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Internal gravity waves in density stratified fluids differ strikingly from ‘classical’ waves,
which, as sound or light, satisfy the wave equation. For instance, internal waves can only
propagate with frequencies ω smaller than the buoyancy frequency N. Then the angle θ
of their planes of constant phase to the vertical is fixed, as θ = arccos(ω/N), but their
wavelength λ remains arbitrary; moreover their group velocity cg, with which energy
propagates, is parallel to those planes and perpendicular to the phase velocity cφ.

Qualitative insight into the consequences of those properties on wave generation is
provided by application of the group velocity theory [1]. In this way most experimental
results are recovered. These include, for a monochromatic source eiωt, as well the con-
finement of the waves on a characteristic cone of vertical axis, apex at the source and
semi-angle arccos(ω/N), as the motion of the surfaces of constant phase at right angle
to this cone [2]–[3]. Similarly, for an impulsive source δ(t), both the filtering in each
direction θ of the frequency N cos θ which alone can propagate in this direction, and the
conical shape of the surfaces of constant phase, are recovered, giving to the internal wave
field a ‘fan-like’ appearance [3]–[4].

A tentative way of putting those conclusions into quantitative form is, in a linear
formulation, to investigate the response of the stratified medium to a point mass source,
and accordingly to calculate monochromatic and impulsive Green’s functions for internal
waves [5]. Unfortunately, in both cases, the Green’s function gives useful indications
on the waves but fails to describe them completely. Necessity arises then to consider
extended sources. (Another regularising process involving viscosity was introduced in
[6], and is discussed more thoroughly in [7]–[8].) Waves, expressed as the convolution
of the Green’s function with the source function [9], are evaluated asymptotically at
distances large compared with the source radius a and, for transient excitation, at times
large compared with both the buoyancy period and the source duration Θ. Results of
the evaluation are depicted in [10], and generalise those of [1] and [11].

Outside the conical shell defined by the two characteristic cones tangent to the source
above and below, monochromatic waves reduce to those for a point source. However,
they are of constant phase, implying no energy radiation. Inside the shell this expansion
breaks down and must be replaced by one, identical to that in ([1], §4.10), involving
coordinates Z and X tangent and normal to the characteristic cones, respectively, with
Z ≫ a and X ∼< a. There, waves exhibit an amplitude decay as Z−
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2 conformable to
energy conservation , and a phase variation with X consistent with the group velocity
theory. However, not a single complete wavelength is identifiable at any time and the
waves, whose amplitude varies as rapidly as the phase, are not quasi-plane. This is
illustrated for a pulsating sphere, modelled as a surface distribution of mass sources, in
which case the results of [5] and [12]–[13] are recovered.

Transient waves have the same wave packet form as for a point source, the amplitude
varying slowly, but they are modulated by the spectrum of the source, in agreement with
([1], §4.8), [9], [11] and [14]. Far from an expanding torus of vertical axis, center at the
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source and radius Nta, the wavelength is large, the source is small, and waves satisfy the
group velocity theory. Near to the torus they are blurred by destructive interference, and
well inside it they give way to non-propagating oscillations at the buoyancy frequency.
Applying again the analysis to a pulsating sphere illustrates this, and confirms the results
of [5] and [12].
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