
HAL Id: hal-01944569
https://hal.science/hal-01944569v1

Submitted on 7 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Linear Temporal Logic Model Checking Method over
Finite Words with Correlated Transition Attributes

Jean-Michel Couvreur, Joaquín Ezpeleta

To cite this version:
Jean-Michel Couvreur, Joaquín Ezpeleta. A Linear Temporal Logic Model Checking Method over Fi-
nite Words with Correlated Transition Attributes. 7th International Symposium on Data-Driven Pro-
cess Discovery and Analysis (SIMPDA), Dec 2017, Neuchâtel, Switzerland. pp.89-104, �10.1007/978-
3-030-11638-5_5�. �hal-01944569�

https://hal.science/hal-01944569v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A linear temporal logic model checking method
over finite words with correlated transition

attributes

Jean-Michel Couvreur1 and Joaqúın Ezpeleta2

1 Laboratoire d’Informatique Fondamental d’Orléans (LIFO)
Université d’Orléans, jean-michel.couvreur@univ-orleans.fr

2 Aragón Institute of Engineering Research (I3A)
Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain, ezpeleta@unizar.es∗

Abstract. Temporal logic model checking techniques are applied, in a
natural way, to the analysis of the set of finite traces composing a system
log. The specific nature of such traces helps in adapting traditional
techniques in order to extend their analysis capabilities. The paper
presents an adaption of the classical Timed Propositional Temporal
Logic to the case of finite words and considers relations among different
attributes corresponding to different events. The introduced approach
allows the use of general relations between event attributes by means
of freeze quantifiers as well as future and past temporal operators.
The paper also presents a decision procedure, as well as a study of its
computational complexity.

Keywords: Model checking, Freeze Linear Temporal Logic,
Conformance checking, Log analysis

1 Introduction

Current information systems usually generate log files to record system and user
activities. System logs contain very valuable information that, when properly
analyzed, could help in getting a better understanding of the system and user
behaviors and then in improving the system. In many (most) cases the log
can be seen as a set of traces: a trace is a chronologically ordered sequence
of events corresponding to a process execution. It can correspond, for instance,
to the events of a user session in an e-commerce website or database, the events
corresponding to the execution of a process in a workflow system, etc.

Process mining [1] is the set of techniques that try to analyze log files looking
for trace patterns so as to synthesize a model representing the set of event
sequences in the log. In some cases, when the system is governed by a rather

∗This work was done when J. Ezpeleta was a visiting researcher at the University of
Orléans. It has been partially supported by the TIN2017-84796-C2-2-R project, granted
by the Spanish Ministry of Economy, Industry and Competitiveness

2 J.M. Couvreur, J. Ezpeleta

closed procedural approach, the model itself can be a quite constraining and
closed model (Petri net, BPMN process, etc.) fitting the log. In cases in which
the system does not really constrain the user possibilities (open or turbulent
environments), such constraining models are not really useful: there can be so
many different combinations of event sequences in the log that the obtained
model will be a kind of spaghetti or flower model, depending on the variety of
such combinations. For the last cases, a viable approach consists of establishing a
set of behavioral properties (described in a high level formalism, such as temporal
logic) describing possible model behaviors and then checking which traces in
the log satisfy them, looking for what are usually called a declarative process
(described in an implicit way by the set of formulas).

Conformance checking is the process by which a log and a model (either a
procedural model or a declarative one) are compared, so as to get a measure
of how well the log and the model are aligned. This paper concentrates on
the conformance perspective using a variant of temporal logic for property
description and a model checker for conformance checking. Temporal logic has
been extensively used in process mining [22][20]. Initially, only control flow
aspects were considered. A case (trace) was defined as an ordered sequence of
activities. Later, a multi-perspective point of view was adopted. In this case,
each event, besides the activity, could contain additional data, as the time at
which the event happened, the resource that executed the activity, the duration,
etc. [9][19][17][21]. As shown in [17], conformance results can significantly vary
when data associated to activities is considered: the data perspective should
be considered at the same level than the control perspective in order to obtain
accurate models.

Classical LTL temporal logic for declarative process conformance imposes
some constraints with respect to the kind of properties one can deal with. Let us
consider, as an example, a trace whose events are of the form (ac, re, ts), where
ac stands for the activity, re for the resource that executed it and ts for the event
time-stamp. It is possible to express by means of a classical LTL formula the
property that a concrete activity a executed by a concrete resource r is always
(G temporal logic operator) followed by a future (F temporal logic operator)
concrete activity b executed by the same concrete resource r: G((a, r)→ F (b, r)).
However, it is not possible to express the property that a concrete activity a is
followed in the future by activity b, and both activities are carried out by the
same resource (being the resource “any” resource). In the case of finite domains
one could transform such formula into the disjunction of a set of formulas (one
per resource). However, this is infeasible for general data domains. Consider, for
instance, the necessity of correlating the times at which the considered events
happened, so as to ensure that both are in an interval of 30 minutes.

Focusing on real-time applications, different extensions of LTL have been
proposed in the literature with the aim of incorporating time and time-related
event correlations. Metric Temporal Logic (MTL) [13] considers the until
modality with an interval window of validity. Timed Propositional Temporal
Logic (TPTL) [2] adds freeze variables as the way of referring and correlating

LTL model checking over datawords with correlated transition attributes 3

to specific time values associated to different word positions. Metric First Order
Temporal Logic (MFOTL) [4] extends MTL with first order quantifiers, gaining
in description power. In the domain of log analysis, the work in [6] gives a big
step forward towards the full integration of the control and data perspectives,
considering the time as a special part of the data associated with events. Authors
use MFOTL for the specification of behavioral properties, and propose model
checking functions for a subset of MP-Declare [21] patterns.

Freeze-like operators have also been applied in specific application domains.
[3] defines Biological Oscillators Synchronization Logic (BOSL) for the
specification and verification of global synchronization properties for a set of
coupled oscillators. [5] defines the STL* logic (extended Signal Temporal Logic)
for checking temporal properties on continuous signals representing behaviors of
biological systems.

In this paper we propose the DLTL temporal logic as an adaption and
extension of TPTL which allows a real integration of the data, control and
time perspectives from both, future and past perspectives. The way the logic is
defined allows working with any data attributes associated to events as well as
general relations among them. The approach can be considered as an integrated
multi-perspective conformance checking method. The main contributions in the
paper are: 1) the proposal of the DLTL temporal logic able to deal with a whole
multi-perspective point of view; 2) the proposal of a general model checking
algorithm for such logic, with no constrain about the set of formulas that can be
analyzed and 3) the space and time complexity characterization of the proposed
model checking method.

The paper is organized as follows. Section 2 formally defines the logic and
also describes it by means of some intuitive examples. Section 3 proposes a model
checking algorithm and evaluates its time and space complexity. Section 4 shows
how the proposed logic and model checking are applied to the analysis of a log
corresponding to a workflow system, used in the literature. Section 5 briefly
describes a model checker prototype. Section 6 comments on some related work
which concentrate on (timed) temporal logic and model checking approaches.
Finally Section 7 establishes some conclusions of the work and gives some future
perspectives for its continuation.

2 DLTL

The logic we are proposing is based on the the Timed Propositional Temporal
Logic, TPTL, [2]. TPTL is a very elegant formalism which extends classical linear
temporal logic with a special form of quantification, named freeze quantification.
Every freeze quantifier is bound to the time of a particular state. As an example,
the property “whenever there is a request p, and variable x is frozen to the current
state, the request is followed by a response q at time y, so that y is at most,
x+10” is expressed in TPTL by the formula Gx.(p→ Fy.(q∧ (y ≤ x+ 10))) [2].
Since the formula requires to talk about two different points in the trace (p and
q states), two freeze variables are used in order to be able to correlate the time

4 J.M. Couvreur, J. Ezpeleta

values of those states, and also the required constraint that both instants must
verify: x and y instants must not be separated more than 10 time units. A TPTL
formula can contain as many freeze operators as required.

The adaption of TPTL that we propose focuses on two different aspects. On
the one hand, we generalize the kind of relations between the attributes of the
events corresponding to freeze operators. TPTL constrained event correlations to
checking equality and usual relational operation between the attribute values of
freeze variables (positions in the word). In DLTL event correlations are allowed
to be more general (as general as any function correlating any attribute values).
On the second hand, DLTL also incorporates past temporal operators. Without
them, some interesting properties relating current and past word positions could
not be expressed.3

Freezing a variable by means of a freeze variable x will allow us to talk
about attributes of the event at that position, and then establish correlations
between attributes of different events by means of relations, of the form “The
resource associated to x is different than the resource associated to y” or “The
price of such product doubles between events separated more than two days”, for
instance. The timestamp of an event can be considered as just another attribute.
In the case of timestamp attributes we are going to assume they are coherent
with the ordering of events in the trace, so that if event e1 appears before than
event e2, the timestamp of e1 will be no greater than the one of e2 (the trace is
monotonic with respect to such attribute).

Let us now formally introduce the DLTL logic.

Definition 1. Let D be a set, called
the transition domain; let V = {x1, x2, . . . } be a finite set of freeze variables
and let Φ = {ϕ1(x11, . . . , x

1
m1

), ϕ2(x21, . . . , x
2
m2

), · · · | mi ≥ 0, xij ∈ V, ∀i, j} be a
finite set of relationson D.

The set of correct formulas, F(D,V,Φ), for the DLTL logic, is inductively
defined as follows:

– f ∈ Φ is a correct formula
– If x ∈ V and f1, f2 are correct formulas, so are ¬f1, f1 ∧ f2, Xf1, Y f1,
f1 U f2, f1 S f2, x.f1

In the previous definition, a relation with one variable will be called a
proposition.

Definition 2. Let f ∈ F(D,V,Φ) be a correct DLTL formula. A valuation v is a
mapping from the set of variables in f into D

DLTL formulas of F(D,V,Φ) will be interpreted over non-empty finite words
of elements of D, of the form σ = σ1 · σ2 · . . . · σn (as usual | σ | denotes the
length of the word). In order to make notations simpler, in the following, for a

3In the original logic, atomic formulas where associated to states. Since we are
going to concentrate on log traces, the point of view we adopt associates general data
to events.

LTL model checking over datawords with correlated transition attributes 5

giving word σ, when talking about a valuation v we will assume that for any
variable x, v(x) is one of the sets in the word, identified by its position in σ and,
therefore, 1 ≤ v(x) ≤ n.

Let us now define when a correct formula is satisfied by a word at a given
transition:

Definition 3. Let f ∈ F(D,V,Φ) be a correct DLTL formula; let σ = σ1 ·σ2 ·. . .·σn
be a finite word over D; let v be a valuation and let i be an index such that
1 ≤ i ≤ n. By σ, i |=v f we denote that σ satisfies f for valuation v at position
i. This relation is defined as follows:

– σ, i |=v >
– σ, i |=v p if p(σi), for any proposition p
– σ, i |=v ϕ(x1, . . . , xm) if ϕ(σv(x1), . . . , σv(xm)).
– σ, i |=v ¬f if ¬(σ, i |=v f)
– σ, i |=v f1 ∧ f2, for any pair f1 and f2, if σ, i |=v f1 and σ, i |=v f2
– σ, i |=v Xf , for any formula f , if i < n and σ, i+ 1 |=v f
– σ, i |=v Y f , for any formula f , if 1 < i and σ, i− 1 |=v f
– σ, i |=v f1 U f2, for any pair f1 and f2, if there exists an index i ≤ k ≤ n

such that σ, k |=v f2 and, for any i ≤ j < k, σ, j |=v f1
– σ, i |=v f1 S f2, for any pair f1 and f2, if there exists an index j ≤ i such

that σ, j |=v f2 and, for any j + 1 ≤ k ≤ i, σ, k |=v f1
– σ, i |=v x.f , for any formula f and variable x if σ, i |=v[x←i] f , where v[x← i]

represents the valuation such that v[x ← i](x) = i and v[x ← i](y) = v(y)
for any y 6= x.

In the formula x.f , f is the scope of the freeze variable x. To avoid
misinterpretations, we are not allowing to rebind a variable inside its scope. The
set of operators is extended with the classical abbreviations: f1 ∨ f2 ≡ ¬(¬f1 ∧
¬f2), Ff ≡ > U f , Gf ≡ ¬(F¬f), f ⇒ g ≡ g∨¬f , f ⇔ g ≡ (f ⇒ g)∧ (g ⇒ g),
O f ≡ > S f , Hf ≡ ¬(O ¬f) (here O operator stands for Once), and ⊥ = ¬>.

Example 1. As a first example, let us consider a trace of the execution of
a process. Let us consider a set of agents, Ag = {a, b, c}, a set of actions,
Ac = {req, ack, other}, and let D = Ag × Ac × IR. Let us now consider the
following word, corresponding to a trace of length 5:

σ = (a, req, 2)(b, req, 4)(a, ack, 6)(c, other, 8)(b, ack, 13)

For short, given d ∈ D, d.ag, d.act and d.t will denote the first, second and
third components, respectively.

The property that for any agent, every req is followed by the corresponding
ack of the same agent within a given time interval of 8 time units can be
expressed in DLTL this property can be established as follows:

f1 = G(x.(ϕ1(x)⇒ Fy.(ϕ2(x, y) ∧ ϕ3(x) ∧ ϕ4(x, y))))

with ϕ1(x) = (x.act = req), ϕ2(x, y) = (x.ag = y.ag), ϕ3(x) = (x.act = ack)
and ϕ4(x, y) = (y.t− x.t ≤ 8), being, in this case, Φ = {ϕ1, ϕ2, ϕ3, ϕ4}.

6 J.M. Couvreur, J. Ezpeleta

In this example, variable x is used to “freeze” a position in the word, while
variable y refers to a later position. ϕ3 and ϕ4 establish two different relations
among the attributes in that positions.

Example 2. Considering the same example, we can also easily express the
property that every ack must be preceded by a req of the same agent in the
previous 8 time units

f2 = G(x.((x.act = ack)⇒ O(y.((x.ag = y.ag)∧(y.act = req)∧(x.t−y.t ≤ 8)))))

Example 3. Let us now consider two sets, A and B, with characteristics functions
CA and CB , respectively. And let us assume we want to state the property that
every pair of positions x and y verify the relation ϕ(x, y). This property could
be checked by means of the following formula:

G(x.(CA(x)⇒ H(y.(CB(y)⇒ ϕ(x, y))) ∧G(y.(CB(y)⇒ ϕ(x, y)))))

Example 4. Let us now assume that the third component corresponds to the
event timestamp. The following formula expresses whether the trace duration is
greater than 10 time units, which is true (¬X> is true only at the last event):

x.(F (y.(¬X> ∧ (y.t− x.t > 10))))

Example 5. One interesting aspect is the possibility of referring to the position
of an event in the trace, if we consider that each event has such position as an
attribute. The following formula expresses whether the trace contains at least 20
events, which is false (# is the event attribute with its position inside the trace):

F (x.(¬X> ∧ (x.# ≥ 20)))

3 The complexity of model checking a DLTL formula

[12] presents a deep and clear study of the complexity of the problem of verifying
a TPTL formula against a finite word, which can be easily adapted to the case
of DLTL formulas. In this section we introduce a detailed description of the
problem in DLTL with the aim of pointing out the reasons behind the cost of
the verification process. Besides of proving that it is in PSPACE [12], we prove
that it is exponential in time with respect to the number of freeze variables, and
linear with respect to the rest of the involved parameters (size of the formula
and length of the word).

We first introduce a recursive procedure for model checking DLTL formulas,
and then we evaluate the complexity of the method. Since the complexity
depends on the evaluation of the relations in Φ we are going to assume that
the cost of evaluating such relations is “reasonable”.

Checking function dltl sat(σ, i, v, f) takes as parameters a word, σ, a position
in the word, i, a valuation v and a DLTL formula, f . Checking f on the word

LTL model checking over datawords with correlated transition attributes 7

σ is carried out by means of the evaluation of dltl sat(σ, 1, ∅, f) (valuation v
will be dynamically defined as long as the formula is checked). The algorithm
is, basically, a recursive implementation of the inductive definition of DLTL
formulas. In the case of parameter i being outside the range of σ, we consider
the formula is false. Freeze variables are considered as word position variables.
In the case of f being a relation ϕ(x1, . . . , xm), we assume in the evaluation
of dltl sat(σ, i, v, f) that valuation v binds a value for each variable x1, . . . , xm.
This way evaluating the function is the same as evaluating ϕ(v(σx1

), . . . , v(σxm
)).

Notice that such evaluation does not depend on parameter i (provided i is in
the range of σ). Evaluating a formula x.f for a position i is the same a making
x = i in v.

function dltl sat(σ,i,v,f)
if i ≤ 0 or i > |σ| then

return false
elseif f = ϕ(x1, . . . , xm) then

return ϕ(v(σx1), . . . , v(σxm))
elseif f = p then

return p(σi)
elseif f = Xf1 then

return dltl sat(σ,i+ 1,v,f1)
elseif f = f1Uf2 then

return dltl sat(σ,i,v,f2) ∨ (dltl sat(σ,i,v,f1) and dltl sat(σ,i+ 1,v,f))
elseif f = Y f1 then

return dltl sat(σ,i− 1,v,f1)
elseif f = f1Sf2 then

return dltl sat(σ,i,v,f2) ∨ (dltl sat(σ,i,v,f1) and dltl sat(σ,i− 1,v,f))
elseif f = x.f1 then

local old x = v[x]
v[x] = i
ans = dltl sat (σ,i,v,f1)
v[x] = old x
return ans

end

Let us now concentrate on the complexity of the proposed algorithm. The
cost clearly depends on the cost of evaluating relations ϕ(v(σx1), . . . , v(σxm)).
We are going to assume that they are PSPACE with respect to the size of f
(as usual, the size is the number of operands and operators in the formula) and
the length of σ, |σ|. With respect to the time, we are going to denote K|f |,|σ| a
bound for all of them.

The following propositions establish the time and space complexity of
dltl sat(σ, i, v, f).

Proposition 1. The model checking problem for σ |= f , where σ is a finite word
and f is a DLTL formula, is PSPACE.

Proof. Evaluating dltl sat(σ, 1, ∅, f) will require, at most, |f | recursive
invocations. At each invocation dltl sat(σ, i, v, g), where g is a subformula of

8 J.M. Couvreur, J. Ezpeleta

f , valuation v can be passed as a reference to an |Varf |-indexed array, being
Varf the set of freeze variables in the formula. On the other hand, f is coded by
its syntax tree being each subformula g a node. As a consequences, the size of
the parameters of each invocation are of constant size (the considered references
plus the size of old x when needed). Provided that we are assuming that
evaluating ϕ(v(σx1

), . . . , v(σxm
)) is PSPACE, we can conclude that evaluating

dltl sat(σ, 1, ∅, f) is also PSPACE.

In order to obtain a better time execution cost, we use dynamic programming
techniques as the way of avoiding recomputing the same subformula more than
once for the same parameters.

Proposition 2. The model checking problem for σ |= f , where σ is a finite word

and f is a DLTL formula, can be solved in O((K|f |,|σ| + |Varf |) × |σ||Varf | ×
|f | × |σ|) time.

Proof. Provided that the same subformula is not going to be computed more

than once, |σ| × |σ||Varf |× |f | is an upper bound for the number of invocations.
In the case the subformula is ϕ(v(σx1

), . . . , v(σxm
)), the cost is K|f |,|σ|. When

out of the word range, the cost is constant. We have also to consider the cost
added by the dynamic programming technique. For that, we can use an array of
size |Varf |+ 2, so that the cost of looking for a value is O(|Varf |). This way, we
can conclude.

Let us now prove that the problem of checking a DLTL formula for a finite
word is PSPACE HARD. Let us first prove that the problem of satisfying a QBF
(Quantified Boolean Formula) can be translated into a checking problem.

Lemma 1. Let φ(x1, . . . , x2n) be a boolean formula. Let Φ the the following
quantified boolean formula:

Φ = ∀x1,∃x2, . . .∀x2n−1,∃x2n, φ(x1, . . . , x2n)

Let us consider the word σ = (1, true) · (2, false) . . . (2 ∗ i + 1, true) · (2i +
2, false) . . . (2 ∗ n − 1, true) · (2n, false) and the following DLTL formula f =
y0 · L∀(1) defined as follows (for each transition x in the word, x.t and x.val
denote the first and second components, respectively):

L∀(2n+ 1) = φ(y1.val, . . . , y2n.val)

L∀(i) = G(yi · (yi.t− yi−1.t ≤ 1⇒ L∃(i+ 1)))

L∃(i) = F (yi · (yi.t− yi−1.t ≤ 1 ∧ L∀(i+ 1)))

Then Φ is true iff σ fulfills the DLTL formula f .

Proof. We are going to prove, by induction, that

LΦ(2i+ 1)(y1.t, . . . , y2i.t) = ∀x2i+1,∃x2i+2, . . .∀x2n−1,
∃x2n, φ(y1.val, . . . , y2i.val, x2i+1, . . . x2n)

LTL model checking over datawords with correlated transition attributes 9

When i = n, L∀(2n + 1) does not depend on the position in the word, and the
equality is verified everywhere:

L∀(2n+ 1) = Φ(2n+ 1) = φ(y1.val, . . . , y2n.val)

Assuming now the property is satisfied for i + 1, let us prove that it is also
true for i. L∀(2i+ 1) can be expressed in terms of L∀(2i+ 3) as follows:

L∃(2i+ 2) = F (y2i+2 · (y2i+2.t− y2i+1.t ≤ 1 ∧ L∀(2i+ 3)))

L∀(2i+ 1) = G(y2i+1 · (y2i+1.t− y2i.t ≤ 1⇒ L∃(2i+ 2)))

Applying induction hypothesis for L∃(2i+ 2) we get:

L∃(2i+ 2) = F (y2i+2 · (y2i+2.t− y2i+1.t ≤ 1 ∧ Φ(2i+ 3)))

for every position until 2i + 2. When evaluating F and freezing variable y2i+2,
only two non-trivial positions have to be considered: either the same position
or the next one. Since two consecutive positions cover both boolean values, the
formula can be simplified as follows:

L∃(2i+ 2) = Φ(2i+ 3)(y1, . . . , y2i+1, false) ∧ Φ(2i+ 1)(y1, . . . , y2i+1, true)

= ∃x2i+2, Φ(2i+ 3)(y1, . . . , y2i+1, x2i+2)

Doing analogously for the formula L∀(2i + 1) and positions until 2i + 1, we
reach the searched result:

L∀(2i+ 1) = ∀x2i+1∃x2i+2, Φ(2i+ 3)(y1, . . . , x2i+1, x2i+2)

= Φ(2i+ 1)

Proposition 3. The model checking problem for σ |= f , where σ is a finite word
and f is a DLTL formula, is PSPACE-Hard.

Proof. Immediate from lemma 1

4 An application example

As an application case, let us consider the log described and analyzed in [16]4.
The log corresponds to the trajectories, obtained from the merging of data
from the ERP of a Dutch hospital, followed by 1050 patients admitted to the
emergency ward, presenting symptoms of a sepsis problem. The total number of
events was 15214. Each event is composed of the activity (there are 16 different
activities, categorized as either medical or logistical activities -ER Sepsis Triage,
IV Antibiotics, LacticAcid, IV Liquid,...-), as well as additional information
(time-stamps, in seconds, of the beginning and end of the activities, data from

4https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

10 J.M. Couvreur, J. Ezpeleta

laboratory tests and triage checklists, etc.). [16] applies different automatic
process discovery techniques and obtain different models.

The objective of this section is to show how some of the system requirements,
including time constraints, can be expressed in terms of DLTL formulas and
checked for conformance with the log. In the following, for an event x of a trace,
x.a and x.t correspond to the activity and time-stamp in seconds, respectively.

Requirement: “Between ER Sepsis Triage and IV Antibiotics actions should
be less than 1 hour”5. Since a-priori we do not know whether there exists
any causal relation between the considered activities, we are going to check
the requirement as follows. Let

r1 0 = F (ER Sepsis Triage) ∧ F (IV Antibiotics)

r1 1 = F x.(ER Sepsis Triage ∧
F y.(IV Antibiotics ∧ y.t− x.t ≤ 3600))

r1 2 = F x.(IV Antibiotics ∧
F y.(ER Sepsis Triage ∧ y.t− x.t ≤ 3600))

be the formulas that check how many traces contain both activities, how
many execute the second activity no later than one hour after the first and
how many execute the first activity no later than one hour after the second
one, respectively. Checking r1 0, r1 1 and r1 2 gives, respectively, 823, 342
and 0 positive answers. This means that the requirement is fulfilled in 41.5%
cases and, therefore, violated in 58.5% of the cases. Notice also that there
is a causal relation between both events, since the ER Sepsis Triage always
precedes IV Antibiotics. This result coincides with the one presented in [16].

Requirement: “Between ER Sepsis Triage and LacticAcid should be less than
3 hours”. Let us now consider the following formulas:

r2 0 = F (ER Sepsis Triage)

r2 1 = F (ER Sepsis Triage) ∧ F (LacticAcid)

r2 2 = F x.(ER Sepsis Triage ∧
(F y.(LacticAcid ∧ (y.t− x.t ≤ 10800)) ∨
O z.(LacticAcid ∧ (x.t− z.t ≤ 10800))))

r2 0 gives that there are 1048 cases in which ER Sepsis Triage happens,
r2 1 is satisfied by 859 cases while r2 2 states there are 842 cases with
the appropriate time distance between the considered events. If one just
considers those cases in r2 1, the property is held in 98.02%, and violated
in only 1.98%. This result is different than the 0.7% reported in [16]. The

5As in [16], we are using “≤” to check the properties, besides “should be less than
1 hour” suggests “<” should be used

LTL model checking over datawords with correlated transition attributes 11

discrepancy could be explained in the way requirements have been checked.
In our case, we directly work with the log, considering every trace. However,
[16] checks the requirement against a model extracted from the log using
Multi-perspective Process Explorer, which fits 98.3% of traces. On the other
hand, if one considers the time constraint must be verified for every case in
which ER Sepsis Triage occurs (r2 0), the property is true in only 80.34%
of the cases.

Requirement: Another proposed question is related to the patients returning
to the service. Formula r3 0 = F (Return ER) gives 28% of positive answers
(27.8% in [16]). They are also interested in knowing how many of them return
within 28 days. This can be checked with the formula

r3 1 = x.(F y.(Return ER ∧ y.t− x.t ≤ 28 ∗ 24 ∗ 3600))

obtaining 94 traces, a 8.95% (12.6% in [16]).

As an additional question, one could ask whether there is a relation between
the two first requirements and the third one. As an example of a formula with
more than two variables, let us check this property by means of the formula
r3 1 ∧ r4, where

r4 = F (x.(ER Sepsis Triage ∧
(F y.(IV Antibiotics ∧ (y.t− x.t <= 3600))) ∧
(F z.(LacticAcid ∧ (z.t− x.t ≤ 10800)) ∨
O w.(LacticAcid ∧ (x.t− w.t ≤ 10800)))))

The result is 27 traces (out of 94), which means that only 28.7% of those
patients that return within 28 days correspond to patients that verify the
constraints of one and three hours previously checked, which can be pointing
to the adequacy of respecting the established time intervals.

5 About the model checking process

In this section, we briefly describe a way of implementing a DLTL model checker.
The algorithm here described is different from the direct recursive description
used in Section 3. Having the same complexity, the use of symbolic storage of
formulas together with some techniques of dynamic programming allowed us to
obtain better execution performances with this second approach.

In order to describe the way DLTL formulas can be checked, let us consider
Example 1 again:

f = G(x.((x.act = req)⇒ Fy.((x.ag = y.ag) ∧ (y.act = ack) ∧ (y.t− x.t ≤ 8))))

Walking over the syntax tree of the formula allows to build the tableau used
for checking it, as in Table 1. After analyzing the leaves of the ∧ subtrees,

12 J.M. Couvreur, J. Ezpeleta

a row is added, whose column values are the symbolic representation of the
formula φ(x, y) = (x.ag = y.ag) ∧ (y.act = ack) ∧ (y.t − x.t ≤ 8). Next, the
y.φ(x, y) is evaluated: for each column c, y must take the value σc, giving
the corresponding φ(x, c) symbolic column. For instance φ(x, 5) = (x.ag =
b)∧ (y.act = ack)∧ (13−x.t ≤ 8). Next row corresponds to F (y.φ(x, y)), and so
on until the complete tree is evaluated. As a result, a vector of true/false values
is obtained. The value in position 1 is the result of checking the formula for the
word. In this case, the answer of the model checker is (and should be) false.

i 1 2 3 4 5
σi (a,req,2) (b,req,4) (a,ack,6) (c,other,8) (b,ack,13)

...
φ(x, y) φ(x, y) φ(x, y) φ(x, y) φ(x, y) φ(x, y)

f1(x) = y · φ(x, y) φ(x, 1) φ(x, 2) φ(x, 3) φ(x, 4) φ(x, 5)
f2(x) = F (f1(x)) ∃i ≥ 1, φ(x, i) ∃i ≥ 2, φ(x, i) ∃i ≥ 3, φ(x, i) ∃i ≥ 4, φ(x, i) φ(x, 5)

f3(x) = (x.act = req) x.act = req x.act = req x.act = req x.act = req x.act = req
f4 = x · (f3(x)⇒ f2(x)) f3(1)⇒ f2(1) f3(2)⇒ f2(2) f3(3)⇒ f2(3) f3(4)⇒ f2(4) f3(5)⇒ f2(5)

true false true true true
G(f4) false false true true true

Table 1. Checking tableau for the formula in Example 1

As stated, the required time can be exponential with respect to the number of
freeze variables. In order to get insight of the real time required we have carried
out some experiments measuring the user time required for checking formulas
with an increasing number of freeze variables. For that, we have considered the
following parametrized formula

φ(n) = Fx1.(Gx2.(Fx3.(Gx4.(. . . Fx2n−1.(Gx2n.(

2n∧
i=2

(x.ti − x.ti−1 ≤ 100) . . .)

Figure 1 shows the chart corresponding to checking the formula for different
values of parameter n against the sepsis log used in Section 4. The curve is
as expected. It fits the exponential y = 0.9270899856 · e0.1030458522·x (R2 =
0.9956898464, rss = 297.8737955). Notice that the method is able to efficiently
deal with “many” freeze variables. If we constraint ourselves to a set of usual
patterns involving a small set of freeze variables (as it is the case of the
DECLARE formalism, for instance, whose patterns require two freeze variables
at most) the model checking method is quite efficient (for instance, checking
r2 2, which only involves three freeze variables, against the sepsis log, needed
0.07 seconds).

The experiments have been carried out with a prototype of the model checker
implemented in lua 5.3, and executed in a Intel(R) Core(TM) i7-4790K CPU @
4.00GHz computer with a Ubuntu 16.04 operating system.

LTL model checking over datawords with correlated transition attributes 13

✥

�✥

✁✥

✂✥

✄✥

☎✥✥

☎�✥

☎✁✥

☎✂✥

☎✄✥

�✥✥

✥ ☎✥ �✥ ✆✥ ✁✥ ✝✥ ✂✥

s
✞
✟
✠
✡
☛
s

★ ☞✌ ✌✍✎✎✏✎ ✑✒✍✓

Fig. 1. Time versus number of freeze variables for formula φ(n), compared to y =
0.9270899856 · e0.1030458522·x (continuous line corresponds to experimental results)

6 Related work

Temporal logic with data has been used in different domains. [11] proposes
Quantified-Free First-Order LTL (QFLTL(R)) where transitions, besides atomic
propositions, can also contain real data attributes. QFLTL formulas are allowed
to include classical operators between real expressions. Global variables can be
used to correlate data of different transitions. Checking a formula is translated
into finding intervals of the involved real variables verifying the constraints in the
formula. The logic is constrained to some specific event structure and operations,
of interest for the concrete domain it is proposed for. Temporal databases,
together with temporal logic, have been used as a way to correlate time and
data, allowing to analyze data correlations between the values of the database
states at different time instants [7, 8].

The addition of freeze variables (also named as counters in the domain) to
classical LTL, as proposed in TPTL [2] allows correlating values of different
points in a word. For the case of more general data in transitions (the term
dataword is also used in the literature to refer to general words whose elements
are data of a given domain), freezeLTL [10] is able to deal with correlations
between attributes checking the equality of the considered values for a subset
of TPTL. For the full TPTL, [12] studies the complexity of model-checking a
TPTL formula against a finite word.

As stated in the introduction, freeze variables have been used in specific
application domains. The Biological Oscillators Synchronization Logic, BOSL,
introduced in [3], uses freeze operators for the specification of global
synchronization properties for a set of coupled oscillators (modeled as a set
of timed automata). Allowed propositions in the logic are constrained by the
application domain and are comparisons of linear combinations of remaining
times of oscillators at different time instants. The proposed model checking is
a direct implementation of the recursive definition of the logical operators. [5]

14 J.M. Couvreur, J. Ezpeleta

defines the STL* logic, which extends the Signal Temporal Logic, STL [15],
adding the signal-value freeze operator, allowing the specification of properties
related to damped oscillations. The way the model checking is developed imposes
propositions in states to be constrained to comparisons of linear combinations
of signal variables.

In the domain of process mining many works have dealt with conformance
checking using LTL as the way of specifying behavioral properties. Since in
most cases authors are interested in imposing or finding some process structures,
they usually concentrate on a restricted set of patterns which reflect usual and
interesting event dependencies. This is the case of the set of patterns in the
Declare [18] workflow management system. The Declare approach focused on
the control perspective, defining a specific set of patterns. Instances of such
patterns define specific constrains the system must verify. [21] proposed MP-
Declare, an extension of Declare including the data perspective of events. The
paper also proposes a checking method for the considered logic, based on SQL.

[14] uses Timed-Declare as the formalism to add time to Declare. They
constraint Metric Temporal Logic (MTL) [13] to the set of Declare patterns and
adapt it to finite traces. Besides detecting that a constraint has already been
violated, the proposed method can be used for the monitoring of the system
evolution allowing an early detection that a certain constraint would be violated
in the future, allowing for an a-priori guidance to avoid undesired situations.

In [6] the authors propose an approach which allows a multi-perspective
point of view in which data and timestamps (those must be natural numbers)
of events are considered as two parallel structures (according to [7], they adopt
a snapshot perspective). MFOTL [4] (adapted for finite traces) is used as the
formalism for the specification of properties. The paper reformulates MP-Declare
patterns as MFOTL formulas, and presents a general framework for conformance
checking. The framework is based on a general skeleton algorithm, which requires
a different instance for each MP-Declare pattern.

The two previous methods, as stated, concentrate on a subset of MP-Declare,
and specific methods must be developed for specific patterns, either as a specific
function in the second case or as a specific SQL query in the first. On the
other hand, given the specific application domain both methods are devoted,
the proposed methods do not provide with a general procedure to model check
any formula. The focus is on relations between pairs of events (the activation
event, which imposes requirement conditions for the target event by means of a
relation that must be satisfied by the corresponding associated data).

7 Conclusions

The paper has introduced a linear temporal logic able to deal with correlations
among different values associated to different points in a finite word. Also, a
model checking procedure has been introduced, and its complexity established
in terms of the formula and word sizes. The interest of working with finite words
comes from the fact the logic is going to be applied to the analysis of system logs.

LTL model checking over datawords with correlated transition attributes 15

For testing purposes, a model checker prototype has been developed in lua (not
described in the paper) which has been used for the application example. The
introduced method is general in the sense that it imposes no constraint neither
with respect to the set of temporal logic formulas that can be checked nor with
respect to the attributes that can be handled by the logic.

The interest of using the proposed approach is not limited to the case of
turbulent environments, where process mining methods would generate spaghetti
or flower models, but also in those cases in which a good model can be
synthesized. The model itself can suggest implicit behavioral properties that
could be model-checked against the log.

One direction for future work is to explore whether the proposed approach
can be effectively used for complex logs with complex formulas. In the
experiments we have carried out the response time was really short, but deeper
analysis is necessary to deduce its applicability to big logs. The problem of
dealing with a big number of traces can be alleviated by parallelizing the checking
procedure: just use different parallel processors for dealing with different subsets
of traces. The expensive dimensions are the length of the trace and the number
of freeze variables.

References

1. Agrawal, R., Gunopulos, D., and Leymann, F. Mining process models from
workflow logs. In Proceedings of the 6th International Conference on Extending
Database Technology: Advances in Database Technology (London, UK, UK, 1998),
EDBT ’98, Springer-Verlag, pp. 469–483.

2. Alur, R., and Henzinger, T. A. A really temporal logic. J. ACM 41, 1 (Jan.
1994), 181–203.

3. Bartocci, E., Corradini, F., Merelli, E., and Tesei, L. Detecting
synchronisation of biological oscillators by model checking. Theoretical Computer
Science 411, 20 (2010), 1999 – 2018. Hybrid Automata and Oscillatory Behaviour
in Biological Systems.

4. Basin, D., Klaedtke, F., Müller, S., and Pfitzmann, B. Runtime monitoring
of metric first-order temporal properties. In Proceedings of the 28th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2008) (Dagstuhl, Germany, 2008), R. Hariharan, M. Mukund,
and V. Vinay, Eds., Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

5. Brim, L., Dluho, P., afrnek, D., and Vejpustek, T. Stl: Extending signal
temporal logic with signal-value freezing operator. Information and Computation
236 (2014), 52 – 67. Special Issue on Hybrid Systems and Biology.

6. Burattin, A., Maggi, F. M., and Sperduti, A. Conformance checking based
on multi-perspective declarative process models. Expert Systems with Applications
65 (2016), 194–211.

7. Chomicki, J., and Toman, D. Temporal Logic in Information Systems. Springer
US, Boston, MA, 1998, pp. 31–70.

8. Chomicki, J., and Toman, D. Temporal Logic in Database Query Languages.
Springer US, Boston, MA, 2009, pp. 2987–2991.

9. de Leoni, M., and van der Aalst, W. Data-aware process mining: Discovering
decisions in processes using alignments. In Proceedings of the 28th ACM Symposium

16 J.M. Couvreur, J. Ezpeleta

on Applied Computing (SAC 2013) 18-22 March, Coimbra, Portugal, pp. 113-129
(2013).

10. Demri, S., and Lazić, R. Ltl with the freeze quantifier and register automata.
ACM Trans. Comput. Logic 10, 3 (Apr. 2009), 16:1–16:30.

11. Fages, F., and Rizk, A. On temporal logic constraint solving for analyzing
numerical data time series. Theoretical Computer Science 408, 1 (2008), 55–65.

12. Feng, S., Lohrey, M., and Quaas, K. Path checking for MTL and TPTL over
data words. In Developments in Language Theory - 19th International Conference,
DLT 2015, Liverpool, UK, July 27-30, 2015, Proceedings. (2015), I. Potapov, Ed.,
vol. 9168 of Lecture Notes in Computer Science, Springer, pp. 326–339.

13. Koymans, R. Specifying real-time properties with metric temporal logic. Real-
Time Systems 2, 4 (Nov 1990), 255–299.

14. Maggi, F. M., and Westergaard, M. Using timed automata for a priori
warnings and planning for timed declarative process models. International Journal
of Cooperative Information Systems 23, 01 (2014), 1440003.

15. Maler, O., Nickovic, D., and Pnueli, A. Checking Temporal Properties of
Discrete, Timed and Continuous Behaviors. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008, pp. 475–505.

16. Mannhardt, F., and Blinde, D. Analyzing the trajectories of patients with
sepsis using process mining. In RADAR+EMISA 2017 (2017), CEUR-WS.org,
pp. 72–80.

17. Mannhardt, F., de Leoni, M., Reijers, H. A., and van der Aalst, W.
M. P. Balanced multi-perspective checking of process conformance. Computing
98, 4 (2016), 407–437.

18. Pesic, M., Schonenberg, H., and van der Aalst, W. DECLARE: Full Support
for Loosely-Structured Processes. In Proceedings of the 11th IEEE International
Enterprise Distributed Object Computing Conference. IEEE Computer Society,
Washington, DC, USA, 2007, pp. 287–.

19. Räim, M., Ciccio, C., Maggi, F. M., Mecella, M., and Mendling, J. On
the Move to Meaningful Internet Systems: OTM 2014 Conferences: Confederated
International Conferences: CoopIS, and ODBASE 2014, Amantea, Italy, October
27-31, 2014, Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014,
ch. Log-Based Understanding of Business Processes through Temporal Logic Query
Checking, pp. 75–92.

20. Rozinat, A., and van der Aalst, W. M. P. Conformance checking of processes
based on monitoring real behavior. Inf. Syst. 33, 1 (Mar. 2008), 64–95.

21. Schönig, S., Di Ciccio, C., Maggi, F. M., and Mendling, J. Discovery of
multi-perspective declarative processmodels. In Service-Oriented Computing - 14th
International Conference, ICSOC 2016, Banff, AB, Canada, October 10-13, 2016
(2016), vol. 9936 of Lecture Notes in Computer Science, Springer, pp. 87–103.

22. van der Aalst, W. M. P., de Beer, H. T., and van Dongen, B. Process
Mining and Verification of Properties: An Approach Based on Temporal Logic. In
Procedings of the On the Move to Meaningful Internet Systems 2005 (OTM 2005),
Agia Napa, Cyprus, October 31 - November 4, 2005 (2005), pp. 130–147.

