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THE CONTINUOUS WEAK ORDER ∗

MARIA JOÃO GOUVEIA1 AND LUIGI SANTOCANALE2

Abstract. The set of permutations on a finite set can be given the lattice struc-

ture known as the weak Bruhat order. This lattice structure is generalized to

the set of words on a fixed alphabet Σ = { x, y, z, . . . }, where each letter has a

fixed number of occurrences. These lattices are known as multinomial lattices

and, when card(Σ) = 2, as lattices of lattice paths. By interpreting the letters

x, y, z, . . . as axes, these words can be interpreted as discrete increasing paths on

a grid of a d-dimensional cube, with d = card(Σ).

We show how to extend this ordering to images of continuous monotone func-

tions from the unit interval to a d-dimensional cube and prove that this ordering

is a lattice, denoted by L(Id). This construction relies on a few algebraic prop-

erties of the quantale of join-continuous functions from the unit interval of the

reals to itself: it is cyclic ⋆-autonomous and it satisfies the mix rule.

We investigate structural properties of these lattices, which are self-dual and

not distributive. We characterize join-irreducible elements and show that these

lattices are generated under infinite joins from their join-irreducible elements,

they have no completely join-irreducible elements nor compact elements. We

study then embeddings of the d-dimensional multinomial lattices into L(Id). We

show that these embeddings arise functorially from subdivisions of the unit inter-

val and observe that L(Id) is the Dedekind-MacNeille completion of the colimit

of these embeddings. Yet, if we restrict to embeddings that take rational values

and if d > 2, then every element of L(Id) is only a join of meets of elements from

the colimit of these embeddings.

Keywords. Weak order; weak Bruhat order; permutohedron; multinomial lattice;

multipermutation; path; quantale; star-autonomous; involutive residuated lattice;

join-continuous; meet-continuous.

1. Introduction

The weak Bruhat order [26, 45] on the set of permutations of an n-element set,

also known as permutohedron, see [10] for an elementary exposition, is a lattice

structure which has been widely studied in view if its close connections to combi-

natorics and geometry, see e.g. [7, 8, 37, 36]. Its algebraic structure has also been

investigated and, by now, is well understood [9, 41, 43].
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Multinomial lattices [5, 18, 1, 39], or lattices of multipermutations, generalize

permutohedra in a natural way. Elements of a multinomial lattice are multiper-

mutations, namely words on a totally ordered finite alphabet Σ = { x, y, z . . . } with

a fixed number of occurrences of each letter. The weak order on multipermu-

tations is the reflexive and transitive closure of the binary relation ≺ defined by

wabu ≺ wbau, for a, b ∈ Σ and a < b. If each letter of the alphabet has exactly one

occurrence, then these words are permutations and the ordering is the weak Bruhat

ordering. Multinomial lattices embed into permutohedra as principal ideals; possi-

bly, this is a reason for the lattice theoretic literature on them not to be contained.

Multipermutations have, however, a strong geometrical flavour that in our opin-

ion justifies exploring further their lattice theoretic structure. These words can be

given a geometrical interpretation as discrete increasing paths in some Euclidean

cube of dimension d = card(Σ); the weak order can be thought of as a way of

organizing these paths into a lattice structure. When card(Σ) = 2, the connection

with geometry is well-established: in this case these lattices are also known as

lattices of lattice paths with North and East steps [17]; the objects these lattices

are made of are among the most studied in enumerative combinatorics [31, 3] and

many counting results are implicitly related to the order and lattice structures. We

did not hesitate in [39] to call the multinomial lattices “lattices of paths in higher

dimensions”. Willing to understand the geometry of higher dimensional multino-

mial lattices, we started wondering whether there are full geometric relatives of

these lattices. More precisely, we asked whether the weak order can be extended

from discrete paths to continuous increasing paths. We present in this paper our

answer to this question. Our main result sounds as follows:

Theorem. Let d ≥ 2. Images of increasing continuous paths from ~0 to ~1 in Rd

can be given the structure of a lattice; moreover, all the permutohedra and all the

multinomial lattices can be embedded into one of these lattices while respecting

the dimension d.

We call this lattice the continuous weak order in dimension d. While a proof of

the above statement was available a few years ago, only recently we could struc-

ture and ground that proof on a solid algebraic setting, making it possible to further

study these lattices. The algebra we consider is the one of the quantale Q∨(I) of

join-continuous functions from the unit interval of the reals to itself. This is a

⋆-autonomous quantale, see [4], and moreover it satisfies the mix rule, see [12].

The construction of the continuous weak order is actually an instance of a gen-

eral construction of a lattice Ld(Q) from a ⋆-autonomous quantale Q satisfying

the mix rule. When Q = 2 (the two-element Boolean algebra) this construction

yields the usual weak Bruhat order on permutations; when Q = Q∨(I), this con-

struction yields the continuous weak order. Moreover, when Q is the quantale of

join-continuous functions from the finite chain { 0, 1, . . . , n } to itself, this construc-

tion yields a multinomial lattice. The functorial properties of this construction are

a key tool for analysing various embeddings. The step we took can be understood

as an instance of moving to a different set of (non-commutative, in this case) truth

values, as notably suggested in [33].
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Let us state our algebraic results. Let 〈Q, 1,⊗, ⋆〉 be a cyclic non-commutative

⋆-autonomous quantale satisfying the MIX rule. That is, we require that x ⊗ y ≤

x ⊕ y, for each x, y ∈ Q, where ⊕ is the monoid structure dual to ⊗. Let d ≥ 2,

[d]2 := { (i, j) | 1 ≤ i < j ≤ d } and consider the product Q[d]2 . Say that a tuple

f ∈ Q[d]2 is closed if fi, j ⊗ f j,k ≤ fi,k (each i < j < k), and that it is open if

fi,k ≤ fi, j ⊕ f j,k (each i < j < k). Say that f is clopen if it is closed and open. Under

these conditions, the following statement hold:

Theorem. The set of clopen tuples of Q[d]2 is, with the pointwise ordering, a lat-

tice, noted Ld(Q). The construction Ld(−) yields a limit preserving functor to the

category of lattices.

We shall make later in the text precise the domain of this functor. Paired with

the following statement, relating the algebraic structure of Q∨(I) to the reals, we

obtain a proof the main result stated above.

Theorem. Clopen tuples of Q∨(I)[d]2 bijectively correspond to images of monoton-

ically increasing continuous functions p : I −→ Id such that p(0) = ~0 and p(1) = ~1.

Let us mention that motivations for developing this work also originated from

various researches undergoing in theoretical computer science, modelling the be-

haviour of concurrent processes via directed homotopy [23, 25] and discrete ap-

proximation of continuous paths via words [6]. The relationship between directed

homotopies and congruences of two-dimensional multinomial lattices was dis-

cussed in [39]. The connection with discrete geometry appears in the conference

version of this work [24]. In both cases it was distinct to us the need of developing

the mathematics of a continuous weak order in dimension d ≥ 3.

The paper is organized as follows. We recall in Section 2 some definitions and

elementary results, mainly on join-continuous (and meet-continuous) functions and

adjoints. In Section 3 we identify the least algebraic structure needed to perform

the construction of the lattice Ld(Q). Therefore, we introduce and study mix ℓ-
bisemigroups which, in the cases of interest to us, arise from mix ⋆-autonomous

quantales. Section 4 proves that if I is what we call a perfect chain, then the

quantale of join-continuous functions from I to itself is mix ⋆-autonomous. Finite

chains and the unit interval of the real numbers are examples of perfect chains.

Section 5 describes the construction of the lattice Ld(Q), for an integer d ≥ 2 and

a ℓ-bisemigroup Q. In Section 6 we focus on the particular structure of Q∨(I),

the quantale of continuous functions from the unit interval to itself. Section 7

defines the central notion of path and discusses its equivalent characterizations. In

Section 8 we show that paths in dimension 2 are in bijection with elements of the

quantale Q∨(I). In Section 9 we argue that paths in higher dimensions bijectively

correspond to clopen tuples of the product lattice Q∨(I)[d]2 , that is, to elements

of Ld(Q∨(I)). In Section 10 we discuss some structural properties of the lattices

Q∨(I); in particular we characterize join-irreducible elements of these lattices and

argue that these lattices do not have any completely join-irreducible element nor

any compact element. In Section 11 we argue that embeddings from multinomial
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lattices into the continuous weak order functorially arise from complete maps of

perfect chains. Finally, in Section 12, we argue that if we restrict to the embeddings

of multinomial lattices obtained from splitting the unit interval into n intervals

of the same size, then the continuous weak order is not the Dedekind-MacNeille

completion of the colimit of these embeddings, yet every element is a join of meets

(and a meet of joins) of elements from such a colimit.

2. Elementary facts on join-continuous functions

Throughout this paper, [d] shall denote the set { 1, . . . , d } while we let [d]2 :=

{ (i, j) | 1 ≤ i < j ≤ d }.

Let P and Q be complete posets; a function f : P −→ Q is join-continuous (resp.,

meet-continuous) if

f (
∨

X) =
∨

x∈X

f (x) , (resp., f (
∧

X) =
∧

x∈X

f (x)) , (1)

for every X ⊆ P such that
∨

X (resp.,
∧

X) exists. We say that f is bi-continuous

if it is both join-continuous and meet-continuous.

Recall that ⊥P :=
∨
∅ (resp., ⊤P :=

∧
∅) is the least (resp., greatest) element of

P. Note that if f is join-continuous (resp., meet-continuous) then f is monotone

and f (⊥P) = ⊥Q (resp., f (⊤P) = ⊤Q). Let f be as above; a map g : Q −→ P is left

adjoint to f if g(q) ≤ p holds if and only if q ≤ f (p) holds, for each p ∈ P and

q ∈ Q; it is right adjoint to f if f (p) ≤ q is equivalent to p ≤ g(q), for each p ∈ P

and q ∈ Q. Notice that there is at most one function g that is left adjoint (resp.,

right adjoint) to f ; we write this relation by g = fℓ (resp., g = fρ). Clearly, when

f has a right adjoint, then f = (gρ)ℓ, and a similar formula holds when f has a left

adjoint. We shall often use the following fact:

Lemma 1. If f : P −→ Q is monotone and P and Q are two complete posets, then

the following are equivalent:

(1) f is join-continuous (resp., meet-continuous),

(2) f has a right adjoint (resp., left adjoint).

If f is join-continuous (resp., meet-continuous), then we have

fρ(q) =
∨

{ p ∈ P | f (p) ≤ q } ( resp., fℓ(q) =
∧

{ p ∈ P | q ≤ f (p) } ) ,

for each q ∈ Q.

Moreover, if f is surjective, then these formulas can be strengthened so to substitute

inclusions with equalities:

fρ(q) =
∨

{ p ∈ P | f (p) = q } ( resp., fℓ(q) =
∧

{ p ∈ P | q = f (p) } ) , (2)

for each q ∈ Q.

The set of monotone functions from P to Q can be ordered point-wise: f ≤ g if

f (p) ≤ g(p), for each p ∈ P. Suppose now that f and g both have right adjoints; let

us argue that f ≤ g implies gρ ≤ fρ: for each q ∈ Q, the relation gρ(q) ≤ fρ(q) is

obtained by transposing f (gρ(q)) ≤ g(gρ(q)) ≤ q, where the inclusion g(gρ(q)) ≤ q
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is the counit of the adjunction. Similarly, if f and g both have left adjoints, then

f ≤ g implies gℓ ≤ fℓ.

Let P be a poset, and let ι : P −→ Q be an embedding of P into a complete lattice

Q. Such embedding is a Dedekind-MacNeille completion if ι is bi-continuous and,

for each q ∈ Q, there are sets X, Y ⊆ P such that q =
∨

x∈X ι(x) =
∧

y∈Y ι(y). The

Dedekind-MacNeille completion is unique up to isomorphism.

3. Lattice-ordered bi-semigroups

A (non-commutative, bounded) lattice-ordered bi-semigroup (ℓ-bisemigroup,

for short) is a structure 〈Q,⊥,∨,⊤,∧,⊗,⊕〉 where 〈Q,⊥,∨,⊤,∧〉 is a bounded

lattice, ⊗ is a binary associative operation on Q which distributes overs finite joins,

⊕ is a binary associative operation on Q which distributes over finite meets; more-

over, the following relations

β ⊗ (γ ⊕ δ) ≤ (β ⊗ γ) ⊕ δ , (3)

(α ⊕ β) ⊗ γ ≤ α ⊕ (β ⊗ γ) . (4)

holds, for each α, β, γ, δ ∈ Q. We call these inclusions hemidistributive laws. We

say that an ℓ-bisemigroup is mix if the relation

α ⊗ β ≤ α ⊕ β . (5)

holds, for each α, β ∈ Q. We call this inclusion the mix rule. The inclusions (3) and

(4) are non-commutative versions of the hemidistributive law of [15, §6.9] and are

related to the weak distributivity of [13]. The mix rule (5) is well known in proof

theory, see e.g. [12].

Remark 2. All the ℓ-bisemigroups that we shall consider have units; therefore,

they are (possibly non-commutative) ℓ-bimonoids in the sense of [19]. We use 1

(resp., 0) to denote the unit of the operation ⊗ (resp., of ⊕) of an ℓ-bimonoid. The

signature of ℓ-bimonoids is obtained by adding the two unit constants to the signa-

ture of ℓ-bisemigroups. Let us emphasize, however, that the morphisms between

ℓ-bimonoids that we shall consider do not, in general, preserve units. This is the

reason for which we emphasize the weaker structure of ℓ-bisemigroup.

We shall also use the following generalized hemidistributive laws:

(α ⊕ β) ⊗ (γ ⊕ δ) ≤ α ⊕ (β ⊗ γ) ⊕ δ , (6)

α ⊗ (β ⊕ γ) ⊗ δ ≤ (α ⊗ β) ⊕ (γ ⊗ δ) , (7)

Lemma 3. The inclusions (6) and (7) are derivable from (3) and (4). Moreover,

in the extended language of ℓ-bimonoids (using units) these pairs of inclusions are

equivalent and the mix rule (5) is equivalent to 0 ≤ 1.

Proof. Having both (3) and (4), we derive (6) as follows:

(α ⊕ β) ⊗ (γ ⊕ δ) ≤ α ⊕ (β ⊗ (γ ⊕ δ)) ≤ α ⊕ (β ⊗ γ) ⊕ δ .

Using units, we obtain (3) from (6) by instantiating α to 0; we obtain (4) from (6)

by instantiating δ to 0. For the last statement, if (5) holds, then 0 ≤ 1 is derived

by instantiating in (5) α with 0 and β with 1. Conversely, suppose that 0 ≤ 1 and
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observe then that 0 ⊗ 0 ≤ 0 ⊗ 1 = 0. Letting β = γ = 0 in (6), we derive (5) as

follows:

α ⊗ δ = (α ⊕ 0) ⊗ (0 ⊕ δ) ≤ α ⊕ (0 ⊗ 0) ⊕ δ ≤ α ⊕ 0 ⊕ δ = α ⊕ δ . �

All the ℓ-bisemigroups that we shall consider arise from non-commutative bounded

involutive residuated lattice.

A (non-commutative, bounded) residuated lattice is a structure 〈Q,⊥,∨,⊤,∧, 1,⊗,⊸
,�〉 such that 〈Q,⊥,∨,⊤,∧〉 is a bounded lattice, 〈Q, 1,⊗〉 is a monoid structure

compatible with the lattice ordering (noted ≤) which moreover is related to the

binary operations⊸,� as follows:

α ⊗ β ≤ γ iff α ≤ γ� β iff β ≤ α⊸ γ , for each α, β, γ ∈ Q. (8)

The operations ⊸,� are called the residuals (or adjoints) of ⊗. Let us recall that

the following inclusions are valid:

α ⊗ (α⊸ β) ≤ β , (β� α) ⊗ α ≤ β . (9)

A (unital) quantale [38] is a complete lattice Q coming with a monoid structure

1,⊗ such that ⊗ distributes over arbitrary joins in both variables. A quantale is a

residuated lattice in a canonical way, as distribution over arbitrary joins ensures the

existence of the residuals.

A residuated lattice is said to be involutive if it comes with an element 0 ∈ Q

such that

x⊸ 0 = 0� x , (10)

0� (x⊸ 0) = x , (11)

for each x ∈ Q. Such an element 0 is called cyclic (if it satisfies equation (10), for

each x ∈ Q) and dualizing (if it satisfies equation (11), for each x ∈ Q). In [24] we

called a complete involutive residuated lattice a ⋆-autonomous quantale, as these

structures are posetal version of ⋆-autonomous categories [4]. Similar namings,

such as (pseudo) ⋆-autonomous lattice, have also been used in the literature, see

e.g. [34, 16]. We shall stick to this naming in the future sections as all the involutive

residuated lattices that we consider are complete. Given an involutive residuated

lattice 〈Q,⊥,∨,⊤,∧, 1,⊗,⊸,�, 0〉, we obtain an ℓ-bimonoid by defining

x⋆ := x⊸ 0 , f ⊕ g := (g⋆ ⊗ f⋆)⋆ . (12)

From these definitions it follows that (−)⋆ is an antitone involution of Q and that

0 = 1⋆. Moreover, considering that

(x ⊗ y)⋆ = y⊸ x⋆ = y⋆ � x ,

x⋆ ⊕ y = (y⋆ ⊗ x)⋆ = x⊸ y⋆⋆ = x⊸ y ,

x ⊕ y⋆ = x� y ,

the relations in (8) can be expressed as follows:

α ⊗ β ≤ γ iff α ≤ γ ⊕ β⋆ iff β ≤ α⋆ ⊕ γ , for each α, β, γ ∈ Q. (13)
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Lemma 4. With the definitions given in equation (12), each involutive residuated

lattice is a ℓ-bimonoid, and therefore an ℓ-bisemigroup.

Proof. Since 0,⊕ are dual to 1,⊗, ⊕ is a monoid operation on Q with unit 0 and

which distributes over meets.

We therefore verify that the hemidistributive laws holds in Q. Considering that

α ⊕ β = α⋆⋆ ⊕ β = α⋆ ⊸ β and, similarly, γ ⊕ δ = γ� δ⋆, we derive

α⋆ ⊗ (α ⊕ β) ⊗ (γ ⊕ δ) ⊗ δ⋆ = α⋆ ⊗ (α⋆ ⊸ β) ⊗ (γ � δ⋆) ⊗ δ⋆ ≤ β ⊗ γ ,

using (9). Yet, the inequality so deduced is equivalent to (6) by adjointness (13).

�

According to our previous observations, we could have defined a involutive

residuated lattice as a structure 〈Q,⊥,∨,⊤,∧, 1,⊗, 0, (−)⋆〉 where 〈Q,⊥,∨,⊤,∧〉
is a bounded lattice, ⊗ is a monoid operation (with unit 1) on Q that distributes

over joins, (−)⋆ : Q −→ Q is an antitone involution of Q, subject to the residuation

laws as in (13), where the structure (0,⊕) on Q is defined by duality:

0 := 1⋆ and f ⊕ g := (g⋆ ⊗ f⋆)⋆ . (14)

This shall be our preferred way to verify that a residuated lattice with a distinct

element 0 is an involutive residuated lattice. For the sake of verifying that a struc-

ture is an involutive residuated lattice, let us remark that we can simplify our work

according to the following statement.

Lemma 5. Consider a structure 〈Q,⊥,∨,⊤,∧, 1,⊗, 0, (−)⋆〉 as above, where we

only require that α ⊗ β ≤ γ is equivalent to α ≤ γ ⊕ β⋆, for each α, β, γ ∈ Q. Then

α ⊗ β ≤ γ is also equivalent to β ≤ α⋆ ⊕ γ, for each α, β, γ ∈ Q.

Proof. Suppose that α ⊗ β ≤ γ, so α ≤ γ ⊕ β⋆. Apply (−)⋆ to this relation and

derive β ⊗ γ⋆ = (γ ⊕ β⋆)⋆ ≤ α⋆; derive then β ≤ α⋆ ⊕ γ⋆⋆ = α⋆ ⊕ γ. For the

converse direction, observe that all these transformations are reversible. �

Example 6. Boolean algebras are the involutive residuated lattices such that ∧ = ⊗

and ∨ = ⊕. Similarly, distributive lattices are the ℓ-bisemigroups such that ∧ = ⊗

and ∨ = ⊕.

Example 7. Consider the following structure on the ordered set { −1 < 0 < 1 }:

⊗ −1 0 1

−1 −1 −1 −1

0 −1 0 1

1 −1 1 1

⊕ −1 0 1

−1 −1 −1 1

0 −1 0 1

1 1 1 1

⋆

−1 1

0 0

1 −1

Together with the lattice structure on the chain, this structure yields a mix invo-

lutive residuated lattice, known in the literature as the Sugihara monoid on the

three-element chain, see e.g. [20].

Example 8. As the category of complete lattices and join-continuous functions is

a symmetric monoidal closed category, for every complete lattice X the set of join-

continuous functions from X to itself is a monoid object in that category, that is, a
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quantale, see [28, 38], and therefore a residuated lattice. We review this next. For

a complete lattice X, let Q∨(X) denote the set of join-continuous functions from X

to itself. For f , g ∈ Q∨(X) define f ⊗ g := g ◦ f . Considering that the ordering in

Q∨(X) is pointwise, let us verify that ⊗ distributes over arbitrary joins:

((
∨

i∈I

fi) ⊗ g)(x) = (g ◦
∨

i∈I

fi)(x) = g((
∨

i∈I

fi)(x)) = g(
∨

i∈I

fi(x))

=
∨

i∈I

g( fi(x)) =
∨

i∈I

((g ◦ fi)(x)) = (
∨

i∈I

g ◦ fi)(x) = (
∨

i∈I

( fi ⊗ g))(x) ,

( f ⊗ (
∨

i∈I

gi))(x) = ((
∨

i∈I

gi) ◦ f )(x) = (
∨

i∈I

gi)( f (x))

=
∨

i∈I

gi( f (x)) = (
∨

i∈I

(gi ◦ f ))(x) = (
∨

i∈I

( f ⊗ gi))(x) .

Obviously, the identity is the unit for ⊗. We argue in the next Section that if I is a

finite chain or the interval [0, 1], then Q∨(I) has a cyclic dualizing element, thus a

involutive residuated lattice extending the residuated lattice structure.

4. Mix ⋆-autonomous quantales from perfect chains

We consider complete chains I such that the two transformations

f∧(x) =
∧

x<x′

f (x′) , f∨(x) =
∨

x′<x

f (x′) . (15)

yield an order isomorphism from Q∨(I) to Q∧(I). We shall say that such a chain is

perfect.

Example 9. Let n ≥ 0 and let In be the chain { 0, . . . , n }. A join-continuous function

from In to In is uniquely determined by the value on the set { 1, . . . , n } of its join-

prime elements. Similarly, a meet-continuous function from In to In is uniquely

determined by its restriction to the set { 0, . . . , n−1 } of its meet-prime elements. We

immediately deduce that Q∨(In) and Q∧(In) are order isomorphic. The functions

defined in (15) realize this isomorphism. Observe that, for I = In, we have

f∧(x) =






n , x = n ,

f (x + 1) , otherwise ,
f∨(x) =






0 , x = 0 ,

f (x − 1) , otherwise .

Example 10. We shall see with Proposition 33 that the interval [0, 1] of the reals,

later on denoted by I, is perfect. The quantale Q∨(I) shall be investigated further in

Section 6.

Recalling that the correspondences sending f ∈ Q∨(I) to fρ ∈ Q∧(I) and g ∈

Q∧(I) to gℓ ∈ Q∨(I) are inverse is antitone, let us observe the following:

Proposition 11. For each f ∈ Q∨(I), the relation ( fρ)
∨ = ( f∧)ℓ holds. Therefore,

the function (−)⋆ defined by

f⋆ := ( fρ)
∨ = ( f∧)ℓ ,

is an involution of Q∨(I).
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Proof. Let f ∈ Q∨(I); we shall argue that ( fρ)
∨ is left adjoint to f∧, namely that

x ≤ f∧(y) if and only if ( fρ)
∨(x) ≤ y, for each x, y ∈ I.

We begin by proving that x ≤ f∧(y) implies ( fρ)
∨(x) ≤ y. Suppose x ≤ f∧(y)

so, for each z with y < z, we have x ≤ f (z). Suppose that ( fρ)
∨(x) � y, thus there

exists w < x such that fρ(w) � y. Then y < fρ(w) so, from x ≤ f∧(y) =
∧

y<y′ f (y′),

we deduce x ≤ f ( fρ(w)). Considering that f ( fρ(w)) ≤ w, we deduce x ≤ w,

contradicting w < x. Therefore, ( fρ)
∨(x) ≤ y.

Dually, we can argue that, for g ∈ Q∧(I), g∨(x) ≤ y implies x ≤ (gℓ)
∧(y), for each

g ∈ Q∧(I). Letting in this statement g := fρ, we obtain the converse implication:

( fρ)
∨(x) ≤ y implies x ≤ (( fρ)ℓ)

∧(y) = f∧(y).

For the last statement, observe that the correspondence (−)⋆ is order reversing

since it is the composition of an order reversing function with a monotone one; it

is an involution since f⋆⋆ = ((( fρ)∧)∨)ℓ = ( fρ)ℓ = f . �

Lemma 12. We have

f⋆(x) =
∨

{ y ∈ I | f (y) < x } . (16)

Proof. Recall that f⋆ has been defined as ( f∧)ℓ. Let us show that the expression

on the right of equation (16) yields a left adjoint for f∧. For each x, z ∈ I, we have
∨

{ y ∈ I | f (y) < x } ≤ z iff ∀y( f (y) < x implies y ≤ z )

iff ∀y( z < y implies x ≤ f (y) )

iff x ≤
∧

z<y

f (y) = f∧(z) . �

For f , g ∈ Q∨(I), let us define

f ⊗ g := g ◦ f , 1 := idI

and, using duality as in (14),

f ⊕ g := (g⋆ ⊗ f⋆)⋆ 0 := 1⋆ .

Let us remark that the operation ⊕ is obtained by transporting composition in Q∧(I)

to Q∨(I) via the isomorphism:

f ⊕ g = (g⋆ ⊗ f⋆)⋆ = ( f∧ℓ ◦ g∧ℓ )∨ρ = ((g∧ ◦ f∧)ℓ)
∨
ρ = (g∧ ◦ f∧)∨ .

In a similar way, 0 is the image via the isomorphism of the identity of the chain I, as

an element of Q∧(I). Using Lemma 12, a useful expression for 0 is the following:

0(x) :=
∨

x′<x

x′ . (17)

Proposition 13. For each f , g, h ∈ Q∨(I), f ⊗ g ≤ h if and only if f ≤ h ⊕ g⋆.

Proof. Suppose f ⊗ g ≤ h, that is, g ◦ f ≤ h. We aim at showing that f∧ ≤ gρ ◦ h∧,

since then, by applying (−)∨ to this relation, we shall obtain f ≤ (gρ ◦ h∧)
∨
=

(g∨ρ
∧ ◦ h∧)

∨
= (g⋆∧ ◦ h∧)

∨
= h ⊕ g⋆.
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This is achieved as follows. From g( f (x)) ≤ h(x), for all x ∈ I, deduce f (x) ≤

gρ(h(x)), for all x ∈ I, and therefore

f∧(x) =
∧

x<y

f (y) ≤
∧

x<y

gρ(h(y)) = gρ(
∧

x<y

h(y)) = gρ(h
∧(x)) ,

for each x ∈ I, using the fact that gρ is meet-continuous.

A similar argument, shows that if f , g, h ∈ Q∧(I) and f ≤ g◦h, then gℓ◦ f∨ ≤ h∨.

For f , g, h ∈ Q∨(I), this yields that f ≤ h ⊕ g implies f ⊗ g⋆ ≤ h. Therefore, if

f ≤ h ⊕ g⋆, then f ⊗ g = f ⊗ g⋆⋆ ≤ h. �

Corollary 14. For each perfect chain I the residuated lattice Q∨(I) of join-continuous

functions from I to itself is a mix ⋆-autonomous quantale.

Proof. By the previous lemma and by Lemma 5, the antitone involution (−)⋆ yields

the dual operation ⊕ satisfying the residuation relations (13). By equation (17), it

is also clear that the relation 0 ≤ 1, so the mix rule holds in Q∨(I). �

Remark 15. The involutive residuated lattice structure on the quantale Q∨(In) is

the unique possible one. It was shown in [40, §4.1] using duality theory that dual-

izing elements of in Q∨(In) are in bijection with isomorphisms of the ordered set

{ 1, . . . , n }. Obviously, there is just one such isomorphism. Similarly, the involutive

residuated lattice structure on Q∨(I) is unique. This can be argued as folllows. The

dualizing elements of an involutive residuated lattice such that 1 = 0 are exactly the

elements f that are invertible (in particular, this is the case for the quantale Q∨(I)).

We sketch a proof of this. If f is dualizing, then 1 = f � (1 ⊸ f ) = f � f =

f ⊕ f⋆. Similarly, 1 = f⋆ ⊕ f and, dually, 1 = f ⊗ f⋆ = f⋆ ⊗ f . Vice versa, if f

has an inverse f −1, then f ⊕ g = f ⊗ f −1 ⊗ ( f ⊕ g) ≤ f ⊗ ((( f −1 ⊗ f ) ⊕ g)) = f ⊗ g,

so f ⊗ g = f ⊕ g, for any g. Then f −1 = f⋆, since 1 ≤ f ⊕ f⋆ = f ⊗ f⋆ ≤ 0 = 1,

and f � (g⊸ f ) = f ⊕ ( f⋆ ⊗ g) = f ⊗ f⋆ ⊗ g = g. Therefore, the set of dualizing

elements of Q∨(I) is the well known lattice ordered group of order preserving au-

tomorphisms of the chain I, see e.g. [27]. Finally, being cyclic is equivalent, for an

invertible element, to being central; yet, there are no non-trivial central elements

in the lattice ordered group of order preserving automorphisms of I, as it can be

inferred from the characterization of the normal subgroups of this group [2].

5. Lattices from mix lattice-ordered bi-semigroups

In this section d shall be a fixed integer greater than or equal to 2 (the case

d = 2 being trivial). Given an ℓ-bisemigroup Q, consider the product Q[d]2 :=
∏

1≤i< j≤d Q. We say that a tuple f = 〈 fi, j | 1 ≤ i < j ≤ d〉 of this product is closed

(resp., open) if

fi, j ⊗ f j,k ≤ fi,k (resp., fi,k ≤ fi, j ⊕ f j,k ) .

Recall that Q[d]2 has a lattice structure induced by the coordinate-wise meets and

joins. It is then easily verified that closed tuples are closed under arbitrary meets

and open tuples are closed under arbitrary joins.
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Remark 16. If Q is an involutive residuated lattice, then f is closed if and only if

f⋆ := 〈( fσ( j),σ(i))
⋆ | 1 ≤ i < j ≤ d〉 is open, where σ(i) := d− i+1, for each i ∈ [d].

In this case the correspondence sending f to f⋆ is an antitone involution of Q[d]2 ,

sending closed tuples to open ones, and vice versa.

For (i, j) ∈ [d]2, a subdivision of the interval [i, j] is a subset of this interval

containing the endpoints i and j. We write such a subdivision as sequence of the

form i = ℓ0 < ℓ1 < . . . ℓk−1 < ℓk = j with i < ℓi < j, for i = 1, . . . , k − 1. We shall

use then S i, j to denote the set of subdivisions of the interval [i, j].

Lemma 17. For each f ∈ Q[d]2 , the tuple f defined by

f i, j :=
∨

i<ℓ1<...ℓk−1< j∈S i, j

fi,ℓ1
⊗ fℓ1,ℓ2

⊗ . . . ⊗ fℓk−1, j .

is the least closed tuple g such that f ≤ g. Dually, if we set

f ◦i, j :=
∧

i<ℓ1<...ℓk−1< j∈S i, j

fi,ℓ1
⊕ fℓ1,ℓ2

⊕ . . . ⊕ fℓk−1, j .

then f ◦ is the greatest open tuple below f .

Proof. It suffices to prove the first statement. Since { i < j } ∈ S i, j, then fi, j ≤ f i, j,

for each (i, j) ∈ [d]2, thus f ≤ f . Now, if g is closed and f ≤ g, then, for each

subdivision i < ℓ1 < . . . ℓk−1 < j, we have

fi,ℓ1
⊗ . . . ⊗ fℓk−1, j ≤ gi,ℓ1

⊗ . . . ⊗ gℓk−1, j ≤ gi, j .

We are left to prove that f is closed. To the sake of being concise, if ς ∈ S i, j is

i = ℓ0 < ℓ1 < . . . ℓk−1 < ℓk = j, then we let π( f , ς) be fi,ℓ1
⊗ fℓ1,ℓ2

⊗ . . . ⊗ fℓk−1, j.

Observe next that if ς ∈ S i, j and ς′ ∈ S j,k, then the set theoretic union ς∪ς′ belongs

to S i,k and, moreover, π(ς, f ) ⊗ π(ς′, f ) = π(ς ∪ ς′, f ). We have therefore

f i, j ⊗ f j,k =
∨

ς∈S i, j

π(ς, f ) ⊗
∨

ς′∈S j,k

π(ς′, f ) =
∨

ς∈S i, j ,ς′∈S j,k

π(ς, f ) ⊗ π(ς′, f )

=
∨

ς∈S i, j ,ς′∈S j,k

π(ς ∪ ς′, f ) ≤
∨

ς′′∈S i,k

π(ς′′, f ) = f i,k . �

We call the map f 7→ f the closure, and the map f 7→ f ◦ the interior. Then

a tuple is closed if and only of it is equal to its closure, and a tuple is open if and

only of it is equal to its interior. We shall be interested in tuples f ∈ Q[d]2 that are

clopen, that is, they are at the same time closed and open.

Proposition 18. Let Q be a mix ℓ-bisemigroup and let f ∈ Q[d]2 . If f is closed,

then so is f ◦.

Proof. Let i, j, k ∈ [d] with i < j < k. We need to show that

f ◦i, j ⊗ f ◦j,k ≤ fi,ℓ1
⊕ . . . ⊕ fℓn−1,k
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whenever i < ℓ1 < . . . ℓn−1 < k ∈ S i,k. This is achieved as follows. Let u ∈

{ 0, 1, . . . , n − 1 } be such that j ∈ [ℓu, ℓu+1). Firstly suppose that ℓu < j; put then

α := fi,ℓ1
⊕ . . . ⊕ fℓu−1,ℓu

, δ := fℓu+1
⊕ . . . ⊕ fℓn−1,k

β := fℓu, j γ := f j,ℓu+1
.

Then

f ◦i, j ⊗ f ◦j,k ≤ (α ⊕ β) ⊗ (γ ⊕ δ) , by definition of f ◦
i, j and f ◦

j,k
,

≤ α ⊕ (β ⊗ γ) ⊕ δ , by the inequation (6),

≤ α ⊕ fℓu,ℓu+1
⊕ δ = fi,ℓ1

⊕ . . . ⊕ fℓn−1,k , since f is closed.

Notice that we might have that α defined above is an empty (co)product (e.g. when

u = 0), in which case we can use the inclusion (3) in place of (6). A similar remark

has to be raised when δ defined above is an empty (co)product (when u = n − 1),

in which case we use inclusion (4). Finally, if j = ℓu, then let α, γ, δ as above, we

derive

f ◦i, j ⊗ f ◦j,k ≤ α ⊗ (γ ⊕ δ) ≤ α ⊕ (γ ⊕ δ) = fi,ℓ1
⊕ . . . ⊕ fℓn−1,k ,

using the mix rule (5). �

Since the definition of ℓ-bisemigroup is auto-dual, we also have the following

statement:

Proposition 19. Let Q be a mix ℓ-bisemigroup and let f ∈ Q[d]2 . If f is open, then

so is f .

Definition 20. For Q a mix ℓ-bisemigroup, Ld(Q) shall denote the set of clopen

tuples of Q[d]2 .

Theorem 21. The set Ld(Q) is, with the ordering inherited from Q[d]2 , a lattice.

Proof. For a family { fi | i ∈ I }, with each fi clopen, define
∨

Ld(Q)

{ fi | i ∈ I } :=
∨

{ fi | i ∈ I } ,
∧

Ld(Q)

{ fi | i ∈ I } := (
∧

{ fi | i ∈ I })◦ , (18)

whenever the supremum
∨

{ fi | i ∈ I } (resp., infimum
∧

{ fi | i ∈ I }) exists in Q[d]2 .

Since this join (resp., meet) is open, its closure is clopen by Proposition 19 (resp.,

Proposition 18) and therefore it belongs to Ld(Q). Then It is easily seen that this is

the supremum (resp., infimum) of the family { fi | i ∈ I } in the poset Ld(Q). �

Example 22. Let Q = 2 be the two element Boolean algebra 2. We identify a tuple

χ ∈ 2[d]2 with the characteristic map of a subset S χ of { (i, j) | 1 ≤ i < j ≤ d }.

Think of this subset as a relation. Then χ is clopen if both S χ and its complement

in { (i, j) | 1 ≤ i < j ≤ d } are transitive relations. These subsets are in bijection

with permutations of the set [d], see [10]; the lattice Ld(2) is therefore isomorphic

to the well-known permutohedron, aka the weak Bruhat order.

Example 23. On the other hand, if Q is the Sugihara monoid on the three-element

chain described in Example 7, then the lattice of clopen tuples is isomorphic to the

lattice of pseudo-permutations, see [32, 42, 14].
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Example 24. Let us consider a finite chain In = { 0, . . . , n } and the quantale Q∨(In).

Let d · n be the integer vector of length d whose all entries are equal to n. We claim

that the lattice Ld(Q∨(In)) is isomorphic to the multinomial lattice L(d · n) of [5],

see also [42, §8-10]. It is argued in [42] that elements of these multinomial lattices

are in bijection with some clopen tuples of the product L(n, n)[d]2 . Considering that

a binomial lattice L(n, n) is isomorphic (as a lattice) to the quantale Q∨(In), we are

left to verify that the two notions of closed/open tuple coincide via the bijection.

For x, y ∈ [n], let 〈x, y〉 denote the least join-continuous function f ∈ Q∨(In)

such that y ≤ f (x). Elements of the form 〈x, y〉 are the join-prime elements of

Q∨(In). A tuple f ∈ Q∨(In)[d]2 is called closed in [42] if, for each i, j, k with

1 ≤ i < j < k ≤ d and each triple x, y, z ∈ [n], 〈x, y〉 ≤ fi, j and 〈y, z〉 ≤ f j,k imply

〈x, z〉 ≤ fi,k. Considering that, for f ∈ Q∨(In), 〈x, y〉 ≤ f if and only if y ≤ f (x),

closedness is easily seen to be equivalent to the condition f j,k ◦ fi, j ≤ fi,k, that is, to

the notion of closedness introduced in this section. Let us argue that a tuple is open

as defined in [42] if and only if it is open as defined in this section. To this goal,

for x, y ∈ [n], let [x, y] be the greatest join-continuous function f ∈ Q∨(In) such

that f (x) ≤ y − 1. Elements of the form [x, y] are the meet-irreducible elements of

Q∨(In) and, moreover, [x, y]⋆ = 〈y, x〉. In [42] a tuple f ∈ Q∨(In)[d]2 is said to be

open if fi, j ≤ [x, y] and f j,k ≤ [y, z] imply fi,k ≤ [x, z], for each x, y, z ∈ [n] and

whenever 1 ≤ i < j < k ≤ d. This condition is equivalent to 〈y, x〉 = [x, y]⋆ ≤ fi, j
⋆

and 〈z, y〉 = [y, z]⋆ ≤ f j,k
⋆ imply 〈z, x〉 = [x, z]⋆ ≤ fi,k

⋆, for each z, y, x ∈ [n] and

1 ≤ i < j < k ≤ d. As before, this is equivalent to f j,k
⋆ ⊗ fi, j

⋆ ≤ fi,k
⋆ and then to

fi,k ≤ ( f j,k
⋆ ⊗ fi, j

⋆)
⋆
= fi, j ⊕ f j,k, yielding the notion of openness as defined here.

Proposition 25. Ld(−) is a limit-preserving functor from the category of mix ℓ-
bisemigroups to the category of lattices.

Proof. Let ψ : Q0 −→ Q1 be an ℓ-bisemigroup morphism (that is, a lattice mor-

phism which, moreover, preserves ⊗ and ⊕). The map ψ[d]2 : Q0
[d]2 −→ Q1

[d]2

defined by [ψ[d]2 ( f )]i, j := ψ( fi, j) commutes both with the closure map and with the

interior map, since these maps are defined by means of the operations preserved

by ψ. Consequently, the image by ψ[d]2 of a clopen is clopen. Similarly, the lattice

operations on clopens, defined in equation (18), are preserved by ψ[d]2 since (for

example for the joins) this function preserves the joins of Q0
[d]2 and the closure.

Since the forgetful functor from the category of lattices to the category of sets

creates limits, in order to argue that the functor Ld(−) preserves limits, we can

consider it as a functor form the category of mix ℓ-bisemigroups to the category of

sets and functions and show that it preserves limits.

Let C be the category of ℓ-bisemigroups and their morphisms and consider the

category of limit preserving functors from C to the category S of sets and functions.

This category contains the forgetful functor (that we note here X) and is closed

under limits. This holds since limits in the category of functors from C to S are

computed pointwise. It is then enough to observe that Ld(−) : C −→ S is the

following equalizer:
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Ld(X) X[d]2 X[d]2

(−)◦

id

(−)
�

In particular, from the previous proposition we obtain the following statement,

that we shall use in Section 11.

Proposition 26. If i : Q0 −→ Q1 is an injective homomorphism of mix ℓ-bisemigroups,

then Ld(i) : Ld(Q0) −→ Ld(Q1) is an embedding.

The goal of the rest of this section is to argue that clopen tuples naturally arise

as some sort of enrichment (in the sense of [33, 30, 44]) or metric of a set X. For

the sake of this discussion, we shall fix an involutive residuated lattice Q with the

property that 0 = 1. This equality holds in the quantale Q∨(I) studied in Section 6,

but fails in other mix involutive residuated lattices, e.g. in the quantales Q∨(In).

A skew metric of X over Q is a map δ : X × X −→ Q such that, for all x, y, z ∈ X,

δ(x, x) ≤ 0 ,

δ(x, z) ≤ δ(x, y) ⊕ δ(y, z) ,

δ(x, y) = δ(y, x)⋆ .

That is, a skew metric is a semi-metric (see e.g. [35]) with values in Q, where the

symmetry condition has been replaced by the last requirement, skewness. Similar

kind of metrics have been considered in the literature, for example in [29]. Observe

that (when X , ∅) 1 = 0⋆ ≤ δ(x, x)⋆ = δ(x, x) ≤ 0, so if Q is mix, then necessarily

1 = 0.

Lemma 27. Suppose in Q the equality 1 = 0 holds. By defining

δ f (i, j) :=






fi, j , i < j ,

0 , i = j ,

f⋆
j,i , j < i ,

every clopen tuple f of Q[d]2 yields a unique skew metric on the set [d]. Every skew

metric on the set [d] with values in Q arises in this way.

The lemma is an immediate consequence of the following statement:

Lemma 28. A tuple f is clopen if and only if δ f is a skew metric.

Proof. Suppose δ f is a skew metric. For 1 ≤ i < j < k ≤ d, we have fi,k ≤ fi, j⊕ f j,k

(openness) and fk,i ≤ fk, j ⊕ f j,i which in turn is equivalent to fi, j ⊗ f j,k ≤ fi,k
(closedness).

Conversely, suppose that f is clopen. Say that the pattern (i jk) is satisfied by f

if fi,k ≤ fi, j ⊕ fi, j. If card({ i, j, k }) ≤ 2, then f satisfies the pattern (i jk) if i = j or

j = k, since then fi, j = 0 or f j,k = 0. If i = k, then 0 ≤ fi, j ⊕ f j,i is equivalent to

fi, j ≤ fi, j.
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Suppose therefore that card({ i, j, k }) = 3. By assumption, f satisfies (i jk) and

(k ji) whenever i < j < k. Then it is possible to argue that all the patterns on the set

{ i, j, k } are satisfied by observing that if (i jk) is satisfied, then ( jki) is satisfied as

well: from fi,k ≤ fi, j ⊕ f j,k, derive fi,k ⊗ fk, j = fi,k ⊗ f⋆
j,k
≤ fi, j and then f j,i = f⋆

i, j ≤

( fi,k ⊗ fk, j)
⋆ = f j,k ⊕ fk,i. �

Remark 29. In the next sections we shall often need to verify that some tuple f ∈

Q[d]2 is clopen. A simple sufficient condition is that, for each i, j, k ∈ [d] with

i < j < k, either fi,k = fi, j ⊗ f j,k, or fi,k = fi, j ⊕ f j,k. Indeed, from fi,k = fi, j ⊗ f j,k

we derive fi, j ⊗ f j,k ≤ fi,k = fi, j ⊗ f j,k ≤ fi, j ⊕ f j,k, using the mix rule. Similarly,

fi,k = fi, j ⊕ f j,k implies fi, j ⊗ f j,k ≤ fi,k ≤ fi, j ⊕ f j,k.

6. The mix ⋆-autonomous quantale Q∨(I)

From this section onward I denotes the unit interval of the reals, I := [0, 1].

Recall that we use Q∨(I) for the set of join-continuous functions from I to itself.

Notice that a monotone function f : I −→ I is join-continuous if and only if

f (x) =
∨

y<x

f (y) , or even f (x) =
∨

y<x, y∈I∩Q

f (y) , (19)

see Proposition 2.1, Chapter II of [22]. According to Example 8, we have:

Lemma 30. Composition induces a quantale structure on Q∨(I).

Let now Q∧(I) denote the collection of meet-continuous functions from I to

itself. By duality, we obtain:

Lemma 31. Composition induces a dual quantale structure on Q∧(I).

With the next set of observations we shall see Q∨(I) and Q∧(I) are order isomor-

phic. For a monotone function f : I −→ I, define

f∧(x) =
∧

x<x′

f (x′) , f∨(x) =
∨

x′<x

f (x′) .

Lemma 32. Let f : I −→ I be monotone. If x < y, then f∧(x) ≤ f∨(y).

Proof. Pick z ∈ I such that x < z < y and observe then that f∧(x) ≤ f (z) ≤

f∨(y). �

Proposition 33. For a monotone f : I −→ I, the following statements hold:

(1) f∧ is the least meet-continuous function above f and f∨ is the greatest

join-continuous function below f ,

(2) the relations f∨∧ = f∧ and f∧∨ = f∨ hold,

(3) the operations ( · )∨ : Q∧(I) −→ Q∨(I) and ( · )∧ : Q∨(I) −→ Q∧(I) are inverse

order preserving bijections.

Proof. (1) We only prove the first statement. Let us show that f∧ is meet-continuous;

to this goal, we use equation (19):
∧

x<t

f∧(t) =
∧

x<t

∧

t<t′

f (t′) =
∧

x<t

f (t′) = f∧(x) .
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We observe next that f ≤ f∧, as if x < t, then f (x) ≤ f (t). This implies that if

g ∈ Q∧(I) and f∧ ≤ g, then f ≤ f∧ ≤ g. Conversely, if g ∈ Q∧(I) and f ≤ g, then

f∧(x) =
∧

x<t

f (t) ≤
∧

x<t

g(t) = g(x) .

Let us prove (2) and (3). Clearly, both maps are order preserving. Let us show that

f∨∧ = f∧ whenever f is order preserving. We have f∨∧ ≤ f∧, since f∨ ≤ f and

(−)∧ is order preserves the pointwise ordering. For the converse inclusion, recall

from the previous lemma that if x < y, then f∧(x) ≤ f∨(y), so

f∧(x) ≤
∧

x<y

f∨(y) = f∨∧(x) ,

for each x ∈ I. Finally, to see that (−)∧ and (−)∨ are inverse to each other, observe

that of f ∈ Q∧(I), then f∨∧ = f∧ = f . The equality f∧∨ = f for f ∈ Q∨(I) is

derived similarly. �

Corollary 34. Q∨(I) is a complete distributive lattice.

Proof. The interval I is a complete distributive lattice, whence the set II of all

functions from I to I, is also a complete distributive lattice, under the pointwise

ordering and the pointwise operations. The subset of monotone functions from I to

I is closed under infs and sups from II. In view of Proposition 33, join-continuous

functions are the monotone functions that are fixed points of the interior operator

f 7→ f∨. As from standard theory, it follows that Q∨(I) is a complete lattice, that

join-continuous functions are closed under pointwise suprema, and that infima in

Q∨(I) are computed as follows:

(
∧

i∈I

fi)(x) =
∨

y<x

inf{ fi(y) | i ∈ I } .

Finally notice that, in case I = { 1, 2 }, then

( f1 ∧ f2)(x) =
∨

y<x

min( f1(y), f2(y))

=
∨

y1<x

∨

y2<x

min( f1(y1), f2(y2)) ,

since the set { y ∈ I | y < x } is upward directed,

= min(
∨

y1<x

f1(y1),
∨

y2<x

f2(y2)) = min( f1(x), f2(x)) ,

where the last step follows from fi
∨ = fi, i ∈ { 1, 2 }. Therefore finite (non-empty)

meets are computed pointwise, and this implies that Q∨(I) is a distributive lattice.

�

Considering that I is a complete lattice, Proposition 33 shows that it is also a

perfect chain and therefore. According to Corollary 14, we deduce the following

statement.

Corollary 35. Q∨(I) is a mix ⋆-autonomous quantale.
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7. Paths

Let in the following d ≥ 2 be a fixed integer; we shall use Id to denote the d-fold

product of I with itself. That is, Id is the usual geometric cube in dimension d. Let

us recall that Id, as a product of the poset I, has itself the structure of a poset (the

order being coordinate-wise) and, moreover, of a complete lattice.

Definition 36. A path in Id is a chain C ⊆ Id with the following properties:

(1) if X ⊆ C, then
∧

X ∈ C and
∨

X ∈ C,

(2) C is dense as an ordered set: if x, y ∈ C and x < y, then x < z < y for some

z ∈ C.

That is, we have defined a path in Id as a totally ordered dense sub-complete-

lattice of Id. We are going to see that paths in Id can be characterized in many

ways.

Lemma 37. Paths in Id are exactly the maximal chains of the poset Id.

Proof. We firstly argue that every path in Id is a maximal chain of Id.

Let C ⊆ Id be a path and suppose that there exists z ∈ Id \C such that C ∪ { z } is

a chain. Let z− = { c ∈ C | c < z } and z+ = { c ∈ C | z < c }. Since z < C and C is

closed under meets and joins, we have
∨

z− < z <
∧

z+, with
∨

z−,
∧

z+ ∈ C. By

density, let w ∈ C be such that
∨

z− < w <
∧

z+. Since w ∈ C ⊆ C ∪ { z } and the

latter is a chain, then w < z or z < w. In the first case we obtain w ≤
∨

z− and in

the second case
∧

z+ ≤ w and, in both cases, we have a contradiction.

Next, we argue that every maximal chain of Id is a path in Id. Let C be a maximal

chain of Id. Take X ⊆ C and let a :=
∧

X ∈ Id. The maximality of C implies that

0, 1 ∈ C and so a ∈ C whenever X = ∅ or X = C. Suppose that X , ∅. We claim

that C ∪ { a } is a chain and consequently a ∈ C by the maximality of C. Let c ∈ C;

if c � a then c � x, for some x ∈ X, which implies x < c and so a < c; if a � c,

then x � c for every x ∈ X, which implies c < x for every x ∈ X, and so c ≤ a.

Thus C ∪ { a } is a chain as aimed. Let us now prove that C is dense. Let x < y

in C. Suppose that for every c ∈ C we have y ≤ c or c ≤ x. Since x < y, there

exists j ∈ [d] such that x j < y j. The density of I implies the existence of z j ∈ I

such that x j < z j < y j. Take w ∈ Id to be defined by w j = z j and wi = xi for i , j.

Clearly x < w < y. If w < C, then C ∪ {w } is not a chain and there exists c ∈ C

such that w � c and c � w; consequently, y � c and c � x, which contradicts the

assumption that y ≤ c or c ≤ x, for each c ∈ C. Thus there must be c ∈ C such that

x < c < y. �

We carry over with a characterization of maximal chains of Id which justifies

naming them paths.

Lemma 38. A monotone function p : I −→ Id such that p(0) = ~0 and p(1) = ~1 is

topologically continuous if and only if it is bi-continuous. Consequently, its image

in Id is a path.

Proof. Let p be as in the statement of the lemma. For each i ∈ { 1, . . . , d }, let

πi : Id −→ I be the projection on the i-th coordinate, and set fi := πi ◦ f , so each fi is
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monotone. Recall the standard theorem on existence/characterization of left limits

of monotone functions: limy→x− fi(y) =
∨

fi([0, x)).

If p is topologically continuous, then each fi is topologically continuous. Let

X ⊆ I and observe that X is cofinal in [0,
∨

X) (that is, for each y ∈ [0,
∨

X) here

exists x ∈ X such that y ≤ x. This implies that
∨

g([0,
∨

X)) ≤
∨

g(X), for each

monotone function g. It follows that

fi(
∨

X) = lim
y→(
∨

x)−
fi(y) , since fi is topologically continuous,

=
∨

fi([0,
∨

X)) ≤
∨

fi(X) .

Since the opposite inclusion holds by monotonicity, this shows that each fi is join-

continuous, so f is join-continuous. In a similar way, f is meet-continuous.

Conversely, let us suppose that f is bi-continuous. Thus, for each x ∈ I, we have

lim
y→x−

fi(y) =
∨

fi([0, x)) = f (x) =
∧

fi((x, 1]) = lim
z→x+

fi(z) ,

showing that each fi (and therefore f ) is topologically continuous.

For the last statement, let C = p(I). Let X ⊆ C and Y ⊆ I be such that p(Y) = X.

Then
∨

X =
∨

p(Y) = p(
∨

Y) ∈ C; in a similar way,
∧

Y ∈ C. Let us show

that C is dense. Let x, y ∈ I be such that p(x) < p(y). Since p is monotone,

we also have x < y (use Lemma 39). Consider then the image of the connected

interval [x, y]. Since p is topologically continuous, its image cannot be the dis-

connected two points set { p(x), p(y) }. Therefore there exists z ∈ (x, y) such that

p(z) < { p(x), p(y) }; then, by monotonicity, we get p(x) < p(z) < p(y). �

Thus, if p : I −→ Id is a monotone topologically continuous function with p(0) =
~0 and p(1) = ~1, then p(I) ⊆ Id is a path. We are going to show that every path arises

in this way.

Lemma 39. Consider a monotone function f : C −→ P where C is a chain and P

is any poset. Then f reflects the strict order: f (x) < f (y) implies x < y.

Proof. Suppose f (x) < f (y). We have y ≤ x or x < y. However, if y ≤ x, then

f (y) ≤ f (x) as well, contradicting f (x) < f (y). Whence x < y. �

Lemma 40. Any bi-continuous function f : C −→ I, where C is a path, is surjective.

Proof. Since f is bi-continuous, it has left and right adjoints, say ℓ ⊣ f ⊣ ρ. We

shall show that ℓ ≤ ρ; from this and the unit/counit relations h(ρ(t)) ≤ t ≤ h(ℓ(t)) it

follows that both ℓ(t) and ρ(t) are preimages of t ∈ I.

Let t ∈ I be arbitrary; since C is a chain, either ℓ(t) ≤ ρ(t) holds, or ρ(t) < ℓ(t)
holds. In the latter case, let c ∈ C be such that ρ(t) < c < ℓ(t). As I is a chain, either

f (c) ≤ t, or t ≤ f (c). If f (c) ≤ t, then we have c ≤ ρ(t), contradicting ρ(t) < c;

if t ≤ f (c), then ℓ(t) ≤ c, contradicting c < ℓ(t). Therefore the relation ℓ(t) ≤ ρ(t)

holds, for each t ∈ C. �
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For a path C ⊆ Id and i = 1, . . . , d, let us define πi : C −→ I as the inclusion

of C into Id followed by the projection to the i-component. Observe that πi is bi-

continuous (since it is the composition of two bi-continuous functions), thus it is

surjective by the previous lemma.

Proposition 41. Every path C is order isomorphic to I. In particular, there exists

a monotone continuous function p : C −→ I such that p(0) = ~0, p(1) = ~1, and

p(I) = C.

Proof. We shall show that C has a dense countable subset CQ without endpoints

which generates C both under infinite joins and under infinite meets. By a well

known theorem by Cantor, see e.g. [11, Proposition 1.4.2], CQ is order isomorphic

to I∩Q\{ 0, 1 }. Then C is order isomorphic to the Dedekind-MacNeille completion

of I ∩ Q \ { 0, 1 }, namely to I. For each i ∈ { 1, . . . , d } and q ∈ I ∩ Q \ { 0, 1 }, pick

ci,q ∈ C such that πi(ci,q) = q. Let

CQ := { ci,q | i ∈ { 1, . . . , d }, q ∈ I ∩ Q \ { 0, 1 } } ,

and observe that CQ is countable. We firstly argue that CQ is dense in C. Let

c, c′ ∈ C such that c < c′. By definition of the order on Id, πi(c) < πi(c
′) for some

i ∈ { 1, . . . , d }. Let q ∈ I ∩ Q be such that πi(c) < q < πi(c
′). Then, by Lemma 39,

we deduce c < ci,q < c′, with ci,q ∈ CQ.

Also CQ has no endpoints. For example, if c = ci,q ∈ CQ and q′ ∈ I ∩ Q is such

that q′ < q, then necessarily ci,q′ < ci,q, so CQ has no least element.

Finally, we prove that CQ generates C under infinite joins. Let c ∈ C and

consider the set D := { x ∈ CQ | x < c }; suppose that
∨

D < c. There ex-

ists i ∈ { 1, . . . , d } such that πi(
∨

D) < πi(c), and we can pick q ∈ Q such that

πi(
∨

D) < q < πi(c). Let ci,q be such that πi(ci,q) = q, then, by Lemma 39, we have
∨

D < ci,q < c. Yet, this is a contradiction, as ci,q ∈ CQ and ci,q < c imply ci,q ∈ D,

whence ci,q ≤
∨

D. In a similar way, we can show that every element of C is a

meet of elements of CQ. �

8. Paths in dimension 2

We give next a further characterization of the notion of path, valid in dimension

2. The principal result of this Section, Theorem 45, states that paths in dimension

2 bijectively correspond to elements of the quantale Q∨(I).

For a monotone function f : I −→ I define C f ⊆ I
2 by the formula

C f :=
⋃

x∈I

{ x } × [ f∨(x), f∧(x)] . (20)

Notice that, by Proposition 33, C f = C f∨ = C f∧ . As suggested in figure 8, when

f ∈ Q∨(I), then C f is the graph of f (in blue in the figure) with the addition of the

intervals ( f∨(x), f∧(x)] (in red in the figure) when x is a discontinuity point of f .

Proposition 42. C f is a path in I2.

Proof. We prove first that C f , with the product ordering induced from I2, is a linear

order. To this goal, we shall argue that, for (x, y), (x′, y′) ∈ C f , we have (x, y) <
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Figure 1. The path C f of f ∈ Q∨(I)

(x′, y′) iff either x < x′ or x = x′ and y < y′. That is, C f is a lexicographic

product of linear orders, whence a linear order. Let us suppose that one of these

two conditions holds: a) x < x′, b) x = x′ and y < y′. If a), then f∧(x) ≤ f∨(x′).

Considering that y ∈ [ f∨(x), f∧(x)] and y′ ∈ [ f∨(x′), f∧(x′)] we deduce y ≤ y′.

This proves that (x, y) < (x′, y′) in the product ordering. If b) then we also have

(x, y) < (x′, y′) in the product ordering. The converse implication, (x, y) < (x′, y′)
implies x < x′ or x = x′ and y < y′, trivially holds.

We argue next that C f is closed under joins from I2. Let (xi, yi) be a col-

lection of elements in C f , we aim to show that (
∨

xi,
∨

yi) ∈ C f , i.e.
∨

yi ∈

[ f∨(
∨

xi), f∧(
∨

xi)]. Clearly, as yi ≤ f∧(xi), then
∨

yi ≤
∨

f∧(xi) ≤ f∧(
∨

xi).

Next, f∨(xi) ≤ yi, whence f∨(
∨

xi) =
∨

f∨(xi) ≤
∨

yi. By a dual argument, we

have that (
∧

xi,
∧

yi) ∈ C f .

Finally, we show that C f is dense; to this goal let (x, y), (x′, y′) ∈ C f be such

that (x, y) < (x′, y′). If x < x′ then we can find a z with x < z < x′; of course,

(z, f (z)) ∈ C f and, by the previous characterisation of the order, (x, y) < (z, f (z)) <
(x′, y′) holds. If x = x′ then y < y′ and we can find a w with y < w < y′;

as w ∈ [y, y′] ⊆ [ f∨(x), f∧(x)], then (x,w) ∈ C f ; clearly, we have then (x, y) <
(x,w) < (x, y′) = (x′, y′). �

For C a path in I2, define

f −C (x) :=
∧

{ y | (x, y) ∈ C } , f +C (x) :=
∨

{ y | (x, y) ∈ C } . (21)

Recall that a path C ⊆ I2 comes with bi-continuous surjective projections π1, π2 :

C −→ I. Observe that the following relations hold:

f −C = π2 ◦ (π1)ℓ , f +C = π2 ◦ (π1)ρ . (22)
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Indeed, we have

π2((π1)ℓ(x)) = π2(
∧

{ (x′, y) ∈ C | x = x′ }) , using equation (2)

=
∧

π2({ (x′, y) ∈ C | x = x′ }) =
∧

{ y | (x, y) ∈ C } .

The other expression for f +
C

is derived similarly. In particular, the expressions in

(22) show that f −
C
∈ Q∨(I) and f +

C
∈ Q∧(I).

Lemma 43. We have

f −C = ( f +C )
∨
, f +C = ( f −C )

∧
, and C = C f +

C
= C f −

C
.

Proof. Firstly, let us argue that f +
C
= ( f −

C
)∧; we do this by showing that f +

C
is

the least meet-continuous function above f −
C

. We have f −
C

(x) ≤ f +
C

(x) for each

x ∈ I, since π1 is surjective so the fibers π−1
1

(x) = { (x′, y) ∈ C | x′ = x } are non

empty. Suppose now that f −
C
≤ g ∈ Q∧(I). In order to prove that f +

C
≤ g it will

be enough to prove that f +
C

(x) ≤ g(x′) whenever x < x′. Observe that if x < x′

then f +
C

(x) ≤ f −
C

(x′): this is because if (x, y), (x′, y′) ∈ C, then x < x′ and C a

chain imply y ≤ y′. We deduce therefore f +
C

(x) ≤ f −
C

(x′) ≤ g(x′). The relation

f −
C
= ( f +

C
)∨ is proved similarly.

Next we argue that (x, y) ∈ C if and only if f −
C

(x) ≤ y ≤ f +
C

(x). The direction

from left to right is obvious. Conversely, we claim that if f −
C

(x) ≤ y ≤ f +
C

(y),

then the pair (x, y) is comparable with all the elements of C. It follows then that

(x, y) ∈ C, since C is a maximal chain. Let us verify the claim. Let (x′, y′) ∈ C, if

x = x′ then our claim is obvious, and if x′ < x, then y′ ≤ f +
C

(x′) ≤ f −
C

(x) ≤ y, so

(x′, y′) ≤ (x, y); the case x < x′ is similar. �

Lemma 44. Let f : I −→ I be monotone and consider the path C f . Then f∨ = f −
C f

and f∧ = f +
C f

.

Proof. For a monotone f : I −→ I, let f ′ : I −→ C f by f ′ := 〈idI, f∨〉, so f∨ = π2◦ f ′,

as in the diagram below:

I C f I

f −
C f

f∨

〈id, f∨〉

(π1)ℓ

π1
π2

Recall that f −
C f
= π2 ◦ (π1)ℓ. Therefore, in order to prove the relation f∨ = f −

C f
=

π2◦(π1)ℓ it shall be enough to prove that 〈id, f∨〉 is left adjoint to the first projection

(that is, we prove that 〈id, f∨〉 = (π1)ℓ, from which it follows that f∨ = π1 ◦

〈id, f∨〉 = π2 ◦ (π1)ℓ). This amounts to verify that, for x ∈ I and (x′, y) ∈ C f we

have x ≤ π1(x′, y) if and only if (x, f∨(x)) ≤ (x′, y). To achieve this goal, the only

non trivial observation is that if x ≤ x′, then f∨(x) ≤ f∨(x′) ≤ y. The relation

f∧ = π2 ◦ (π1)ρ is proved similarly. �

Theorem 45. There is a bijective correspondence between the following data:
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(1) paths in I2,

(2) join-continuous functions in Q∨(I),

(3) meet-continuous functions in Q∧(I).

Proof. According to Lemmas 43 and 44, the correspondence sending a path C

to f −
C
∈ Q∨(I) has the mapping sending f to C f as an inverse. Similarly, the

correspondence C 7→ f +
C
∈ Q∧(I) has f 7→ C f as inverse. �

9. Paths in higher dimensions

We show in this section that paths in dimension d, as defined in Section 7, are in

bijective correspondence with clopen tuples of Q∨(I)[d]2 , as defined in Section 5;

therefore, as established in that Section, there is a lattice Ld(Q∨(I)) whose underly-

ing set can be identified with the set of paths in dimension d.

Let f ∈ Q∨(I)[d]2 , so f = { fi, j | 1 ≤ i < j ≤ d }. We define then, for 1 ≤ i < j ≤

d,

f j,i := ( fi, j )⋆ = (( fi, j)ρ)
∨ .

Moreover, for i ∈ [d], we let fi,i := id. We say shall say that a tuple f ∈ Q∨(I)[d]2

is compatible if f j,k ◦ fi, j ≤ fi,k, for each triple of elements i, j, k ∈ [d]. It is readily

seen that a tuple is compatible if and only if δ f , defined in Lemma 27, is a skew

metric on [d]. Therefore, according to Lemma 28, a tuple is compatible if and only

if it is clopen.

If C ⊆ Id is a path, then we shall use πi : C −→ I to denote the projection onto

the i-th coordinate. Then πi, j := 〈πi, π j〉 : C −→ I × I.

Definition 46. For a path C in Id, let us define v(C) ∈ Q∨(I)[d]2 by the formula:

v(C)i, j := π j ◦ (πi)ℓ , (i, j) ∈ [d]2. (23)

Remark 47. An explicit formula for v(C)i, j(x) is as follows:

v(C)i, j(x) =
∧

{ π j(y) ∈ C | πi(y) = x } . (24)

Let Ci, j be the image of C via the projection πi, j. Then Ci, j is a path, since it is the

image of a bi-continuous function from I to I × I. Some simple diagram chasing

(or the formula in (24)) shows that v(C)i, j = f −
Ci, j

as defined in (21).

Definition 48. For a compatible f ∈ Q∨(I)[d]2 , define

C f := { (x1, . . . , xd) | fi, j(xi) ≤ x j, for all i, j ∈ [d] } .

Remark 49. Notice that the condition fi, j(x) ≤ y is equivalent (by definition of fi, j
or f j,i) to the condition x ≤ f∧

j,i(y). Thus, there are in principle many different ways

to define C f ; in particular, when d = 2 (so any tuple Q∨(I)[d]2 is compatible), the

definition given above is equivalent to the one given in (20).

Proposition 50. C f is a path.

The proposition is an immediate consequence of the following Lemmas 51, 52

and 54.
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Lemma 51. C f is a total order.

Proof. Let x, y ∈ C f and suppose that x � y, so there exists i ∈ [d] such that

xi � yi. W.l.o.g. we can suppose that i = 1, so y1 < x1 and then, for i > 1, we have

f∧
1,i

(y1) ≤ f1,i(x1), whence yi ≤ f∧
1,i

(y1) ≤ f1,i(x1) ≤ x1. This shows that y < x. �

Lemma 52. C f is closed under arbitrary meets and joins.

Proof. Let { xℓ | ℓ ∈ I } be a family of tuples in C f . For all i, j ∈ [d] and ℓ ∈ I, we

have fi, j(
∧

ℓ∈I xℓ
i
) ≤ fi, j(xℓ

i
) ≤ xℓ

j
, and therefore fi, j(

∧

ℓ∈I xℓ
i
) ≤
∧

ℓ∈I xℓ
j
. Since meets

in Id are computed coordinate-wise, this shows that C f is closed under arbitrary

meets. Similarly, fi, j(xℓ
i
) ≤
∨

ℓ∈I xℓ
j

and

fi, j(
∨

ℓ∈I

xℓi ) =
∨

ℓ∈I

fi, j(xℓi ) ≤
∨

ℓ∈I

xℓj ,

so C f is also closed under arbitrary joins. �

Lemma 53. Let f ∈ Q∨(I)[d]2 be compatible. Let i0 ∈ [d] and x0 ∈ I; define x ∈ Id

by setting xi := fi0,i(x0) for each i ∈ [d]. Then x ∈ C f and x =
∧

{ y ∈ C f | πi0 (y) =

x0 }.

Proof. Since f is compatible, fi, j ◦ fi0 ,i ≤ fi0, j, for each i, j ∈ [d], so

fi, j(xi) = fi, j( fi0 ,i(x0)) ≤ fi0 , j(x0) = x j .

Therefore, x ∈ C f . Observe that since fi0,i0 = id, we have xi0 = x0 and x so defined

is such that πi0(x) = x0. On the other hand, if y ∈ C f and x0 ≤ πi0 (y) = yi0 , then

xi = fi,i0 (x0) ≤ fi,i0 (yi0 ) ≤ yi, for all i ∈ [d]. Thus x =
∧

{ y ∈ C f | πi0 (y) = x0 }. �

Lemma 54. C f is dense.

Proof. Let x, y ∈ C f and suppose that x < y, so there exists i0 ∈ [d] such that

xi0 < yi0 . Pick z0 ∈ I such that xi0 < z0 < yi0 and define z ∈ C f as in Lemma 53,

zi := fi0,i(z0), for all i ∈ [d]. We claim that xi ≤ zi ≤ yi, for each i ∈ [d]. From

this and xi0 < zi0 < y0 it follows that x < z < y. Indeed, we have zi = fi0 ,i(z0) ≤

fi0,i(yi0 ) ≤ yi. Moreover, xi0 < z0 implies f∧
i0,i

(xi0 ) ≤ fi0,i(z0); by Remark 49, we

have xi ≤ f∧
i0,i

(xi0 ). Therefore, we also have xi ≤ f∧
i0 ,i

(xi0 ) ≤ fi0 ,i(z0) = zi. �

Lemma 55. If f ∈ Q∨(I)[d]2 is compatible, then v(C f ) = f .

Proof. By Lemma 53, the correspondence sending x to ( fi,1(x), . . . , fd,1(x)) is left

adjoint to the projection πi : C f −→ I. In turn, this gives that v(C f )i, j(x) =

π j((πi)ℓ(x)) = fi, j(x), for any i, j ∈ [d]. It follows that v(C f ) = f . �

Lemma 56. For C a path in Id, we have Cv(C) = C.

Proof. Let us show that C ⊆ Cv(C). Let c ∈ C; notice that for each i, j ∈ [d], we

have

v(C)i, j(ci) = π j((πi)ℓ(ci)) = π j((πi)ℓ(πi(c)) ≤ π j(c) = c j ,

so c ∈ Cv(C). For the converse inclusion, notice that C ⊆ Cv(C) implies C = Cv(C),

since every path is a maximal chain. �
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Putting together Lemmas 55 and 56 we obtain:

Theorem 57. The correspondences, sending a path C in Id to the tuple v(C), and

a compatible tuple f to the path C f , are inverse bijections.

10. Structure of the continuous weak orders

As established in Section 5, there is a lattice Ld(Q∨(I)) whose underlying set

is the set of clopen tuples of the product Q∨(I)[d]2 . From now on, and to ease

the reading, we shall use L(Id) to denote this lattice. Obviously, if d = 2, then

L(Id) = Q∨(I). By the results in the previous section, elements of L(Id) bijectively

correspond to paths in dimension d. Under the bijection, given two paths C,C′

in dimension d, the relation C ≤ C′ holds if and only if, for each pair of axes

i, j ∈ [d] with i < j, the projected path Ci, j is below the projected path C′
i, j. Given

the bijective correspondence with paths in dimension d, we call this lattice the

continuous weak order (in dimension d).

We give in this section a minimum of structural theory of the lattices L(Id):

we observe that they are self-dual, we characterize their join-irreducible elements,

and argue that they have no completely join-irreducible elements nor compact ele-

ments.

10.1. Duality. A lattice L is said to be self-dual (or autodual) if it is isomorphic

to it dual Lop. Let σ : [d] −→ [d] be defined by σ(i) := d + 1 − i; as observed in

Remark 16, if we define f⋆ ∈ L(Id) (for f ∈ L(Id)) by

( f⋆ )i, j := ( fσ( j),σ(i) )⋆ , for each (i, j) ∈ [d]2 ,

then the correspondence sending f to f⋆ is an order reversing involution of L(Id).

Let us remark that this correspondence is not an orthocomplementation, for exam-

ple, it can be easily seen that the relation f ∧ f⋆ = ⊥ fails already when d = 2.

10.2. Join-prime elements of Q∨(I). Recall from Corollary 34 that Q∨(I) is a

complete distributive lattice and that, in distributive lattices, join-prime and join-

irreducible elements coincide. We determine therefore the join-prime elements of

Q∨(I). For x, y ∈ I, let us put

ex,y(t) :=






0 , 0 ≤ t ≤ x ,

y , x < t ,
Ex,y(t) :=






0 , 0 ≤ t < x ,

y , x ≤ t < 1 ,

1 , t = 1 ,

(25)

so ex,y ∈ Q∨(I), Ex,y ∈ Q∧(I) and, moreover, Ex,y = e∧x,y.

Definition 58. A one step function is a function of the form ex,y where x, y ∈ I. We

say that ex,y is prime if ex,y , ⊥. We say that ex,y is rational if x, y ∈ I ∩ Q.

Lemma 59. For each x, y ∈ I, ex,y = ⊥ if and only of x = 1 or y = 0.

Proof. If x = 1 or y = 0, then ex,y is the constant function that takes 0 as its unique

value, i.e. ex,y = ⊥. Conversely, if x < 1 and 0 < y, then, ex,y(1) = y , 0, so

ex,y , ⊥. �
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From the lemma it also follows that ex,y , ⊥ if and only if x < 1 and 0 < y.

Notice therefore that ex,y , ⊥ if and only if the point (x, y) ∈ I2 does not lie on the

path { (x, 0) | x ∈ I } ∪ { (1, y) | y ∈ I }.

Lemma 60. For f ∈ Q∨(I) and x, y ∈ I, ex,y ≤ f if and only if y ≤ f∧(x).

Proof. If ex,y ≤ f then y = e∧x,y(x) ≤ f∧(x). Conversely, suppose that y ≤ f∧(x). If

t ≤ x, then ex,y(t) = 0 ≤ f (t). If x < t ≤ 1, then ex,y(t) = y ≤ f∧(x) ≤ f (t), where

the last inequality follows from Lemma 32. �

Corollary 61. Let x, y, z,w ∈ I and suppose that ex,y, ez,w , ⊥. Then ex,y ≤ ez,w if

and only if z ≤ x and y ≤ w.

Proof. If ex,y ≤ ez,w, then y ≤ e∧z,w(x). Since 0 < y, we derive then z ≤ x. Since

x < 1 we also have e∧z,w(x) = w, so y ≤ e∧z,w(x) = w. Conversely, suppose z ≤ x and

y ≤ w. From z ≤ x < 1 we deduce e∧z,w(x) = w, so y ≤ w = e∧z,w(x) yields, according

to the previous lemma, ex,y ≤ ez,w. �

For f ∈ Q∨(I) and x0, x1 ∈ I with x0 ≤ x1, we define f(x0,x1] ∈ Q∨(I) as follows:

f(x0 ,x1](t) :=






0 , 0 ≤ t ≤ x0 ,

f (t) , x0 < t ≤ x1 ,

f∧(x1) , x1 < t .

In particular, for any x ∈ I, we have

f(0,x](t) =






f (t) , 0 ≤ t ≤ x ,

f∧(x) , x < t ,
f(x,1](t) =






0 , 0 ≤ t ≤ x ,

f (t) , x < t ≤ 1 ,

so

f = f(0,x] ∨ f(x,1] .

Proposition 62. Prime one step functions are exactly the join-prime elements of

Q∨(I).

Proof. Consider ex,y and suppose that ex,y ≤ f ∨ g. This relation holds if and only

if y ≤ max( f∧(x), g∧(x)), if and only if y ≤ f∧(x) or y ≤ g∧(x), that is ex,y ≤ f

or ex,y ≤ g. Thus every function of the form ex,y which is different from ⊥ is

join-prime.

Conversely, let f ∈ Q∨(I) be join-prime (so f is join-irreducible) and recall that,

for any x ∈ I, f = f(0,x] ∨ f(x,1]. Therefore, for each x ∈ I, f = f(0,x] or f = f(x,1].

Observe also that if f = f(0,x] and f = f(x,1], then f = ex, f∧(x).

Let now I f := { x ∈ I | f = f(x,1] } and F f := { x ∈ I | f = f(0,x] }, so I f ∪ F f = I.

Notice that x ∈ I f if and only if f (x) = 0 and x ∈ F f if and only if the restriction

of f to the interval (x, 1] is constant. From these considerations it immediately

follows that I f is a downset and F f is an upset; moreover, I f is closed under joins

(since f is join-continuous) and F f is closed under meets. If x ∈ I f , y ∈ F f , and

y < x, then f is constant with value 0, which contradicts f being join-irreducible

(thus distinct from ⊥). Therefore, if x ∈ I f and y ∈ F f , then x ≤ y. Then x0 =
∨

I f =
∧

F f ∈ I f ∩ F f and f = ex0 , f∧(x0). �
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Proposition 63. Every f ∈ Q∨(I) is a (possibly infinite) join of prime one step

functions.

Proof. Clearly we have
∨

{ ex,y | ex,y ≤ f } ≤ f , so let us argue that this inclusion

is an equality. Let g be such that ex,y ≤ g whenever ex,y ≤ f . In particular, for

x arbitrary and y = f∧(x), we have ex,y ≤ g, that is f∧(x) ≤ g∧(x). We argued

therefore that, within Q∧(I), f∧ ≤ g∧. We have, therefore, f = f∧∨ ≤ g∧∨ = g. �

Remark 64. Proposition 63 implies that Q∨(I) is the Dedekind-MacNeille comple-

tion of the sublattice generated by the prime one step functions. The statement

of the proposition can be further strengthened as follows: every f ∈ Q∨(I) is a

(possibly infinite) join of prime rational one step functions, implying that Q∨(I) is

the Dedekind-MacNeille completion of the sublattice generated by the rational one

step functions. To see why this is the case, observe that every one step function is

the the join of the rational one step functions below it.

Finally, we verify the following relations, that we shall need to understand the

structure of join-irreducible elements in higher dimensions.

Lemma 65. For each x, y, y′, z ∈ I,

ey′,z ◦ ex,y =






⊥ , y ≤ y′ ,

ex,z , otherwise .

In particular, ey,z ◦ ex,y = ⊥.

Proof. Let us study the formula for the composition:

ey′ ,z(ex,y(t)) =






0 , ex,y(t) ≤ y′ ,

z , y′ < ex,y(t) .

Now, if y ≤ y′, then ex,y(t) ≤ y′, for each t ∈ I, so ey′,z ◦ ex,y = ⊥. If y′ < y, then

y′ < ex,y(t) if and only if ex,y(t) = y, i.e. iff x < t. This yields ey′,z ◦ ex,y = ex,z. �

The following lemma is verified in a similar way.

Lemma 66. For each x, y, z ∈ I,

e∧y,z ◦ e∧x,y =






e∧y,z , y = 0 ,

e∧x,z , 0 < y < 1 ,

e∧x,y , y = 1 .

10.3. Join-irreducible elements of L(Id). We study next join-irreducible elements

of the lattice L(Id), for d ≥ 3.

For p ∈ Id, let ep ∈ Q∨(I)[d]2 be the tuple defined as follows:

ep := 〈 epi ,p j
| (i, j) ∈ [d]2 〉 .

Let also define

µ∨p := min{ i ∈ [d] | pi < 1 } , M∨p := max{ j ∈ [d] | 0 < p j } ,
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(where we let in these formulas min ∅ = d + 1 and max ∅ = 0) and

dim∨(p) := M∨p − µ
∨
p .

Therefore, for each p ∈ Id, pi = 1 if i < µ∨p and p j = 0 if j > M∨p . In particular, we

cannot have M∨p < µ
∨
p − 1, so dim∨(p) ≥ −1.

Lemma 67. For each p ∈ Id, the relation ep , ⊥ holds if and only if dim∨(p) > 0.

Proof. Recall that epi ,p j
= ⊥, if pi = 1 or p j = 0. Suppose that dim∨(p) ≤ 0, so

M∨p ≤ µ∨p and consider (i, j) ∈ [d]2: we have then pi = 1 or p j = 0. Therefore,

epi,p j
= ⊥ for each (i, j) ∈ [d]2, and ep = ⊥.

Suppose next that dim∨(p) > 0, so µ∨p < M∨p . To ease reading, let µ = µ∨p and

M = M∨p . Since 1 ≤ µ and M ≤ d, we have (µ, M) ∈ [d]2 and since pµ , 1 and

pM , 0, we have epµ ,pM
, ⊥ and therefore ep , ⊥. �

Proposition 68. For each p ∈ Id, ep is a clopen tuple of Q∨(I)[d]2 . That is, ep ∈

L(Id).

Proof. We use Remark 29 to establish that ep is compatible and, to this goal, we use

the relations established with Lemmas 65 and 66. The relation e∧pi,pk
= e∧p j ,pk

◦e∧pi ,p j

holds unless p j ∈ { 0, 1 }. If p j = 0, then

ep j ,pk
◦ epi ,p j

= ⊥ ≤ epi,pk
≤ e∧pi,pk

≤ e∧0,pk
= e∧p j ,pk

◦ e∧pi ,p j
.

If p j = 1, then

ep j ,pk
◦ epi ,p j

= ⊥ ≤ epi ,pk
≤ e∧pi ,pk

≤ e∧pi ,1
= e∧p j ,pk

◦ e∧pi,p j
. �

Notice that p ∈ Id has dim∨(p) ≤ 0 if and only if it lies on the path
⋃

i∈[d]

{ (1, . . . , 1
︸  ︷︷  ︸

i−1

, x, 0, . . . , 0
︸  ︷︷  ︸

d−i

) | x ∈ I } .

It is readily seen that this path corresponds to the tuple that is the bottom of the

lattice L(Id) (as well as of the lattice Q∨(I)[d]2 ).

Lemma 69. For each f ∈ L(Id), x ∈ I, and (m, M) ∈ [d]2, there exists p( f , x,m, M) ∈

Id such that ep( f ,x,m,M) ≤ f , p( f , x,m, M)m = x and p( f , x,m, M)M = f∧
m,M(x).

Proof. We construct p = p( f , x,m, M) as follows. We let pm = x and, for i with

m < i ≤ M, we let pi = f∧
m,i(x). If i < m then we let pi = 1, and if M < i, then we

let pi = 0.

Let us verify that ep ≤ f , that is epi ,p j
≤ fi, j for each (i, j) ∈ [d]2. If i < m, then

epi,p j
= ⊥ ≤ fi. j. Similarly, if M < j, then epi ,p j

= ⊥ ≤ fi, j. Therefore we can

assume that m ≤ i < j ≤ M. We verify that epi ,p j
≤ fi, j using Lemma 60. If i = m,

p j = f∧
m, j(x) ≤ f∧

m, j(pm), simply because pm = x; if m < i, then p j = f∧
m, j(x) ≤

f∧
i, j( f∧

m,i(x)) = f∧
i, j(pi), recalling that pi = f∧

m,i(x) and using openedness of f . �

Corollary 70. For each f ∈ L(Id) the relation

f =
∨

{ ep | p ∈ I
d and ep ≤ f } . (26)
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holds in L(Id).

Proof. Using Lemma 69, we see that relation (26) holds in Q∨(I)[d]2 , for any f ∈

L(Id). A fortiori, the same relation holds in L(Id). �

Proposition 71. For each p ∈ Id, if ep , ⊥, then ep is join-irreducible within L(Id).

Proof. Assume that the relation ep = α ∨ β holds in L(Id). Let m := µ∨p and M :=

M∨p . Observe that, for (i, j) ∈ [d]2, if i < m or M < j, then ei, j = αi, j = βi, j = ⊥; so

we only need to show that either epi, j
= αi, j whenever m ≤ i < j ≤ M, or epi, j

= βi, j

whenever m ≤ i < j ≤ M. Said otherwise, we can assume that m = 1 and M = d

(so p1 , 1 and pd , 0).

Firstly, we claim that ep1,pd
= α1,d∨β1,d. If not, then we have α1,d∨β1,d < ep1 ,pd

;

consider then the tuple f ∈ Q∨(I)[d]2 such that fi, j = epi ,p j
if i , 1 or j , d, and

f1,d = α1,d∨β1,d; trivially, f is closed, since for i < j < k, ep j ,pk
◦epi,p j

= ⊥ ≤ epi ,pk
.

We obtain then the following contradiction:

ep = α ∨L(Id) β = α ∨Q∨(I)[d]2 β ≤ f = f < ep .

Thus we have ep1,pd
= α1,d ∨ β1,d in Q∨(I), and therefore ep1,pd

= α1,d or ep1 ,pd
=

β1,d. Let us suppose that ep1 ,pd
= α1,d, we shall prove that ep = α. (A similar

argument proves that ep = β if ep1,pd
= β1,d).

Notice first that ep = α ∨ β implies αi, j ≤ epi,p j
for each (i, j) ∈ [d]2. On the

other hand, if 1 < i < d, then

pd = e∧p1 ,pd
(p1) = α∧1,d(p1) ≤ α∧i,d(α∧1,i(p1)) ≤ α∧i,d(e∧p1,pi

(p1)) = α∧i,d(pi) ,

showing that epi ,pd
≤ αi,d and, consequently, epi ,pd

= αi,d, for i = 1, . . . , d − 1.

Suppose now that epi ,p j
� αi, j for some (i, j) ∈ [d]2 with j < d. This relation

amounts to p j � α
∧
i, j(pi), thus to α∧

i, j(pi) < p j. Then

pd = e∧pi,pd
(pi) = α

∧
i,d(pi) ≤ α

∧
j,d(α∧i, j(pi)) = e∧p j ,pd

(α∧i, j(pi)) = 0 ,

against the hypothesis. Thus we have αi, j = epi,p j
for each (i, j) ∈ [d]2, that is

ep = α. �

In the rest of this section we aim shall prove the converse of Proposition 71: if α
is join-irreducible, then α = ep for some p ∈ Id. Let p, q ∈ Id with p ≤ q; as usual,

[p, q] denotes the set { r ∈ Id | p ≤ r ≤ q }; define then e[p,q] by

e[p,q] :=
∨

{ er | r ∈ [p, q] }

where this infinite join is computed in Q∨(I)[d]2 (we shall argue few lines below

that e[p,q] is clopen). We notice in the meantime the following expression of e[p,q].

For each (i, j) ∈ [d]2,

( e[p,q] )i, j = (
∨

{ er | r ∈ [p, q] } )i, j

=
∨

{ eri,r j
| pi ≤ ri ≤ qi , p j ≤ r j ≤ q j } = epi ,q j

.

Lemma 72. For each p, q ∈ Id with p ≤ q, e[p,q] is clopen. Moreover, for r ∈ Id

such that ⊥ < er, the relation er ≤ e[p,q] holds if and only
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(1) pµ∨r ≤ rµ∨r and rM∨r
≤ qM∨r

,

(2) ri ∈ [pi, qi], for each i such that µ∨r < i < M∨r .

Proof. Clearly e[p,q] is open since it is a join of open tuples; it is also closed since

the relations ep j ,qk
◦ epi,q j

≤ epi ,qk
holds by Lemma 65.

Let now r ∈ Id be such that ⊥ < er; to ease the reading, let also m := µ∨r and

M := M∨r . Suppose that er ≤ e[p,q], that is eri,r j
≤ epi,q j

, for each (i, j) ∈ [d]2.

Since ⊥ < erm,rM
≤ epm,qM

, we have pm ≤ rm and rM ≤ qM . Also, for m < i < M,

erm,ri
≤ epm ,qi

with rm < 1 yields ri ≤ qi, and eri ,rM
≤ epi ,qM

with 0 < rM yields

pi ≤ ri. Thus, for such an i, pi ≤ ri ≤ qi.

Let us verify that (1) and (2) imply er ≤ e[p,q]. Consider (i, j) ∈ [d]2: if i < m or

M < j, then eri,r j
= ⊥, so eri,r j

≤ epi,q j
trivially holds; otherwise m ≤ i < j ≤ M,

and conditions (1) and (2) imply that pi ≤ ri and r j ≤ q j. �

As a particular instance of the previous lemma (i.e. when p = q in the statement

of the lemma) we deduce the following statement:

Proposition 73. Let r, p ∈ Id be such that ⊥ < er. Then er ≤ ep if, and only if,

(1) pµ∨r ≤ rµ∨r , rM∨r
≤ pM∨r

,

(2) ri = pi for all i ∈ [d] with µ∨r < i < M∨r .

Notice that the relation ⊥ < er ≤ ep also implies that

µ∨p ≤ µ
∨
r < M∨r ≤ M∨p .

Suppose for example that µ∨r < µ∨p , so p has in position m := µ∨r a 1. This implies

that epm ,p j
= ⊥ for each j > m. Therefore, er ≤ ep implies that erm,r j

= ⊥ for each

j > m. Since by definition rm < 1, the relations erm,r j
= ⊥ imply that r j = 0 for

each r j > m. Yet this means that dim∨(r) ≤ 0, so er = ⊥, against the assumption.

Proposition 74. If α ∈ L(Id) is join-irreducible, then α = ep for some p ∈ Id.

Proof. We claim first that there exists p ∈ Id such that α ≤ ep. To prove the claim,

we define an infinite sequence of intervals In := [pn, qn], n ≥ 0, with the following

properties:

(1) In+1 ⊆ In, for each n ≥ 0,

(2) qn
i
− pn

i
= 1

2n , for each i ∈ [d],

(3) α =
∨

{ er | er ≤ α, r ∈ In }.

Notice that the last condition implies that α ≤
∨

In.

We let I0 := I, so, for example, (3) holds by Corollary 70.

Given In, we define In+1 as follows. For each i ∈ [d], let Ii,0 := [pn
i
,

qn
i
+pn

i

2
] and

Ii,1 := [
qn

i
+pn

i

2
, qn

i
]; given a function f : [d] −→ { 0, 1 }, we let

I f := I1, f (1) × . . . × Id, f (d) .

Since

In =
⋃

f :[d]−→{ 0,1 }

I f
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then

α =
∨

{ er | er ≤ α, r ∈ In } =
∨

f :[d]−→{ l,r }

∨

{ er | er ≤ α, r ∈ I f } ,

so, since α is join-irreducible, there exists f such that

α =
∨

{ er | er ≤ α, r ∈ I f } ,

We let then In+1 := I f .

Let βn =
∨

n In and let pω be the unique element of
⋂

n≥0 In. Observe that, since

the sequences { pn
i
}n≥0, are increasing while the sequences { qn

i
}n≥0, are decreasing,

pω
i
=
∨

n≥0 pω
i
=
∧

n≥0 qn
i
. We verify next that

∧

n≥0 βn = epω . Let r ∈ Id be such

that r ≤ βn for each n ≥ 0, and put m := µ∨r and M := M∨r . Then, for each n ≥ 0,

pn
m ≤ rm, ri ∈ [pn

i
, qn

i
], rM ≤ qn

M
. It follows that pωm ≤ rm, ri = pω

i
for i such that

m < i < M, that is er ≤ epω . Since α ≤ βn for each n ≥ 0 and α =
∨
{ er | er ≤ α },

then α ≤ epω . This proves our claim.

Observe now that

α =
∨

1≤m<M≤d

J(α,m, M)

where

J(α,m, M) = { er | ⊥ < er, µ
∨
r = m, M∨r = M } ,

so, since α is join-irreducible, then for some m, M ∈ { d } with m < M,

α =
∨

J(α,m, M) .

Observe now that if r ∈ Id is such that ⊥ < er and er ∈ J(α,m, M), then er ≤

α ≤ ep, whence by Lemma 73 r is of the form

r = (1, . . . , 1, rm, pm+1, . . . , pM−1, rM , 0, . . . , 0) .

The join α =
∨

J(α,m, M) is then eq with

q = (1, . . . , 1,
∧

er∈J(α,m,M)

rm, pm+1, . . . , pM−1,
∨

er∈J(α,m,M)

rM , 0, . . . , 0) . �

10.4. Lack of completely join-irreducible elements and of compact elements.

Let L be a complete lattice. An element j of L is completely join-irreducible if, for

any X ⊆ L, j =
∨

X implies j ∈ X; it is completely join-prime if, for any X ⊆ L,

j ≤
∨

X implies j ∈ x, for some x ∈ X. Every completely join-prime element is

also completely join-irreducible. If L is a frame, that is, if x ∧
∨

Y =
∨

y∈Y x ∧ y

for each x ∈ L and Y ⊆ L, then the converse holds as well.

A family F ⊆ L is directed if every finite (possibly empty) subset of F has

an upper bound in F . An element c ∈ L is compact if, for every directed family

F ⊆ L, c ≤
∨

F implies c ≤ f for some f ∈ F .

Let us remark that there are no completely join-prime (equivalently, completely

join-irreducible) elements in Q∨(I). Indeed, for every prime one step function ex,y,



THE CONTINUOUS WEAK ORDER ∗15 31

we can write ex,y =
∨

ℓ∈L exℓ ,yℓ where the set { exℓ ,yℓ | ℓ ∈ L } is a chain and exℓ ,yℓ <
ex,y, for each ℓ ∈ L. Similarly, there are no compact elements in Q∨(I). Indeed, if

f is compact, then Proposition 63 implies that f is a finite join of join-irreducible

elements below it, say f =
∨

i=1,...,n exi ,yi
. We can assume that { exi ,yi

| i = 1, . . . , n }
is an antichain. Now, if { ex1,ℓ ,y1,ℓ

| ℓ ∈ L } is a chain approximating strictly from

below ex1 ,y1
, then f =

∨

ℓ∈L ex1,ℓy1,ℓ
∨
∨

i=2,...,n exi ,yi
, so f = ex1,ℓy1,ℓ

∨
∨

i=2,...,n exi ,yi

for some ℓ ∈ L. It follows that ex1 ,y1
≤ f = ex1,ℓy1,ℓ

∨
∨

i=2,...,n exi ,yi
, so either

ex1 ,y1
≤ ex1,ℓy1,ℓ

, or ex1 ,y1
≤ exi ,yi

for some i = 2, . . . , n. In all the cases we obtain a

contradiction.

For a similar reason, the lattices L(Id) have no completely join-irreducible el-

ements. Indeed, given p ∈ Id such that ⊥ < ep, it is easy to construct (using

Proposition 73) a chain of join-irreducible elements strictly below ep whose join is

ep.

In the rest of this section we argue that the lattices L(Id) do not have any compact

element.

Lemma 75. Let F ⊆ Q∨(I)[d]2 be a directed family of closed elements. Then then

join
∨

Q∨(I)[d]2 F ∈ Q∨(I)[d]2 is closed.

Proof. A straightforward verification:

(
∨

f∈F

f ) j,k ◦ (
∨

f∈F

f )i, j =
∨

f ,g∈F

g j,k ◦ fi, j

≤
∨

h∈F

h j,k ◦ hi, j , using the fact that F is directed,

≤
∨

h∈F

hi,k = (
∨

Q∨(I)[d]2F )i,k . �

Proposition 76. The lattice L(Id) has no compact elements.

Proof. Suppose c ∈ L(Id) is a compact element. Recall from Lemma 69 and Corol-

lary 70 that we can write

c =
∨

x∈I

∨

1≤m<M≤d

ep(c,x,m,M) ,

where p := p(c, x,m, M) is such that m = µ∨p , M = M∨p , pm = x and pi = c∧
m,i(x),

for i = m+1, . . . , M. Since c is compact, there exists a finite set P ⊆ { p(c, x,m, M) |

x ∈ I, 1 ≤ m < M ≤ d } such that c =
∨
{ ep | p ∈ P } and we can suppose that P

is an antichain. Let p1 ∈ P be such that m := µ∨
p1 is minimal in { µ∨p | p ∈ P } and

such that p1
m is minimal in { pm | p ∈ P, µ∨p = m }. Let therefore { p1, . . . , pn } := P.

Claim. For each x ∈ I such that p1
m < x ≤ 1, define p1

x by p1
x,m := x and p1

x,i := p1
i

for i , m. Then ep1
x
∨
∨

i=2,...,n epi <
∨

i=1,...,n epi .

To ease reading of the proof of the claim, let q1 := p1
x and let also qi := pi, for

i = 2, . . . , n; notice that q1 < p1. Suppose
∨

i=1,...,n eqi <
∨

i=1,...,n epi does not hold.

Then ep1 ≤ c =
∨

i=1,...,n eqi ; by the formula for the join in equation (18) and by
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Lemma 17, there exists a subdivision m = ℓ0 < ℓ1 < . . . < ℓk = M of the interval

[m, M] such that

ep1
m,p

1
M
≤ (
∨

i=1,...,n

eqi
ℓk−1

,qi
ℓk

) ◦ . . . ◦ (
∨

i=1,...,n

eqi
ℓ0
,qi
ℓ1

) .

Considering that composition distributes over joins and that epm ,pM
is join-irreducible

in Q∨(I), for each u ∈ { 0, . . . , k − 1 }, there exists iu ∈ { 1, . . . , n } such that

ep1
m,p

1
M
≤ e

q
ik−1
ℓk−1

,q
ik−1
ℓk

◦ . . . ◦ e
q

i0
ℓ0
,q

i0
ℓ1

.

By Lemma 65 and since ⊥ , epm ,pM
, the expression above on the right equals to

e
q

i0
ℓ0
,q

ik−1
ℓk

= e
q

i0
m ,q

ik−1
M

, so

ep1
m ,p

1
M
≤ e

q
i0
m ,q

ik−1
M

,

which, by Corollary 61, amounts to q
i0
m ≤ p1

m and p1
M
≤ q

ik−1

M
. Since p1

m < x =

q1
m, i0 , 1. It also implies that µ∨

pi0
= µ∨

qi0
≤ µ∨

p1 = m and, considering the

minimality of µ∨
p1 , µ∨

pi0
= µ∨

p1 = m. Since p1
m is minimal among elements of the

form pi
m, i = 1, . . . , n, we also infer that p

i0
m = p1

m. Yet, this implies that, for

i = m + 1, . . . ,min(M∨
p1 , M∨

pi0
),

p1
i = c∧m,i(p1

m) = c∧m,i(p1
m) = p

i0
i
.

Using Proposition 73, it immediately follows that p1 and pi0 are comparable, con-

tradicting the assumption that P is an antichain. This ends the proof of the Claim.

Clearly, the following relations holds in L(Id):
∨

1≥x>p1
m

( ep1
x
∨
∨

i=2,...,n

epi ) ≤ c .

Let us argue that also the converse inclusion holds. Within Q∨(I)[d]2 , the following

relation holds:
∨

i=1,...,n

epi ≤
∨

1≥x>p1
m

( ep1
x
∨
∨

i=2,...,n

epi ) .

Taking the closure, we have

∨

i=1,...,n

epi ≤
∨

1≥x>p1
m

( ep1
x
∨
∨

i=2,...,n

epi ) =
∨

1≥x>p1
m

( ep1
x
∨
∨

i=2,...,n

epi ) .

where in the last equality we have used the fact that { ep1
x
∨
∨

i=2,...,n epi | 1 ≥ x >

pm } is a directed set and Lemma 75.

Thus c is, within L(Id), an infinite join of a chain of elements that are strictly

below it. This contradicts c being compact. �
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11. Embeddings from multinomial lattices

The goal of this section is to argue that multinomial lattices [5, 39] embed into

the lattices L(Id). Every multinomial lattice embeds into a lattice of the form

L(n, n, . . . , n). We have argued in Example 24 that multinomial lattices of this

form are isomorphic to the lattices Ld(Q) where Q is the mix ⋆-autonomous quan-

tale Q∨(In) of join-continuous endofunctions of the finite chain In. The results

we present in this section shall show that Q∨(In) embeds, as an ℓ-bisemigroup,

into Q∨(I). Our goal is then achieved using Proposition 25: the embedding of

Q∨(In) into Q∨(I) yields, by functoriality, an embedding of Ld(Q∨(In)) into L(Id) =

Ld(Q∨(I)).

In the following let I0, I1 be two complete chains and let ι : I0 −→ I1 be a

bi-continuous embedding (thus we ask that ι preserves all joins and all meets; in

particular, ι preserves the bounds of the chains). Then ι has both a left adjoint

ℓ : I1 −→ I0 and a right adjoint ρ : I1 −→ I0. It useful, e.g. when I0 is finite, to think

of ℓ as the ceiling function and of ρ as the floor function.

Lemma 77. The following statements hold:

• ℓ ◦ ι = ρ ◦ ι = idI0
,

• ρ ≤ ℓ,
• if y ∈ I1 is such that ρ(y) = ℓ(y), then y = ι(x), with x = ℓ(y) ∈ I0.

Proof. By standard laws of adjunctions, ι(x) = ι(ℓ(ι(x)), for each x ∈ I0. Since ι is

an embedding, we deduce x = ℓ(ι(x)). The equality x = ρ(ι(x)) is proved similarly.

Let now y ∈ I1 and suppose that ℓ(y) ≤ ρ(y), then we have y ≤ ι(ℓ(y)) as unit

of the adjunction, ι(ℓ(y)) ≤ ι(ρ(y)) and ι(ρ(y)) ≤ y as counit of the adjunction.

Therefore y = ι(ℓ(y)) = ι(ρ(y)) and ℓ(y) = ρ(x), since ι is an embedding.

From this it follows that, for y ∈ I1, then either ρ(y) = ℓ(y), in which case y =

ι(ℓ(y)), or ρ(y) , ℓ(y), in which case we cannot have ℓ(y) ≤ ρ(y), so ρ(y) < ℓ(y). �

Lemma 78. If ℓ(y) < x, then y < ι(x).

Proof. Assume ℓ(y) < x. From ℓ(y) ≤ x we deduce y ≤ ι(x). If the latter inclusion

is not strict, then ι(x) ≤ y and x ≤ ρ(y), so ℓ(y) < x ≤ ρ(y) yields the relation

ℓ(y) < ρ(y), which contradicts ρ ≤ ℓ established in Lemma 77. �

For each monotone f : I0 −→ I0, define Rι( f ) : I1 −→ I1 by the formula

Rι( f ) := ι ◦ f ◦ ℓ .

Figure 2 gives some hints on the geometric meaning of the correspondence f 7→

Rι( f ). In the figure we have I0 = I4 = { 0, 1, 2, 3, 4, 5 }, I1 = I, and f (0) = 0,

f (1) = f (2) = 2, f (3) = f (4) = 3. In some sense, this correspondence the

responsible for representing join-continuous functions from some In to itself as

discrete paths in the plane. In the figure, the graph of the function Rι( f ) (in blue)

is completed with the vertical intervals (in red), so to yield the path C f , similarly

to what we have done in Figure 8. From the figure it should also be clarified the

recipe Rι( f )(x) = (ι ◦ f ◦ ℓ)(x): give to x the same value of its ceiling ℓ(x) and then

inject back this value back into I using ι.
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7→

Figure 2. The correspondence sending f to Rι( f )

Lemma 79. For each monotone h : I1 −→ I1, h ◦ i ≤ ι ◦ f if and only if h ≤ Rι( f ).

That is, Rι( f ) is the right Kan extension of ι ◦ f : I0 −→ I1 along ι : I0 −→ I1.

Proof. Indeed, observe that Rι( f ) ◦ ι = ι ◦ f ◦ ℓ ◦ ι = ι ◦ f . Next, if h ◦ ι ≤ ι ◦ f ,

then h ≤ h ◦ ι ◦ ℓ ≤ ι ◦ f ◦ ℓ = Rι( f ). �

Proposition 80. Rι is injective and restricts to a map from Q∨(I0) to Q∨(I1).

Proof. Rι is injective since ι is monic and ℓ is epic. For the second statement,

notice that if f ∈ Q∨(I0), then Rι( f ) ∈ Q∨(I1), since Rι( f ) is the composition of

three join-continuous maps. �

We shall observe next that Rι preserves part of the structure of Q∨(I0), ⊗, (−)⋆,⊕,

as well as finite meets and infinite joins. On the other hand, it is easily seen that

units are only semi-preserved.

Proposition 81. For each f , g ∈ Q∨(I0), the following relation holds

Rι( f ⊗ g) = Rι( f ) ⊗ Rι(g) , Rι( f )⋆ = Rι( f⋆) ,

and, consequently,

Rι( f ⊕ g) = Rι( f ) ⊕ Rι(g) .

Proof. For the first relation we compute as follows:

Rι( f ) ⊗ Rι(g) = Rι(g) ◦ Rι( f ) = ι ◦ g ◦ ℓ ◦ ι ◦ f ◦ ℓ = ι ◦ g ◦ f ◦ ℓ

= Rι(g ◦ f ) = Rι( f ⊗ g) .

For the second relation, we first establish that Rι( f )⋆ ≤ Rι( f⋆). In view of Lemma 79,

it is enough to prove Rι( f )⋆ ◦ ι ≤ ι ◦ f⋆. This is accomplished as follows:

Rι( f )⋆(ι(x)) =
∨

{ y ∈ I1 | (ι ◦ f )(ℓ(y)) < ι(x) } , by equation (16),

=
∨

{ y ∈ I1 | f (ℓ(y)) < x } , since ι is an embedding,

≤
∨

{ ι(x′) | x′ ∈ I0 , f (x′) < x } ,
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since if y ∈ I1 is such that f (ℓ(y)) < x, then, by letting x′ := ℓ(y), f (x′) < x and

y ≤ ι(ℓ(y)) = ι(x′),

= ι(
∨

{ x′ ∈ I0 | f (x′) < x }) = (ι ◦ f⋆)(x) .

Next we establish that Rι(0) ≤ 0. Let us recall that, for each y ∈ I1,

Rι(0)(y) =
∨

x<ℓ(y)

ι(x) , 0(y) =
∨

z<y

z .

Therefore, to prove Rι(0) ≤ 0, it is enough to argue that x < ℓ(y) implies ι(x) < y.

Now, if x < ℓ(y), then ℓ(y) � x, so y � ι(x), that is, ι(x) < y.

We can now argue that Rι( f⋆) ≤ Rι( f )⋆. This relation is equivalent to Rι( f⋆) ⊗

Rι( f ) ≤ 0 which can be derived as follows:

Rι( f⋆) ⊗ Rι( f ) = Rι( f⋆ ⊗ f ) ≤ Rι(0) ≤ 0 .

Therefore Rι( f )⋆ = Rι( f⋆). For the last statement, recall that f ⊕ g = (g⋆ ⊗ f⋆)
⋆

,

so preservation of ⊕ follows from preservation of ⊗ and (−)⋆. �

Proposition 82. We have

Rι(
∨

i∈I

fi) =
∨

i∈I

Rι( fi) , Rι(
∧

i=1,..,n

fi) =
∧

i=1,..,n

Rι( fi) .

Proof.

Rι(
∨

i∈I

fi)(x) = ι((
∨

i∈I

fi)(ℓ(x))) = ι(
∨

i∈I

( fi(ℓ(x))) ) =
∨

i∈I

ι( fi(ℓ(x))) = (
∨

i∈I

Rι( fi))(x) .

In a similar way, considering that finite meets in Q∨(I) are computed pointwise, we

have

Rι(
∧

i∈I

fi)(x) = ι((
∧

i∈I

fi)(ℓ(x))) = ι(
∧

i∈I

( fi(ℓ(x))) ) =
∧

i∈I

ι( fi(ℓ(x))) = (
∧

i∈I

Rι( fi))(x) .

�

We can state now our main result.

Theorem 83. For each pair of perfect chains I0, I1 and each bi-continuous embed-

ding ι : I0 −→ I1, the map Rι : Q∨(I0) −→ Q∨(I1) is an ℓ-bisemigroup embedding.

Together with R( ), Q∨( ) is a functor from the category of perfect chains and bi-

continuous embeddings to the category of ℓ-bisemigroups.

Proof. The first statement of the theorem just summarizes the observations made

up to now. The expression Rι is functorial in ι, since if ι = ι2 ◦ ι1, then ιℓ =
(ι1)ℓ ◦ (ι2)ℓ. Therefore

Rι2◦ι1( f ) = ι2 ◦ ι1 ◦ f ◦ (ι1)ℓ ◦ (ι2)ℓ = ι2 ◦ Rι1( f ) ◦ (ι2)ℓ = Rι2(Rι1( f )) .

In a similar way, RidI0
= idQ∨(I0). �

Definition 84. For each n ≥ 1 and each x ∈ In, define jn(x) := x
n
∈ I. For each

n,m ≥ 1 and each x ∈ In, let jn,m(x) := mx ∈ Inm.
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Clearly, jn and jn,m are complete embeddings; observe also that

jmn( jn,m(x)) =
mx

nm
= jn(x) ,

and that

Fact. The diagram jn,m : In −→ Im is directed and jn : In −→ I is a cocone.

The following statement is a consequence of functoriality of the constructions

R( ) and Ld( ), see Proposition 25 and Theorem 83.

Proposition 85. The diagram R jn,m : Q∨(In) −→ Q∨(Im),m ≥ n ≥ 1 is directed and

R jn : Q∨(In) −→ Q∨(I) is a cocone. For each d ≥ 2, there is a directed diagram in

the category of lattices Ld(R jn,m ) : Ld(Q∨(In)) −→ Ld(Q∨(Im)),m ≥ n ≥ 1 is directed

and Ld(R jn) : Ld(Q∨(In)) −→ Ld(Q∨(I)) is a cocone.

Definition 86. We let LR(Id) be the image of all the mappings Ld(R jn ) : Ld(Q∨(In)) −→

Ld(Q∨(I)).

By general facts, LR(Id) yields an explicit representation of the colimit of the

directed diagram Ld(R jn) : Ld(Q∨(In)) −→ Ld(Q∨(I)); in particular it is a sublattice

of L(Id). Observe that f ∈ LR(Id) if and only if f is clopen and, for each (i, j) ∈ [d]2,

fi, j is a finite join of rational one step functions.

12. Generation from rational one step functions

As a first application of the characterization of join-irreducible elements and

of their order, we show that if d ≥ 3, then L(Id) is not the Dedekind-MacNeille

completion of LR(Id), see definition 86. This is the sublattice of L(Id) of those

f ∈ L(Id) such that each fi, j is a finite join of rational one-step functions. This

contrasts with the case where d = 2, when L(Id) = Q∨(I), cf. Remark 64.

Theorem 87. For d ≥ 3, the lattice L(Id) is not (isomorphic to) the Dedekind-

MacNeille completion of LR(Id).

Proof. We need to find an element of L(Id) which is not an infinite join of elements

of LR(Id). For example, let d = 3 and choose p ∈ I3 such that p1 < 1, p2 is

irrational, and 0 < p3 (so µ∨p = 1 and M∨p = 3). If ep can be written as an

infinite join of elements from LR(Id), then it can also be written as an infinite join

of join-irreducible elements from LR(Id) below it, and these are of the form er with

r ∈ (I ∩ Q)3. We can therefore write

ep =
∨

{ er ∈ LR(I3) | ⊥ < er ≤ ep } =
∨

(i, j)∈[3]2

∨

JR(ep, i, j) ,

where

JR(ep, i, j) := { er | r ∈ (I ∩ Q)3, ⊥ < er ≤ ep, µ
∨
r = i, M∨r = j } .

Since ep is join-irreducible, then we have ep =
∨

JR(ep, i, j) for some (i, j) ∈ [3]2.

If (i, j) = (1, 2), then we deduce that p3 = 0, and if (i, j) = (2, 3), then we deduce

that p1 = 1; these hypothesis yield contradictions. Therefore we have (i, j) = (1, 3).



THE CONTINUOUS WEAK ORDER ∗18 37

Yet, by Proposition 73, JR(ep, 1, 3) = ∅, since if ⊥ < er ≤ ep, then r2 = p2 is

irrational. We deduce therefore ep = ⊥, a contradiction. �

To understand how the lattice L(Id) is generated from LR(Id), we need to study

its meet-irreducible elements. For x, y ∈ I, we define mx,y ∈ Q∨(I) as follows:

mx,y(t) =






0 , t = 0 ,

y 0 < t ≤ x ,

1 x < t ≤ 1 .

Observe that mx,y = e⋆y,x and, therefore, meet-irreducible elements of Q∨(I) are, by

duality, exactly those of the form mx,y for x, y ∈ I such that 0 < x and y < 1. Notice

also that

mx,y = e0,y ∨ ex,1 . (27)

Let now d ≥ 3; for each p ∈ Id, let in the following

mp := 〈mpi,p j
| (i, j) ∈ [d]2 〉 ,

as well as

µ∧p := min{ i ∈ [d] | 0 < pi } , M∧p := max{ j ∈ [d] | p j < 1 } ,

where, by convention, min ∅ = d + 1 and max ∅ = 0. For p ∈ Id, let

dim∧(p) := M∧p − µ
∧
p .

Notice that, since we assume d ≥ 1, we cannot have M∧p = 0 and µ∧p = d + 1, so

dim(mp) ∈ { −d, . . . , d }.

Proposition 88. The meet-irreducible elements of L(Id) are exactly the elements of

the form mp for some p ∈ Id such that dim∧(p) > 0.

Proof. It is enough to verify that these elements of L(Id) correspond, under the

duality, to join-irreducible elements. Indeed we have

m⋆
(p1,...,pd) = 〈m

⋆
pσ( j),pσ(i)

| (i, j) ∈ [d]2 〉 = 〈 epσ(i),pσ( j)
〉 = epd ,...,p1

.

Moreover, writing σ(p) for (pd, . . . , p1), we have dim∧(p) = dim∨(σ(p)). The

statement of the proposition follows now by the previous characterization of join-

irreducible elements of L(Id), see Propositions 71 and 74. �

We find next an analogous of equation (27) for higher dimensions. Such an

analogous will allow us to argue that every f ∈ L(Id) is a meet of joins (and, dually,

a join of meets) of elements from LR(Id). Let M
i, j
x,y ∈ Q∨(I)[d]2 be the tuple that has

mx,y in coordinate (i, j) and ⊥ in the other coordinates. Similarly, E
i, j
x,y ∈ Q∨(I)[d]2

denotes the tuple that has ex,y in coordinate (i, j) and ⊥ in the other coordinates.

The following relations hold within Q∨(I)[d]2 :

mp =
∨

(i, j)∈[d]2

M
i, j
pi,p j

, M
i, j
pi,p j
= E

i, j
0,p j
∨ E

i, j
pi,1

,
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and therefore

mp =
∨

(i, j)∈[d]2

M
i, j
pi,p j
=
∨

(i, j)∈[d]2

E
i, j
0,p j
∨
∨

(i, j)∈[d]2

E
i, j
pi ,1
= E0,p ∨ Ep,1 ,

where

E0,p :=
∨

(i, j)∈[d]2

E
i, j
0,p j

and Ep,1 :=
∨

(i, j)∈[d]2

E
i, j
pi ,1
.

Lemma 89. For each p ∈ Id, both E0,p and Ep,1 belong to L(Id).

Proof. We firstly consider E0,p, observing that E0,p = 〈 fi, j | (i, j) ∈ [d]2 〉 with

fi, j = e0,p j
. We argue that E0,p is clopen relying on Remark 29. Let i, j, k ∈ [d]

with i < j < k. If 0 < p j, then f j,k ◦ fi, j = e0,pk
◦ e0,p j

= e0,pk
= fi,k, by Lemma 65.

If p j = 0, then f∧
j,k
◦ f∧

i, j = e∧
0,pk
◦ e∧

0,p j
= e∧

0,pk
◦ e∧

0,0 = e∧
0,pk
= f∧

i,k
, by Lemma 66.

Next, we observe that Ep,1 = 〈 fi, j | (i, j) ∈ [d]2 〉 with fi, j = epi ,1. We use

again Remark 29 to verify that Ep,1 is clopen. Let i, j, k ∈ [d] with i < j < k; if

p j < 1, then f j,k ◦ fi, j = ep j ,1 ◦ epi ,1 = epi ,1 = fi,k, by Lemma 65; if p j = 1, then

f∧
j,k
◦ f∧

i, j = e∧
p j ,1
◦ e∧

pi,1
= e∧

1,1
◦ e∧

pi,1
= e∧

pi ,1
= f∧

i,k
, using Lemma 66. �

Remark 90. Let L be a complete lattice and let M be a subset of L which is itself a

complete lattice w.r.t. the order inherited from L. If Q ⊆ M, q ∈ M and the relation
∨

Q = q holds in L, then the same relation holds in M.

In view of the remark, we have achieved a generalization to higher dimensions

of equation 27:

Corollary 91. The relation

mp = E0,p ∨ Ep,1

holds in L(Id).

For i ∈ [d], x ∈ I and y ∈ { 0, 1 }, let us use |i, x, y| to denote the point of Id that

has x in position i and y in all the other coordinates. For an example, with d = 3,

consider |2, x, 1| = (1, x, 1); notice that e|2,x,1| = 〈e1,x, e1,1, ex,1〉 = 〈⊥,⊥, ex,1〉. In

general, we have that e|i0 ,x,1| = 〈 fi, j | (i, j) ∈ [d]2 〉 with fi, j = ⊥ if i , i0 and,

otherwise, fi, j = ex,1.

Lemma 92. The relations

E0,p =
∨

1< j≤d

e| j,p j ,0| , Ep,1 =
∨

1≤i<d

e|i,pi ,1| ,

hold in L(Id).

Proof. Recalling that Ep,1 = 〈 fi, j | (i, j) ∈ [d]2 〉 with fi, j = epi ,1, we can compute

within Q∨(I)[d]2 as follows:

Ep,1 =
∨

(i, j)∈[d]2

E
i, j
pi,1
=
∨

1≤i0<d

∨

i0< j≤d

E
i0, j
pi,1

=
∨

1≤i0<d

(
∨

i0< j≤d

E
i0 , j
pi0
,1
∨

∨

(i, j)∈[d]2 ,i,i0

E
i, j
1,1

) =
∨

1≤i0<d

e|i0 ,pi0
,1| .
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Again, Remark 90 ensures that the relation so derived holds in L(Id) as well. The

proof that E0,p =
∨

1< j≤d e| j,p j ,0| is analogous. �

Lemma 93. For each i ∈ [d], x ∈ I, and y ∈ { 0, 1 }, e|i,x,y| is a join of elements in

LR(Id).

Proof. Let us consider the case where y = 1 (the proof when y = 0 is similar).

If x = 1, then e|i,x,y| already belongs to LR(Id). If x , 1, then all the coordinates

different from i are rational. If x is not rational, then we can choose a descending se-

quence rn of rational numbers such that
∧

n≥0 rn = x. Then, using the characteriza-

tion of the order given in Corollary 61, we see that the relation
∨

n≥0 e|i,rn ,1| = e|i,x,1|
holds in Q∨(I)[d]2 . A fortiori, the same relation holds in L(Id). �

We can summarize our observations with the following statement:

Proposition 94. Every meet-irreducible element of L(Id) is a join of elements from

LR(Id).

In the following we let Σ0(LR(Id)) = Π0(LR(Id)) = LR(Id), we let Σn+1(LR(Id)) be

the closure under joins of Πn(LR(Id)) and Πn+1(LR(Id)) be the closure under meets

of Σn(LR(Id)).

Theorem 95. Every element of L(Id) belongs both to Σ2(LR(Id)) and Π2(LR(Id)).

Proof. By Corollary 70 and the fact that L(Id) is self-dual, every element of L(Id)

is a meet of meet-irreducible elements. We have seen above that each meet-

irreducible element is a join of elements from LR(Id) so it belongs to Σ1(LR(Id)).

It follows that every element of L(Id) is an element of Π2(LR(Id)). Since L(Id) and

LR(Id) are self-dual, this also proves that every element of L(Id) is an element of

Σ2(LR(Id)). �

Using the terminology of [21], the previous theorem states that LR(Id) is dense

in L(Id). Yet, L(Id) is not a canonical extension of LR(Id). A canonical extension

of a lattice is a complete spatial lattice, meaning that every element is the infinite

join of the completely join-irreducible elements below it, see [21, Lemma 3.4.]. As

argued in Section 10.4, there are no completely join-irreducible elements in L(Id),

in particular the lattices L(Id) are not spatial.
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