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December 4, 2018

Abstract

We consider a network of prosumers involved in peer-to-peer energy exchanges, with differen-
tiation price preferences on the trades with their neighbors, and we analyze two market designs:
(i) a centralized market, used as a benchmark, where a global market operator optimizes the flows
(trades) between the nodes, local demand and flexibility activation to maximize the system overall
social welfare; (ii) a distributed peer-to-peer market design where prosumers in local energy com-
munities optimize selfishly their trades, demand, and flexibility activation.We first characterize
the solution of the peer-to-peer market as a Variational Equilibrium and prove that the set of
Variational Equilibria coincides with the set of social welfare optimal solutions of market design
(i). We give several results that help understanding the structure of the trades at an equilibrium
or at the optimum. We characterize the impact of preferences on the network line congestion and
renewable energy waste under both designs. We provide a reduced example for which we give the
set of all possible generalized equilibria, which enables to give an approximation of the price of
anarchy. We provide a more realistic example which relies on the IEEE 14-bus network, for which
we can simulate the trades under different preference prices. Our analysis shows in particular
that the preferences have a large impact on the structure of the trades, but that one equilibrium
(variational) is optimal.

Keywords: OR in Energy, Peer-to-Peer Energy Trading, Preferences, Variational Equilibrium,
Generalized Nash Equilibrium.

1 Introduction

New regulations are restructuring electricity markets in order to build the grid of the future. Instead
of a centralized market design where all the operations have been managed by a global central market
operator [17, 29, 33], new decentralized models emerge. These models involve local energy communities
which can trade energy, either by the intermediate of a global market operator [13], or in a peer-to-peer
setting [26, 32]. Peer-to-peer energy trading allows flexible energy trades between peers, where, for
instance, local prosumers exchange between them energy surplus from multiple small-scale distributed
energy resources (DERs) [15, 16].

Significant value is brought to the power system by coordinating local renewable energy source
(RES)-based generators and DERs to satisfy the demand of local energy communities, since it decreases
the need for investment in conventional generations and transmission networks. Also, thanks to the
decreasing feed-in-tariffs, using RES-based generations on site (e.g., at household level, within the
microgrid) is more attractive than feeding it into the grid, because of the difference between electricity
selling and buying prices [16]. Peer-to-peer energy trading encourages the use of surplus energy within
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local energy communities, resulting in significant cost savings even for communities with moderate
penetration of RES [16].

In practice, the radial structure of the distribution grid calls for hierarchical market designs, involv-
ing transmission and distribution network operators [14]. Nevertheless, various degrees of coordination
can be envisaged: full coordination organized by a global market operator (transmission network oper-
ator), bilateral contract networks [21], fully decentralized market designs allowing peer-to-peer energy
trading between the prosumers in a distributed fashion [19, 31] or, still, within and between coali-
tions of prosumers, called community or hybrid peer-to-peer [20]. A community-based organization
involves a community manager which organizes trades among the community and is in charge of the
interactions with the rest of the market. A distributed market structure exists when the decentralized
elements explicitly share, in a peer-to-peer fashion, local information, resulting in a system in which
all the elements may not have access to the same level of information. This information asymmetry
might create differences in valuations of the traded resource (e.g., price arbitrage) and result in mar-
ket imperfections, implying that the prices associated with the bilateral trading of resource allocation
between couples of agents do not coincide. This price gap can be interpreted as a bid-ask spread due
to a lack of liquidity in the market [24].

Energy exchange between production units and local demand of energy communities are formulated
as a symmetric assignment problem. Its solution relies on two main streams in the literature. The first
stream deals with matching models which put in relation RES-based generators and consumers by the
intermediate of a platform, with various consumers classes and different possible objective functions
for the platform operator [15]. The second stream combines multi-agent modeling, as well as classical
distributed optimization algorithms which are applied to solve the assignment problem in real-time
[19, 22, 31]. Auctions theory can be used, in addition, to schedule the DER commitment in day-ahead.

1.1 Matching Models for Peer-to-Peer Energy Trading

In the energy sector, peer-to-peer energy trading is a novel paradigm of power system operation.
There, prosumers provide their own energy from solar panels, storage technologies, demand response
mechanisms, and they exchange energy with one another in a distributed fashion. Zhang et al. provide
in [36] an exhaustive list of projects and trails all around the world, which build on new innovative
approaches for peer-to-peer energy trading. A large part of these projects rely on platforms, un-
derstood as two-sided markets, that match RES-based generators and consumers according to their
preferences and locality aspects (e.g. Piclo in the UK, TransActive Grid in Brooklyn, US, Vandebron
in the Netherlands, etc.). In the same vein, cloud-based virtual market places, which deal with excess
generation within microgrids, are developed by PeerEnergyCloud and Smart Watts in Germany. Some
other projects rely on local community building for investment sharing in batteries, solar PV panels,
etc., in exchange for bill reduction or a certain level of autonomy with respect to the global grid (e.g.
Yeloha and Mosaic in the US, SonnenCommunity in Germany, etc.). How other components of the
platform’s design can influence the nature and the preference of the prosumers involved is also studied
in the literature. Typical elements of the platform’s design are: the impact of pricing mechanism (e.g.
setting one common market price versus individual prices per transaction set – for instance through
auction design – or per class of prosumers), the platform’s objective (e.g. maximizing the social welfare
versus maximizing the platform’s benefit), the influence of the platform’s commission per transaction.
For example, in [1], the authors study the impact of the price of the goods exchanged on the level of
collaboration and also on the level of ownership among participants. In [6], the impact of different
platform’s objective functions is analyzed considering a set of heterogeneous renters and owners. Dy-
namic pricing for operations of the platform based on supply and demand ratio of shared RES-based
generation is investigated in [15]. Peer-to-peer organizations are also a way to enable small and flexible
actors to enter markets by lowering the entrance barrier [3].

Platform design constitutes an active area of research in the literature on two-sided markets [3, 6].
Three needs are identified for platform deployment. Firstly, it should help buyers and sellers find each
other, while taking into account the heterogeneity in their preferences. This requires the platform
to find a trade-off between low entry cost and information retrieval from big, heterogeneous and
dynamic information flows. Buyers’ and sellers’ search can be performed in a centralized (e.g. Amazon,
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Uber), effective decentralized (e.g. Airbnb, eBay), or even fully distributed (OpenBazaar, Arcade City)
manner. Secondly, the platform must set prices that balance demand and supply, and ensure that prices
are set competitively in a decentralized fashion. Finally, the platform ought to maintain trust in the
market, relying on reputation and feedback mechanisms [7]. Sometimes, supply might be insufficient
so that subsidies needs to be designed to encourage sharing on the platform [6].

1.2 Distributed Optimization Approaches

Computational and communication bottlenecks have largely been alleviated by recent work on dis-
tributed and peer-to-peer optimization of large-scale optimal power flow [4, 12, 27]. Mechanisms for the
optimization of a common objective function by a decentralized system are known as decomposition-
coordination methods [25]. In such methods, a centralized (large-scale) optimization problem is typi-
cally split into small-size local optimization problems whose outputs are coordinated dynamically by
a central agent (called “master”) so that the overall objective of the system becomes aligned (after a
certain number of iterations) with the (large-scale) centralized optimization problem outcome. Follow-
ing this stream, a consensus-based Alternating Direction Method of Multipliers (ADMM) algorithm
is implemented in [22, 31, 37] to approximate the optimal solution which maximizes the prosumers
social welfare, in a peer-to-peer electricity market. Similar approaches relying on dual decomposition,
which iteratively solves the problem in a distributed manner with limited information exchange, were
implemented for energy trading between islanded microgrids in [9, 18]. Two main drawbacks of these
algorithmic approaches are listed in [31]: first, they do not take into account the strategic behaviors
of the prosumers; second, they are computationally limited, which might constitute a blocking point
when studying large-scale peer-to-peer networks. The latter issue is overcome in [19] with an improved
consensus algorithm.

In addition, these distributed-optimization approaches enable incorporating heterogeneous energy
preferences of individual prosumers in network management. The added value of multi-class prosumer
energy management is evaluated in [22] for a distribution network that has a “green prosumer”, a
“philanthropic prosumer” and a “low-income household”. Three energy classes are introduced to
account for the prosumers’ preferences: “green energy”, “subsidized energy” and “grid energy”. A
platform agent is introduced to act as an auctioneer, allowing energy trading between the prosumers
and the wholesale electricity market. The platform agent sets the price of each energy class in the
distribution network. The tool of receding-horizon model predictive control is used to provide a
real-time implementation. Consumer preferences are also introduced in [31] in the form of product
differentiation prices. They can either be pushed centrally as dynamic and specific tax payments, or
be used to better describe the utility of the consumers who are willing to pay for certain characteristics
of trades.

1.3 Privacy Issues

From the perspective of information and communication technology (ICT) , a fully decentralized
market design provides a robust framework since, if one node in a local market is attacked or in case
of failures, the whole architecture should remain in place, while information could find other paths to
circulate from one point to another, avoiding malicious nodes and corrupted paths.

From an algorithmic point of view, the implementation of a fully distributed market design might be
challenging, since it has to deal with far more complex communication mechanisms than the centralized
market design. Efficient communication will allow collaboration among prosumers, so that energy
produced by one can be utilized by another in the network. Multiple peer-to-peer communication
architectures exist in the literature, including structured, unstructured and hybrid ones. They are all
based on common standards for the communication network operation, which are measured through
latency, throughput, reliability and security [11]. In addition to the large size of the communication
problem, privacy issues may also directly impact the market outcome. Indeed, if prosumers are allowed
to keep some private information, then they might not have access to the same level of information,
i.e. information asymmetry appears. Since the prosumers’ make decisions based on the information
at their disposal, such asymmetry can introduce bias in the market outcome. To avoid or, at least,
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to limit bias introduced in the market outcome while guaranteeing the optimum of the social welfare,
various algorithms that preserve local market agents’ privacy have been discussed in the literature.
For example, the algorithms can require the agents to update no more than their dual variables – e.g.,
local prices [4, 31]. Of course, the efficiency of these algorithms depends on the level of privacy defined
by the agents as well as which private information could be inferred from the released values.

1.4 Contributions

The peer-to-peer structure adopted in this paper is different from the approaches involving decomposition-
coordination methods. Indeed, we assume that there is no central authority coordinating the exchanges
(in quantity, price and information) between the nodes. Within this framework, strategic communi-
cation mechanisms can appear, and nodes have the possibility to self-organize into coalitions or local
energy communities, as reviewed in [34]. With such strategic behaviors, the equilibrium of the peer-
to-peer market design might not coincide with the social welfare global optimum achieved with full
coordination of the nodes by a “master” controlling all the information and decisions, as in [35] where
the authors consider a noncooperative game involving storage units.

In this paper, we first characterize the solution of a peer-to-peer electricity market as a Variational
Equilibrium, assuming that all the agents have equal valuation of the price associated with the traded
resource. We prove that the set of Variational Equilibria coincides with the set of social welfare optima.
However, in a fully-distributed setting, it is very unlikely that each couple of agents coordinate on their
valuations of the trading price. As a result, imperfections appear in the market, which we capture by
considering Generalized Nash Equilibrium solutions as possible outcomes. We characterize analytically
the impact of preferences on the network line congestion and energy waste, both under centralized and
peer-to-peer market designs. Our results are illustrated in two test cases (a three node network with
arbitrage opportunity and the standard IEEE-14 bus network). We evaluate the loss of efficiency
caused by peer-to-peer market imperfections in the three nodes network, with the Price of Anarchy
as a performance measure. We also evaluate numerically the impact of the differentiation prices by
computing the equilibria of our 14 nodes network under different price configurations. Last, we quantify
the impact of privacy on the social welfare at equilibrium by providing an analytic upper bound and
evaluating it in our three nodes example.

The paper is organized as follows. In Section 2, we introduce the model of the generalized noncoop-
erative game we consider in this work, and we give our main assumptions. In Section 3, the centralized
market design (i) is formulated and its solutions characterized. We introduce the peer-to-peer market
design (ii) in Section 4; its solutions are characterized in terms of Variational Equilibrium and Gener-
alized Nash Equilibria in the presence of market incompleteness. Congestion analysis and performance
measure based on the Price of Anarchy are also introduced. These solutions concepts are then applied
to two test cases in Section 5: a three node toy network and the IEEE 14-bus network. The impact of
privacy is quantified in Section 6, and illustrated on the three node toy network.

Notations

We summarize the main notations used throughout the paper. Vectors and matrices are denoted by
bold letters.

Sets

N Set of N nodes, each one of them being made of an agent (prosumer)
Ωn Set of neighbors of n
Dn Agent n’s demand set
Gn Agent n’s flexibility activation set

SOLGNEP Set of GNE solutions of the peer-to-peer non-cooperative game

Variables
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Dn Agent n’s demand
Gn Agent n’s flexibility activation (micro-CHP, storage facilities, etc.)

∆Gn Agent n’s random self-generation obtained from RES (solar PV panels)

qmn Quantity exchanged between n and m in the direction from m to n
Qn Net import at node n
ζnm Bilateral trade price between agent n and m
λn Nodal price at node n
ξnm Congestion price between nodes n and m
µ
n
, µn Demand capacity constraint dual variables at node n

νn, νn Flexibility activation capacity constraint dual variables at node n
εDnm, ε

G
nm Agent n’s biases in the estimation of m demand and RES-based generation

Parameters

Dn Lower-bound on demand capacity

Dn Upper-bound on demand capacity
Gn Lower-bound on flexibility activation capacity

Gn Upper-bound on flexibility activation capacity
D?
n Agent n’s target demand

κnm Equivalent interconnection capacity between node n and node m
an, bn, dn Flexibility activation cost parameters

ãn, b̃n Consumer utility parameters
cmn Product differentiation price capturing agent n’s trading cost preferences
δnm Agent m valuation of ζnm

σDnm, σ
G
nm Standard deviation of agent n’s error in demand and RES forecasts

Functions

Cn Agent n’s flexibility activation (production) cost
Un Agent n’s usage benefit

C̃n Agent n’s total trading cost
Πn Agent n’s utility function
SW Social welfare
Fn Agent n’s forecast

2 Prosumers and Local Communities

In this section, we define the generic framework of agent (prosumer) interactions, and a stylized
representation of the underlying (distribution) graph. We formulate the local supply and demand
balancing constraint that holds in each node. To formalize the two market designs (i) and (ii), we
introduce the costs, utility functions, social welfare, private information and main assumptions on
which our model relies.

2.1 Generic Framework

Let N be a set of N nodes, each of them representing an agent (prosumer), except the root node 0
which is assumed to contain only conventional generation. The root node belongs to the set N . It
can trade energy with any other node in N . Under this assumption, the distribution network is a
radial graph, with the root node being the interface between the local energy communities and the
transmission network. Figure 1 illustrates such a graph structure.

Let Ωn be the set of neighbors of n, with the structure of a communication network (local energy
community). It does not necessarily reflect the grid constraints. As usual, we assume that n ∈ Ωn, for
all n ∈ N . In particular, Ω0 := N \ {0}.

In each node n, we introduce Dn := {Dn ∈ R+|Dn ≤ Dn ≤ Dn} as agent n’s demand set, with Dn

and Dn being the lower and upper-bounds on demand capacity.
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Figure 1: Example of a radial network. The root node at the interface of the distribution and transmission net-
works, can trade energy with any other node in the distribution network. In the distribution network, prosumer
nodes organize in local energy communities, trading energy with neighbors inside their local community.

In parallel to the demand-side, we define the self-generation-side by letting Gn := {Gn ∈ R+|Gn ≤
Gn ≤ Gn} be agent n’s flexibility activation set, where Gn and Gn are the lower and upper-bounds
on flexibility activation capacity.

The decision variables of each prosumer n are her demand Dn, flexibility activation Gn, and the
quantity exchanged between n and m in the direction from m to n, qmn, for all m ∈ Ωn \ {n}. If
qmn ≥ 0, then n buys qmn from m, otherwise (qmn < 0) n sells −qmn to m. We impose an inequality
on the trading reciprocity qmn ≤ −qnm, meaning that the quantity that n buys from m is smaller than
or equal to the quantity that m sells to n.

The difference between the sum of imports and the sum of exports in node n is defined as the
net import in that node: Qn :=

∑
m∈Ωn

qmn. Furthermore, each line is constrained in capacity. Let
κnm ∈ [0,+∞[ be the equivalent interconnection capacity between node n and node m, such that
qnm ≤ κnm, κnm = κmn and Gn ≤ κnm.

RES-based (solar PV panels) self-generation at each node n is modeled as a random variable ∆Gn.
Its realization is exogenous to our model.

2.2 Local Supply and Demand Balancing

Local supply and demand equilibrium leads to the following equality in each node n in N :

Dn = Gn + ∆Gn +
∑
m∈Ωn

qmn,

= Gn + ∆Gn +Qn. (1)

Assuming perfect competition, a Market Operator (MO) maximizes the system social welfare,
defined as the sum of the utilities of all the agents in the system, under a set of operational and
power-flow constraints, while checking that supply and demand balance each other at each node of the
network. In nodal markets, allocative market efficiency can be achieved by setting (locational marginal)
nodal price, λn, equal to the dual variable of the local supply and demand balancing equation [30].

In this paper, we consider a innovative decentralized marker clearing, by comparison with the
classical centralized approach, which is used for example in nodal markets. For that purpose, we
introduce decentralization in agents’ decision-making. This decentralization results firstly from the
fact that demands, flexibility activation and trades are defined selfishly by each prosumer in the
nodes; secondly from the fact that all the information regarding preferences and private information
on target demands and RES-based generations is not available to all the nodes. The decentralized
market clearing relies on a peer-to-peer market design, where each agent n computes the Lagrangian
variable associated with her (local) supply and demand balancing equation, using the information at
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her disposal. Dual variables λn are kept private to agent n and used to compute her bilateral trading
prices.

2.3 Cost and Usage Benefit Functions

Flexibility activation (production) cost in node n is modeled as a quadratic function of local activated
flexibility, using three positive parameters an, bn and dn:

Cn(Gn) =
1

2
anG

2
n + bnGn + dn, (2)

with − bn
an
≥ Gn.

We make the standard assumption that self-generation occurs at zero marginal cost.
The usage benefit perceived by agent n is modeled as a strictly concave function of node n demand

[6], using two positive parameters ãn, b̃n and a target demand defined exogenously by agent n:

Un(Dn) = −ãn(Dn −D?
n)2 + b̃n. (3)

The quantity −Un(.) can also be considered as the consumption cost of agent n [31]. As Un(.) captures
a usage benefit, which is interpreted as the comfort perceived by agent n, we impose that it always

remains non-negative, i.e., Dn −
√

b̃n
ãn
≤ D?

n ≤ Dn +
√

b̃n
ãn

.

In Section 6 only, we will assume that the maximum usage benefit is homogeneous among all agents
(meaning that the prosumers differentiate only in the distribution of their usage benefit perception
around her target demand value). In general, it is different between two prosumers, but will be assumed
to be shared publicly.

We consider that usage benefit vanishes in case of zero demand, i.e., Un(0) = 0⇔ ãn = b̃n
(D?n)2 ,∀n ∈

N . A fortiori, if the target demand D?
n is known, coefficient ãn can be inferred.

In this work, we consider that prosumers have preferences on the possible trades with their neigh-
bors. The preferences are modeled with (product) differentiation prices [31]: each agent n has a
positive price cnm > 0 to buy energy to an agent m in her neighborhood Ωn. The total trading cost
function of agent n is denoted by:

C̃n(qn) =
∑

m∈Ωn,m 6=n

cnmqmn. (4)

Parameters cnm can model taxes to encourage/refrain the development of certain technologies (micro-
CHPs, storage, solar panels) in some nodes. They can also capture agents’ preferences to pay regarding
certain characteristics of trades (RES-based generation, location of the prosumer, transport distance,
size of the prosumer, etc.). If qmn > 0 (i.e., n buys qmn to n) then n has to pay the cost cnmqmn > 0.
Thus, the higher cnm is, the less interesting it is for n to buy energy from m but the more interesting it
is for n to sell energy to m. On the other side, if qmn < 0, then n sends the energy −qmn and receives
the value −cnmqmn > 0 even if m does not accept all this energy (i.e. qnm + qmn < 0). In that case
the remaining power is injected in the network or wasted.

2.4 Utility Function and Social Welfare

Agent n’s utility function is defined as the difference between the usage benefit resulting from the
consumption of Dn energy unit and the sum of the flexibility activation and trading costs. Formally,
it takes the form:

Πn(Dn, Gn, qn) = Un(Dn)− Cn(Gn)− C̃n(qn), (5)

where qn = (qmn)m∈Ωn,m 6=n.
We introduce the social welfare as the sum of the utility functions of all the agents in N :

SW (D,G, q) =
∑
n∈N

Πn(Dn, Gn, qn). (6)
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2.5 Private Information and Assumptions

There is private information at each node n that can be associated with:

• ∆Gn, local RES-based generation ;

• D?
n, target demand ;

• Cn(.), flexibility activation cost function, more specifically parameters an, bn, dn ;

• Un(.), usage benefit function, more specifically parameters ãn, b̃n ;

• C̃n(.), bilateral trade cost function, more specifically parameters (cnm)m∈N\{n} .

Throughout this article, we will make some assumptions regarding the information available to
each agent. We summarize them below:

Assumption 1 Since the technologies (conventional units, solar PV panels, micro-CHPs, storage
facilities, etc.) used by the agents are standardized, we assume that each agent n’s production
cost Cn(.) and parameters an, bn, dn are publicly known by all the agents m ∈ N \ {n}.

Assumption 2 The product differentiation prices (cn0)n, (c0n)n for any n ∈ N \ {0} are publicly
known by all the agents. In case of taxes, they might be designed by the regulator to impact the
energy mix.

Assumption 3 The congestion prices (ξn0)n, (ξ0n)n for any node n ∈ N \ {0} on the interface lines
between transmission network and distribution networks are determined by a dedicated market
mechanism and publicly revealed to all the agents.

In a centralized market design, all the private information is reported to the Market Operator
(MO). This means that the local target demands (D?

n)n∈N and RES-based generations (∆Gn)n∈N ,
are known by the MO. In contrast, in a peer-to-peer market design, D?

n and ∆Gn are known only by
agent n.

3 Centralized Market Design

The centralized market design is inspired from the existing pool-based markets. The global Market
Operator (MO) maximizes the social welfare defined in Equation (6) under demand capacity constraints
(7a) and flexibility activation capacity constraints (7b) in each node, capacity trading flow constraints
for each couple of nodes (7c), trading reciprocity constraint (7d) and supply-demand balancing (7e) in
each node:

max
D,G,q

SW (D,G, q),

s.t. Dn ≤ Dn ≤ Dn,∀n ∈ N , (µ
n
, µn) (7a)

Gn ≤ Gn ≤ Gn,∀n ∈ N , (νn, νn) (7b)

qmn ≤ κmn,∀m ∈ Ωn,m 6= n, ∀n ∈ N , (ξnm) (7c)

qmn ≤ −qnm,∀m ∈ Ωn,m > n, ∀n ∈ N , (ζnm) (7d)

Dn = Gn + ∆Gn +Qn,∀n ∈ N . (λn) (7e)

Remark 3.1. The constraint (7d) is indexed by m > n so that the constraint is considered only once.

Dual variables are denoted in blue font between brackets at the right of the corresponding con-
straints. Some of the dual variables can be interpreted as shadow prices, with classical interpretations
in the energy economics literature. In the remainder, ξnm will be interpreted as the shadow price
(congestion price) associated with capacity trading flow constraint (7c) between nodes n and m; ζnm
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will be understood as the bilateral trade price offered by n to m associated with the trading reci-
procity constraint (7d); while λn is the nodal price associated with the supply and demand balancing
constraint in node n (7e), as discussed in Subsection 2.2.

The Social Welfare function is concave as the sum of concave functions defined on a convex feasibility
set. Indeed, the feasibility set is obtained as Cartesian product of convex sets. We can compute the
Lagrangian function associated with the standard constrained optimization problem of social welfare
maximization under constraints (7a)-(7e):

L(D,G,Q,µ,ν, ξ, ζ,λ) = −SW (D,G, q) +
∑
n∈N

µ
n
(Dn −Dn)

+
∑
n∈N

µn(Dn −Dn) +
∑
n∈N

νn(Gn −Gn) +
∑
n∈N

νn(Gn −Gn)

+
∑
n∈N

∑
m∈Ωn,m 6=n

ξnm(qmn − κmn) +
∑
n∈N

∑
m∈Ωn,m>n

ζnm(qmn + qnm)

+
∑
n∈N

λn

(
Dn −Gn −∆Gn −Qn

)
.

(8)

To determine the solution of the centralized market design optimization problem, we compute KKT
conditions associated with Lagrangian function (8). Taking the derivative of the Lagrangian function
(8) with respect to Dn, Gn, qmn, for all n in N and all m ∈ Ωn,m 6= n, the stationarity conditions
write down as follows:

∂L
∂Dn

= 0⇔ 2ãn(Dn −D?
n)− µ

n
+ µn + λn = 0 , ∀n ∈ N , (9a)

∂L
∂Gn

= 0⇔ anGn + bn − νn + νn − λn = 0 , ∀n ∈ N , (9b)

∂L
∂qmn

= 0⇔ cnm + ξnm + ζnm − λn = 0, ∀m ∈ Ωn,m 6= n, ∀n ∈ N , (9c)

where, for m < n, ζnm is defined as equal to ζmn.
From Equation (9c), we infer that the nodal price at n can be expressed analytically as the sum

of the node product differentiation prices regarding the other prosumers in her neighborhood, the
congestion constraint dual variable from Equation (7c) and the bilateral trade prices:

λn = cnm + ξnm + ζnm, ∀m ∈ Ωn,m 6= n, ∀n ∈ N . (10)

The complementarity constraints1 take the following form:

0 ≤ µ
n
⊥ Dn −Dn ≥ 0, ∀n ∈ N , (11a)

0 ≤ µn ⊥ Dn −Dn ≥ 0, ∀n ∈ N , (11b)

0 ≤ νn ⊥ Gn −Gn ≥ 0, ∀n ∈ N , (11c)

0 ≤ νn ⊥ Gn −Gn ≥ 0, ∀n ∈ N , (11d)

0 ≤ ξnm ⊥ κmn − qmn ≥ 0, ∀m ∈ Ωn,m 6= n, ∀n ∈ N , (11e)

0 ≤ ζnm ⊥ −qmn − qnm ≥ 0, ∀m ∈ Ωn,m > n, ∀n ∈ N . (11f)

From Equation (9c), we infer, for any couple of nodes n ∈ N ,m ∈ Ωn,m > n, that:

ζnm = λn − cnm − ξnm = λm − cmn − ξmn , (12)

Subtracting those two last members in (12), we infer that:

cnm − cmn + ξnm − ξmn = λn − λm,∀m ∈ Ωn,m 6= n, ∀n ∈ N . (13)

1A complementarity constraint enforces that two variables are complementary to each other, i.e., for two scalar
variables x, y: xy = 0, x ≥ 0, y ≥ 0. This condition is often expressed more compactly as: 0 ≤ x ⊥ y ≥ 0.
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From Equations (9a) and (9b), we infer that, at the optimum, for each node n:

Dn =D?
n −

1

2ãn

(
λn + (µn − µn)

)
, (14)

Gn =− bn
an

+
1

an

(
λn − (νn − νn)

)
. (15)

Substituting Equations (14) and (15) in the local demand and supply balance Equation (7e), we
infer that the net import at node n can be expressed as a linear function of the nodal price:

Qn =
(
D?
n −

1

2ãn
(µn − µn) +

bn
an

+
1

an
(νn − νn)

)
−
(

1

2ãn
+

1

an

)
λn −∆Gn . (16)

The results are summarized in the following proposition.

Proposition 1. At the optimum, the demand, flexibility activation and net import at each node n can
be expressed as linear functions of the nodal price at that node, given by Equations (14), (15), and
(16).

The total sum of the net imports at all nodes should be negative or null, i.e.,
∑
n∈N Qn ≤ 0.

From the supply-demand balancing (7e), this is equivalent to
∑
n∈N (Dn − Gn) ≤

∑
n∈N ∆Gn. A

strict inequality would lead to a situation where a part of the energy generation is wasted. That is
not acceptable. To avoid that situation, the RES-based generation should be limited and the demand
capacities large enough. Note that the sizing of the prosumers’ capacities and RES-based generation
possible clipping strategies are out of the scope of this work. This result is formalized in the proposition
below.

Proposition 2. A necessary condition for no energy waste is that there is at least one prosumer n in
N whose capacities and RES-based generation are such that Dn −Gn ≥ ∆Gn.

Proof. By combining (7a) and (7b), we obtain Dn − Gn ≤ Dn − Gn ≤ Dn − Gn. Subtracting ∆Gn
in each part of the inequalities and applying (7e), we get Dn −Gn −∆Gn ≤ Qn ≤ Dn −Gn −∆Gn.
Then, Dn − Gn − ∆Gn < 0 implies that Qn < 0, i.e., there are more exports than imports from
n. If Dn − Gn − ∆Gn < 0, for all n ∈ N then,

∑
n∈N Qn < 0. No energy waste is equivalent to∑

n∈N Qn = 0. For this equality to hold, it is necessary that there exists at least one prosumer n in

N such that Dn −Gn ≥ ∆Gn.

In practice, this means that the prosumer should size their capacities such that the difference
between their upper-bound on demand capacity and lower-bound on flexibility activation capacity is
larger than their RES-based generation. However, the previous proposition is a necessary condition.

The following proposition gives a sufficient condition on the locational marginal prices (λn)n for
having no waste at optimality:

Proposition 3. At the optimum, if for any prosumer node m, for any node n0 such that there exists a
non congested path (n0, n1, . . . , np = m) from n0 to m such that λm > cn0,m0 +

∑p−1
k=0 cnk−cnk+1

, where
m0 ∈ Ωn0 , then there is no energy waste at n0 in the trade with m0 (that is: qn0,m0 + qm0,n0 = 0). In
particular:

• if users have symmetric preferences cnm = cmn, there is no congestion and there exists m such
that λm > cn0,m0

, then there is no energy waste at n0 in the trade with m0 ;

• for m = n0, if λn0
> cn0,m0

, then there is no waste at n0 in the trade with m0, which can be
directly inferred by the complementarity condition (11f) and (9c).

Proof. Suppose on the contrary that there is some energy waste at n0: there exists some m0 such that
qn0,m0

+ qm0,n0
< 0 and qm0,n0

< 0 (i.e. n0 rejects energy). In the case where Gm > Gm, Consider the
infinitesimal transformation to the trades and production:

qni,ni+1 ← qni,ni+1 + ε, qni+1,ni ← qni+1,ni − ε, ∀i ∈ {0, . . . , p− 1},
qm0,n0 ← qm0,n0 + ε , Gm ← Gm − ε .

(17)
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Then, for ε small enough, all constraints are still satisfied and the variations in SW has the same sign
as:

λm − cn0,m0 +

p−1∑
i=0

(cni,ni+1 − cni+1,ni) > 0 .

Hence, we can strictly increase SW , which contradicts the optimality. In the case where Gm = Gm,
then we necessarily have Dm < Dm (otherwise λn = −2ãn(Dn − D∗n) − µn < 0 which is impossible
from (9c)), and we can strictly increase Dm instead of decreasing Gm in (17), leading to the same
contradiction.

Remark 3.2. From the previous proposition, we see that even if there is no excess in the renewable
production, i.e.

∑
n ∆Gn <

∑
nD
∗
n, we can still have some energy waste if the trades preference prices

(cnm) are large enough.

Hence, assuming no energy waste, the total sum of the net imports in all nodes should vanish,
which implies the following relation:∑

n∈N
Qn = 0

⇔
∑
n∈N

(
1

2ãn
+

1

an

)
λn =

∑
n∈N

(
D?
n −

1

2ãn
(µn − µn) +

bn
an

+
1

an
(νn − νn)−∆Gn

)
, (18)

using Equation (16).
From Equation (13), we infer that the nodal price at node n is a linear function of the nodal price

at the root node, product differentiation and congestion prices with all the other nodes in N :

λn = cn0 − c0n + ξn0 − ξ0n + λ0, ∀n ∈ Ω0 . (19)

Substituting Equation (19) in Equation (18), we infer the closed form expression of the nodal price
at the root node:

λ0

∑
n∈N

(
1

2ãn
+

1

an

)
=
∑
n∈N

(
D?
n −

1

2ãn
(µn − µn) +

bn
an

+
1

an
(νn − νn)−∆Gn

)
−
∑
n∈Ω0

(
1

2ãn
+

1

an

)(
cn0 − c0n + ξn0 − ξ0n

)
. (20)

From Equations (19) and (20), assuming that (cn0)n, (c0n)n, (ξn0)n, (ξ0n)n are known, the MO
can iteratively compute all the (λn)n∈N . Note that µ,µ and ν,ν are determined by the MO when
optimizing D and G. Once computed by the MO, the nodal prices are announced to all the agents n ∈
N . Then, to determine the optimal bilateral trading prices, each agent n has to refer to Equation (12),
which gives the bilateral trading prices as linear functions of the nodal price and congestion price. The
results are summarized in the following proposition:

Proposition 4. Assuming no energy waste and knowing (cn0)n, (c0n)n, (ξn0)n, (ξ0n)n, the MO com-
putes the nodal price at the root node by Equation (20). The nodal prices in all the other nodes of the
distribution network can be inferred from λ0 according to Equation (19). Then, for each node n ∈ N ,
bilateral trading prices can be computed for any node m ∈ Ωn, n 6= m by Equation (12) provided
congestion price (ξnm)m>n,m∈Ωn is known2.

If all agents reveal their product differentiation prices (cn0)n to the MO and all the congestion
prices (ξn0)n, (ξ0n)n in the lines involving the root node are known (or rationally anticipated), then
the MO can compute all the nodal prices (λn)n∈N from λ0.

2Two assumptions can be made on the determination of the congestion prices: first, they are determined exogenously
while checking the complementarity constraint (11e); second, they are determined through a market for (distribution)
capacity line transmission. This second assumption enables the MO to complete the market. It will be discussed later
in the paper.
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We now want to make the link between the market and the state of the distribution grid. In the
following proposition, we show that the distribution grid lines become congested if there are “cycles”
in the preferences as explained below.

Proposition 5. Suppose that the matrix C̃ := (cnm − cmn)nm has a strictly negative cycle of length
k > 2, i.e. there is a sequence of distinct indices (ni)1≤i≤k such that

∑
1≤i≤k C̃ni,ni+1 < 0, where

nk+1 := n1. Then, at an optimal centralized solution, there is a trade opposed to the cycle made at full
capacity, i.e. there exists i ∈ {1, . . . , k} such that qni+1,ni = κni+1,ni .

Symmetrically, if there is a strictly positive cycle (ni)1≤i≤k such that
∑

1≤i≤k C̃ni,ni+1
> 0, then at

an optimal centralized solution, there is a trade in the direction of the cycle made at full capacity, i.e.
there exists i ∈ {1, . . . , k} such that qni,ni+1

= κni,ni+1
.

Proof of Proposition 5. We prove the first part of the proposition as the second is symmetric.
Consider the trades (qnm)nm at an optimal solution and suppose on the contrary that there is ε > 0

such that, for each i ∈ {1, . . . , k}, we have qni+1,ni ≤ κni+1,ni − ε.
Then consider the same solution with trades (q̃nm)nm defined as follows: for each i ∈ {1, . . . , k},

let q̃ni+1,ni := qni+1,ni + ε and q̃ni,ni+1
:= qni,ni+1

− ε, while q̃nm = qnm otherwise. Then all constraints
are still feasible because, for each i,

∑
m6=ni qm,ni = Qn − ε + ε = Qn. Besides, by definition of q̃, we

still have q̃mn = −q̃nm for any m > n. Moreover, if we denote by SW the social welfare of the previous
solution (qnm)nm, the social welfare of this new solution is:

S̃W = SW +
∑
n

∑
m 6=n

cnm(qmn − q̃mn)

= SW +
∑

1≤i≤k

(
cni,ni+1(qni+1,ni − q̃ni+1,ni) + cni,ni−1(qni−1,ni − q̃ni−1,ni)

)
= SW +

∑
1≤i≤k

ε
(
cni,ni−1

− cni,ni+1

)
= SW − ε

∑
1≤i≤k

C̃ni,ni+1
> SW ,

which contradicts the fact that SW is maximal.

Remark 3.3. The property stated by Proposition 5 shows that the lines become congested if there is a
strictly positive or negative cycle in the matrix C̃. In practice, a central MO should try to avoid such
an outcome, since the congested lines are unavailable in case of unplanned real need (outages, peak
demand). The existence of a positive cycle in C̃ means that there is an “arbitrage” opportunity in the
network. In other words, one can strictly increase the social welfare by doing an exchange of power
quantities. We can make the assumption that this kind of opportunities do not exist in practice, since
they should vanish quickly in a liquid market.

From the point of view from mechanism design, we might also prevent this kind of cycling behavior
by adding a transaction fee (e.g. τ × |qmn| with τ > 0) on the trades, regardless they are positive or
negative.

Section 5.1 shows an example where there is a cycling trade that is purely due to arbitrage oppor-
tunities because of the preferences.

4 Peer-to-Peer Market Design

The centralized market design is used, in this section, as a benchmark against which we test the
performance of a fully distributed approach relying on peer-to-peer energy trading. We first start by
defining in Subsection 4.1 the solution concepts that we will use to analyze the outcome of the fully
distributed market design. Then, various results are introduced to characterize the relations between
these sets of solutions. Congestion issues and performance measures are discussed in Subsection 4.2.
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4.1 General Nash Equilibrium and Variational Equilibrium

In the peer-to-peer setting, each agent n ∈ N determines, by herself, her demand, flexibility activation
and bilateral trades with other agents in her local energy community under constraints on demand,
flexibility activation and transmission capacity so as to maximize her utility. A trade between two
agents in a local energy community supposes that these two have decided on a certain quantity to be
sent from one side and received by the other side. Therefore, there must be an “agreement” or trade
constraint between each pair of agents in a local community, which couples their respective decisions.
As a result, although the utility of a prosumer depends only on her own decisions, some of these
decisions, such as the quantity she agrees to trade with all the other prosumers in her neighborhood,
have an impact on the set of feasible actions of her neighbors. In the same way, her feasible actions
are determined by the actions of her neighbors.

Formally, each agent in node n ∈ N solves the following optimization problem:

max
Dn,Gn,(qmn)m∈Ωn,m 6=n

Πn

(
Dn, Gn, qn

)
, (21a)

s.t. Dn ≤ Dn ≤ Dn, (µ
n
, µn) (21b)

Gn ≤ Gn ≤ Gn, (νn, νn) (21c)

qmn ≤ κmn,∀m ∈ Ωn,m 6= n, (ξnm) (21d)

qmn ≤ −qnm,∀m ∈ Ωn,m 6= n, (ζnm) (21e)

Dn = Gn + ∆Gn +Qn, (λn) (21f)

where qn = (qmn)m∈Ωn are the trading decisions of agent n.
Hence, the peer-to-peer setting leads to N optimization problems, one for each agent n ∈ N , with

individual constraints on demand (21b), flexibility activation (21c), trade capacity (21d), supply and
demand balancing (21f); as well as coupling constraints (21e) that ensure the reciprocity of the trades.

The Lagrangian function associated with optimization problem (21a) under constraints (21b)-(21f),
writes down as follows:

Ln(Dn, Gn, qn,µn,νn, ξn, ζn, λn)

=ãn(Dn −D∗n)2 − b̃n + 1
2anG

2
n + bnGn + dn +

∑
m∈Ωn,m 6=n

cnmqmn

+ µ
n
(Dn −Dn) + µn(Dn −Dn) + νn(Gn −Gn) + νn(Gn −Gn) +

∑
m∈Ωn,m 6=n

ξnm(qmn − κmn)

+
∑

m∈Ωn,m6=n

ζnm(qmn + qnm) + λn(Dn −Gn −∆Gn −
∑

m∈Ωn,m6=n

qmn).

For each agent n, the first order stationarity conditions are the same as (9a)-(9c), and the com-
plementarity constraints are the same as (11a)-(11f), except that (11f) is indexed by all (m,n) with
m 6= n and that ζnm is not necessarily equal to ζmn. Let this condition system be denoted by KKTn
for each n ∈ N .

As the problem given by (21) is convex, KKTn are necessary and sufficient conditions for a vector
(Dn, Gn, qn) to be an optimal solution of (21).

Remark 4.1. In Equation (21), Πn depends on the variables of player n only, and not on the variables
of the other players. A consequence is that the social welfare function is decomposable: SW (D,G, q) =∑
n Πn

(
Dn, Gn, qn

)
. Therefore, without the existence of the coupling transaction constraint (21e), the

minimization of SW is equivalent to the minimization of each individual objective function Πn. We
will see that this equivalence between social optimizer and equilibria also happens for the so-called
Variational Equilibria.

A common adopted equilibrium notion that generalizes Nash Equilibria in the presence of coupling
constraints is the notion of Generalized Nash Equilibrium (GNE) [10]
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Definition 1 (Generalized Nash Equilibrium [5]). A Generalized Nash Equilibrium of the game defined
by the maximization problems (21) with coupling constraints, is a vector (Dn, Gn, qn)n that solves the
maximization problems (21) or, equivalently, a vector (Dn, Gn, qn)n such that (Dn, Gn, qn) solves the
system KKTn for each n.

The constraint (21e), qmn ≤ −qnm, written both in the problem of n and in that of m 6= n leads
to the same inequality, but is associated to the multiplier ζnm in the problem of n and to ζmn in the
problem of m. In this paper, we consider two scenarios for the allocation of the resources represented
in this coupling constraints:

Scenario (i) A market allocates the resources associated with (21e) through a single price system,
therefore leading to the determination of one price for each constraint: ζnm = ζmn.

Scenario (ii) There does not exist any market to determine the price system associated with (21e).
Hence, two prosumers n, m might attribute different evaluations of the same transaction qmn ≤
−qnm or, equivalently, the same dual variables to the trade constraint (21e) between n and m. This
can lead to different prices ζnm 6= ζmn for agents n and m.

The two scenarios have implications on the market organization. Let us discuss them one after
another.

Scenario (i) corresponds to a complete market, where the common resources are shared in an
efficient way. It suggests that all constraints are traded at a single price, which reflects the common
valuation of each product from all agents. The associated solution concept is that of Variational
Equilibrium [10], a refinement of Generalized Nash Equilibrium, where we ask for more symmetry: the
Lagrangian multipliers associated to a constraint shared by several players have to be equal from one
player to another. Note that a natural way to complete the market would be to introduce a market
for (distribution) capacity line transmission, enabling the determination of congestion prices (ξnm)n,m.
A similar idea was proposed by Oggioni et al. in [24] at the transmission level for a subproblem of
market coupling.

Definition 2 (Variational Equilibrium [5]). A Variational Equilibrium of the game defined by (21)
is a solution (Dn, Gn, qn)n that solves the maximization problems (21) or, equivalently, a vector
(Dn, Gn, qn)n such that (Dn, Gn, qn) solves the system KKTn for each n and, in addition, such that
the Lagrangian multipliers associated to the coupling constraints (21e) are equal, i.e.:

ζnm = ζmn, ∀n ∈ N ,∀m ∈ Ωn,m 6= n . (22)

The term “variational” refers to the variational inequality problem associated to such an equilib-
rium: indeed, if we define the set of admissible solutions as:

R := {x = (Dn, Gn, qn)n |(21b)− (21f) hold for each n ∈ N} . (23)

then x̂ ∈ R is a Variational Equilibrium if, and only if, it is a solution of (cf. [5]):〈∑
n

∇Πn(x̂n), x− x̂

〉
≤ 0, ∀x ∈ R . (24)

A remarkable fact is that Variational Equilibria exist under mild conditions [10, 28], even if the
additional equality conditions on the multipliers seem restrictive.

We can observe, following Remark 4.1, that Variational Equilibria are defined by exactly the same
KKT system than the social welfare maximizer (or equivalently as the solution of the same variational
inequality (24)). Therefore, we obtain the following result:

Proposition 6. The set of Variational Equilibria (such that ζnm = ζmn for all n ∈ N and all
m 6= n ∈ Ωn) coincides with the set of social welfare optima.
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Scenario (ii) corresponds to the case of partial price coordination or a completely missing market
for some products. Agents with different willingness to pay for a certain resource face a price gap
due to the lack of arbitrage opportunities that prevent price convergence. This imperfect coordination
among agents relates to the notion of Generalized Nash Equilibrium (GNE), where nothing prevents
the multipliers ζnm and ζmn to be different.

Remark 4.2. A particular class of GNE is called restricted GNE [8]. It assumes that the dual variables
of the shared constraint (21e) belongs to a non empty cone of RN(N−1).

A particular class of restricted GNE is called normalized equilibrium, introduced by Rosen [28].
There, the dual variables of the shared constraint (21e) are equal up to a constant endogenously given
factor rn that depends on prosumer n, but not on constraints. Mathematically, it means rnζnm =
rmζmn, for all n ∈ N and all m ∈ Ωn,m 6= n.

From KKTn, we see that, as in the centralized case, λn = ζnm + cnm + ξnm, i.e., the per-unit nodal
price at n is the sum of the transaction price, the preference price and the congestion price, all for
getting one unit from m to n, for each neighbor of m.

Besides,
ζnm = λn − cnm − ξnm,∀m ∈ Ωn,m 6= n , (25)

which gives the transaction price for agent n or, in other words, her evaluation of the trade qmn.

In order to derive some results on GNE and simplify notations, let us introduce the coefficient rn
as:

ζ0nrn = ζn0, ∀n ∈ N . (26)

Remark 4.3. We interpret this situation as one where there is an imperfect market for determining
the bilateral trade prices obtained as dual variables of the shared constraint (21e). Between any couple
of prosumer nodes, bilateral trade prices do tend to equalize (i.e., rn is close to 1 for any n ∈ Ω0

— meaning that the GNE approaches the Variational Equilibrium), but there remains a gap due to
insufficient liquidity or differences in the price bids for the asked quantity [24]. To some extent, rn
can be interpreted as a measure of the efficiency loss introduced by the GNE in comparison with the
Variational Equilibrium.

Using Equation (25) for the node 0 and an arbitrary node n ∈ Ω0 and for an arbitrary node n ∈ Ω0

and the node 0, and summing up both relations, we get:

λn = rnλ0 +
(
cn0 − rnc0n

)
+
(
ξn0 − rnξ0n

)
, ∀n ∈ Ω0. (27)

Similarly to the centralized market design case, since the total sum of the net imports in all nodes
should vanish under no RES-based generation waste, i.e.,

∑
n∈N Qn = 0, we infer the closed form

expression of the nodal price at the root node, similar to the centralized case:

λ0

∑
n∈N

(
1

2ãn
+

1

an

)
rn =

∑
n∈N

(
D?
n −

1

2ãn
(µn − µn) +

bn
an

+
1

an
(νn − νn)−∆Gn

)
−
∑
n∈Ω0

(
1

2ãn
+

1

an

)[
(cn0 − c0nrn) +

(
ξn0 − rnξ0n

)]
. (28)

We introduce SOLGNEP as the set of GNE solutions of the peer-to-peer non-cooperative game.
As opposed to the Variational Equilibrium, GNEs are not unique in general. It is relevant to study

how efficient those different outcomes can be in comparison to the Variational Equilibrium outcome
(where the bilateral trades would be settled down by a MO).

To that purpose, we apply the parameterized variational inequality approach [23, 24], which enables
to evaluate the set of GNEs. In our specific case, this leads to the following optimization problem
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PGNE
ω , parameterized by the coefficients ωnm > 0 corresponding to an additional value for user n for

its trading constraint with m:

PGNE
ω max

D,G,q

∑
n∈N

Πn(Dn, Gn, qn)−
∑

m∈Ωn,m 6=n

ωnmqmn

 , (29a)

s.t. Dn ≤ Dn ≤ Dn,∀n ∈ N , (µ
n
, µn) (29b)

Gn ≤ Gn ≤ Gn,∀n ∈ N , (νn, νn) (29c)

qnm ≤ κnm (ξnm) (29d)

qnm + qmn ≤ 0,∀m ∈ Ωn,m > n, ∀n ∈ N . (ζnm) (29e)

Dn = Gn + ∆Gn +Qn,∀n ∈ N , (λn) . (29f)

Indeed, from [23, Cor 3.1] and [23, Thm. 3.3], we have the following results:

Proposition 7. (i) All GNEs can be found from problem (29), that is:

SOLGNEP ⊂
⋃

(ωnm)∈R∗N(N−1)
+

SOL
(
PGNE
ω

)
;

(ii) reciprocally, if (D,G, q, ζ) is a solution of PGNE
ω (where ζ are multipliers associated to (29e)),

then
(D,G, q, ζ) is a GNE ⇐⇒ ωnm(qnm + qmn) = 0, ∀n 6= m , (30)

and in that case the multipliers associated to (21e) in the GNE problem are defined by ζ̂nm =
ζnm + ωnm .

Proof. For (i), writing the KKT conditions verified by a solution (D,G, q) of the GNE problem (21)

with Lagrangian multipliers (ζ̂nm)n 6=m, it is easy to verify that (D,G, q) verifies the KKT conditions

of (29) PGNE
ζ̂

, where the parameters are taken to ω := ζ̂.

For (ii), we use the fact that problem (29) has linearly independent constraints, and apply [23,
Thm. 3.3] directly.

4.2 Dealing with Congestion

Let us first explicit the following fact on congested lines:

Lemma 1. For any couple of nodes n ∈ N ,m ∈ Ωn,m 6= n, such that κnm > 0, κmn > 0, qnm = κnm
and qmn = κmn cannot hold simultaneously.

The proof is direct from the capacity and transaction constraints. Then, we obtain the following
sufficient condition for a line to be saturated:

Proposition 8. Suppose ξn0 = ξ0n = 0,∀n ∈ Ω0, i.e., there are large line capacities from and to
node 0, cn0 = cm0, i.e., the nodes have the same preferences for node 0, and the node 0 has the same
preferences for any node, i.e., c0n = c0m. For any couple of nodes n ∈ N ,m ∈ Ωn,m 6= n, asymmetric
preferences (such as cmn > cnm or cmn < cnm) imply that the node with the smaller preference for the
other saturates the line.

Proof. For any n ∈ N ,m ∈ Ωn,m 6= n, applying Equation (13) for the three couples of nodes: (n, 0),
(0,m), (m,n), we obtain:

cn0 − c0n + ξn0 − ξ0n =λn − λ0,

c0m − cm0 + ξ0m − ξm0 =λ0 − λm,
cmn − cnm + ξmn − ξnm =λm − λn.
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Summing up the three equations, we get:

ξnm − ξmn = (c0m − c0n) + (cn0 − cm0) + (ξn0 − ξ0n) + (ξ0m − ξm0) + (cmn − cnm).

Under the assumptions of the proposition, the equation can be simplified to give:

ξnm − ξmn = cmn − cnm.

Then, two cases arise depending on the order of (n,m) preferences:

(i) If cmn > cnm (meaning that m wants(buys) to sell to n more(less) than n wants to sell(buy)
to m), ξnm−ξmn > 0, which implies from Lemma 1 that ξnm > 0. Then, for the complementarity
constraint (11e) to hold we need to have qnm = κnm, i.e., m saturates the line from m to n;

(ii) If cnm > cmn (meaning that n wants(buys) to sell to m more(less) than m wants to sell(buy)
to n), ξnm−ξmn < 0, which implies from Lemma 1 that ξmn > 0. Then, for the complementarity
constraint (11e) to hold we need to have qmn = κmn, i.e., n saturates the line from n to m.

The following proposition gives a sufficient condition for the distribution grid lines become congested
along a cycle, analog to Proposition 5. The proof is similar and is omitted.

Proposition 9. Suppose that there is a sequence of distinct indices (ni)1≤i≤k such that C̃ni,ni+1
−

C̃ni,ni−1
< 0 for all i = 1, . . . , k, where nk+1 := n1. Then, at an equilibrium, there is a trade opposed

to the cycle made at full capacity i.e. there exists i ∈ {1, . . . , k} such that qni+1,ni = κni+1,ni .

Remark 4.4. Classically, the Price of Anarchy (PoA) is introduced as a performance measure to assess
the performance of the peer-to-peer market design by comparison to the centralized market design. The
PoA is defined as the ratio of the social welfare evaluated in the social welfare optimum to the social
welfare evaluated in the worst GNE in the set SOLGNEP. Formally, it is defined as follows:

PoA :=
maxD,G,q SW (D,G,q)

minD,G,q∈SOLGNEP SW (D,G,q)
. (31)

From Proposition 6, in a Variational Equilibrium, PoA = 1, because a Variational Equilibrium co-
incides with the optimum of the centralized social welfare optimization problem. However, the GNE
set might contain equilibria that do not coincide with the (social welfare) optimum solution of the
centralized optimization problem.

5 Test Cases

5.1 A Three Nodes Network with Arbitrage Opportunity

In this section, we first present a toy model with only three nodes indexed by {0, 1, 2}, as illustrated
in Figure 2. The root node 0 has only conventional generation (∆G0 = 0) with cost (a0, b0) = (4, 30)
and (G,G) = (0, 10). Nodes 1 and 2 are prosumers with RES-based generators (Gn = Gn = 0 and
∆Gn > 0 for n ∈ {1, 2}). Each node is a consumer (with (D,D) = (0, 10)) and generator (RES
or conventional), therefore producing energy that can be consumed locally to meet demand Dn and
exported to the other nodes to meet the unsatisfied demand.

Regarding the preferences (cnm)nm, nodes 1 and 2 both prefer to buy local and to RES-based
generators. Node 0 is assumed to be indifferent between buying energy from node 1 or node 2.
Capacities are also defined larger from the source node 0 (κ0n = 10) than between the prosumers
nodes (κnm = 5).

In Figure 3 (a), we illustrate the optimal solution of the centralized market design problem in which
the global MO maximizes the social welfare under operational and power-flow constraints (7a)-(7e).
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ã2 = 10.0
∆G2 = 5.0

κ 0
1

=
10
.0

κ
02

=
10.0

κ12 = 5.0

Figure 2: Three node network example.

cnm 0 1 2
0 – 1.0 1.0
1 3.0 – 1.0
2 2.0 1.0 –

cnm − cmn 0 1 2
0 – -2.0 -1.0
1 2.0 – 0.0
2 1.0 0.0 –

Table 1: Price differentiation parameters and matrix of differences.

0

1 2

λ0 = 9.34
D0 = 5.07
G0 = 2.17
Q0 = 2.9

λ1 = 11.34
D1 = 2.62
Q1 = −0.38

λ2 = 10.34
D2 = 2.48
Q2 = −2.52

q
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=
2.48

ζ
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8.34

ξ
20

=
0.0q 1

0
=

5.
38

ζ 1
0
=

8.
34

ξ 0
1

=
0.

0

q21 = 5.0
ζ21 =9.34

ξ12 = 1.0

(a) Centralized solution (SW = 378.3)

0

1 2

λ0 = 1.0
D0 = 5.9
G0 = 0
Q0 = 5.9

λ1 = 90.0
D1 = 0.0
Q1 = −3

λ2 = 18.0
D2 = 2.1
Q2 = −2.9

q 0
1

=
2

ζ 0
1
=

0,
ζ 1

0
=

87
ξ 1

0
=

0.
0

q12 = 5.0
ζ12 =89, ζ21 =17

ξ21 = 0.0

q
20

=
7.9

ζ
20 =

16, ζ
02 =

0

ξ
02

=
0.0

(b) One GNE (SW = 255.5)

Figure 3: Comparison of the optimal centralized solution (a) and a GNE solution with low social welfare (b).

We remark on this figure that the trade from node 1 to node 2 is at full capacity, which is explained
by Proposition 5. Indeed, we see from Table 1 that there is a “cycle” in preferences C̃01+C̃12+C̃20 = −1
which explains why we obtain q10 = κ10 and q21 = κ21 in the centralized solution (Figure 3).

On the contrary, we remark that, in the GNE solution depicted in Figure 3b, the same edge is
congested in the reverse way: Proposition 5 only applies in the case of a centralized solution.

In the example above, the cycle comes from the fact that it is easier for node 2 to buy from 0 than
node 1 to buy from 0: thus, the social welfare can be increased if 1 buys from 2 who buys from 0.
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Figure 4: All existing GNEs in q-space. The set of GNEs is given as two connected components,
corresponding to the edge (1,2) saturated in one way and the other.

Changing the parameters to c20 = c30 = 3 removes the cycle in the optimal solution of (qnm)nm.

In Figure 4, we show the different GNEs existing for this reduced problem in the three-dimensional
space of transactions. As one can see on this figure, an interesting property is that, for any GNE, the
edge from node 1 to node 2 is saturated in one way or the other.

Evaluating the GNE with the lowest social welfare is difficult because this task does not correspond
to a convex problem (in particular, the SW is a concave function). However, the GNE depicted in
Figure 3b is the worst GNE that we found with the sampling method given by Proposition 7, using a
sampling (ωnm)n>m ∈ {0, . . . , 100}3. Therefore, we can have the following bound on the PoA:

PoA =
maxD,G,q SW (D,G,q)

minD,G,q∈SOLGNEP SW (D,G,q)
≥ 378.3

255.5
' 1.48 , (32)

which means that, in the peer-to-peer market, in the presence of market imperfections, the resulting
social welfare can be more than 50% smaller than the optimal social welfare (or, the VE obtained in
the absence of market imperfections).

5.2 IEEE 14-bus Network

In this example, we consider the IEEE 14-bus network system introduced in [32]. Each bus of the
network corresponds to a prosumer in our model as described on Figure 5. The buses 3, 4, 5 and 9 to
14 contain only consumers without any production. Nodes 2 and 3 are prosumers node (consumption
and RES production) and also contain thermal production plants. The bus 6 is a prosumer with
only intermittent solar energy production. Last, the bus 8 contains only production, renewable and
thermal.

The bus 1 corresponding to the grid connection is also able to provide power to the busses linked
to it.

Each pair of busses is able to trade with its neighboring busses, up to the capacity of the edge
linking the pair of busses.

For simplicity, we compute the trades and optimal productions and consumptions for a particular
unique time period. The renewable energy productions (∆Gn)n and the objective consumptions (D?

n)n
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Figure 5: IEEE 14-bus network system

for this time period are provided in Figure 5. Note that in this particular example, we have the
inequality:

28.39 =
∑
n∈N

∆Gn <
∑
n∈N

D?
n = 69.94 [GWh] ,

which explains partly why we do not have any energy waste in the solutions depicted on Figure 6.
For the trade differentiation prices (cnm)n,m, we consider four cases:

(a) uniform prices: cnm = 1 for each n and m, so that we ensure that there does not exist any cycle
in the matrix of price differences as described in Proposition 5;

(b) heterogeneous prices: for n 6= 1 and m 6= 1, cnm is chosen uniformly in [0, 1]. We assume that
agents have a preference for local trades so the price with the grid connection bus cn1 is larger
and chosen uniformly in [1, 2]. The grid connection bus has no preferences so that c1n = 1 for
each n neighboring bus 1.

(c) symmetric prices: (cnm)nm random and symmetric (for n < m, cnm is taken as in (b)).

(d) preferences for local trades with uniform prices: (cnm)nm = 1 if m 6= 1 and cn1 = 3.

For each of this case, we compute the centralized solution (also corresponding to the VNE). The
solutions are illustrated in Figure 5: directions of trades are represented by arrows, the wideness of
each arrow is proportional to the quantity traded. Trades made at full capacity (qnm = κnm) are
represented by red arrows, while the others are represented by green arrows. We observe that cases
(c) and (d) give the same trade solutions (qnm)nm at VNE as case (a).

We see in Figure 6 that the differentiation prices (cnm)nm modify completely the solution. We
observe that the quantities traded in case (b) are much larger. While some edges are almost unused
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Figure 6: Trades [$/MWh] at the VNE of the IEEE 14-bus network with homogeneous differentiation
prices (left) and heterogeneous differentiation prices (right). With heterogeneous prices, the quantities
traded are larger, and some links become congested. In the heterogeneous case, marginal trade prices
(ζnm)n,m are all equal. In the case of heterogeneous prices (cnm)nm, marginal prices (ζnm)n,m are also
heterogeneous.

in case (a) and no edge is congested, ten of the twenty-two edges become congested in case (b) with
heterogeneous prices. This effect can be explained by Propositions 5 and 8.

Also, we observe that marginal prices (ζnm)n,m are all equal to 2.16 $/MWh in case (a), while
they are heterogeneous in the case (b). In case (a), the equality is explained by both the absence of
congestion (ξnm = 0) and the equality of (cnm)nm among users (absence of preferences).

As opposed to the reduced example with three nodes given in Section 5.1, it was not possible to
compute a GNE different from the VE for this 14 nodes network. The approach of Nabetani et al. [23]
that we used for the three node network is not possible here because of the dimension: to search for
another GNE, we have to look on a space of dimension 22, e.g., the number of lines in the network. This
observation also calls for the development of algorithms not based on brute force approach, enabling
an efficient approximation of the GNEs. This could be the topic of future research.

6 Dealing with Privacy

Privacy might limit the information released by the prosumers regarding their target demand and
RES-based self-generation. In this section, the target demand and RES-based self-generation will be
called prosumer’s private information. When privacy applies, prosumers can decide to not share their
private information with the other prosumers in their neighborhood. Two reasons justify this behavior:
first, they might be reluctant to install intrusive and costly monitoring systems to keep track of their
RES-based self-generation; second, they can fear that other prosumers decide to sell it to aggregators
that would use it for gaming on the wholesale market, impacting the prosumers’ bills. In general,
privacy has some impact on the utility functions of the prosumers. Indeed, based on the analytical
expressions of the VNE and GNE we derived in the previous sections, each prosumer needs to know
the target demands and RES-based self-generation of each prosumer in her neighborhood. In case
privacy applies, these values will not be shared within the neighborhood and each prosumer would
have to forecast the private information of the other prosumers to optimize her own decision variables,
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therefore introducing bias in her own expected utility function. In the present section, we provide an
upper bound on the impact of the bias introduced by the distributed forecasts of the prosumers on
their expected utility. This will give us a first quantification of the impact of privacy on the market
outcome taking the point of view of the prosumers. This also constitutes a first step towards the
implementation of learning methods or algorithms to approach an equilibrium (GNE) with minimum
information exchange between the prosumers. These algorithmic aspects leave an interesting direction
for future research.

6.1 Quantifying the Loss Caused by Privacy

We now explain in more details how each prosumer builds forecasts of target demands, RES-based
generations and nodal prices, and use them to compute a biased-forecast equilibrium.

The expressions of the prosumers’ demand, flexibility activation, and net imports are given in
Proposition 1. From these expressions, each prosumer needs to compute her nodal price, which is itself
based on the nodal price at the root node λ0. In a centralized market clearing approach, it is the
MO who determines all the nodal prices while having access to all the information of the prosumers
on their target demand and RES generations. In the reality, privacy preservation rules might allow
the prosumers not to share all their private information. In a peer-to-peer market design, nodal price
expressions are detailed in (27) and (28). Under Assumptions 1, 2, 3, to compute her nodal price,
each prosumer needs to compute the nodal price at the root node λ0, which requires to know the
target demand D?

m,m 6= n and RES-based generations ∆Gm,m 6= n of all the other prosumers in her
neighborhood. Since this information is in general kept private by the prosumers, prosumer n needs
to build forecasts of her neighbors’ target demand and RES-based generations. To that purpose, for
each agent n ∈ N , we introduce forecasts in the form of simple linear estimates:

Fn(D?
m) =D?

m + εDnm, (33)

Fn

(
∆Gm

)
=∆Gm + εGnm,∀m ∈ Ωn,m 6= n, (34)

where εDnm, εGnm are the biases introduced by agent n in the estimation of the demand and the RES-
based generation of any agent m in her neighborhood. We assume that εDnm, εGnm are independent and
identically distributed (iid) random variables that follows Gaussian density functions centered in 0,
with standard deviation σDnm, σGnm. We also set ∆εnm := εDnm − εGnm, as the difference between the
biases introduced by agent n in agent m demand and RES-based generation estimations. To simplify
the analytical expressions to come, let ρn(r) := rn

( 1
2ã0

+ 1
a0

)+
∑
m∈Ω0

( 1
2ãm

+ 1
am

)rm
.

Substituting Equations (33) and (34) in (28) and (27), agent n obtains the following estimate for
the nodal price at the root node and at her node (i.e., on her local market):

Fn(λ0) =λ0 + ρn(r)r−1
n

∑
m∈Ωn

∆εnm,

Fn(λn) =λn + ρn(r)
∑
m∈Ωn

∆εnm,∀n ∈ Ω0.

For any prosumer n ∈ N , we observe that
∑
m∈Ωn

∆εnm → 0 implies that Fn(λ0) → λ0 and
Fn(λn)→ λn. So, agent n estimates of her nodal price is without bias if she makes no bias in the other
agents’ target demand and RES-based generation estimations, or biases in both estimates compensate
each other.

Then, by substitution of the nodal price estimates in Proposition 1 output, we obtain the following
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expression for the biased-forecast equilibrium:

Fn(Dn) =Dn −
1

2ãn
ρn(r)

∑
m∈Ωn

∆εnm,

Fn(Gn) =Gn +
1

an
ρn(r)

∑
m∈Ωn

∆εnm,

Fn(Qn) =Qn − (
1

2ãn
+

1

an
)ρn(r)

∑
m∈Ωn

∆εnm. (35)

Note that in general Fn(Dn) 6= Dn, Fn(Gn) 6= Gn, and Fn(Qn) 6= Qn, i.e., the equilibrium
obtained under privacy (that we called biased-forecast equilibrium) is different from the equilibrium
computed under full information. In case where the sum of the error differences tends to zero, i.e.,∑
m∈Ωn

∆εnm → 0, then Fn(Dn)→ Dn, Fn(Gn)→ Gn, and Fn(Qn)→ Qn.
Then, by substitution of the biased-forecast equilibrium (35) in agent n utility function, we obtain

the following bounds for her utility bias:

Fn(Πn)−Πn ≤ −
1

2
(

1

ãn
− 1

an
)ρn(r)2(

∑
m∈Ωn

∆εnm)2 +
(

min
m 6=n
{cnm}(

1

2ãn
+

1

an
)− bn

an

)
ρn(r)

∑
m∈Ωn

∆εnm,

Fn(Πn)−Πn ≥ −
1

2
(

1

ãn
− 1

an
)ρn(r)2(

∑
m∈Ωn

∆εnm)2 +
(

max
m∈Ωn

{cnm}(
1

2ãn
+

1

an
)− bn

an

)
ρn(r)

∑
m∈Ωn

∆εnm.

(36)

Taking the expectation of Fn(Πn) − Πn and since the expectation preserves the inequalities, we
obtain the following relation from Equation (36):

E
[
Fn(Πn)−Πn

]
= −1

2
(

1

ãn
− 1

an
)ρn(r)2

∑
m∈Ωn

(
(σDnm)2 + (σGnm)2 + 2Cov(εDnm, ε

G
nm)

)
. (37)

If ãn = an, then E
[
Fn(Πn) − Πn

]
= 0, i.e., there is no bias in the estimation of the prosumer’s

utility.

To simplify the notation, we set βn := −( 1
ãn
− 1

an
)
∑
m∈Ωn

(
(σDnm)2 + (σGnm)2 + 2Cov(εDnm, ε

G
nm)

)
.

Proposition 10. Assuming βn > 0 (resp. βn < 0), the bias in the prosumer n estimated utility is
increasing in rn (resp. decreasing in rn).

Proof. By derivation of node n profit with respect to δn0, we obtain:
∂E
[
Fn(Πn)−Πn

]
∂δn0

= βnρn(r)∂ρn(r)
∂rn

.

Since ∂ρn(r)
∂rn

= ρn(r)
rn

[
1
δn0
− ρn(r)( 1

2ãn
+ 1

an
)
]

= ρn(r)
rn

(1 − rnαn
α0+

∑
m∈Ω0

αmrm
) with αm := 1

2ãm
+

1
am
,∀m ∈ Ω0. By assumption ζn0 ≥ 0 and ζ0n ≥ 0, which imply that rn ≥ 0 and ρn(r) ≥ 0.

Furthermore, by definition of the usage benefit and production cost parameters α0 +
∑
m∈Ω0\n αmrm ≥

0⇔ 1− rnαn
α0+

∑
m∈Ω0

αmrm
≥ 0. Then, depending on the sign of βn, the conclusion follows.

Proposition 10 means that the prosumers may have incentives to play strategically with the valu-
ations of the bilateral trading prices with the root node since it influence the bias in their expected
utility. More precisely, ζn0 smaller than ζ0n will lead to small bias values; whereas ζn0 larger than
ζ0n will lead to large bias values. In order to minimize her bias, the prosumer would choose smaller
valuation for the trade with the root node than the root node would choose for similar trade.

Proposition 11. There exists an upper-bound Φn such that for any D,G, q ∈ SOLGNEP,
∣∣∣E[Fn(Πn)−Πn

]∣∣∣ ≤
Φn,∀n ∈ N .
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Proof. Taking the absolute value of the expectation of the difference between the estimated and the

true utilities, we observe that
∣∣∣E[Fn(Πn)−Πn

]∣∣∣ ≤ E
[
|Fn(Πn)−Πn|

]
≤ 1

2 |βn| ρn(r)2.

Derivating ρn(r)2 with respect to rn, we obtain ∂ρn(r)2

∂rn
= 2ρn(r)2

rn
(1− rnαn

α0+
∑
m∈Ω0

αmrm
) ≥ 0, which

implies that ρn(r)2 is increasing in rn. Derivating ρn(r)2 with respect to rm,m 6= n, we obtain
∂ρn(r)2

∂rm
= 2ρn(r)

[
− ρn(r)

rn
( 1

2ãm
+ 1

am
)
]
≤ 0, which implies that ρn(r)2 is decreasing in rm,m 6= n.

According to the parameterized variational inequality approach of Nabetani et al. [23], the GNE
set D,G, q ∈ SOLGNEP can be described by making the valuation ratio rn span values in a certain
interval, i.e., rn ≤ rn ≤ rn, for any n ∈ Ω0.

Based on the variational analysis of ρn(r)2, we conclude that Φn := 1
2 |βn| ρn

(
rn, (rm)m 6=n

)2

.

6.2 Dealing with Privacy in the Three Nodes Network

We still consider the three nodes example introduced in Subsection 5.1. The demand and the RES-
based generation errors in the estimations are generated according to Gaussian density functions
centered in 0, with standard deviations:

σD =

 0.8 0.2 0.2
0.3 0.8 0.8
0.8 0.1 0.3

 , σG =

 0.0 0.2 0.5
0.0 0.3 0.5
0.0 0.8 0.10

 , and Cov =

 0.4 −0.2 −0.3
−0.8 −1.0 0.5
1.0 0.0 1.0

 .

In Figure 7, we have represented the sum of the upper bounds on the estimated utility bias Φ1 + Φ2

as a function of the prosumer utility parameters ã1, ã2. We have assumed that the maximum usage
benefit is the same on nodes 1 and 2, leading to b̃1 = b̃2 = 60. Based on the prosumer utility definition,

the targeted demand is inversely proportional to the usage benefit parameter, indeed D∗n =
√

b̃n
ãn

. We

observe that depending on the utility parameters, the social welfare bias varies between 1.2% and
3.6%. Furthermore, the bias is minimal when both prosumers have identical utility parameters (or
equivalently, same target demands), and maximized when the utility parameters are asymmetric (one
having a large target demand and the other a small one).

7 Conclusion

On a radial network where nodes are made of prosumers with differentiation price preferences, we for-
mulate two market designs: (i) a centralized market design used as a benchmark, where a global market
operator optimizes the flows (trades) and bilateral trading prices between the nodes to maximize the
system overall social welfare; (ii) a fully distributed peer-to-peer market design where prosumers in
local energy communities optimize selfishly the trades, demand, and flexibility activation in presence
of private information. We characterize the solution of the peer-to-peer market as a Variational Equi-
librium, without price arbitrage, and prove that the set of Variational Equilibria coincides with the
set of social welfare optima solutions of market design (i). In the presence of market imperfections,
we propose a reformulation of the Generalized Nash Equilibrium Problem (ii) relying on the param-
eterized variational inequation approach of Nabetani et al. enabling the computation of the set of
Generalized Nash Equilibria. We also characterize formally the impact of preferences on the network
line congestion and energy waste under both designs. The results are illustrated in two test cases (a
three nodes network and the IEEE 14-bus network). We also provide a bound on the Price of Anarchy
capturing the loss of efficiency caused by market imperfections in the three nodes example. We show
that the impact of privacy on the social welfare bias is smaller than 3.6%. Based on these performance
analysis and numerical results, we conclude that peer-to-peer market design gives rise to similar per-
formance than the classical centralized market design provided market imperfections (resulting from
the lack of coordination, insufficient market liquidity, information asymmetry resulting from privacy)
can be corrected, and constitutes a relevant evolution for power system operation as it promises more
robustness and resilience. Indeed, as the information and decisions are not optimized by a central
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Figure 7: Impact of the prosumer utility parameters ã1, ã2 on the social welfare bias.

single entity, in case of failure or if one node is attacked, the power system can still rely on the other
nodes. Besides, as all prosumers are involved, they have the ability to adapt their actions to the state
of grid.
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