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Abstract

Modelling relationships between entities in real-world
systems with a simple graph is a standard approach. How-
ever, reality is better embraced as several interdependent
subsystems (or layers). Recently the concept of a multi-
layer network model has emerged from the field of com-
plex systems. This model can be applied to a wide range
of real-world datasets. Examples of multilayer networks
can be found in the domains of life sciences, sociol-
ogy, digital humanities and more. Within the domain of
graph visualization there are many systems which visu-
alize datasets having many characteristics of multilayer
graphs. This report provides a state of the art and a struc-
tured analysis of contemporary multilayer network visual-
ization, not only for researchers in visualization, but also
for those who aim to visualize multilayer networks in the
domain of complex systems, as well as those developing
systems across application domains. We have explored
the visualization literature to survey visualization tech-
niques suitable for multilayer graph visualization, as well
as tools, tasks, and analytic techniques from within appli-
cation domains. This report also identifies the outstanding
challenges for multilayer graph visualization and suggests
future research directions for addressing them.

1 Introduction

Simple graphs are often used to model relationships be-
tween entities in real-world systems. This approach may
however be an oversimplification of a much more com-
plex reality better embraced as several interdependent
subsystems (or layers), which motivated the development
of the complex networks field [Gao et al., 2012, Kenett
et al., 2015]. The concept of a multilayer network [Kivelä
et al., 2014] builds on and encompasses many existing
network definitions across many fields, some of which are
much older, e.g., from the domain of sociology [Burt and
Schøtt, 1985, Moreno, 1953, Verbrugge, 1979].

As an introductory illustrative example, consider a per-
son’s social networks. People frequently use more than
one social network platform, e.g., Facebook for their per-
sonal social network or LinkedIn for their professional.
Offline, "real life", social networks could also be consid-
ered, again with relations being either personal or profes-
sional. These networks can be considered independent,
however they can also be considered as layers in a multi-
layer graph. The networks overlap as some people may
be present across layers. Layers are in this case char-
acterised by relationship type (either online/offline and
personal/professional). A significant change in one net-
work may implicitly correlate with or cause changes in
another. For example, a change of employer will cause
changes in both offline and online professional networks
but in a different manner for each, and may cause slower,
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more gradual, changes in the personal offline/online so-
cial networks. To answer some questions, it may be nec-
essary to also include employers or companies as entities
of the network. This makes it possible to model explicitly
person-company relationships, as well as person-person
and company-company relationships. In this case, lay-
ers may be characterised by entity type (either person or
company). Other definitions of layers are also possible as
illustrated in Section 2.

Examples of multilayer networks can be found in
the domains of biology (the so-called “omics” lay-
ers), epidemiology [Pastor-Satorras et al., 2015, Saumell-
Mendiola et al., 2012, Wang and Xiao, 2012], sociology
(in a broad sense, including fields such as criminology,
for instance) [Bright et al., 2015, Burt and Schøtt, 1985,
Crnovrsanin et al., 2014, Dickison et al., 2016a, Freire
et al., 2010, Geard and Bullock, 2007, Ghani et al., 2013,
Lazega and Pattison, 1999], digital humanities [Dunne
et al., 2012, McGee et al., 2016, Sluban et al., 2016],
civil infrastructure [Cardillo et al., 2013, Derrible, 2017,
Ducruet, 2017] and more. Multilayer networks have been
explicitly recognised as promising for biological analy-
sis [Gosak et al., 2017]. We give more details in Sec-
tion 2.4.

In the area of network visualization many systems
visualize datasets having many characteristics of mul-
tilayer networks, albeit under a different title. Multi-
label, multi-edge, multi-relational, multiplex [Cardillo
et al., 2013, Renoust et al., 2015], heterogeneous [Dunne
et al., 2012, Schreiber et al., 2014], and multimodal[Ghani
et al., 2013, Heath and Sioson, 2009], multiple edge
set networks[Crnovrsanin et al., 2014], interdepen-
dent networks [Gao et al., 2012], interconnected net-
works[Saumell-Mendiola et al., 2012] and networks of
networks[Kenett et al., 2015] are amongst the many
names given to various types of data that are encapsu-
lated by the Multilayer Networks definition of Kivelä et
al. [Kivelä et al., 2014].

Recently initial steps have been made towards consoli-
dating the work on visualization of multilayer networks
from domains outside of the information visualization
field, see MuxVis [De Domenico et al., 2015] from the
domain of complex systems, or from the domain of social
networks [Dickison et al., 2016b], based on the complex
systems paper of Rossi and Magnani [Rossi and Magnani,
2015]. However, to date there has been no survey quanti-

fying and consolidating the state of the art of visualization
of multilayer networks, both within the field of informa-
tion visualization and across application domains.

The goal of this survey is to reconcile the many visu-
alization approaches from the information visualization
field and the application domains and group them together
as a consistent set of techniques to support the increasing
demand for the visualization of multilayer networks. The
final contribution of this work consists in identifying the
key challenges outstanding in the field, and providing a
road map for future research developments on the topic.

This report is structured as follows: Section 2 presents
the defining concepts underlying multilayer graph mod-
els, and points out the main differences they have with
other related network models. The rest of the section
briefly describes the application domains in which mul-
tilayer graphs are encountered. The description of the
methodology followed is presented in Section 3 followed
in Section 4 by the survey itself. It provides a struc-
tured account of relevant tasks, visualization and interac-
tion techniques pertaining to multilayer network analysis.
In Section 5 we reflect on the state of the art in multilayer
network visualization, and point out open challenges and
opportunities that lie ahead of the information visualiza-
tion research community. We finish this paper in Section 6
with concluding remarks and a roadmap for future contri-
butions to the topic of multilayer networks visualization.

2 Multilayer Networks and Related
Concepts

The notion of many relationships between individuals, of-
ten called multiplex relationships, is seminal in sociology
and one could argue that it already was present in the so-
ciograms introduced by Moreno [Moreno, 1953]. The no-
tion is central in the work of Burt and Schøtt [Burt and
Schøtt, 1985] where the challenge is to somehow simplify
multiplex relationships, consolidate and substitute them
for relationships involving a smaller number of relation
types to ease the analysis of the network. More recently,
the concept of a multilayer network has emerged from the
Complex Networks area, a subdomain of the field of com-
plex systems, and is a fertile ground for novel visualiza-
tion research.
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2.1 Defining concepts
It is important to emphasise that layers do not reduce to
some operational apparatus. The concept goes far beyond
a simple intent to capture data heterogeneity. While it is
true this notion is most of the time embodied as nodes and
edges of a network being of different “types”, its roots lie
deeply in sociology [Burt and Schøtt, 1985, Geard and
Bullock, 2007, Lazega and Pattison, 1999]. This notion is
used to form questions and hypotheses, where layers can
be considered as innermost, intermediate or outer [Lin,
2008]. For instance, Dunbar et al. [Dunbar et al., 2015]
consider networks similar to our introductory example,
and examine to what extent online and offline layers in
personal networks overlap.

While innermost and outermost layers are well estab-
lished notions in sociology, the modeller is free to be “cre-
ative” when deciding what constitutes a layer (dixit Kivelä
et al. [Kivelä et al., 2014]). That is, the notion of a layer in
a network emerges from and belongs to the domain under
investigation. Consequently, when discussing the notion
of layer, it is important to distinguish the sociological net-
work from the mathematical network used to describe it.
The mathematical network – a graph – is but an artefact
through which we may hope to observe and ultimately
characterise a phenomenon occurring on the sociological
network. The definition of a layer is thus a character-
istic of the multilayer system as a whole, defined either
by a physical reality or the system being modelled. The
notion of a layer naturally occurs when describing tasks
performed by analysts; it can be mobilised to form explo-
ration or browsing strategies (see Section 4.1).

Formal Definition. A standard graph is often described
by a tuple G = (V,E) where V defines a set of vertices
and E defines a set of edges (vertex pairs), such that
E ⊆ V ×V . An intuitive definition of a multilayer net-
work first consists in specifying which layers nodes be-
long to. Because we allow a node v ∈ V to be part of
some layers and not to others, we may consider ‘multi-
layer graph’ nodes as pairs VM ⊆V ×L where L is the set
of considered layers. Edges EM ⊆ VM×VM then connect
pairs (v, l),(v′, l′). An edge is often said to be intra or
inter-layer depending on whether l = l′ or l 6= l′.

Going back to the example where people use
different social network platforms, we would have

L = {l, l′, l′′, . . .} where l = Facebook friends, l′ =
LinkedIn connections, l′′ = “real life” family-friends-
acquaintances, etc.

2.2 Aspects
Kivelä et al. also define what they call aspects as a way
to characterise a set of elementary layers relating to some
concepts. An example would be:

• aspect L1 capturing interaction between people in the
context of their participation to events (e.g., confer-
ences [Atzmueller et al., 2012]), with l1 for interac-
tion during InfoVis, l2 for interaction during Euro-
Vis, etc.);

• aspect L2 capturing co-authorship around themes (an
example we borrow from Renoust et al. [Renoust
et al., 2015]), with li for co-authorship associated
with some keyword ki;

• aspect L3 capturing project partnership, with lay-
ers li associated with specific programs, for exam-
ple [Ghani et al., 2013];

• and so forth.

Aspects can also be used as an artefact to deal with time
or geographical position.

Figure 1: Aspects can be seen as groups of layers of dif-
ferent types. Nodes do not necessarily appear on all lay-
ers, but they necessarily appear on at least one layer of
each aspect.

Aspects can be captured by extending the previous def-
inition, as proposed Kivelä et al.:

Given any number d of aspects, L = {L1,L2, . . . ,Ld},
a multilayer network corresponds to a quadruple M =
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(VM,EM,V,L), where each aspect La is a set of elementary
layers and VM ⊆ V ×L1× . . .Ld . That is, while nodes do
not necessarily appear on all elementary layers, they nec-
essarily appear on at least one layer of each aspect. The
set of edges of M simply is EM ⊆VM×VM (see Figure 1).

Kivelä et al. chose the term carefully, to avoid using
a term that may be unclear depending on the reader’s do-
main. While the term dimension, in its literal meaning,
may lend itself to the concept of defining a characteristic,
aspect has been chosen due to the use of the term dimen-
sion as jargon in different domains.

Another example lies in the domain of biology (de-
scribed further in Section 2.4). One aspect is the type of
data, such as genomic, metabolomic or proteomic. An-
other aspect might be the species, or different biologi-
cal pathways, as illustrated in Figure 2. If the biological
data contains time information, that may also be consid-
ered an aspect. While multiple aspects are a possibility
for multilayer network data sets, it is not a requirement.
A multilayer data set may be defined by a single aspect,
which categorises multiple layers. See Table 1 for a sam-
ple list of aspects and layers extracted from the literature
surveyed as part of this report. Kivelä et al. [Kivelä et al.,
2014] provide further examples in their extensive list of
multiplex datasets and their associated layers.

Incidentally, Wehmuth et al. [Wehmuth et al., 2016]
propose an alternative definition they call MultiAspect
graphs where they formally define what can be considered
as an aspect. Unsurprisingly, they also form a network
where nodes are defined using Cartesian products collect-
ing multiple values into a single entity. The authors de-
scribe MultiAspect graphs as forming a generalisation of
Kivelä et al.’s multilayer network. Reconciling these dif-
ferent approaches is beyond the scope of this paper. Well
developed examples are certainly needed to uncover the
full applicative potential of MultiAspect graphs.

2.3 Related Graph Models

Below, we review related graph models (see also Figure
3) and their differences or resemblances to multilayer net-
works.

Figure 2: A purely illustrative example of multilayer data
in the context of biology. The layer can be described by
the type of data as a first aspect (genomic, proteomic, or
metabolomic), and biological pathway being represented
as second aspect.

2.3.1 N-partite Graphs

Recall that a bipartite graph is made of two disjoint sets
of vertices so that no two vertices belonging to the same
set are connected. Bipartite graphs can be considered as
a case of multilayer networks with 2 layers and only in-
terlayer edges. The two mode (i.e., node type) nature
of bipartite graphs result in analytics that are different to
those of single mode graphs [Borgatti and Everett, 1997].
Bipartite graph concepts are sometimes extended into n-
partite graphs, as seen in our example in figure 3a, al-
though in practice many of the 2 mode restrictions as-
sociated with bipartite graph are not fully retained. In
practice, systems which model bipartite cases and exten-
sions of bipartite cases, such as the multimodal networks
of Ghani et al. [Ghani et al., 2013], and the Academic
network analysed by Shi et al. [Shi et al., 2014], can
be considered instances of multilayer networks. In this
case the authors also make use of bipartite analytics (e.g.,
adapted centrality metrics) to better understand their net-
work structure.

Bipartite networks can be reduced to single mode net-
works via projection on a mode. Such an operation may
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Aspect Description Layer Definition Source Paper Source Paper Domain
Social entity type People, societies / organisations [Renoust et al., 2015] Information visualization
Social relationship type Friendship, aggression [Crnovrsanin et al., 2014] Social networks
Word relationship Hyponym, homonym [Hascoët and Dragicevic, 2012] Information visualization
Year of publication [1974...2004] [Hascoët and Dragicevic, 2012] Information visualization
Infrastructure connection type Air connection, train connection [Halu et al., 2014] Physics
Transport mode air, rail, ferry, coach [Gallotti and Barthelemy, 2015] Scientific data (Transportation)
“Omics” Entity type Gene, protein, protein structure [Pavlopoulos et al., 2008] Biology
Historical correspondences Letter, letter sender, letter receiver, cited book [van Vugt, 2017] Historical network research
Building layout Arrangement of house spaces [Ślusarczyk et al., 2017] Robot Control Algorithms

Table 1: Examples of aspects and layers, extracted from papers covered by this survey.

(a) An n-partite graph (n = 3).

Node 1
Type: A

Value1: 0.2

Value2: 17

Value3: "High"

Node 2
Type: A

Value1: 0.4

Value2: 11

Value3: "Med"

Node 3
Type: C

Value1: 0.25

Value2: 22

Value3: "High"

Node 4
Type: B

Value1: 0.9

Value2: 17

Value3: "Low"

Node 5
Type: B

Value1: 0.8

Value2: 16

Value3: "High"

Node 6
Type: C

Value1: 0.9

Value2: 10

Value3: "Low"

Node 7
Type: A

Value1: 0.05

Value2: 1

Value3: "High"

Node 8
Type: B

Value1: 0.15

Value2: 30

Value3: "Med"

(b) A Multivariate graph, where each data node con-
tains multiple attributes.

T =1 T =2

T =3 T =4

(c) A dynamic graph, with 4 time slices,
where structure changes over time.

Figure 3: Illustrative examples of related graph models: Each of the three nodes types (*indicated by colour) of the
n-partite graph could define a layer within a multilayer network, in this case all edges would be between layers. For
a multivariate graph, node attributes could be used do divide the network into layers. Defining layers by node type in
this example would result in three layers, although that may not make sense for the system being modelled, as there
would be no edges within the layers of nodes of type B and C. For a dynamics graph characterized by time slices,
each time slice can be intuitively understood as a layer. Further insight could be gained by by the use of an additional
aspect to define layers.

be used to also define a layer in a multilayer network, if
the projection results in a layer that reflects the reality of
the system being modelled.

2.3.2 Multivariate Graphs

Multivariate graphs [Kerren et al., 2014] are those in
which nodes or edges carry attributes or properties. As de-
scribed by Schreiber et al. [Schreiber et al., 2014], there

is a relationship between multivariate graphs and multi-
layer graphs. Some variables or attributes in a multivari-
ate dataset often serve the purpose of distinguishing nodes
and edges that belong to different layers, e.g., the type of
social network platform in our initial example. There are
also multivariate visualization applications such as that of
Pretorius and van Wijk [Pretorius and Van Wijk, 2008],
that define their graph as having discrete sets, which can
be considered analogous to defining layers. However, in
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the majority of cases research into multivariate visualiza-
tion lacks the a priori definition of a layer defined by a
physical or conceptual reality related to the system being
modelled.

In faceted datasets, multivariate data items are grouped
in multiple orthogonal categories. Originally used as an
approach to search and browse large data stores and text
corpora [Cao et al., 2010, Smith et al., 2006], later work
extended the faceted approach to include relationship vi-
sualization [Lee et al., 2009, Zhao et al., 2013]. Datasets
can have many different facets such as spatial and tempo-
ral frames of reference, or multiple values per data item
and as such can be considered multifaceted. Visualiza-
tions for multifaceted data are those which show more
than one of these facets simultaneously (see Hadlak et
al. [Hadlak et al., 2015] for a survey of multifaceted graph
visualization techniques). Hadlak et al. discuss primar-
ily four common facets of network structure considered
in network visualization, and their composition: parti-
tions, attributes, time, and space. These facets may be
considered to be very similar to instances of Kivelä et
al.’s aspects. However, they can be considered as differ-
ent ways of exploring a single data set, (which is unsur-
prising given the origins of a faceted visualization). The
techniques described are still very useful for developing
approaches for visualizing layers, particularly where the
layer type matches the Hadlak et al.’s selected faceted
categories. However faceted network visualization ap-
proaches do not meet all the needs for multilayer network
visualization. While multilayer networks may use notions
similar to these facets to characterise layers, multilayer
network visualization also focuses on the interactions be-
tween layers and the role of layers in the network as a
whole.

2.3.3 Dynamic Graphs

Dynamic graphs are graphs whose structure (nodes and
edges) and/or associated attributes may change over time.
Analysts are often interested in comparing the state of the
network at different points in time. Within the domain
of complex networks Boccaletti et al. [Boccaletti et al.,
2014] consider the dynamics of multilayer networks, and
in many cases time slices of a dynamic (or temporal) net-
work are simply mapped to layers. The notion of dynamic
networks is also mentioned by Kivelä et al., who notes

that they can be considered as a type of multilayer net-
work. A set of dynamic time slices can be considered lay-
ers in an aspect representing time. As multilayer networks
can have multiple aspects, a temporal aspects might be
just one of many. In their report on dynamic network vi-
sualization Moody et al. [Moody et al., 2005] explain the
importance of “multiplicity” in social networks, i.e., the
overlap of types of relations. In particular, they point out
that linking relational timing to tie types allow to better
investigate social dynamics. A recent survey of dynamics
graph visualization techniques was provided by Beck et
al. [Beck et al., 2017], but does not consider layers in any
context other than a hierarchical graph.

2.4 Application Domains and Data

Across all of the application domains described in Sec-
tion 1, advances in sensors, scientific equipment, and
technology mean that researchers have access to more
data than ever. This wealth of complex data is often best
understood as a multilayer network model.

Life Sciences: Within biological network visualization
there are many contexts in which a multilayer network
approach may be beneficial [Gosak et al., 2017]. Bi-
ologists have access to more genomic, proteomic and
metabolomic data, allowing for the construction of com-
plex multilayer models of intricate biological processes.
Interactions taking place within the genomic, proteomic
and metabolomic levels can be modelled as individual
networks, but interactions also occur between elements
sitting in different omics levels within a larger biologi-
cal system, where the aspect characterising the layer is
the node type [Cottret et al., 2010]. This corresponds to
the strongly rising topic of systems/integrative biology,
where the challenge consists in understanding the inter-
play and the cascade of effects taking place at the dif-
ferent levels of the biological system at hand[Gehlenborg
et al., 2010, Kuo et al., 2013]. A prominent task for biolo-
gists analysing biological pathways consists in comparing
a species-specific pathway to a reference pathway [Mur-
ray et al., 2017], in this specific case species type can be
considered a defining aspect for a layer. Another task is
to compare tissue-specific interaction networks to under-
stand why certain tissues, e.g., plant root tissues, synthe-
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sise certain molecules which are not found in other plant
tissues. In this case tissue type is the defining aspect for a
layer.

Social Sciences: Datasets within Social Network analy-
sis frequently contain multiple types of edges (e.g., look-
ing at the different types of relationships between peo-
ple, e.g., more recently [Crnovrsanin et al., 2014], but
also in much earlier work such as [Burt and Schøtt, 1985,
Lazega and Pattison, 1999]), or multiple types (or modes)
of nodes e.g., modelling a citation network containing
researchers, institutions and publications [Ghani et al.,
2013]. Within social sciences, there are also contexts in
which many networks may be compared to one another.
For example, examining social networks produced as a re-
sult of cell phone activity, as done by Freire et al. [Freire
et al., 2010]. The contemporary use of multiple online so-
cial networks provides a vast amount of data. This allows
for complex social multilayer networks to be built, that
may help sociologists gain deeper insight [Renoust et al.,
2014].

Other fields such as Food Microbiology, have adopted
Social Network Analysis techniques, and applied them to
understand problems such as the spread of disease. This
can be seen in the work of Crabb et al. [Crabb et al., 2017]
to understand the spread of salmonella in a large poul-
try farming enterprise. Different networks are generated
based on contact between different types of entities. From
a multilayer perspective, contact between entities can be
considered an aspect, with the entity types defining the
different layers.

Digital Humanities: Within digital humanities fields,
such as digital cultural heritage, archaeology and data
journalism, many multilayer approaches [Dunne et al.,
2012, McGee et al., 2016, Ren et al., 2018, van Vugt,
2017] can be found. Digital access to source texts and
natural language processing techniques such as Named-
Entity Recognition and Topic Modelling allow for vast
Digital Humanities datasets to be built [McGee et al.,
2016]. Co-occurrence relationships between people
names, locations, organisations as well as other entities
form a typical multilayer network whose analysis may re-
veal insightful interaction patterns.

Infrastructure: Modern vehicles often provide a
wealth of information about modern transportation net-
works. These networks can also be modelled as multi-
layer networks. For example, Halu et al. [Halu et al.,
2014] models the air and rail transportation networks of
India as layers in a multilayer network. A paper by Gal-
lotti and Berthelemy [Gallotti and Barthelemy, 2015] is
another example. The Internet and associated infrastruc-
ture provide vast amounts of data about themselves and
can be modelled as multilayer networks, as done by Reis
et al. [Reis et al., 2014], who represent the power grid
and the Internet as separate interdependent layers in a
multilayer infrastructure network. Recent work concern-
ing Urban Infrastructure Systems highlight the necessity
to adopt an integrated approach to urban planning taking
into account the interplay between multiple networks like
transportation networks, energy networks, telecommu-
nication networks, water/wastewater networks [Derrible,
2017]. Some of the related objectives may be to reduce
the cascading of failures across these networks [Buldyrev
et al., 2010], but also to develop an efficient repair strategy
to restore services after disaster [Shekhtman et al., 2016].
The precise representation of buildings to support robot
control algorithms is a related domain as seen in [Ślusar-
czyk et al., 2017]. In this work, the graph represents a
layout of the floors of the building with their interconnec-
tions. A layer is a floor containing rooms. An edge repre-
sents a direct connection between two rooms. Interlayer
connections modelled connections between floors. This
kind of model reduces the number of data to be analysed
by a robot.

The vast number of instances of complex datasets pro-
duced across all these examples demands a visual ap-
proach to help understand it, and that approach will often
be multilayer network visualization.

3 Methodology Followed

This section is about the structure of the survey which
is built on a categorisation of the important features of
multilayer network and how we select papers cited in the
many domains we cover.
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3.1 Categorisation
The categorisation of the most important features of mul-
tilayer network visualization that are to be considered for
each paper is built in a manner consistent with Mun-
zner’s nested visualization design process model [Mun-
zner, 2009]:

Tasks and Analysis. Multilayer systems that address
new problems and domains may expose tasks that do not
fit in existing task taxonomies, such as [Lee et al., 2006,
Pretorius et al., 2014]. New analytics have been devel-
oped for multilayer networks, and new visualizations have
been developed as a result, e.g., [De Domenico et al.,
2015].

Data Definition. This aspect of the review looks at the
nomenclature used for the dataset e.g., multiplex, hetero-
geneous, which aspects are used to define layers across
the data, as well as the structure of the data.

Visualization Approach. We analyse and categorise
the various visualization approaches described, identify-
ing novel approaches and novel applications of existing
approaches e.g., [Bourqui et al., 2016]. While many vi-
sualization systems described in this survey were not ex-
plicitly identified in the original source as being for mul-
tilayer networks, we point out ways in which they may be
applicable and targeted to them.

Interaction Approach: Interaction with multiple layers
will often be more complex and requires innovative tech-
niques, such as [Hascoët and Dragicevic, 2012, Renoust
et al., 2015, Shi et al., 2014].

Attribute visualization: Multilayer networks can also
carry multivariate data [Dunne et al., 2012, Schreiber
et al., 2014]. Under this category we will examine the
impact of multilayer structure on attribute visualization.

Empirical Evaluation: Empirical evaluation is a chal-
lenge for information visualization [Plaisant, 2004].
Within the domain there are many guides to evaluation
such as [Purchase, 2012]. However, techniques developed
in application domains may not have been exposed to the

same level of rigour as those developed within the visual-
ization domain. It is important to understand which novel
techniques have been empirically validated with respect
to their usability.

3.2 Papers Selection
The wide range of application domains makes perform-
ing a complete survey highly challenging. Within the
domain of visualization, we queried prominent journals
and conferences for a list of keywords related to multi-
layer graphs. Our main search engines were IEEE Explore
and the ACM Digital Library. The list included the terms
(and variants of the terms using hyphens) multilayer, mul-
tilevel, faceted, multirelational, multimodal, multiplex,
heterogeneous, and multidimensional. The ambiguity of
some of these terms meant that some completely unre-
lated papers were returned. These were removed from the
list based on their abstract. The prominent visualization
venues included IEEE TVCG (and implicitly VAST and
Infovis), CHI (including SIGCHI and TOCHI), Computer
Graphics Forum (and implicitly Eurovis), Advanced Vi-
sual Interfaces, PacificVis, Graph Drawing and Network
Visualization (formerly Graph Drawing), and the journal
Information Visualization.

Due to the wide range of application domains and nu-
merous publication venues in each, it was not feasible to
perform such a formalised search within them. We used
our initial list of visualization papers, as a seed adding pa-
pers form the application domains which were cited by or
cited them as found using Google scholar search.

Additional papers were also added to the list of those
reviewed based on feedback from reviewers of this STAR,
if they indicated that the papers would be valuable ad-
ditions. Each paper was reviewed by at least 1 author,
and the review shared with all other authors using a wiki.
Papers were summarised based on the characteristics de-
scribed in Section 3.1. Reviews of the paper were dis-
cussed at group meetings between the co-authors to pro-
vide a final decision on which papers should be included
or excluded. All final text describing the papers within
this work was validated by all co-authors.

As stated in Section 1, the goal of this survey is to
reconcile the many visualization approaches from the in-
formation visualization field and the application domains.
Many techniques have been extracted from papers which
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may not have focused explicitly on multilayer techniques,
perhaps using one of the the names described in Section 1,
e.g., heterogeneous. However, the techniques are included
as we believe that they are of interest to researchers who
wish to visualize multilayer networks. As part of the re-
view process some papers were considered, based upon
the keyword search described above, however, they were
omitted from the final state of the art report due to their
content not being related enough to the visualization of
multilayer networks.

4 Survey of Multilayer Graph Visu-
alizations

In this section we define and illustrate a task taxonomy for
multilayer graphs. Consistently with Munzner’s model,
we survey various data definitions on which the visual-
izations presented hereafter are built, as well as relevant
interaction techniques. The survey encompasses the vi-
sualization of attributes in the context of multilayer net-
works and closes with considerations about visualization
evaluation.

4.1 Tasks And Analysis
Numerous literature surveys [Ahn et al., 2013, Beck et al.,
2017, Kerracher et al., 2015, Lee et al., 2006, Pretorius
et al., 2014] list tasks relevant to the visual analysis of dif-
ferent types of networks (general, evolving, multivariate,
etc.) and tasks have been proposed on a domain specific
basis, e.g., [Murray et al., 2017].

Lee et al. [Lee et al., 2006] provide a general graph
task taxonomy. At its top level it considers Topology
Based Tasks, Attribute Based Tasks, Browsing Tasks, and
Overview Tasks. It explicitly specifies that the high
level tasks of comparison of graphs and identifying graph
change over time are not covered by the taxonomy.

Pretorius et al. [Pretorius et al., 2014] focuses on mul-
tivariate networks. The highest level of their taxonomy
divides tasks as follows: Structure Based Tasks, Attribute
Based Tasks, Browsing Tasks, and Estimation Tasks. The
category Estimation Tasks is further subdivided and more
detailed than Lee et al.’s Overview Tasks. The name
was chosen to capture that these tasks are not easily de-
finable using lower level tasks and are considered more

high level, and are not focused on giving precise answers.
Within this categorisation there is a comparison task,
which may be of some relevance for multilayer graphs.
It covers comparing information at different stages of a
networks development, and determining causation, i.e.,
providing an explanation for the differences between two
snapshots of a changing network.

While Pretorius et al. do consider graph change as
part of their multivariate tasks taxonomy, the taxonomies
of Kerracher et al. [Kerracher et al., 2015] and Ahn
et al. [Ahn et al., 2013] both focus specifically on dy-
namic networks, also known as evolving or temporal net-
works. At the highest level Ahn et al.’s taxonomy fo-
cuses on three groupings: Entities, Properties and Tem-
poral Features. The temporal features are grouped as
Individual Events, the Shape of Change and the Rate of
Change. These are considered from the individual en-
tity level to the entire network level, and for both struc-
tural and domain properties. Kerracher et al.’s taxonomy
builds on the non-network specific taxonomy of Adrienko
and Adrienko [Andrienko and Andrienko, 2006] by ex-
tending it to include network data. It considers both ele-
mentary and synoptic tasks, as defined by Andrienko and
Andrienko (elementary tasks involve individual items and
characteristics, synoptic involve sets of items considered
as an entity), but further divides synoptic tasks into three
categories. These are tasks considering graph subsets,
tasks considering temporal subsets, and tasks considering
both graph and temporal subsets. The taxonomy differs
from Ahn et al.’s in that it focuses more on the tasks that
data items take part in, rather than the data items them-
selves, and considers a more general concept of pattern
changes that captures relational changes in the network, as
well as considering tasks which provide context for graph
evolution.

Murray et al. [Murray et al., 2017] propose a taxon-
omy in the context of biological pathway visualization
that contains tasks concerning comparison, attribute anal-
ysis, and annotation that relate to multilayer networks.
Although most task taxonomies that have been developed
so far do not directly address multilayer networks per se,
they could be further adapted or extended to target multi-
layer network visualization. Existing literature does men-
tion specific tasks that may be relevant for multilayer net-
work visualizations, which we cover in this section. Some
tasks may involve the temporal dimension as well (such as
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tracking the evolution of nodes or edges at different mo-
ments).

Unsurprisingly, tasks that are specific to multilayer net-
works revolve around the notion of a layer. Tasks often
boil down to manipulating elements within one layer, or
across several layers, or manipulate the layers themselves.
These manipulations often lead to lower level tasks, which
are also critical for visual analytics tasks (identifying ac-
tor roles, grasping group interaction or communication
patterns in social networks, etc.).

In the survey work of Pretorius et al. [Pretorius et al.,
2014], a task is schematised as a process:

Select entity→ Select property→ Perform analytic ac-
tivity

We see here an important difference with the process
of performing a task on a multilayer network involving
layers. Conceptually speaking, layers are genuine build-
ing blocks of a multilayer network. They are neither a
simple (sub-)network nor a mere property of a node or
edge. They are a conceptual construct that fully enters the
analytical process when performing a task (involving the
multilayer nature of the network).

We report here on different approaches or systems that
support tasks relevant to multilayer networks. In many
cases, authors have not explicitly expressed tasks in terms
of layers, but rather referring to properties of the data they
consider. This is the case for authors considering tasks re-
lated to group comparison or reconfiguration [Cao et al.,
2015, Hascoët and Dragicevic, 2012]. To this end, in an-
ticipation of Section 5.1, we propose task categories spe-
cific to multilayer networks. We target tasks directly in-
volving visualization, as opposed to tasks that can be ad-
dressed through computational means only.

Task category A - Cross layer
entity connectivity (e.g., inter-
layer path). Tasks in this cat-
egory aim at exploring and/or
inspecting connectivity involv-

ing paths traversing multiple layers. Understanding how
shortest paths expand across layers, inspecting what
nodes do occur on these paths are typical examples of
tasks in this category. Being able to explore cross layer
connectivity has been identified as an important user task
in [Ghani et al., 2013]. Associative browsing in Refin-
ery [Kairam et al., 2015] is a good illustration of cross
layer connectivity task. It performs cross-layer random

walks and collects nodes from different layers in a single
view. The leapfrogging operation in Detangler [Renoust
et al., 2015] is another good illustration of cross layer con-
nectivity building a dual view reflecting how/what layers
get involved when hopping from node to node (see Sec-
tion 4.4).

Task category B - Cross layer
entity comparison. Tasks in this
category aim at comparing en-
tities (typically, nodes) across
different layers; this requires the

ability to query entities across layers. The task may con-
cern the same (set of) node(s) over several layers; or
distinct nodes that are somehow linked across different
layers. Jigsaw [Stasko et al., 2008] typically supports
this tasks by allowing users to identify entities (persons,
places, etc.) through several documents (seen as layers in
a multilayer document network). FacetAtlas [Cao et al.,
2010] multi-facet query box is another good example.

Task category C - Layer manip-
ulation, reconfiguration (split,
merge, clone, project). Tasks
in this category aim at manipu-
lating the layer structure itself.
Such manipulation may allow

for previously unseen relationships and structure to be re-
vealed, and allow for new perspectives on the underly-
ing data. Combining layers through drag & drop oper-
ations as in [Hascoët and Dragicevic, 2012] is a perfect
illustration of this type of tasks; another example is g-
Miner [Cao et al., 2015] which allows to create, edit or
refine the grouping of elements.

Task category D1 - Layer com-
parison based on numerical at-
tributes. Tasks in this cate-
gory support comparing layers
to one another based on numeri-
cal measures summarising layer

content and structure. Typically, layers could be com-
pared by looking at how node degree distributions com-
pare layer-wise. OntoVis [Shen et al., 2006] (where layers
map to node type) support layer comparison tasks using a
metric they call (inter-layer) node disparity. Pretorius et
al. [Pretorius and Van Wijk, 2008] propose a quite elabo-
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rate approach and system to perform multi-attribute-based
layer comparison.

Task category D2 - Layer com-
parison based on topological,
connectivity patterns, layer in-
teraction. Tasks in this cat-
egory support comparing lay-
ers through non-numerical but

rather topological features of layers (e.g., group struc-
ture). A layer could be hierarchical (inheritance), while
another could show a strong scale-free structure, for in-
stance. The work by Vehlow et al. [Vehlow et al., 2015] is
a typical technique allowing to compare group structure
across layers. Tasks R5 and R12 in GraphDice [Beze-
rianos et al., 2010] are another good illustration of such
tasks.

Table 2 summarises task categories supported by a se-
lection of systems and techniques cited and described in
this report.

4.2 Data Definition

This subsection looks at the various data definitions found
in the visualization literature on which visual representa-
tions of networks with multilayer characteristics are built.
Only a few approaches explicitly mention the use of mul-
tilayer networks (both as data underlying the visualiza-
tion and as a visual encoding). Most systems dealing
with multivariate networks couple relational data with
node and edge attributes [Bezerianos et al., 2010, Heer
and Perer, 2014, Shen et al., 2006, Wattenberg, 2006]
often using table-based representations [Heer and Perer,
2014, Kerren and Schreiber, 2014]; they do not consider
any data or attribute specifying a layer structure. Cao et
al. [Cao et al., 2010] consider classes of entities they call
“facet” which appear naturally map to layers of nodes
(see Section 2.3.2). Among all, the work of Pretorius
et al. [Pretorius and Van Wijk, 2008] is a notable excep-
tion as it introduces the notion of layers without using the
term, and explicitly defines nodes as Cartesian products
of attributes (see Section 2.1).

Other systems and approaches infer multilayer struc-
ture by aggregating data from multiple sources, whether
databases [Kohlbacher et al., 2014] or a collection of ego
networks (as in [Dunbar et al., 2015]) and/or personal

data [Huang et al., 2015]. Interestingly enough, some
systems do not directly target the visualization of multi-
layer networks, but use multiplex and/or hypergraph rep-
resentations to build query graphs or summarise query re-
sponse [Shadoan and Weaver, 2013, Tu and Shen, 2013].

Obviously, MuxViz [De Domenico et al., 2015] re-
lies on the exact definition and implementation (see Sec-
tion 2.1) introduced by [Kivelä et al., 2014], which is also
the case of authors mentioning explicit use of the MuxViz
framework [Gallotti and Barthelemy, 2015]. Elementary
layers originating from aspects of the network, such as
time or node/edge type, are quite similar to the facets de-
scribed in [Hadlak et al., 2015]. Detangler [Renoust et al.,
2015] relies on an explicit encoding of layers, with a goal
to allow an easy exploration of inter-layer correlation (see
Section 4.1). Making a distinction between layers as be-
ing either structural or functional (or of any other type)
may be useful depending on the pursued goal [Agarwal
et al., 2017].

4.3 Visualization Approaches

From a multilayer network perspective, previous work in
network visualization techniques may be classified based
on their awareness of the notion of a layer. When this
is the case, layers are visually encoded using any appro-
priate Gestalt principle in a way that structures the spatial
representation; they are also manipulated as visual objects
in their own right as detailed in Section 4.1. This is why
this section is organised based on the type of visual en-
coding used to show layers explicitly. This survey also
documents and reflects on the widespread use of weaker
visual cues (in the sense of Mackinlay’s ranking of per-
ceptual tasks [Mackinlay, 1986]) to encode layer infor-
mation, such as node or link colour.

4.3.1 1-Dimensional Representations of Layers

Existing visualization techniques use a large variety of
one-dimensional representations of layers. This type
of visual encoding relies on the law of continuation of
Gestalt theory, such that the eye may perceive paths on
which nodes are arranged whether theses paths are actu-
ally drawn or not. This applies to circular paths, as well
as straight axes, or any curve shape.
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A - Cross layer B - Cross layer C - Layer manip. D - Layer comparison

connectivity entity comparison reconfiguration
D1

numerical
D2

topological

GraphDice [Bezerianos et al., 2010]
3

(multi facet query)
3

(R5, R12)

Multilayer Graph Edge Bundling [Bourqui et al., 2016] 3 3

VisLink [Collins and Carpendale, 2007] 3

g-Miner [Cao et al., 2015] 3 3

FacetAtlas [Cao et al., 2010] 3 3

MuxViz [De Domenico et al., 2015] 3 3 3

GraphTrail [Dunne et al., 2012] 3

ManyNets [Freire et al., 2010] 3

Multimododal Social Networks [Ghani et al., 2013]
3

(Q1b,c)
3

(Q1a) 3
3

(Q2c)

Donatien [Hascoët and Dragicevic, 2012] 3 3

Hierarchical Edge Bundling [Holten and Van Wijk, 2008] 3 3

Hive Plots [Krzywinski et al., 2011] 3 3

Refinery [Kairam et al., 2015]
3

(assoc. browsing) 3

Circos [Krzywinski et al., 2009] 3

HybridVis [Liu et al., 2017]
3

(Q4)
3

(Q1, Q2)
3

(Q3)

Detangler [Renoust et al., 2015]
3

(leap-frogging) 3 3

Jigsaw [Stasko et al., 2008]
3

(disparity)

Ontovis [Shen et al., 2006] 3 3

BicOverlapper [Santamaría et al., 2008] 3 3 3

Dynamic communities [Vehlow et al., 2015] 3 3

Pivot Graphs [Wattenberg, 2006]
3

(roll-up)

NetworkAnalyst tool [Xia et al., 2015] 3 3

Table 2: A selection of techniques/systems (bibliographic order) mapped onto tasks categories, relevant to multilayer
networks, that they either implicitly or explicitly support. Notes in parentheses refer to task labelling/naming as
indicated by authors in their paper.

Circular Representations. This body of work includes
concentric circles, where each circle stands for a layer.

Concentric circles are used in [Bothorel et al., 2013]
where the focus is on depicting paths through the whole
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set of layers (Task category A in our taxonomy). Node
order optimisation and edge bundling are used to reduce
edge clutter. A similar layout is used in the ring view
of MuxViz [De Domenico et al., 2015] but focuses on vi-
sual correlation analysis of node attributes across different
layers (Task category D1). Node colour encodes attribute
values (see Section 4.5 and Figure 10), while ring order
and ring thickness encode computed layer-level metrics.
Similarly, Circos [Krzywinski et al., 2009] is a popular
tool for comparative analysis of genomic data, where each
ring/layer may stand for a biological sample. In order
to compare node attribute values across samples, a his-
togram is wrapped around each ring (Task category D1).

Chord diagrams display layers as arcs composing one
overall circle. They are used in the NetworkAnalyst
tool [Xia et al., 2015] to analyse gene expression data.
Links between layers are drawn as splines connecting
identical nodes occurring in different layers/arcs (Task
category B). The analyst may click on a pair of arcs to
highlight their common nodes (and the bridging links).
A similar approach is followed in [Alsallakh et al., 2013,
Crnovrsanin et al., 2014]. In presence of multilevel cate-
gorical attributes as in [Humayoun et al., 2016], each arc
of the chord diagram can further be split hierarchically
(Task category C). The chords would then connect nodes
at the leaf level across all layers where they are repeated.

Axis-based Node-Link Representations. In this cate-
gory a layer is materialised by a straight 1-dimensional
axis. Obviously, the representation of a multilayer net-
work lays out nodes on several such parallel axes. An
important way of distinguishing axis-based visualizations
relates to the type of variable represented by the axis,
whether it is quantitative, e.g., graph metric like node de-
gree or any numeric node attribute, or ordinal/ranking-
based. Despite the visual similarity to the Parallel Co-
ordinates plot [Inselberg and Dimsdale, 1990], a poly-
line represents a path between nodes sitting in different
layers/axes, rather than a thread linking attribute values
across different columns in a given table entry. Crnovr-
sanin et al. [Crnovrsanin et al., 2014] describe a view
that uses such parallel axes arrangement, and alternatively
chord diagrams. An example of analyses they run consists
in comparing the “aggression network” among students in
four different schools, based on student race group. They

show that smaller groups do not show internal aggression
patterns, while larger groups victimise everybody equally
(within the same group and in other groups). In this case
the analyst is more interested by topological considera-
tions at the group level, and structural differences between
layers (Task category D2).

Ghani et al. [Ghani et al., 2013] provided an approach
called Parallel Node Link Bands (PNLBs). Nodes are
positioned uniformly across spaced parallel axes which
represent layers defined by the node type (or mode), see
Figure 4. Edges are only drawn between adjacent lay-
ers, and within layer edges are shown in a separate visu-
alization. Node order on axes can be set based on edge
attributes or connectivity to other layers. They use their
approach to analyse the NSF funding dataset. Examples
of tasks they carry out include determining whether some
NSF program manager award funding to some PIs more
often than others on a 3-layer networking containing pro-
gram managers, projects, and PIs. This is an instance of
Task category A where the focus is on paths traversing all
layers.

The list view of Jigsaw[Stasko et al., 2008] provides an
overview of entities grouped by type, with edges being
drawn between connected entities in adjacent lists. One
of the main utilities of this system is to relate different
types of named entities (people, geographic locations, or-
ganisations) mentioned in the same documents. Entities
which are connected to a currently selected item are high-
lighted by colour across all lists. It therefore emphasises
the analysis of paths across all available layers (Task cat-
egory A). The list view is complemented by a node-link
and a matrix-like scatterplot view amongst others.

The Hive Plots [Krzywinski et al., 2011] differ from
the previous techniques in that they arrange the axes
radially. Originally introduced for the analysis of ge-
nomic data, they have been used in other domains like
performance tuning in distributed computing [Engle and
Whalen, 2012] and in the domain of health [Yang et al.,
2016] as can be seen in Figure 5. In [Krzywinski et al.,
2011], node (gene) subsets are placed on separate axes
based on a node partitioning algorithm. The fundamen-
tal questions they answer using Hive Plots include deter-
mining differences in connectivity patterns between lay-
ers (Task category D1). An element’s position along its
axis is often calculated based on a graph metric, e.g., node
degree in [Engle and Whalen, 2012]and may be based on
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Figure 4: The PNLB (Parallel Node Link Bands) repre-
sentation of [Ghani et al., 2013]. Each axis is a distinct
set of vertices. Edges are only displayed between adjacent
axes. Some axes show a quantitative value e.g., project
budget, while others display text strings sorted based on a
graph metric or alphabetically.

the raw or normalised value of an attribute. Edges are
displayed between adjacent axes only. Yet, visual clutter
may still occur with real application data. Layer duplica-
tion as in Figure 5 is convenient when the relationship to
a non adjacent axis becomes necessary (Task category C).

Figure 5: The hive plot representation of health data
by [Yang et al., 2016] showing 4 layers/axes: toxicity type
(duplicated), material and particle size. Edges are only
displayed between adjacent axes. The vertices on the hor-
izontal axis are coloured based on their cluster member-
ship.

4.3.2 2D, 2.5D and 3D Node-Link Representations

Across the various papers we surveyed, node-link layouts
cropped up frequently. The MuxViz toolkit[De Domenico

et al., 2015], from the domain of complex systems, utilises
standard node-link visualizations. They are also used
in other domains that depend on complex systems the-
ory[Bentley et al., 2016, De Domenico, 2017, Gallotti and
Barthelemy, 2015].

A widespread visual design consists in encoding layer
information using node colour or shape, as depicted
in [Fung et al., 2009, Kohlbacher et al., 2014, Moody
et al., 2005, Zeng and Battiston, 2016]. Colour coding of
edges is also used in [De Domenico et al., 2015, Ducruet,
2017]. This design choice relies on the law of similarity
of Gestalt theory (colour similarity in this case). This de-
sign is often adopted when the multivariate nature of the
network is the driving motivation of the visual design. For
instance, Figure 6 represents flows of maritime traffic us-
ing colour to encode different modes of shipping (or lay-
ers). The analyst looks among other things at structural
changes over time, where different layers encode differ-
ent time slices (Task category D2). But if the analyst is
interested in analysing a given time slice, different lay-
ers may represent different shipping modes. The related
task consists in comparing structural differences among
the different modes. In similar visual designs, layer infor-
mation is diffuse, relationships between layers and within
the same layer are mixed and users seldom get a handle
on layers to manipulate them directly. Nodes belonging
to different layers are intertwined in the 2D plane, when
standard node-link layouts are used, and edge clutter is
problematic. Layer-related tasks may therefore be diffi-
cult to carry out under these circumstances.

While not explicitly designed with multilayer network
visualization in mind, constraint based layouts offer the
possibility to constrain a two dimensional node-link lay-
out in such a way that respects the concept of layers.
For example the SetCola constraint-based layout of Hoff-
swell et al. [Hoffswell et al., 2018] allows users to ap-
ply layout constraints to sets of nodes, which might easily
correspond to layers. Such a layout approach supports
analysing cross layer connectivity (Task category A) as
well as layer comparison (Task category D2). The exam-
ples covered by the authors include a food web networks
and a network modelling a biological cell, and both of
these datasets can be considered to have multilayer char-
acteristics.

Inspired by the multi-level nature of some problem ar-
eas e.g., biological networks, the 2.5D approach materi-
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Figure 6: A multilayer network visualization describing
the flow of maritime traffic. Nodes represent ports and
different edge colours represent different modes of ship-
ping, taken from [Ducruet, 2017].

alises layers as 2D translucent parallel planes in a three
dimensional layout, similar in spirit to Figure 2. This vi-
sual design relies on the law of uniform connectedness of
Gestalt theory. It separates links lying within layer from
those between layers providing a more natural support for
path related tasks (Task categories A and B) than tradi-
tional 2D node-link layouts, but 3D navigation is required
to allow the user to change his perspective on the data
and resolve visual occlusion problems. As opposed to 1D
axis-based representations, the parallel 2D planes provide
space to lay out intra-layer links. In the 2.5D category,
some approaches use colour redundantly to encode layer
information as in [Fung et al., 2009]. Other visual de-
sign options for 2.5D consist in using colour to encode
an attribute value or a computed metric, e.g., commu-
nity assignment by a community detection algorithm as
in [De Domenico et al., 2015], across the different lay-
ers. From the biological domain, the Arena3D applica-
tion visualizes biological data using an interactive 3D lay-
out, where layers are also projected onto planes, and en-
tities are connected across layers by edges rendered as
3D tubes. The authors demonstrate its effectiveness by

analysing the relationship across layers, based on proteins
and genes associated with a specific disease (Task cate-
gory A).

The use of three dimensional layouts is much less com-
mon in the information visualization research community.
While some work has shown that there may be some ben-
efit to three dimensional layouts, this is only under stereo-
scopic viewing conditions [Ware and Mitchell, 2008].
Outside of stereoscopic viewing conditions, there are no
empirical studies which demonstrate usability gains from
a three dimensional graph visualization [Greffard et al.,
2012].

A more widely accepted approach in information visu-
alization, especially for the purpose of comparative analy-
sis of graphs, consists in using small multiple views. This
is often used for graph matching tasks, where the focus is
on understanding commonalities and differences between
a set of related networks [Hascoët and Dragicevic, 2012].
In the context of this paper, the networks that need to be
matched are distinct layers in a larger multilayer network
(Task categories D1 and D2). Whether in a 2.5D setting
or in a flat small multiples setting, one challenge consists
in ensuring that duplicate nodes are laid out consistently
across layers, by introducing constrained layout strategies
as in [Fung et al., 2009, Hascoët and Dragicevic, 2012]
to better support cross layer entity comparison (Task cat-
egory B).

More generally, coordinated multiple views are of-
ten used in the domain of information visualization,
and in many applications e.g., the analysis of microar-
ray data [Santamaría et al., 2008]. In this case, two-
dimensional node-link views may be used as one of mul-
tiple complementary visualizations of a multilayer net-
work, e.g., [Ghani et al., 2013, Kairam et al., 2015, Stasko
et al., 2008]. It is yet possible to eschew the idea of using
a node-link visualization altogether [Dunne et al., 2012].
Coordination between views is common, e.g., brushing
and linking. The Detangler [Renoust et al., 2015] ap-
plication builds on this by also harmonising layouts be-
tween views. It supports several task categories identified
in this survey, namely cross layer connectivity (Task cat-
egory A), layer manipulation (Task category C) and layer
comparison (Task categories D1 and D2).
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Edge Visualization The complex structure of multi-
layer graphs makes edge visualization an important chal-
lenge. It may be important in some cases to distinguish
between inter-layer and intra-layer links, in other cases
the number of layers may cause enough clutter with re-
spect to edges, that a visualization becomes less under-
standable. In some cases, the chosen solutions is to sim-
ply not draw all edges and to allow the user to choose
which edges to see via interaction to ease inter-layer com-
parisons (Task category B). For example, the PNLB (Par-
allel Node Link Bands) technique [Ghani et al., 2013]
only draws inter-layer edges between nodes on parallel
axes, and intra-layer edges are displayed in a separate
visualization. The well established technique of edge
bundling [Holten, 2006] has been adapted for the multi-
layer use case by [Bourqui et al., 2016]. The authors bun-
dle all edges in a single visualization, in an aesthetically
pleasing manner, with edges being kept adjacent to each
other when they share a common path, and edge crossing
being avoided (see Figure 7). This approach is useful for
showing edges from multiple layers in a single visualiza-
tion (where there is no division of nodes between layers);
the approach is agnostic to the source or target layer, or
whether the edges are between or within layer(Task cate-
gories A and B).

Within their list-based view [Crnovrsanin et al., 2014]
use edge bundling between different list columns as a clut-
ter reduction techniques clarify similarities between dif-
ferent edge types. The authors essentially group edges
based on relation type, by clustering the vertices and al-
tering the clustering based on vertex mode. They also use
a modified edge bundling in their circular layout, that dis-
tinguishes within-mode edges and between-mode edges,
see Figure 8.

4.3.3 Matrix-Based Visualizations

Standard node-link representations of graphs give equal
importance to nodes and links and aim usually to con-
vey structural properties of the graph at hand. They may
however be difficult to read due to edge clutter for mod-
erate size graphs, and for more complex networks en-
countered in many real usage scenarios. When dealing
with large and/or dense graphs, matrix-based representa-
tions were found to be more readable than node-link di-
agrams [Ghoniem et al., 2005b] for many tasks, except

Figure 7: The multilayer edge bundling of [Bourqui et al.,
2016]

path finding. They consist in laying out nodes as the rows
and columns of a 2-way table. A link between two nodes
is often represented as a rectangle at the intersection of
the associated row and column. This avoids altogether
the edge clutter problem of standard node-link represen-
tations. Colour is often used to encode the weight of
the links, when link attribute values are available. This
makes matrices very similar, if not identical in essence, to
heatmap views frequently used in biology and other do-
mains [Wilkinson and Friendly, 2009]. Other visual de-
signs include using circles at the intersection of rows and
columns with size and colour encoding link attribute val-
ues, as in [Chuang et al., 2012]. Matrix representations
have been used to visualize homogeneous graphs (nodes
of one type), e.g., in software engineering [Van Ham,
2003], and bipartite (or 2-mode) graphs, e.g., in software
performance tuning [Ghoniem et al., 2005a].

The ability to detect link patterns in a matrix view is
conditioned by the use of an appropriate ordering of rows
and columns. Various seriation algorithms [Chen, 2002,
Fekete, 2015, Liiv, 2010] reorder the rows and columns
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Figure 8: Edge bundling as utilised by [Crnovrsanin et al.,
2014]. Within category edges are routed around the exte-
rior of the circle. Between category edges are routed via
the interior of the circle and bundled.

of the matrix to create dense rectangular blocks of links.
Community detection in a bipartite graph consists in find-
ing groups of nodes in one layer which are densely con-
nected to groups of nodes found in the second layer (Task
category A). 2-way hierarchical clustering is commonly
used with biological data for this purpose. The BicOv-
erlapper system [Santamaría et al., 2008] uses bicluster-
ing methods to find such relationships between groups
of genes and related groups of medical conditions. On
the visual side, BicOverlapper uses coordinated multi-
ple views, one of which employs convex hulls within a
standard node-link representation to materialise groups of
genes, akin to the notion of elementary layers described
in Section 4.2. The overlapping convex hulls are meant
to support the identification of commonalities and differ-
ences between layers (Task categories B and D2).

In presence of multiple layers, the comparison of link
patterns between many pairs of layers may be useful to
the analyst (Task category A, see Section 4.1). Laying
out small multiples of matrix views side by side is one
approach. Liu and Shen [Liu and Shen, 2015] inves-

tigates several possible juxtaposition strategies, and as-
sess their usability with multifaceted, time-varying net-
works. MuxViz [De Domenico et al., 2015] uses matri-
ces to summarise layer-level statistics, as a means to con-
vey a notion of layer similarity to the analyst (Task cate-
gories A, B, D1, and D2).

4.3.4 Hybrid Approaches

Recent work has been exploring the integration of mul-
tiple visualization techniques, as an effort to better grasp
underlying data [Javed and Elmqvist, 2012]. Although
matrices have been shown superior to node-link diagrams
for dense networks, the latter may facilitate the tracking
of edge directions. In this spirit, NodeTrix [Henry et al.,
2007] mixes node-link views with matrix-based visualiza-
tions to support typically locally dense social networks.
While NodeTrix is not explicitly a multilayer network
visualization technique, it is the first hybrid approach
that focused specifically on network visualization. Since
its inception, the idea has been extended by other tech-
niques to support other types of data, such as compound
graphs [Rufiange et al., 2012]. Although they do not al-
ways focus on visualizing multilayer networks, such ap-
proaches could also be directly reused or adapted to sup-
port multilayer networks. VisLink [Collins and Carpen-
dale, 2007], for instance, allows visualizing a data set us-
ing multiple representations at once, also explicitly dis-
playing the cross-views links. Using the technique, one
layer could be used for each representation, and inter-
layer links could be highlighted (Task category A). Adopt-
ing another perspective, HybridVis [Liu et al., 2017] al-
lows using the same kind of representation, but for differ-
ent levels of details (or hierarchical scales). In this case, a
node-link view may include some levels that are shown as
expanded, and other levels are shown as collapsed (Task
category C). With additional views (histograms, parallel
coordinates) more details on level attributes can also be
obtained (Task categories D1 and D2).

4.4 Interaction Approaches
The discussion about user interactions may be grounded
in Yi et al.’s categorisation of interaction techniques [Yi
et al., 2007]. According to Hascoët and Dragicevic [Has-
coët and Dragicevic, 2012], multilayer network visualiza-
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tions may support user interaction at the level of individ-
ual network elements (e.g., individual nodes and links),
and at the level of whole layers whether single layers or
groups of layers (Task category C). They argue that layer
level interactions require a visual affordance. In partic-
ular their system, called Donatien, supports the Yi et al.
reconfigure and explore interactions.

Traditional interactions include:

• selection: point and click selection, lasso selection
of nodes;

• filtering: keeping/removing nodes or links based on
attribute values;

• navigation: to visually inspect a fragment of the
visual representation using zoom and pan, or con-
text+detail techniques (e.g., fisheye distortion or
magic lenses).

These have obviously been used widely with standard
node-link representations, and are directly applicable one
layer at a time in the context of multilayer networks. In-
teracting with entire layers is however more relevant to
the present discussion and ties back to layer level tasks de-
scribed earlier in Section 4.1 (Task categories D1 and D2).
Donatien offers three different spatial organisations of
layers: 1. small multiples; 2. stacking the layers on top
of each other; 3. animation. Starting from the small mul-
tiples view, the analyst can drag and drop a layer onto an-
other one, to stack them and more easily compare their
elements based on the distinctive layer colour. In the
stacked mode, a set of title bars provides an affordance to
reorder the layers in the stack interactively. The title bars
also include reconfiguration tools e.g., choices of layout
algorithms that are applied to the layer being manipulated
or to the whole stack of layers. Crossing-based interac-
tion across the set of title bars is used to achieve flipbook
animation, also for the sake of comparison across layers.
This seems quite a natural approach when the layers are
defined as consecutive snapshots of a dynamic network.
Also in the stacked mode, Donatien clusters nodes from
different layers together based on their spatial proximity
in the pixel space. The analyst is yet allowed to edit the
resulting clusters interactively by pulling a node out, or by
dragging and dropping a node on another node (or group
of nodes) to merge them. Merged nodes carry a colour
coded pictogram relating them to the layers they occur in.

More structured layer organisations may prove to be
necessary e.g., a hierarchy of layers. This ensues from the
concepts of aspects, layers and elementary layers put forth
by Kivelä et al, but also to many real application needs.
From an interaction perspective, merging layers together
or splitting them apart becomes a matter of collapsing or
expanding their parent node in that layer hierarchy. In
this vicinity, the Ontovis system [Shen et al., 2006] uses
an ontology visualization to steer the associated network
visualization. An ontology could be seen as an artifact
representing the layer structure of a multilayer network.

The Detangler approach [Renoust et al., 2015] com-
bines two distinct, synchronised visual representations.
A first panel (Figure 9, left) displays the overall network
connectivity through a node-link view between nodes of
all layers. Another panel (right) displays a node-link
view showing how layers interact (where interaction is
measured and inferred in an ad hoc, domain dependent,
manner). Detangler supports a “leapfrogging” interac-
tion: the selection of nodes in the left panel automatically
triggers the corresponding layers in the right panel (Task
category A). Leapfrogging (executed by double-clicking
the selection lasso) expands the original selection to in-
clude all nodes (Boolean OR) involved in any one of the
layer that got selected; or restricts the original selection
to nodes involved in all layers that got selected from the
layer view (Boolean AND).

The OnionGraph application [Shi et al., 2014] provides
a hierarchical focus and context approach targeted specif-
ically toward heterogeneous data. The hierarchy provides
different levels of abstraction based on node type, role
equivalence and structural equivalence. In their exam-
ple use case, using an academic publication dataset, the
heterogeneity of the data is derived from node types, and
edges only exist between certain node types. There is no
formal layer definition and the abstraction used to provide
the hierarchical focus and context abstraction is applied
across all data types and does not fully consider the het-
erogeneity of the data. Such abstractions could be adapted
to be applied on a per layer basis. This could be very use-
ful in multilayer systems, particularly for comparison of
complex layers.
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Figure 9: A screen shot from Detangler [Renoust et al., 2015] showing how nodes (left panel) relate to layers (right
panel). Selecting layers (lasso) trigger the selection of nodes they involve (red nodes, left panel).

4.5 Attribute visualization

As with standard network data, node and edge entities
in multilayer networks may have many attributes, either
categorical of numerical, associated with them. How-
ever within a multilayer network, attributes of nodes are
not only considered within a single network context. At-
tributes need to be considered across layers, and attribute
values (especially for numerical attributes) may change
across layers, especially if the attributes are derived from
graph metrics, which may be calculated on a per layer
basis. An example of this can be seen in the MuxViz
toolkit [De Domenico et al., 2015]. Here the authors use
an annular ring visualization approach, which show the
values of metrics across layers, with each ring represent-
ing a layer, or in some cases a different centrality for a
specific layer see Figure 10 (Task category D1 or D2).

This basic approach involves completely separating the
attribute visualization from the graph structure. To better
relate the relationship between networks structure and at-
tributes, the attributes may be integrated into the network
visualization itself, (referred to as augmented network vi-
sualization by [Dickison et al., 2016a, Rossi and Magnani,
2015]) or a linked view brushing approach maybe taken,
by which the relevant related nodes would be highlighted
in a network view, when selected in the attribute visual-
ization and vice versa (Task category B).

The standard multivariate visualization of parallel coor-
dinates is also a suitable basic visualization technique. In
the case where the graph is multiplex, and nodes appear in
all layers, the different axes can represent a specific layer
attribute. Heat maps may also be adapted for a multilayer
use case. For example, the temporal heat-maps of Grottel

Figure 10: A screen shot from MuxViz [De Domenico
et al., 2015] showing the values for a centrality across lay-
ers. Each ring specifies a different layer.

et al. [Grottel et al., 2014] are made suitable for multi-
layer attribute visualization, by using graph layers instead
of time slices for each column (see Figure 11).

An interesting example of categorical multivariate data
in a single layer, which could be extended for multilayer
visualization can be seen in the multivariate graph analy-
sis tool of Pretorius and van Wijk [Pretorius and Van Wijk,
2008]. Their approach uses icicle plots to describe the (hi-
erarchical) categorical attributes of the source and target
of a set of directed edges. The source icicle plot is on the
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Figure 11: The Temporal heat Map of [Grottel et al.,
2014] showing changes in attribute values over time
slices.

left side of the screen and the one for the target nodes is
on the right, with the edge and their associated data drawn
in the middle. Such an approach may be easily adapted to
compare categorical labels across layers Task category B).
Combined with edge bundling, as done by Holten [Holten
and Van Wijk, 2008] with Hierarchical Edge Bundling, it
could also be used to examine structural and categorical
attribute difference between layers simultaneously (Task
categories B and D2).

It is also possible to consider categorical attribute data
as a network layer in and of itself. For example, in the
application OntoVis [Shen et al., 2006], Shen et al. use
a node ontology graph to query a large heterogeneous so-
cial network dataset. The node ontology graph reflects the
disparity of the attribute (how well distributed it is across
nodes), and its edges display frequency of links between
the entities. It acts both as a visualization of aggregated
categorical data, and a layer by which the dataset can be
better interacted with and understood.

The approach used for attribute visualization relies
heavily on the task the user is performing. For exam-
ple a scatter-plot matrix is one technique by which at-
tributes may be summarised, possibly even across layers.

However if the user’s goal is to understand correlations
of attributes across layers, an approach such as the modi-
fied multilayer version the scatter-plot staircase (SPLOS)
of Viau et al. [Viau et al., 2010] may be more efficient
in terms of comprehension and space. In this approach
scatter-plots of the attributes are ordered pairwise based
on correlation and common axes.

Attribute visualization also can be combined with in-
teraction withing the context of multilayer graph visual-
ization, to help better understand the connection between
layers. The Detangler application [Renoust et al., 2015]
visualizes the level of entanglement of a selected set of
nodes by colouring the selection lasso (an attribute mea-
suring internal cohesion of a group – as opposed to group
inertia or entropy [Shannon, 1948], also proposed in [Bat-
tiston et al., 2014]).

Attributes should not be considered only at a per node
level. Aggregation is an important feature of Graph-
Trail [Dunne et al., 2012] an application which focuses
on exploring multivariate heterogeneous networks. It es-
chews standard network visualization encodings, such as
node-link and matrix, in favour of aggregate attribute
visualizations using a hybrid approach bar charts com-
bined with arc diagrams. Such an approach is beneficial
to the characterisation and understanding of layers and
their interactions. Barchart visualizations are also used by
ManyNets [Freire et al., 2010] as a means of summarising
and comparison of networks, see Figure 12. The set of
charts describing a network are referred to as “network -
fingerprints” and the tabular presentation allows for easy
comparison and sorting across networks (or layers, de-
pending on the nomenclature chosen).

4.6 Empirical Evaluation
Many of the multilayer network visualization papers from
the information visualization domain described here are
either system papers e.g., [Kairam et al., 2015, Renoust
et al., 2015] or design study e.g., [Ghani et al., 2013].
Evaluation frequently involves user feedback [Dunne
et al., 2012, Ghani et al., 2013], visualization expert re-
view [Shi et al., 2014], usage scenarios [Dunne et al.,
2012, Renoust et al., 2015]. There is a dearth of low level
empirical evaluations specific to multilayer network vi-
sualizations, although this is partially because there are
few clearly low level tasks defined, and there is also a
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Figure 12: The list view of the Manynets applica-
tion [Freire et al., 2010], summarising attributes of net-
works using bar charts. The vertical barcharts show
the distribution of attribute values and the green and red
stacked horizontal bar is a combined score based on sev-
eral inputs.

lack of existing techniques to compare them with. For
example a novel interaction like that of Detangler [Re-
noust et al., 2015] cannot be compared directly to any
other technique. Therefore an empirical comparison of
user performance at a related low level task is simply not
practical. Within domains external to those related to in-
formation visualization there is less demand for perform-
ing a thorough evaluation of systems or techniques, so au-
thors may just demonstrate the techniques with a suitable
dataset, e.g., [Crnovrsanin et al., 2014]. The MuxViz ap-
plication displays layers in a 2D planes in a 3D visualiza-
tion (a.k.a 2.5D), in one of the many types of visualiza-
tion it offers. However, as mentioned earlier, no empirical
evaluation has ever shown such use of 3D graph visualiza-
tion to be beneficial, with the exception of when viewed
with stereo and/or motion or depth cues [Greffard et al.,
2012, Ware and Mitchell, 2008].

5 Discussion and Open Challenges
The goal of this report is a review of a large set of
tools and techniques to support the increasing demand
for the visualization of multilayer networks. Many of
the interesting ideas come from related concepts, such
as multivariate and faceted visualization, however nei-
ther of these concepts fully encompasses the multilayer
network model. The existing techniques provide a start-

ing point, however, as a result of the complexity of the
systems modelled as multilayer networks, there are still
many novel tasks that need to be addressed (Section 5.1),
possible improvements for modelling layers (Section 5.2),
visualization and interaction gaps that need to be filled
(Sections 5.3 to 5.5), and empirical user-evaluations to be
made (Section 5.6).

5.1 Multilayer Networks Task Taxonomy

Tasks are a motivating force for multilayer network vi-
sualization as a topic. There are many existing task tax-
onomies that cover network visualization as discussed in
Section 4.1. Our taxonomy of tasks extends these exist-
ing taxonomies. The taxonomy of Lee et al. [Lee et al.,
2006] considers graph comparison as a high level task not
covered by their taxonomy. In the definition of multilayer
networks, layers become an integral part of the structure
and as a result layer related tasks can no longer be consid-
ered abstract or high level. They are as fundamental part
of a graph task taxonomy as nodes and edges. However,
these aspects of Lee et al.’s taxonomy can be applied to
the graph entities within each layer.

5.2 Data Definition

As mentioned in Section 4.2, many of the approaches, par-
ticularly form the infovis domain, did not explicitly men-
tion that the data was a multilayer network. An important
part of understanding the data is determining what aspects
(and hence layers) need to be visualized to support the
users goals as early in the design process as possible. As
described in Section 2.1, layers can be considered a char-
acteristic of the multilayer system as a whole, defined ei-
ther by a physical reality or the system being modelled.
However there are still multiple ways to determine the set
of layers for analysis.

Modelling of real world concepts from the data Real
systems often begin with raw data and not a graph. How-
ever, in many of the papers we have reviewed the systems
are presented with fully organised and cleaned data sets,
e.g., [Kairam et al., 2015, Shi et al., 2014]. Within the
application domains generating a multilayer data set for
analysis is often a significant focus of the work [Ducruet,
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2017, Gallotti and Barthelemy, 2015, Zeng and Battis-
ton, 2016] independent of visualization. It is already
recognised that creating a general purpose graph from real
data is a challenge [Kandel et al., 2011, Srinivasan et al.,
2018], and doing so across multiple layers can be consid-
ered even more challenging. Existing approaches [Heer
and Perer, 2014, Srinivasan et al., 2018] consider the
problem from a general graph point of view and could
be developed further to consider graph aspects and layer
definition.

Entities that encode layer definitions When modelling
layers it is easy to consider a node type attribute to char-
acterise an aspect and encode data into layers. However,
it is worth emphasising that there are many other options.
Multiple aspects can be combined together, e.g., in the bi-
ological domain one aspect could be omics level and an-
other could be species, resulting in layers that describe an
omics level for a specific species. Edge types are used
in many cases to generate layers (usually in multiplex
cases such as [Ducruet, 2017, Renoust et al., 2015]). It
is worth remembering the advice of Kivelä et al., and be
“creative”.

Analytical generation of layers The raw data may not
map to the real world concepts embodied in a system and
may require some processing. If layers are not imme-
diately forthcoming, a clustering approach might reveal
structure not explicitly encoded in the data. Consider the
example of a predator-prey network, a topological clus-
tering may group animals based on geography even if ge-
ography is not explicitly encoded in the data. While the
process is analytical, it still results in a layering that re-
flects the reality of the system being modelled. Projec-
tion is another means by which layers can be created. Bi-
partite systems can be analysed by projecting on a node
type[Latapy et al., 2008]. For example, a bipartite author-
paper network, where researchers are connected to papers
that they authored. A projection on the paper node type
results in a co-authorship network of researchers, where
two researchers are connected if they ever authored a pa-
per. Such an operation may be adapted to a multilayer
user case. Degree of interest (DOI) functions suggest
nodes for inclusion based on what the user has already
characterised as interesting. This approach has already

been used by the Refinery application and may also be
applied to datasets that are explicitly multilayer[Laumond
et al., 2017].

5.3 Visualization approaches

As seen in Section 4.3 there are a wide range of existing
visualization techniques which can used for, or adapted to,
visualizing multilayer networks. There are many aspects
of multilayer network visualization that are opportunities
for immediate investigation with respect to visualization.

Hybrid visualization, as discussed in Section 4.3.4 hy-
brid visualizations are techniques which can be exploited
for multilayer network visualization. Only a small sub-
set of the range of approaches discussed throughout Sec-
tion 4.3 have been combined and hybridized, meaning
there are many potential options still to be investigated
to support multilayer tasks.

The need to address tasks related to cross layer entity
comparison also means that there may be interesting op-
portunities with respect to edge routing and visualiza-
tion. The approach used by [Crnovrsanin et al., 2014] is
not developed much beyond the original edge bundling
algorithm of Holten and van Wijk, while the bundling
of [Bourqui et al., 2016] focuses on edge routing in the
case where the nodes and edges of all layers are presented
in a single node-link diagram.

Within this report we have intentionally avoided fo-
cusing on more complex data modelling approaches such
as hyper-graphs. However, it is worth noting that in
many applications, especially in the domain of biology,
the datasets are explicitly modelled as hyper-graphs, e.g.,
the Systems Biology Graph Notation (SBGN) [Le Novere
et al., 2009] that is often used to describe biological path-
ways. Representing hyper-edges in a multilayer context
(particularly if endpoints belong to discrete layers), is an
interesting open challenge.

Some multilayer datasets also contain a temporal as-
pect, e.g., [Gallotti and Barthelemy, 2015], and there has
been much work done in the field of complex systems
on the dynamics of multilayer networks [Boccaletti et al.,
2014]. However integration between temporal and other
aspects for dynamic multilayer networks may still offer
opportunities for novel visualization techniques.
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5.4 Interaction Approaches
Multilayer Network related tasks and exploration may re-
quire novel interaction techniques. As described in Sec-
tion 4.4, Detangler is one example of an interaction tech-
nique to support multilayer network exploration, support-
ing Task categories A, C and D of our taxonomy. The
Donatien application of [Hascoët and Dragicevic, 2012]
supports interaction techniques related to comparison of
multiple layers (Task category D2 in our taxonomy), and
defining layers for comparison (Task category C). How-
ever, there is still a large design space to be explored for
multilayer use cases, particularly inter-layer exploration
(Task category D) and layer creation / manipulation (Task
category C).

5.5 Attribute visualization
Attribute visualization is important for understanding the
differences in attribute values for the same node in differ-
ent layers, and understand differences at the layer level via
aggregation or summarization. However many existing
techniques can be adapted relatively easily to the multi-
layer case, as seen in Section 4.5. The most novel attribute
visualization, seen in the Detangler [Renoust et al., 2015]
system, is related to a multilayer interaction technique that
uses a multilayer metric. Many classical network cen-
tralities have been adapted for the multilayer network use
case [Domenico et al., 2013, Kivelä et al., 2014]. While
MuxViz [De Domenico et al., 2015] does include some
visualization of these types of attributes, as shown in Fig-
ure 10, there is much opportunity for novel attribute vi-
sualization considering multilayer centralities, integrated
into network visualizations, to support cross layer com-
parisons incorporating both attributes and structure (Task
categories D1 and D2).

5.6 Evaluation
Task taxonomies are widely accepted to be useful for the
evaluation process [Kerracher and Kennedy, 2017] and
the tasks describes in Section 4.1, should support the
evaluation of multilayer visualization systems and tech-
niques. As described in Section 4.6, there is a lack of em-
pirical evaluation for multilayer network visualizations.
Crowdsourcing offers a lot of promise for information vi-

sualization [Borgo et al., 2017], particularly for evalua-
tion. A survey of evaluation using crowdsourcing in in-
formation visualization has shown that while the tasks for
crowdsourcing based evaluations are in the majority of
the cases simple tasks [Borgo et al., 2018], more com-
plex (and synoptic) tasks are possible. Many existing
crowdsourcing platforms do not lend themselves to tasks
that are highly interactive, however the development of
new platforms driven by academic needs, such as sug-
gested by [Hirth et al., 2017], may simplify evaluating
more complex tasks. Crowdsourcing may prove be useful
to address the lack of evaluation for approaches to mul-
tilayer network visualizations, but the complexity of the
tasks and the datasets, for the moment, makes it challeng-
ing.

6 Conclusion and Roadmap for Fu-
ture Research

With this paper we have presented a survey showing the
state of the art of visualization of multilayer networks
within both the domain of visualization, and others. We
have shown that multilayer network problems are at the
intersection of domain and data. There are many existing
techniques that address many aspects of multilayer net-
work visualization that may be used in many situations.

We have also identified aspects that require further re-
search. We have identified categories of tasks, not covered
by existing network task taxonomies, and have identified
immediate opportunities for research on multilayer net-
work visualization. We believe that the visualization of
multilayer networks will play an important role in the fu-
ture of network visualization and by working closely with
the field of complex systems and the application domains
we can uncover, and find solutions, to many new visual-
ization related challenges. As the field of complex net-
works grows, more application domains will take advan-
tage of the ability to better model and handle the complex-
ity inherent in the systems being studied. Bringing the vi-
sualization community closer to the application domains
communities, as well as the complex systems communi-
ties, will result in improved outcomes for all involved.
Organising workshops and seminars that include repre-
sentatives from all communities will help to achieve this
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goal. As they do, they will encounter new and interesting
challenges and will need novel visualization (and visual
analytics) approaches to address these problems. In our
opinion, the roadmap for future research starts by:

Re-frame user needs and data as multilayer network
problems. Kivelä et al. discuss the range of data defini-
tions (heterogeneous, multiplex, etc.) that are covered by
their framework. Re-framing a user’s problem with these
descriptions may prevent commonalities between prob-
lems being obscured by nomenclature, but more impor-
tantly it will give the visualization researchers more ex-
posure to application domain researchers addressing mul-
tilayer network problems.

Closer interaction with the applications domain
communities Consolidating and refining multilayer
network tasks with the typology of Munzner and
Brehmer [Brehmer and Munzner, 2013] and developing
higher level task descriptions with the domains will allow
for a better understanding of both the core elements of
problems across domains and the full range of solutions
available.

Closer interaction with the complex systems commu-
nity To better understand the data, closer interaction
with the complex systems community will allow for the
use of novel analytic approaches. Multilayer analytics
have not been fully exploited in support of visualization,
and we have only touched on a few key aspects in this
survey. There is a vast amount of new multilayer network
analytics which may be part of the answer to the visualiza-
tion challenges that arise from the application domains.
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