non-uniformity of the electric field and
arises from the interaction of the travelling fieldth the phase-lagging component of the
induced dipole moment. Such a field can be prodigeplanar electrodes arranged in rows and
driven by a polyphase AC voltage. TWD is therefareanalogue of ROT, Eq 5 remains the
same, but with electrodes arranged in line, rdthem in a circle. The resulting translational force
propels the particle along the electrodes, withagainst the field direction, depending on
whetherIm[CM (f)] is negative or positive, respectively. In practicBEP and TWD effects
can be observed simultaneously: while the particdaslates, it is either pushed above the

electrodes (nDEP) or attracted onto them (pDER)edding on the sign d@fe[CM (f)] (6).



MyDEP Software

Before performing experiments in the lab with DEHFAs useful to predict the particle and
cell responses to the electric field. This requikieswledge of particles or cells properties, which
can be obtained from the literature, and implententaof equations related to the particle

model.

MyDEP is a computational software, programmed waJaiming to study dielectrophoretic
behavior of particles and cells in a suspended umedMore precisely the software can calculate
and display the Clausius-Mossotti factor (real andginary parts) used in DEP for different
conditions (medium, frequency range, model of pha}i It can also calculate the equivalent
permittivities and conductivities of particles adoand in suspension in a medium thanks to the
Maxwell-Garnett and Hanai equations. Graphs reptesg crossover frequencies vs electrical

conductivity of the medium are also available.

Cell modeling

Most particles, and especially biological cellse anot homogeneous. It is therefore
mandatory to model the different layers that cauatithem (cell membrane and cytoplasm in
particular). Calculating the Clausius-Mossotti @actrequires to successively calculate the
equivalent permittivities of the inner layers totaih a homogeneous equivalent particle. The
different models implemented in MyDEP are: “homagmus particle”, “single-shell”, “two-

shell”, “three-shell” and “four-shell” are presedt® FIGURE 1.

For a cell modeled with a “single-shell” model caymspd of a cytoplasm surrounded by a

cell membrane, the equivalent complex permittiyityis:



_ Tew Y M) (10)
_ (rext — thcm) +2 (eg‘p + 2€im,

€ =
eq cm ( Toxt )3 _ Ezp — Ezm
Text — thcm Egp + 262m

The formulation of the complex permittivity for gisoids can be found in (8).

*

Cell suspension

In the presence of particles, the effective pemiit of the suspensios,,;, depends on the
volume fractiong occupied by the particles. It is given by the MalviGarnett mixing equation

if the volume fractionp < 0.1

* * * *
Emix " €m _  €p " €Em (11)
Emix T 26m €p + 2em,

which is equivalent, according to (9), to the difecmulation:

/ €p — €m (12)
. i €p + 2€},
Emix —€Em| 1+ 3¢ &= e

\ 1-¢ € + 265,

or by the Hanai equation (10), theoretically ugbtec 0.8 (11, 12):

* * «\1/3
Cmix Z ) (Em) Ty _ (13)
€Em — €p €p

Unfortunately, there is no direct expression foe ttalculation ofe,,;, and the value can

therefore be obtained either by solving the culgjea¢ion or by numerical integration with the
difference equation of the Hanai equation. Therlats been implemented in MyDEP, with the

possibility to choose the number of increments. Me¢hodology can be found in (13, 14).



Softwar e for dielectric modeling

In 1991, Irimajiri and al. (14) published a softedor dielectric modeling of particles in
suspension called “IMPEDANCE ANALYSIS mini”, prograned in BASIC. Unfortunately,

this program is not available anymore.

Dielectric modeling of particles behavior is oftéone in MATLAB (2, 3) and some authors
have proposed MATLAB-based programs that are availél5). Those programs are however
limited in terms of functionalities implemented,affborm dependent and may lack stability
through the different releases of MATLAB and requan access to MATLAB. For those
reasons a multiplatform, executable and user-fhemuogram is needed. This software is
intended to be used by both the dielectrophoresisntunity and for teaching activities. It does

not require any prior knowledge of the dielectromgsis equations.
MATERIALSAND METHODS

The software MyDEP is written in Java using thergwAPI and is freely available as a
standalone .jar file for Windows, Mac or Linux &tgy/doi.org/10.5281/zen0do0.1321928. The
installation of Java (also known as the Java RumtiEnvironment or JRE) is required
(https://java.com/en/download). The software versiomber as well as the recommended java
version are available on the website https://mydipsire.github.io, under the “Getting Started”

menu (item “Installation and system requirements”).

A local database is embedded within the applicatising the SQL database engine SQLite.

The Java Database Connectivity (JDBC) APl was tséateract with SQLite.

The static website hosted on GitHub Pages was Ingilalg Jekyll. A link to the website is

available in the software under the “Help” menerfit“Online resources”).



RESULTSAND DISCUSSION

Database

MyDEP allows the user to specify the electricalvetl as the geometrical parameters of the
investigated particle. No prior knowledge of theigtipns behind is required to use the software,
which makes it interesting for users non-familiathnDEP. A database compiling information
from the literature is provided to help the usestart with already existing data. The user can
also enrich the database with new information. Aalodatabase is embedded within the
application using the SQL database engine SQLMe.Java Database Connectivity (JDBC) API
was used to interact with SQLite. The provided blasa contains for each set of data the name
of the model, the authors, the title of the artithe journal where it was published, the year of
publication as well as the DOI or URL to help theers to identify where the model they are

using is coming from. An example of the databag#aegr is displayed in FIGURE 2.

CM factor

MyDEP allows the user to display different graphséd to the dielectric properties of
particles and cells. Real and imaginary parts ef@hausius-Mossotti factor can be displayed in
the interface. Users can get values about theadisgicurves in the “Results” panel. In particular
the values of the crossover frequencies, correspgrid the frequencies at whidte[CM (f)] =
0, are directly accessible as well as the frequenak the minimum and maximum of
Im[CM(f)]. This graph can be used to determine the direaifahe DEP force. As shown in

FIGURE 3, viable and non-viable yeast cells hawdiferent behavior for the same medium
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conductivity, a,,, = 7.8 mS/m. The DEP force, which is proportional to Re[CM(fi§ always

higher in magnitude for the viable yeast cells.

Parameter sweep

All the parameters of the medium and of the diffiérenodels can be swept linearly or
logarithmically between two values. FIGURE 4 ilhadées the graph generated by a logarithmic
sweep on ten values of,, for Jurkat cells (17). The more the electrical ciaetivity increases,
the lower the initial values of thRe[CM (f)] and the shorter the frequency range where Jurkat
cells experience pDEP. As,, increases, the frequencies of the maximum andnmaim of
Im[CM(f)] are shifted to higher values up to the point whergCM (f)] keeps a positive

value.

Cell separation

Depending on their dielectric properties, differeetl types can be separated. FIGURE 5
illustrates that HEK cells (18) and MCF7 (19) hal#erent responses to the electric field with
the frequency. The crossover frequency, transiiom the nDEP regime to the pDEP regime,
are respectively 169 kHz and 65 kHz for the HEK &m@F7 cells in the specified medium.
These two cell populations can be separated basdbeir electrical properties between these
frequencies. In particular at 100 kHz (vertical dline in FIGURE 5) HEK cells experience

nNDEP contrary to MCF7 cells, which experience pDEP.

Conductivity and per mittivity of cell and suspension
FIGURE 6, FIGURE 7 and FIGURE 8 illustrate how sedhd medium properties influence
the properties of the suspension. In each of tifigsees the orange dotted line corresponds to

11



the properties of the medium alone and the bluil $iole to the homogenized properties of a
HEK cell. The green dashed line corresponds toptioperties of the suspension at a specific

volume fractiong = 0.3 for those figures.

Crossover frequencies

Crossover frequencies correspond to the frequenaieswhich Re[CM(f)] =0. It
corresponds to the transition from a nDEP regima mDEP regime and vice versa. For each
electrical conductivitya,,, this value might differ. FIGURE 9 illustrates tlegolution of the
crossover frequencies with,, for a Jurkat cell. In this figure, the lower crosger, in blue,
corresponds to the transition from nDEP to pDEP taedupper crossover frequency, in orange,
to the transition from pDEP to nDEP. At approxinhate,, = 0.392 S/m, there is only one
crossover frequency point which means that, atghdr conductivity, cells only experience
nDEP. Crossover frequencies are commonly useddiscaminatory factor between different

cell types

Graph export

All the graph generated in MyDEP are fully editabl&ée font style and size, the color, the
legend content, the curve style and size can aldpested directly in the interface. The export
menu enables the user to directly generate thelagesph graph as an image file with the
possibility to tune the size and resolution as \aslthe file format. A CSV file can be generated

if additional data processing is required and hetaay available in the MyDEP software.

CONCLUSIONS

12



MyDEP offers a new software alternative aimed ahloEP specialists and beginners. The
software, delivered with a database compiling deden the literature, which can be updated
automatically, aims at centralizing the electrigedperties published in the literature and making
them easily accessible to generate graphs. MyD&ddadfers the possibility to import the user’'s
own data points to compare them to different cedbeis. Future developments of MyDEP will

be towards parameters extraction from the useris dataset and to impedance calculation.
SUPPORTING MATERIAL

Supporting Materials and Methods containing thecaétcalculations and formulas used in

MyDEP are available.
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Figure caption

FIGURE 1 lllustration of the different spherical darellipsoidal cell and particle models
implemented in the interface. All the models “hormogous sphere”, “single-shell”, “two-shell”
and “three-shell” are illustrated with an exampl&e implemented “four-shell” model is not
illustrated here.

FIGURE 2 Overview of the database explorer (Seafichph MyDEP. A click on the desired
element from the literature shows the values aasetin the interface.

FIGURE 3 Example ofRe[CM(f)] and Im[CM(f)] for viable and non-viable yeast cells
suspended in a low conductivity medium,(= 7.8 mS/m, €, = 78). Data from (16). The
black line represents the baseline at 0.

FIGURE 4 Example of the evolution & [CM(f)] andIm[CM(f)]with a logarithmic sweep on
ten values ofo,, from 1 mS/m to 1.6 S/m for a Jurkat cell. Datanfr¢17). The black line
represents the baseline at 0.

FIGURE 5 Example of the differe®e[CM(f)] for a HEK cell (18) and a MCF-7 cell (19) in a
medium witho,, = 50 mS/m. The crossover frequencies are respectively 168 dhtl 65kHz.
These two cell populations can be separated baseitheir electrical properties at 100 kHz
(vertical blue line).

FIGURE 6¢.,, €, ande,,;, corresponding to respectively the equivalent neggpermittivity of

a HEK cell, the relative permittivity of the susgeon medium and the equivalent relative
permittivity of the suspension of HEK cells at duroe fractiong=0.3 (implemented using the
Hanai methodology),,, = 0.156 S/m.

FIGURE 70,4, 0,y ando,y,;, corresponding to respectively the equivalent eleaitconductivity

of a HEK cell, the electrical conductivity of thespension medium and the equivalent electrical
conductivity of the suspension of HEK cells at &uwee fractiong=0.3 (implemented using the
Hanai methodology),, = 0.156 S/m.

FIGURE 8 |ez4|/50, leml/€0 and |ep;|/€o coOrresponding to respectively the modulus of the
equivalent complex relative permittivity of a HEKIE the modulus of the complex relative
permittivity of the medium and the modulus of thguigalent complex relative permittivity of
the HEK cells in suspension in the medium at a madraction=0.3 (implemented using the
Hanai methodology),,, = 0.156 S/m.

FIGURE 9 Evolution of the crossover frequencies &rJurkat cell for 50 conductivities
logarithmically spaced between 1 mS/m and 0.5 S/m.
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