Estimation of physical parameters under location uncertainty using an Ensemble$^2$-Expectation-Maximization algorithm - Archive ouverte HAL Access content directly
Journal Articles Quarterly Journal of the Royal Meteorological Society Year : 2019

Estimation of physical parameters under location uncertainty using an Ensemble$^2$-Expectation-Maximization algorithm

Abstract

Estimating the parameters of geophysical dynamic models is an important task in Data Assimilation (DA) technique used for forecast initialization and reanalysis. In the past, most parameter estimation strategies were derived by state augmentation, yielding algorithms that are easy to implement but may exhibit convergence difficulties. The Expectation-Maximization (EM) algorithm is considered advantageous because it employs two iterative steps to estimate the model state and the model parameter separately. In this work, we propose a novel ensemble formulation of the Maximization step in EM that allows a direct optimal estimation of physical parameters using iterative methods for linear systems. This departs from current EM formulations that are only capable of dealing with additive model error structures. This contribution shows how the EM technique can be used for dynamics identification problem with a model error parameterized as arbitrary complex form. The proposed technique is here used for the identification of stochastic subgrid terms that account for processes unresolved by a geophysical fluid model. This method, along with the augmented state technique, are evaluated to estimate such subgrid terms through high resolution data. Compared to the augmented state technique, our method is shown to yield considerably more accurate parameters. In addition, in terms of prediction capacity, it leads to smaller generalization error as caused by the overfitting of the trained model on presented dataand eventually better forecasts.
Fichier principal
Vignette du fichier
ms_save.pdf (292.71 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01944730 , version 1 (06-12-2018)

Identifiers

Cite

Yin Yang, Etienne Mémin. Estimation of physical parameters under location uncertainty using an Ensemble$^2$-Expectation-Maximization algorithm. Quarterly Journal of the Royal Meteorological Society, 2019, 145 (719), pp.418-433. ⟨10.1002/qj.3438⟩. ⟨hal-01944730⟩
177 View
296 Download

Altmetric

Share

Gmail Facebook X LinkedIn More