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Temporal logic model checking techniques are applied, in a natural way, to the analysis of the set of finite traces composing a system log. The specific nature of such traces helps in adapting traditional techniques in order to extend their analysis capabilities. The paper presents an adaption of the classical Timed Propositional Temporal Logic to the case of finite words and considers relations among different attributes corresponding to different events. The introduced approach allows the use of general relations between event attributes by means of freeze quantifiers as well as future and past temporal operators. The paper also presents a decision procedure, as well as a study of its computational complexity.

Introduction

Current information systems usually generate log files to record system and user activities. System logs contain very valuable information that, when properly analyzed, could help in getting a better understanding of the system and user behaviors and then in improving the system. In many (most) cases the log can be seen as a set of traces: a trace is a chronologically ordered sequence of events corresponding to a process execution. It can correspond, for instance, to the events of a user session in an e-commerce website or database, the events corresponding to the execution of a process in a workflow system, etc.

Process mining [START_REF] Agrawal | Mining process models from workflow logs[END_REF] is the set of techniques that try to analyze log files looking for trace patterns so as to synthesize a model representing the set of event sequences in the log. In some cases, when the system is governed by a rather closed procedural approach, the model itself can be a quite constraining and closed model (Petri net, BPMN process, etc.) fitting the log. In cases in which the system does not really constrain the user possibilities (open or turbulent environments), such constraining models are not really useful: there can be so many different combinations of event sequences in the log that the obtained model will be a kind of spaghetti or flower model, depending on the variety of such combinations. For the last cases, a viable approach consists of establishing a set of behavioral properties (described in a high level formalism, such as temporal logic) describing possible model behaviors and then checking which traces in the log satisfy them, looking for what are usually called a declarative process (described in an implicit way by the set of formulas).

Conformance checking is the process by which a log and a model (either a procedural model or a declarative one) are compared, so as to get a measure of how well the log and the model are aligned. This paper concentrates on the conformance perspective using a variant of temporal logic for property description and a model checker for conformance checking. Temporal logic has been extensively used in process mining [START_REF] Van Der Aalst | Process Mining and Verification of Properties: An Approach Based on Temporal Logic[END_REF] [START_REF] Rozinat | Conformance checking of processes based on monitoring real behavior[END_REF]. Initially, only control flow aspects were considered. A case (trace) was defined as an ordered sequence of activities. Later, a multi-perspective point of view was adopted. In this case, each event, besides the activity, could contain additional data, as the time at which the event happened, the resource that executed the activity, the duration, etc. [START_REF] De Leoni | Data-aware process mining: Discovering decisions in processes using alignments[END_REF][19] [START_REF] Mannhardt | Balanced multi-perspective checking of process conformance[END_REF] [START_REF] Schönig | Discovery of multi-perspective declarative processmodels[END_REF]. As shown in [START_REF] Mannhardt | Balanced multi-perspective checking of process conformance[END_REF], conformance results can significantly vary when data associated to activities is considered: the data perspective should be considered at the same level than the control perspective in order to obtain accurate models.

Classical LTL temporal logic for declarative process conformance imposes some constraints with respect to the kind of properties one can deal with. Let us consider, as an example, a trace whose events are of the form (ac, re, ts), where ac stands for the activity, re for the resource that executed it and ts for the event time-stamp. It is possible to express by means of a classical LTL formula the property that a concrete activity a executed by a concrete resource r is always (G temporal logic operator) followed by a future (F temporal logic operator) concrete activity b executed by the same concrete resource r: G((a, r) → F (b, r)). However, it is not possible to express the property that a concrete activity a is followed in the future by activity b, and both activities are carried out by the same resource (being the resource "any" resource). In the case of finite domains one could transform such formula into the disjunction of a set of formulas (one per resource). However, this is infeasible for general data domains. Consider, for instance, the necessity of correlating the times at which the considered events happened, so as to ensure that both are in an interval of 30 minutes.

Focusing on real-time applications, different extensions of LTL have been proposed in the literature with the aim of incorporating time and time-related event correlations. Metric Temporal Logic (MTL) [START_REF] Koymans | Specifying real-time properties with metric temporal logic[END_REF] considers the until modality with an interval window of validity. Timed Propositional Temporal Logic (TPTL) [START_REF] Alur | A really temporal logic[END_REF] adds freeze variables as the way of referring and correlating to specific time values associated to different word positions. Metric First Order Temporal Logic (MFOTL) [START_REF] Basin | Runtime monitoring of metric first-order temporal properties[END_REF] extends MTL with first order quantifiers, gaining in description power. In the domain of log analysis, the work in [START_REF] Burattin | Conformance checking based on multi-perspective declarative process models[END_REF] gives a big step forward towards the full integration of the control and data perspectives, considering the time as a special part of the data associated with events. Authors use MFOTL for the specification of behavioral properties, and propose model checking functions for a subset of MP-Declare [START_REF] Schönig | Discovery of multi-perspective declarative processmodels[END_REF] patterns.

Freeze-like operators have also been applied in specific application domains. [START_REF] Bartocci | Detecting synchronisation of biological oscillators by model checking[END_REF] defines Biological Oscillators Synchronization Logic (BOSL) for the specification and verification of global synchronization properties for a set of coupled oscillators. [START_REF] Brim | Extending signal temporal logic with signal-value freezing operator[END_REF] defines the STL* logic (extended Signal Temporal Logic) for checking temporal properties on continuous signals representing behaviors of biological systems.

In this paper we propose the DLTL temporal logic as an adaption and extension of TPTL which allows a real integration of the data, control and time perspectives from both, future and past perspectives. The way the logic is defined allows working with any data attributes associated to events as well as general relations among them. The approach can be considered as an integrated multi-perspective conformance checking method. The main contributions in the paper are: 1) the proposal of the DLTL temporal logic able to deal with a whole multi-perspective point of view; 2) the proposal of a general model checking algorithm for such logic, with no constrain about the set of formulas that can be analyzed and 3) the space and time complexity characterization of the proposed model checking method.

The paper is organized as follows. Section 2 formally defines the logic and also describes it by means of some intuitive examples. Section 3 proposes a model checking algorithm and evaluates its time and space complexity. Section 4 shows how the proposed logic and model checking are applied to the analysis of a log corresponding to a workflow system, used in the literature. Section 5 briefly describes a model checker prototype. Section 6 comments on some related work which concentrate on (timed) temporal logic and model checking approaches. Finally Section 7 establishes some conclusions of the work and gives some future perspectives for its continuation.

DLTL

The logic we are proposing is based on the the Timed Propositional Temporal Logic, TPTL, [START_REF] Alur | A really temporal logic[END_REF]. TPTL is a very elegant formalism which extends classical linear temporal logic with a special form of quantification, named freeze quantification. Every freeze quantifier is bound to the time of a particular state. As an example, the property "whenever there is a request p, and variable x is frozen to the current state, the request is followed by a response q at time y, so that y is at most, x+10" is expressed in TPTL by the formula Gx.(p → F y.(q ∧ (y ≤ x + 10))) [START_REF] Alur | A really temporal logic[END_REF]. Since the formula requires to talk about two different points in the trace (p and q states), two freeze variables are used in order to be able to correlate the time values of those states, and also the required constraint that both instants must verify: x and y instants must not be separated more than 10 time units. A TPTL formula can contain as many freeze operators as required.

The adaption of TPTL that we propose focuses on two different aspects. On the one hand, we generalize the kind of relations between the attributes of the events corresponding to freeze operators. TPTL constrained event correlations to checking equality and usual relational operation between the attribute values of freeze variables (positions in the word). In DLTL event correlations are allowed to be more general (as general as any function correlating any attribute values). On the second hand, DLTL also incorporates past temporal operators. Without them, some interesting properties relating current and past word positions could not be expressed. 3Freezing a variable by means of a freeze variable x will allow us to talk about attributes of the event at that position, and then establish correlations between attributes of different events by means of relations, of the form "The resource associated to x is different than the resource associated to y" or "The price of such product doubles between events separated more than two days", for instance. The timestamp of an event can be considered as just another attribute. In the case of timestamp attributes we are going to assume they are coherent with the ordering of events in the trace, so that if event e 1 appears before than event e 2 , the timestamp of e 1 will be no greater than the one of e 2 (the trace is monotonic with respect to such attribute).

Let us now formally introduce the DLTL logic.

Definition 1. Let D be a set, called the transition domain; let V = {x 1 , x 2 , . . . } be a finite set of freeze variables and let

Φ = {ϕ 1 (x 1 1 , . . . , x 1 m1 ), ϕ 2 (x 2 1 , . . . , x 2 m2 ), • • • | m i ≥ 0, x i j ∈ V, ∀i, j} be a finite set of relationson D.
The set of correct formulas, F (D,V,Φ) , for the DLTL logic, is inductively defined as follows:

-f ∈ Φ is a correct formula -If x ∈ V and f 1 , f 2 are correct formulas, so are ¬f 1 , f 1 ∧ f 2 , Xf 1 , Y f 1 , f 1 U f 2 , f 1 S f 2 , x.f 1
In the previous definition, a relation with one variable will be called a proposition.

Definition 2. Let f ∈ F (D,V,Φ) be a correct DLTL formula. A valuation v is a mapping from the set of variables in f into D DLTL formulas of F (D,V,Φ) will be interpreted over non-empty finite words of elements of D, of the form σ = σ 1 • σ 2 • . . . • σ n (as usual | σ |
denotes the length of the word). In order to make notations simpler, in the following, for a giving word σ, when talking about a valuation v we will assume that for any variable x, v(x) is one of the sets in the word, identified by its position in σ and, therefore, 1 ≤ v(x) ≤ n.

Let us now define when a correct formula is satisfied by a word at a given transition:

Definition 3. Let f ∈ F (D,V,Φ) be a correct DLTL formula; let σ = σ 1 •σ 2 •. . .•σ n
be a finite word over D; let v be a valuation and let i be an index such that 1 ≤ i ≤ n. By σ, i |= v f we denote that σ satisfies f for valuation v at position i. This relation is defined as follows:

-σ, i |= v -σ, i |= v p if p(σ i ), for any proposition p -σ, i |= v ϕ(x 1 , . . . , x m ) if ϕ(σ v(x1) , . . . , σ v(xm) ). -σ, i |= v ¬f if ¬(σ, i |= v f ) -σ, i |= v f 1 ∧ f 2 , for any pair f 1 and f 2 , if σ, i |= v f 1 and σ, i |= v f 2 -σ, i |= v Xf , for any formula f , if i < n and σ, i + 1 |= v f -σ, i |= v Y f , for any formula f , if 1 < i and σ, i -1 |= v f -σ, i |= v f 1 U f 2 , for any pair f 1 and f 2 , if there exists an index i ≤ k ≤ n such that σ, k |= v f 2 and, for any i ≤ j < k, σ, j |= v f 1 -σ, i |= v f 1 S f 2 , for any pair f 1 and f 2 , if there exists an index j ≤ i such that σ, j |= v f 2 and, for any j + 1 ≤ k ≤ i, σ, k |= v f 1 -σ, i |= v x.f , for any formula f and variable x if σ, i |= v[x←i] f , where v[x ← i] represents the valuation such that v[x ← i](x) = i and v[x ← i](y) = v(y)
for any y = x.

In the formula x.f , f is the scope of the freeze variable x. To avoid misinterpretations, we are not allowing to rebind a variable inside its scope. The set of operators is extended with the classical abbreviations: The property that for any agent, every req is followed by the corresponding ack of the same agent within a given time interval of 8 time units can be expressed in DLTL this property can be established as follows:

f 1 ∨ f 2 ≡ ¬(¬f 1 ∧ ¬f 2 ), F f ≡ U f , Gf ≡ ¬(F ¬f ), f ⇒ g ≡ g ∨ ¬f , f ⇔ g ≡ (f ⇒ g) ∧ (g ⇒ g), O f ≡ S f , Hf ≡ ¬(O ¬f ) (
f 1 = G(x.(ϕ 1 (x) ⇒ F y.(ϕ 2 (x, y) ∧ ϕ 3 (x) ∧ ϕ 4 (x, y))))
with ϕ 1 (x) = (x.act = req), ϕ 2 (x, y) = (x.ag = y.ag), ϕ 3 (x) = (x.act = ack) and ϕ 4 (x, y) = (y.t -x.t ≤ 8), being, in this case, Φ = {ϕ 1 , ϕ 2 , ϕ 3 , ϕ 4 }.

In this example, variable x is used to "freeze" a position in the word, while variable y refers to a later position. ϕ 3 and ϕ 4 establish two different relations among the attributes in that positions.

Example 2. Considering the same example, we can also easily express the property that every ack must be preceded by a req of the same agent in the previous 8 time units

f 2 = G(x.((x.act = ack) ⇒ O(y.((x.ag = y.ag)∧(y.act = req)∧(x.t-y.t ≤ 8)))))
Example 3. Let us now consider two sets, A and B, with characteristics functions C A and C B , respectively. And let us assume we want to state the property that every pair of positions x and y verify the relation ϕ(x, y). This property could be checked by means of the following formula:

G(x.(C A (x) ⇒ H(y.(C B (y) ⇒ ϕ(x, y))) ∧ G(y.(C B (y) ⇒ ϕ(x, y)))))
Example 4. Let us now assume that the third component corresponds to the event timestamp. The following formula expresses whether the trace duration is greater than 10 time units, which is true (¬X is true only at the last event):

x.(F (y.(¬X ∧ (y.t -x.t > 10))))
Example 5. One interesting aspect is the possibility of referring to the position of an event in the trace, if we consider that each event has such position as an attribute. The following formula expresses whether the trace contains at least 20 events, which is false (# is the event attribute with its position inside the trace):

F (x.(¬X ∧ (x.# ≥ 20)))
3 The complexity of model checking a DLTL formula [START_REF] Feng | Path checking for MTL and TPTL over data words[END_REF] presents a deep and clear study of the complexity of the problem of verifying a TPTL formula against a finite word, which can be easily adapted to the case of DLTL formulas. In this section we introduce a detailed description of the problem in DLTL with the aim of pointing out the reasons behind the cost of the verification process. Besides of proving that it is in PSPACE [START_REF] Feng | Path checking for MTL and TPTL over data words[END_REF], we prove that it is exponential in time with respect to the number of freeze variables, and linear with respect to the rest of the involved parameters (size of the formula and length of the word).

We first introduce a recursive procedure for model checking DLTL formulas, and then we evaluate the complexity of the method. Since the complexity depends on the evaluation of the relations in Φ we are going to assume that the cost of evaluating such relations is "reasonable".

Checking function dltl sat(σ, i, v, f ) takes as parameters a word, σ, a position in the word, i, a valuation v and a DLTL formula, f . Checking f on the word σ is carried out by means of the evaluation of dltl sat(σ, 1, ∅, f ) (valuation v will be dynamically defined as long as the formula is checked). The algorithm is, basically, a recursive implementation of the inductive definition of DLTL formulas. In the case of parameter i being outside the range of σ, we consider the formula is false. Freeze variables are considered as word position variables. In the case of f being a relation ϕ(x 1 , . . . , x m ), we assume in the evaluation of dltl sat(σ, i, v, f ) that valuation v binds a value for each variable x 1 , . . . , x m . This way evaluating the function is the same as evaluating ϕ(v(σ x1 ), . . . , v ( σ xm )). Notice that such evaluation does not depend on parameter i (provided i is in the range of σ). Evaluating a formula x.f for a position i is the same a making x = i in v.

function dltl sat(σ,i,v,f ) if i ≤ 0 or i > |σ| then return false elseif f = ϕ(x1, . . . , xm) then return ϕ(v(σx 1 ), . . . , v(σx m )) elseif f = p then return p(σi) elseif f = Xf1 then return dltl sat(σ,i + 1,v,f1) elseif f = f1U f2 then return dltl sat(σ,i,v,f2) ∨ (dltl sat(σ,i,v,f1) and dltl sat(σ,i + 1,v,f )) elseif f = Y f1 then return dltl sat(σ,i -1,v,f1) elseif f = f1Sf2 then return dltl sat(σ,i,v,f2) ∨ (dltl sat(σ,i,v,f1) and dltl sat(σ,i -1,v,f )) elseif f = x.f1 then local old x = v[x] v[x] = i ans = dltl sat (σ,i,v,f1) v[x] = old x return ans end
Let us now concentrate on the complexity of the proposed algorithm. The cost clearly depends on the cost of evaluating relations ϕ(v(σ x1 ), . . . , v(σ xm )). We are going to assume that they are PSPACE with respect to the size of f (as usual, the size is the number of operands and operators in the formula) and the length of σ, |σ|. With respect to the time, we are going to denote K |f |,|σ| a bound for all of them.

The following propositions establish the time and space complexity of dltl sat(σ, i, v, f ).

Proposition 1. The model checking problem for σ |= f , where σ is a finite word and f is a DLTL formula, is PSPACE.

Proof. Evaluating dltl sat(σ, 1, ∅, f ) will require, at most, |f | recursive invocations. At each invocation dltl sat(σ, i, v, g), where g is a subformula of f , valuation v can be passed as a reference to an |Var f |-indexed array, being Var f the set of freeze variables in the formula. On the other hand, f is coded by its syntax tree being each subformula g a node. As a consequences, the size of the parameters of each invocation are of constant size (the considered references plus the size of old x when needed). Provided that we are assuming that evaluating ϕ(v(σ x1 ), . . . , v(σ xm )) is PSPACE, we can conclude that evaluating dltl sat(σ, 1, ∅, f ) is also PSPACE.

In order to obtain a better time execution cost, we use dynamic programming techniques as the way of avoiding recomputing the same subformula more than once for the same parameters.

Proposition 2. The model checking problem for σ |= f , where σ is a finite word and f is a DLTL formula, can be solved in O((

K |f |,|σ| + |Var f |) × |σ| |Var f | × |f | × |σ|) time.
Proof. Provided that the same subformula is not going to be computed more than once, |σ| × |σ| |Var f | × |f | is an upper bound for the number of invocations. In the case the subformula is ϕ(v(σ x1 ), . . . , v(σ xm )), the cost is K |f |,|σ| . When out of the word range, the cost is constant. We have also to consider the cost added by the dynamic programming technique. For that, we can use an array of size |Var f | + 2, so that the cost of looking for a value is O(|Var f |). This way, we can conclude.

Let us now prove that the problem of checking a DLTL formula for a finite word is PSPACE HARD. Let us first prove that the problem of satisfying a QBF (Quantified Boolean Formula) can be translated into a checking problem. Lemma 1. Let φ(x 1 , . . . , x 2n ) be a boolean formula. Let Φ the the following quantified boolean formula:

Φ = ∀x 1 , ∃x 2 , . . . ∀x 2n-1 , ∃x 2n , φ(x 1 , . . . , x 2n )
Let us consider the word σ = (1, true) • (2, f alse) . . . (2 * i + 1, true) • (2i + 2, f alse) . . . (2 * n -1, true) • (2n, f alse) and the following DLTL formula f = y 0 • L ∀ (1) defined as follows (for each transition x in the word, x.t and x.val denote the first and second components, respectively):

L ∀ (2n + 1) = φ(y 1 .val, . . . , y 2n .val) L ∀ (i) = G(y i • (y i .t -y i-1 .t ≤ 1 ⇒ L ∃ (i + 1))) L ∃ (i) = F (y i • (y i .t -y i-1 .t ≤ 1 ∧ L ∀ (i + 1)))
Then Φ is true iff σ fulfills the DLTL formula f . Proof. We are going to prove, by induction, that LΦ(2i + 1)(y 1 .t, . . . , y 2i .t) = ∀x 2i+1 , ∃x 2i+2 , . . . ∀x 2n-1 , ∃x 2n , φ(y 1 .val, . . . , y 2i .val, x 2i+1 , . . . x 2n ) When i = n, L ∀ (2n + 1) does not depend on the position in the word, and the equality is verified everywhere: L ∀ (2n + 1) = Φ(2n + 1) = φ(y 1 .val, . . . , y 2n .val)

Assuming now the property is satisfied for i + 1, let us prove that it is also true for i. L ∀ (2i + 1) can be expressed in terms of L ∀ (2i + 3) as follows:

L ∃ (2i + 2) = F (y 2i+2 • (y 2i+2 .t -y 2i+1 .t ≤ 1 ∧ L ∀ (2i + 3))) L ∀ (2i + 1) = G(y 2i+1 • (y 2i+1 .t -y 2i .t ≤ 1 ⇒ L ∃ (2i + 2)))
Applying induction hypothesis for L ∃ (2i + 2) we get:

L ∃ (2i + 2) = F (y 2i+2 • (y 2i+2 .t -y 2i+1 .t ≤ 1 ∧ Φ(2i + 3)))
for every position until 2i + 2. When evaluating F and freezing variable y 2i+2 , only two non-trivial positions have to be considered: either the same position or the next one. Since two consecutive positions cover both boolean values, the formula can be simplified as follows:

L ∃ (2i + 2) = Φ(2i + 3)(y 1 , . . . , y 2i+1 , f alse) ∧ Φ(2i + 1)(y 1 , . . . , y 2i+1 , true) = ∃x 2i+2 , Φ(2i + 3)(y 1 , . . . , y 2i+1 , x 2i+2 )
Doing analogously for the formula L ∀ (2i + 1) and positions until 2i + 1, we reach the searched result:

L ∀ (2i + 1) = ∀x 2i+1 ∃x 2i+2 , Φ(2i + 3)(y 1 , . . . , x 2i+1 , x 2i+2 ) = Φ(2i + 1)
Proposition 3. The model checking problem for σ |= f , where σ is a finite word and f is a DLTL formula, is PSPACE-Hard.

Proof. Immediate from lemma 1

An application example

As an application case, let us consider the log described and analyzed in [START_REF] Mannhardt | Analyzing the trajectories of patients with sepsis using process mining[END_REF] 4 . The log corresponds to the trajectories, obtained from the merging of data from the ERP of a Dutch hospital, followed by 1050 patients admitted to the emergency ward, presenting symptoms of a sepsis problem. The total number of events was 15214. Each event is composed of the activity (there are 16 different activities, categorized as either medical or logistical activities -ER Sepsis Triage, IV Antibiotics, LacticAcid, IV Liquid,...-), as well as additional information (time-stamps, in seconds, of the beginning and end of the activities, data from laboratory tests and triage checklists, etc.). [START_REF] Mannhardt | Analyzing the trajectories of patients with sepsis using process mining[END_REF] applies different automatic process discovery techniques and obtain different models.

The objective of this section is to show how some of the system requirements, including time constraints, can be expressed in terms of DLTL formulas and checked for conformance with the log. In the following, for an event x of a trace, x.a and x.t correspond to the activity and time-stamp in seconds, respectively.

Requirement: "Between ER Sepsis Triage and IV Antibiotics actions should be less than 1 hour"5 . Since a-priori we do not know whether there exists any causal relation between the considered activities, we are going to check the requirement as follows. Let

r1 0 = F (ER Sepsis Triage) ∧ F (IV Antibiotics) r1 1 = F x.(ER Sepsis Triage ∧ F y.(IV Antibiotics ∧ y.t -x.t ≤ 3600)) r1 2 = F x.(IV Antibiotics ∧ F y.(ER Sepsis Triage ∧ y.t -x.t ≤ 3600))
be the formulas that check how many traces contain both activities, how many execute the second activity no later than one hour after the first and how many execute the first activity no later than one hour after the second one, respectively. Checking r1 0, r1 1 and r1 2 gives, respectively, 823, 342 and 0 positive answers. This means that the requirement is fulfilled in 41.5% cases and, therefore, violated in 58.5% of the cases. Notice also that there is a causal relation between both events, since the ER Sepsis Triage always precedes IV Antibiotics. This result coincides with the one presented in [START_REF] Mannhardt | Analyzing the trajectories of patients with sepsis using process mining[END_REF]. Requirement: "Between ER Sepsis Triage and LacticAcid should be less than 3 hours". Let us now consider the following formulas:

r2 0 = F (ER Sepsis Triage) r2 1 = F (ER Sepsis Triage) ∧ F (LacticAcid) r2 2 = F x.(ER Sepsis Triage ∧ (F y.(LacticAcid ∧ (y.t -x.t ≤ 10800)) ∨ O z.(LacticAcid ∧ (x.t -z.t ≤ 10800))))
r2 0 gives that there are 1048 cases in which ER Sepsis Triage happens, r2 1 is satisfied by 859 cases while r2 2 states there are 842 cases with the appropriate time distance between the considered events. If one just considers those cases in r2 1, the property is held in 98.02%, and violated in only 1.98%. This result is different than the 0.7% reported in [START_REF] Mannhardt | Analyzing the trajectories of patients with sepsis using process mining[END_REF]. The discrepancy could be explained in the way requirements have been checked.

In our case, we directly work with the log, considering every trace. However, [START_REF] Mannhardt | Analyzing the trajectories of patients with sepsis using process mining[END_REF] checks the requirement against a model extracted from the log using Multi-perspective Process Explorer, which fits 98.3% of traces. On the other hand, if one considers the time constraint must be verified for every case in which ER Sepsis Triage occurs (r2 0), the property is true in only 80.34% of the cases. Requirement: Another proposed question is related to the patients returning to the service. Formula r3 0 = F (Return ER) gives 28% of positive answers (27.8% in [START_REF] Mannhardt | Analyzing the trajectories of patients with sepsis using process mining[END_REF]). They are also interested in knowing how many of them return within 28 days. This can be checked with the formula

r3 1 = x.(F y.(Return ER ∧ y.t -x.t ≤ 28 * 24 * 3600))
obtaining 94 traces, a 8.95% (12.6% in [START_REF] Mannhardt | Analyzing the trajectories of patients with sepsis using process mining[END_REF]).

As an additional question, one could ask whether there is a relation between the two first requirements and the third one. As an example of a formula with more than two variables, let us check this property by means of the formula r3 1 ∧ r4, where

r4 = F (x.(ER Sepsis Triage ∧ (F y.(IV Antibiotics ∧ (y.t -x.t <= 3600))) ∧ (F z.(LacticAcid ∧ (z.t -x.t ≤ 10800)) ∨ O w.(LacticAcid ∧ (x.t -w.t ≤ 10800)))))
The result is 27 traces (out of 94), which means that only 28.7% of those patients that return within 28 days correspond to patients that verify the constraints of one and three hours previously checked, which can be pointing to the adequacy of respecting the established time intervals.

About the model checking process

In this section, we briefly describe a way of implementing a DLTL model checker. The algorithm here described is different from the direct recursive description used in Section 3. Having the same complexity, the use of symbolic storage of formulas together with some techniques of dynamic programming allowed us to obtain better execution performances with this second approach.

In order to describe the way DLTL formulas can be checked, let us consider Example 1 again:

f = G(x.((x.act = req) ⇒ F y.((x.ag = y.ag) ∧ (y.act = ack) ∧ (y.t -x.t ≤ 8))))
Walking over the syntax tree of the formula allows to build the tableau used for checking it, as in Table 1. After analyzing the leaves of the ∧ subtrees, a row is added, whose column values are the symbolic representation of the formula φ(x, y) = (x.ag = y.ag) ∧ (y.act = ack) ∧ (y.t -x.t ≤ 8). Next, the y.φ(x, y) is evaluated: for each column c, y must take the value σ c , giving the corresponding φ(x, c) symbolic column. For instance φ(x, 5) = (x.ag = b) ∧ (y.act = ack) ∧ (13 -x.t ≤ 8). Next row corresponds to F (y.φ(x, y)), and so on until the complete tree is evaluated. As a result, a vector of true/false values is obtained. The value in position 1 is the result of checking the formula for the word. In this case, the answer of the model checker is (and should be) false. 

(x) = y • φ(x, y) φ(x, 1) φ(x, 2) φ(x, 3) φ(x, 4) φ(x, 5) f2(x) = F (f1(x)) ∃i ≥ 1, φ(x, i) ∃i ≥ 2, φ(x, i) ∃i ≥ 3, φ(x, i) ∃i ≥ 4, φ(x, i) φ(x, 5) f3(x) = (x.act = req)
x.act = req x.act = req x.act = req x.act = req x.act As stated, the required time can be exponential with respect to the number of freeze variables. In order to get insight of the real time required we have carried out some experiments measuring the user time required for checking formulas with an increasing number of freeze variables. For that, we have considered the following parametrized formula

= req f4 = x • (f3(x) ⇒ f2(x)) f3(1) ⇒ f2(1) f3(2) ⇒ f2(2) f3(3) ⇒ f2(3) f3(4) ⇒ f2(4) f3(5) ⇒ f2(
φ(n) = F x 1 .(Gx 2 .(F x 3 .(Gx 4 .(. . . F x 2n-1 .(Gx 2n .( 2n i=2 (x.t i -x.t i-1 ≤ 100) . . . )
Figure 1 shows the chart corresponding to checking the formula for different values of parameter n against the sepsis log used in Section 4. The curve is as expected. It fits the exponential y = 0.9270899856 • e 0.1030458522•x (R 2 = 0.9956898464, rss = 297.8737955). Notice that the method is able to efficiently deal with "many" freeze variables. If we constraint ourselves to a set of usual patterns involving a small set of freeze variables (as it is the case of the DECLARE formalism, for instance, whose patterns require two freeze variables at most) the model checking method is quite efficient (for instance, checking r2 2, which only involves three freeze variables, against the sepsis log, needed 0.07 seconds).

The experiments have been carried out with a prototype of the model checker implemented in lua 5.3, and executed in a Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz computer with a Ubuntu 16.04 operating system. 

Related work

Temporal logic with data has been used in different domains. [START_REF] Fages | On temporal logic constraint solving for analyzing numerical data time series[END_REF] proposes Quantified-Free First-Order LTL (QFLTL(R)) where transitions, besides atomic propositions, can also contain real data attributes. QFLTL formulas are allowed to include classical operators between real expressions. Global variables can be used to correlate data of different transitions. Checking a formula is translated into finding intervals of the involved real variables verifying the constraints in the formula. The logic is constrained to some specific event structure and operations, of interest for the concrete domain it is proposed for. Temporal databases, together with temporal logic, have been used as a way to correlate time and data, allowing to analyze data correlations between the values of the database states at different time instants [START_REF] Chomicki | Temporal Logic in Information Systems[END_REF][START_REF] Chomicki | Temporal Logic in Database Query Languages[END_REF]. The addition of freeze variables (also named as counters in the domain) to classical LTL, as proposed in TPTL [START_REF] Alur | A really temporal logic[END_REF] allows correlating values of different points in a word. For the case of more general data in transitions (the term dataword is also used in the literature to refer to general words whose elements are data of a given domain), freezeLTL [START_REF] Demri | Ltl with the freeze quantifier and register automata[END_REF] is able to deal with correlations between attributes checking the equality of the considered values for a subset of TPTL. For the full TPTL, [START_REF] Feng | Path checking for MTL and TPTL over data words[END_REF] studies the complexity of model-checking a TPTL formula against a finite word.

As stated in the introduction, freeze variables have been used in specific application domains. The Biological Oscillators Synchronization Logic, BOSL, introduced in [3], uses freeze operators for the specification of global synchronization properties for a set of coupled oscillators (modeled as a set of timed automata). Allowed propositions in the logic are constrained by the application domain and are comparisons of linear combinations of remaining times of oscillators at different time instants. The proposed model checking is a direct implementation of the recursive definition of the logical operators. [START_REF] Brim | Extending signal temporal logic with signal-value freezing operator[END_REF] defines the STL* logic, which extends the Signal Temporal Logic, STL [START_REF] Maler | Checking Temporal Properties of Discrete, Timed and Continuous Behaviors[END_REF], adding the signal-value freeze operator, allowing the specification of properties related to damped oscillations. The way the model checking is developed imposes propositions in states to be constrained to comparisons of linear combinations of signal variables.

In the domain of process mining many works have dealt with conformance checking using LTL as the way of specifying behavioral properties. Since in most cases authors are interested in imposing or finding some process structures, they usually concentrate on a restricted set of patterns which reflect usual and interesting event dependencies. This is the case of the set of patterns in the Declare [START_REF] Pesic | DECLARE: Full Support for Loosely-Structured Processes[END_REF] workflow management system. The Declare approach focused on the control perspective, defining a specific set of patterns. Instances of such patterns define specific constrains the system must verify. [START_REF] Schönig | Discovery of multi-perspective declarative processmodels[END_REF] proposed MP-Declare, an extension of Declare including the data perspective of events. The paper also proposes a checking method for the considered logic, based on SQL.

[14] uses Timed-Declare as the formalism to add time to Declare. They constraint Metric Temporal Logic (MTL) [START_REF] Koymans | Specifying real-time properties with metric temporal logic[END_REF] to the set of Declare patterns and adapt it to finite traces. Besides detecting that a constraint has already been violated, the proposed method can be used for the monitoring of the system evolution allowing an early detection that a certain constraint would be violated in the future, allowing for an a-priori guidance to avoid undesired situations.

In [START_REF] Burattin | Conformance checking based on multi-perspective declarative process models[END_REF] the authors propose an approach which allows a multi-perspective point of view in which data and timestamps (those must be natural numbers) of events are considered as two parallel structures (according to [START_REF] Chomicki | Temporal Logic in Information Systems[END_REF], they adopt a snapshot perspective). MFOTL [START_REF] Basin | Runtime monitoring of metric first-order temporal properties[END_REF] (adapted for finite traces) is used as the formalism for the specification of properties. The paper reformulates MP-Declare patterns as MFOTL formulas, and presents a general framework for conformance checking. The framework is based on a general skeleton algorithm, which requires a different instance for each MP-Declare pattern.

The two previous methods, as stated, concentrate on a subset of MP-Declare, and specific methods must be developed for specific patterns, either as a specific function in the second case or as a specific SQL query in the first. On the other hand, given the specific application domain both methods are devoted, the proposed methods do not provide with a general procedure to model check any formula. The focus is on relations between pairs of events (the activation event, which imposes requirement conditions for the target event by means of a relation that must be satisfied by the corresponding associated data).

Conclusions

The paper has introduced a linear temporal logic able to deal with correlations among different values associated to different points in a finite word. Also, a model checking procedure has been introduced, and its complexity established in terms of the formula and word sizes. The interest of working with finite words comes from the fact the logic is going to be applied to the analysis of system logs.

For testing purposes, a model checker prototype has been developed in lua (not described in the paper) which has been used for the application example. The introduced method is general in the sense that it imposes no constraint neither with respect to the set of temporal logic formulas that can be checked nor with respect to the attributes that can be handled by the logic.

The interest of using the proposed approach is not limited to the case of turbulent environments, where process mining methods would generate spaghetti or flower models, but also in those cases in which a good model can be synthesized. The model itself can suggest implicit behavioral properties that could be model-checked against the log.

One direction for future work is to explore whether the proposed approach can be effectively used for complex logs with complex formulas. In the experiments we have carried out the response time was really short, but deeper analysis is necessary to deduce its applicability to big logs. The problem of dealing with a big number of traces can be alleviated by parallelizing the checking procedure: just use different parallel processors for dealing with different subsets of traces. The expensive dimensions are the length of the trace and the number of freeze variables.

  here O operator stands for Once), and ⊥ = ¬ . Example 1. As a first example, let us consider a trace of the execution of a process. Let us consider a set of agents, Ag = {a, b, c}, a set of actions, Ac = {req, ack, other}, and let D = Ag × Ac × IR. Let us now consider the following word, corresponding to a trace of length 5: σ = (a, req, 2)(b, req, 4)(a, ack, 6)(c, other, 8)(b, ack, 13) For short, given d ∈ D, d.ag, d.act and d.t will denote the first, second and third components, respectively.
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 1 Fig. 1. Time versus number of freeze variables for formula φ(n), compared to y = 0.9270899856 • e 0.1030458522•x (continuous line corresponds to experimental results)
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 1 Checking tableau for the formula in Example 1
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In the original logic, atomic formulas where associated to states. Since we are going to concentrate on log traces, the point of view we adopt associates general data to events.
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As in[START_REF] Mannhardt | Analyzing the trajectories of patients with sepsis using process mining[END_REF], we are using "≤" to check the properties, besides "should be less than 1 hour" suggests "<" should be used
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