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A Note on Functional Observability

Frédéric Rotella and Irène Zambettakis

Abstract—In this note, we propose an alternative to characterize
the functional observability for linear systems. The main feature
is that we obtain a necessary and sufficient condition for the
existence of a stable multi-functional observer of a time-invariant
linear system. The proof of this condition is constructive and it
leads to design a stable observer via a new procedure, neither
based on the solution of a Sylvester equation nor on the use of
canonical state space forms.

Index Terms—Functional observer, linear systems, observer.

I. INTRODUCTION

Since Luenberger’s works [22]–[24] a significant amount of research

has been devoted to the problem of observing a linear functional of

the state of a linear time-invariant system. The main developments are

detailed in [25] and, in the recent books [18], [32] and the reference

therein. The problem can be formulated as follows. For the linear state-

space model

ẋ(t) =Ax(t) +Bu(t)

y(t) =Cx(t) (1)

where, for every time t in R
+, x(t) is the n-dimensional state vector,

u(t) is the p-dimensional input, y(t) is the m-dimensional measured

output, and, A,B, and C are constant matrices of adapted dimensions,

the objective is to get

v(t) = Lx(t) (2)

where L is a constant (l × n) matrix. The observation of v(t) can be

carried out with the design of a Luenberger observer

ż(t) =Fz(t) +Gu(t) +Hy(t)

w(t) =Pz(t) + V y(t) (3)

where z(t) is the q-dimensional state vector. Constant matrices F , G,

H , P , and V are determined such that

lim
t→∞

(v(t)− w(t)) = 0.

We know from [10] and [11] that the observable linear functional

observer (3) exists if and only if there exists a (q × n) matrix T such

that G = TB and

TA− FT =HC (4)

L =PT + V C (5)

where F is a Hurwitz matrix. Namely, when all the real parts of

the eigenvalues of F are strictly negative. When these conditions are
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fulfilled, we have limt→∞(z(t)− Tx(t)) = 0. Moreover, it is well

known, from [27] and [30], that the order q of the multi-functional ob-

server is such that q ≥ rank(L) and, when the model (1) is detectable,

q < n−m. Indeed, n−m is the order of the reduced-order observer

or Cumming-Gopinath observer [3], [14] which can be built to observe

x(t) and, consequently, v(t). Among the observers, we can distinguish

the minimum-order or Darouach observer [4] where q = l and P = Iq .

It has been shown in [29] that the minimum-order observer exists if and

only if there exists a triplet (F,M,N) such that

LA = FL+MC +NCA

where F is a Hurwitz matrix.

In all the following we use the shorthand notation:

O(M,N,k) =











N

NM
...

NMk−1











where N and M are matrices with adapted dimensions and k is an

integer.

Recently, to cope with the design problem of a minimal order

functional observer, the interesting notion of functional observability

of the triplet (A,C,L), which sums up the problem to solve, has been

defined in [6]–[8].

Definition 1: The triplet (A,C,L) is functionally observable if there

exists a matrix R such that a Darouach observer exists for the linear

functional

v(t) =

[

R

L

]

x(t).

Some iterative procedures have been proposed in [6]–[8] to cope

with the “intriguing and challenging problem” ([32]) to find R which

leads to the minimum-order observer. A recent result based on ma-

trix decompositions and canonical forms to design a minimal order

observer with fixed eigenvalues at the outside is described in [9].

Nevertheless, it has been proposed in ([7]) that the triplet (A,C,L)
is functionally observable if and only if

rank

([

O(A,C,n)

O(A,L,n)

])

= rank
(

O(A,C,n)

)

. (6)

Obviously, when condition (6) is fulfilled, there exist matrices L0, L1,

. . . , Ln−1 such that

L =
n
∑

i=0

LiCAi. (7)

Thus

rank

([

O(A,C,n)

L

])

= rank
(

O(A,C,n)

)

. (8)

Conversely, let us suppose that L can be written as (7). Thus, it is easy

to prove by induction that, for every k in {1, . . . , n− 1}, there exist



matrices Lk,i such that

LAk =
n
∑

i=0

Lk,iCAi.

These relationships lead to (6). So, we can claim the triplet (A,C,L)
is functionally observable if and only if (8) is fulfilled.

From (7), we can relate the functional observability notion to other

observability notions. Indeed, from (1), we get for i = 0, 1, 2, . . .

y(i)(t) = CAix(t) +

i−1
∑

j=0

CAjBu(i−1−j)(t).

Thus, from (7), we can write

v(t) =

n−1
∑

i=0

Liy
(i)(t)−

n−1
∑

i=0

Li

i−1
∑

j=0

CAjBu(i−1−j)(t).

Consequently, v(t) is observable in the Fliess-Diop meaning [5].

Nevertheless, our aim is to propose another criterion to test func-

tional observability of a triplet (A,C,L) which leads to a constructive

procedure of functional observer. Consequently, the technical note is

organized as follows. In a first part, we show that the existence of

an integer ν, matrices FL,0, . . . , FL,ν−1 and matrices FC,0, . . . , FC,ν

such that

LAν =
ν−1
∑

i=0

FL,iLA
i +

ν
∑

i=0

FC,iCAi (9)

leads, through realization theory, to the design of a candidate func-

tional observer. The proof of the sufficiency of the condition (9) is

completed with the exhibition of the analytical expression of the matrix

T solution of the (4) and (5). Let us insist here that the determination

of T is not a necessary step in the design of the observer. In a second

part we show that this condition is necessary as well. A third part is

devoted to a stability condition for the obtained observer structure.

This condition states that a linear functional observer problem is

equivalent to a static output stabilization problem. An example is

proposed in a final section.

II. SUFFICIENCY

Let us suppose here that (9) is fulfilled. As we have, for k = 0, 1, . . .

v(k)(t) = LAkx(t) +
k−1
∑

i=0

LAk−1−iBu(i)(t)

we can write

v(ν)(t) =

ν−1
∑

i=0

FL,iLA
ix(t) +

ν
∑

i=0

FC,iCAix(t)

+
ν−1
∑

i=0

LAν−1−iBu(i)(t). (10)

A. Observer Structure Design

Firstly, the elimination of x(t) in (10) is carried out by means of, for

i = 1 to ν − 1

LAix(t) = v(i)(t)−

i−1
∑

j=0

LAi−1−jBu(j)(t) (11)

and, for i = 1 to ν

CAix(t) = y(i)(t)−

i−1
∑

j=0

CAi−1−jBu(j)(t). (12)

We get then

v(ν)(t) =

ν−1
∑

i=0

FL,iv
(i)(t) +

ν
∑

i=0

FC,iy
(i)(t) +

ν−1
∑

i=0

Giu
(i)(t) (13)

where the matrices Gi are given by Gν−1 = (L− FC,νC)B and, for

ν ≥ 2 and j = 0 to ν − 2

Gj=

(

LAν−1−j−

ν−1
∑

i=j+1

FL,iLA
i−1−j −

ν
∑

i=j+1

FC,iCAi−1−j

)

B.

(14)

Remark 2: When ν = 0, there exists a matrix Λ such that L = ΛC.

So the functional observer becomes w(t) = Λy(t). The case ν = 1
has been detailed in [28] and leads to G = (L− FC,1C)B.

Secondly, the differential (13) is realized through the well-known

Ruffini-Horner procedure [17]. Namely, we write (13) as

v(t) =FC,νy(t)

+ p−1 [FL,ν−1v(t) + FC,ν−1y(t) +Gν−1u(t)

+
...

p−1 [FL,1v(t) + FC,1y(t) +G1u(t)

+ p−1 [FL,0v(t) + FC,0y(t) +G0u(t)] · · ·
]

where p stands for the continuous-time derivative operator and p−1

for the continuous-time integrator. With z0(t) = p−1[FL,0v(t) +
FC,0y(t) +G0u(t)]

zi(t) = p−1 [FL,iv(t) + FC,iy(t) +Giu(t) + zi−1(t)]

for i = 1 to ν − 1, and, v(t) = zν−1(t) + FC,νy(t), we obtain

ż0(t) =FL,0zν−1(t) +HC,0y(t) +G0u(t)

ż1(t) =FL,1zν−1(t) +HC,1y(t) +G1u(t) + z0(t)

...

żν−1(t) =FL,ν−1zν−1(t) +HC,ν−1y(t)

+ Gν−1u(t) + zν−2(t)

where, for i = 0 to ν − 1, HC,i = FC,i + FL,iFC,ν . The vector

z(t) =
[

z⊤0 (t) · · · z⊤ν−1(t)
]⊤

is the state of the Luenberger observer structure (3) with

F =















FL,0

Il FL,1

. . .
...

Il FL,ν−2

Il FL,ν−1















, G =















G0

G1

...

Gν−2

Gν−1















H =















FC,0

FC,1

...

FC,ν−2

FC,ν−1















+















FL,0

FL,1

...

FL,ν−2

FL,ν−1















FC,ν

P = [0 · · · 0 Il ], V = FC,ν . (15)

Remark 3: Notice that the realization (15) is observable.



Remark 4: In the case ν = 1, the Darouach-Luenberger observer

structure is given by [29]

F =FL,0, G = (L− FC,1C)B, V = FC,1

P = Il, H = FC,0 + FL,0FC,1. (16)

B. An Expression for T

In order to complete the proof we obtain here the expression of

the matrix T . Let us begin with the case ν = 1. We claim T =
L− FC,1C. Indeed, from (16), we have

TA− FT =LA− FC,1CA− FL,0L+ FL,0FC,1C

=(FC,0 + FL,0FC,1)C = HC

and, L = T + FC,1C = PT + V C.

Now, consider the case ν ≥ 2. Firstly, let us remark that the rela-

tionship G = TB, with (14), leads to the induction

T =
[

T⊤
1 · · · T⊤

ν

]⊤

where, for j = 1 to ν − 1

Tj = LAν−j −

ν−1
∑

i=j

FL,iLA
i−j −

ν
∑

i=j

FC,iCAi−j

and, Tν = L− FC,νC. In the following, we state that this matrix T

is a solution of TA− FT = HC where F and H are defined in (15).

Let us denote

TA =







(TA)1
...

(TA)ν






and FT =







(FT )1
...

(FT )ν







where, for j = 1 to ν, the blocks (TA)j and (FT )j have l rows. On

the one hand, we have (TA)ν = LA− FC,νCA, and, for j = 1 to

ν − 1

(TA)j = LAν−j+1 −

ν−1
∑

i=j

FL,iLA
i−j+1 −

ν
∑

i=j

FC,iCAi−j+1.

On the other hand, we have (FT )1 = FL,0L− FL,0FC,νC, and, for

j = 2 to ν

(FT )j =Tj−1 + FL,j−1Tν

=LAν+1−j −
ν−1
∑

i=j−1

FL,iLA
i+1−j

−
ν
∑

i=j−1

FC,iCAi+1−j + FL,j−1L− FL,j−1FC,νC.

(17)

For j = 2 to ν − 1, (17) can be written as

(FT )j = LAν+1−j −

ν−1
∑

i=j

FL,iLA
i+1−j −

ν
∑

i=j

FC,iCAi+1−j

− (FC,j−1 + FL,j−1FC,ν)C

and, for j = ν

(FT )ν = LA − FC,νCA− (FC,ν−1 + FL,ν−1FC,ν)C.

Let us remark that (9) leads to write

LAν −

ν−1
∑

i=1

FL,iLA
i −

ν
∑

i=1

FC,iCAi

=
ν−1
∑

i=0

FL,iLA
i +

ν
∑

i=0

FC,iCAi

−

ν−1
∑

i=1

FL,iLA
i −

ν
∑

i=1

FC,iCAi

= FL,0L+ FC,0C.

Thus, after some calculations, (TA)j − (FT )j can be read, for j = 1
to ν, as (FC,j−1 + FL,j−1FC,ν)C. Taking into account that, for j =
0 to ν − 1, HC,j = FC,j + FL,jFC,ν , we deduce that T fulfills the

Sylvester equation TA− FT = HC.

Moreover, as P = [0 · · · 0 Il] and V = FC,ν , we are led to

PT + V C = L− FC,νC + FC,νC = L

which ends the proof.

We can then deduce the following lemma.

Lemma 5: If there exist an integer ν and matrices FL,0, . . . , FL,ν−1

and FC,0, . . . , FC,ν such that

LAν =

v−1
∑

i=0

FL,iLA
i +

ν
∑

i=0

FC,iCAi

then a solution (T, F,H,P, V ) of the equations TA− FT = HC and

PT + V C = L is given by (15) and

T = −

















FL,1 FL,2 · · · FL,ν−1 −Il

FL,2 . .
.

. .
.

... . .
.

. .
.

FL,ν−1 −Il
−Il

















O(A,L,ν)

−

















FC,1 FC,2 · · · FC,ν−1 FC,ν

FC,2 . .
.

. .
.

... . .
.

. .
.

FC,ν−1 FC,ν

FC,ν

















O(A,C,ν).

III. NECESSITY

Lemma 6: Let us suppose that the q-order asymptotic observer (3) of

Lx(t) for the system (1) is observable then, there exist matrices FL,i

and FC,i, i = 0 to q − 1, and FC,q such that

LAq =

q−1
∑

i=0

FL,iLA
i +

q
∑

i=0

FC,iCAi. (18)

Proof: From [10] and [11], when the linear multi-functional

observer (3) of Lx(t) exists, then, there exists T such that (4) and (5)

are fulfilled. On the one hand, from (5), we can write, for k ∈ N

LAk = PTAk + V CAk.

On the other hand, writing (4) as TA = FT +HC, we can easily

deduce by induction that, for k ∈ N− {0}

TAk = F kT +

k−1
∑

i=0

F iHCAk−1−i.



Consequently, we obtain, for k ∈ N− {0}

LAk = PF kT +

k−1
∑

i=0

PF iHCAk−1−i + V CAk. (19)

Gathering (5) and the previous expressions for k = 1 to q − 1, we are

led to

O(A,L,q) = O(F,P,q)T +ΠO(A,C,q) (20)

where Π is the matrix

Π=



































(Iq ⊗ V )+



















0

P
. . .

PF P
. . .

...
. . .

. . .
. . .

PF q−2 · · · PF P 0



















(Iq ⊗H)



































and, ⊗ stands for the Kronecker product of two matrices [15], [21].

As the observer (3) is observable we have rankO(F,P ) = q. Thus,

the matrix T defined by (20) is unique and is given by

T = O
[1]
(F,P,q)

{

O(A,L,q) −ΠO(A,C,q)

}

where O(F,P,q)
[1] stands for an arbitrary generalized inverse of the

observability matrix, namely [1]

O
[1]
(F,P,q) ∈

{

X, O(F,P,q)XO(F,P,q) = O(F,P,q)

}

.

Consequently, there exist matrices TL,i and TC,i, i = 0 to q − 1,
such that

T =

q−1
∑

i=0

TL,iLA
i +

q−1
∑

i=0

TC,iCAi.

Let us remark that (19) gives, for k = q

LAq =PF qT +

q−1
∑

i=0

PF iHCAq−1−i + V CAq

=PF q

{

q−1
∑

i=0

TL,iLA
i +

q−1
∑

i=0

TC,iCAi

}

+

q−1
∑

i=0

PF iHCAq−1−i + V CAq .

Thus, there exist matrices FL,i and FC,i, i = 0 to q − 1, and FC,q

such that

LAq =

q−1
∑

i=0

FL,iLA
i +

q
∑

i=0

FC,iCAi

which concludes the proof. ¤

IV. A STABILITY CONDITION

The previous sections concern the design of a candidate observer

for the linear functional (2). The final step consists in finding stability

conditions for F defined in (15) to ensure an asymptotic observation.

A. The Solution Set

Let us consider the matrix

Σν =

[

O(A,L,ν)

O(A,C,ν+1)

]

. (21)

The existence condition of an integer ν and matrices FL,0, . . . , FL,ν−1

and FC,0, . . . , FC,ν , such that (9) is fulfilled, is equivalent to the

consistency condition of the linear equation

LAν = ΦΣν . (22)

Namely, the integer ν is such that

rank

([

LAν

Σν

])

= rank(Σν).

From [1], when this rank condition is verified, the solution set for

the (22) can be written

[FL,0 FL,1 · · · FL,ν−1 FC,0 FC,1 · · · FC,ν ]

= LAνΣ[1]
ν +Ω

(

Iρ − ΣνΣ
[1]
ν

)

(23)

where ρ = m+ ν(m+ l), Ω is an arbitrary (l × ρ)matrix and Σ
[1]
ν is

an arbitrary generalized inverse of Σν .

Remark 7: If rank(Σν) = ρ, the solution LAνΣ
[1]
ν is unique and

independent of a particular choice for Σ
[1]
ν .

Remark 8: In the case where rank(Σν) = r < ρ, the number of

degrees of freedom for the design is reduced to the dimension of the

co-rank of the matrix Σν , namely ρ− r.

B. A Stabilizability Condition

In the case where rank(Σν) = ρ, we can test if F is a Hurwitz

matrix through an eigenvalues inspection or by using the Routh-

Hurwitz criterion. Let us suppose now that rank(Σν) = r < ρ, and,

consider the SVD decomposition [12], [13] of Σν

Σν = UνSνV
⊤
ν

where Uν(ρ× ρ) and Vν(n× n) are unitary matrices, and Sν is the

(ρ× n)-sized diagonal matrix of the ordered singular values, σ1 ≥
· · · ≥ σr > 0

Sν = diag{σ1, . . . , σr, 0, . . . , 0}.

A particular choice for Σ
[1]
ν can be

Σ[1]
ν = Σ†

ν = VνS
−⊤
ν U⊤

ν (24)

where S−⊤
ν = diag{σ−1

1 , . . . , σ−1
r , 0, . . . , 0}. Thus, we are led to

Iρ − ΣνΣ
†
ν = Iρ − Uν

[

Ir 0
0 0

]

U⊤
ν = Uν

[

0 0
0 Iρ−r

]

U⊤
ν .

Remark 9: Two reasons motivate the proposed choice (24) for Σ
[1]
ν .

Firstly, the pseudo-inverse Σ
[1]
ν = Σ†

ν of Σν is unique. Secondly, the

SVD decomposition is numerically robust.

Let us define U⊤
2,ν as the matrix built with the ρ− r last rows of U⊤

ν

U⊤
2,ν = [Uν(:, r + 1 : ρ)]⊤

= [ΥL,0 ΥL,1 · · · ΥL,ν−1 ΥC,0 · · · ΥC,ν ]

Γ2, the ρ− r last columns of the arbitrary matrix Γ = ΩUν , and

Φb =
[

F b
L,0 F b

L,1 · · · F b
L,ν−1 F b

C,0 · · · F b
C,ν

]

= LAνΣ†
ν .



b

The previous partitions lead to the structure of F defined in (15) 
where, for i = 0 to ν − 1, FL,i = FL,i + Γ2ΥL,i. Due to commuta-

tivity, with respect to the block-column partition of the matrix F , its 
eigenvalues are identical to the eigenvalues of the matrix

F ∗ =















Il
. . .

Il
Il

FL,0 FL,1 · · · FL,ν−2 FL,ν−1















.

The interest in considering F ∗ instead of F is that we have the

following decomposition:

F ∗ =















Il
. . .

Il
Il

F b
L,0 F b

L,1 · · · F b
L,ν−2 F b

L,ν−1















+











0
...

0
Il











Γ2[ΥL,0 ΥL,1 · · · ΥL,ν−2 ΥL,ν−1 ].

We can now state the following test.

Lemma 10: There exists a matrixΩ such that F defined in (15) is an

Hurwitz matrix if and only if the system

η̇(t) =











Il
. . .

Il
F b
L,0 F b

L,1 · · · F b
L,ν−1











η(t) +











0
...

0
Il











̟(t)

ς(t) = [ΥL,0 ΥL,1 · · · ΥL,ν−1 ]η(t) (25)

is static output feedback stabilizable.

Consequently, any well-known static output feedback stabilizability

criteria (see [2], [19], [31]) can be used here. Moreover, when the

system (25) is stabilizable with a static output feedback, we can apply,

for instance, LMI based methods [26], [33], [34] or software built-

in procedures to get a matrix Γ2 which solves the problem. In the

opposite, when such a matrix cannot be found, ν has to be increased

up to a value such that the static output stabilizability problem can be

solved. Taking into account the specific form of (25), we propose, in

the following section, a simple method to get a possible Γ2.

V. ILLUSTRATIVE EXAMPLE

Let us consider the observation problem (1), (2) where

A =





















−1 0 0 1 0 0 0
2 0 1 −1 1 0 0
0 3 0 0 1 1 0
0 0 0 −3 0 1 1
0 0 0 0 1 0 −1
1 0 0 0 0 −1 0
0 1 0 0 1 0 −2





















C =

[

1 0 0 0 0 0 0
0 1 0 0 0 0 0

]

L =

[

0 0 1 0 0 0 0
0 0 0 1 0 0 0

]

.

The first step deals with the determination of ν. Denoting rν =

rank
(

[

LAν

Σν

]

)

− rank(Σν), we obtain r0 = r1 = 2, and r2 = 0. Thus,

ν = 2. Secondly, with

Σ2 =

































0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 3 0 0 1 1 0
0 0 0 −3 0 1 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 0 0 1 0 0 0
2 0 1 −1 1 0 0
1 0 0 −4 0 1 1
−2 3 0 5 2 0 −2

































and LA2 =

[

3 0 3 −3 4 −1 −1
1 1 0 9 1 −4 −5

]

, the singular

value decomposition of Σ2 gives

ΥL,0 =U⊤
2 (1 : 2 :, 8 : 10) =





0 −0.6
0 0.3
0 0.22





ΥL,1 =U⊤
2 (3 : 4 :, 8 : 10) =





0.03 −0.02
−0.15 −0.49
−0.41 0.45





F b
L,0 =LAνΣ†

ν(1 : 2, 1 : 2) =

[

−1 −1.3
0 −2.27

]

F b
L,1 =LAνΣ†

ν(1 : 2, 3 : 4) =

[

−0.56 −0.44
−1.13 −2.8

]

.

The third step consists in detecting the stabilizability of (25). Let us

consider the permutation matrix

Π =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









.

We obtain

ΠF ∗Π =









0 1 0 0
−1 ϕ22 ϕ23 ϕ24

0 0 0 1
0 ϕ42 ϕ43 ϕ44









where, denoting γ1 and γ2 the rows of Γ2, we obtain [ϕ22 +
0.56 ϕ23 + 1.3 ϕ24 + 0.44] = γ1M and [ϕ42 + 1.13 ϕ43 +
2.27 ϕ44 + 2.8] = γ2M where M is the nonsingular matrix

M =





0.03 −0.6 −0.02
−0.15 0.3 −0.49
−0.48 0.22 0.45



 .

Consequently, we can choose any value for the ϕij coefficients. Using

usual methods for pole assignment [20], a particular but interesting

choice is ϕ23 = ϕ24 = ϕ42 = 0. In this case, it is possible to fix

ϕ22, ϕ43 and ϕ44, and therefore γ1 and γ2, to obtain a static output

feedback that stabilizes the system (25). The linear functional Lx(t)
is functionally observable for the system (1) with a fourth-order

Luenberger observer.



VI. CONCLUSION

All these results can be summed up in the following theorem which

provides a test of functional observability of a linear functional with

respect to a given linear time-invariant system.

Theorem 11: The triplet (A,C,L) is functionally observable if and

only if there exists an integer ν such that

rank

([

LAν

Σν

])

= rank(Σν)

where

Σν =

[

O(A,L,ν)

O(A,C,ν+1)

]

has the singular value decomposition Σν = UνSνV
⊤
ν , and, the system

(25) where the essential matrices are defined by

[ΥL,0 ΥL,1 · · · ΥL,ν−1 ΥC,0 ΥC,1 · · · ΥC,ν ]

= U⊤
ν (r + 1 : ρ, :)

[F b
L,0 F b

L,1 · · · F b
L,ν−1 F b

C,0 F b
C,1 · · · F b

C,ν ]

= LAνΣ†
ν

is static output feedback stabilizable.

When this theorem is fulfilled, the previous sections indicate a

design procedure which leads to a lν-order stable Luenberger observer.

When ν is minimal and rank(T ) = q < lν, keeping in T the linearly

independent rows and eliminating the corresponding components in

the state of the observer, the order of the observer can be reduced to q.

Indeed, another particular feature of the presented work is the closed

form of the matrix T solution of the Sylvester equation (4).

REFERENCES

[1] A. Ben-Israel and T. N. Greville, Generalized Inverses. New York, NY,
USA: Springer, 2003.

[2] Y. Y. Cao, J. Lam, and Y. X. Sun, “Static output feedback stabilization:
An ILMI approach,” Automatica, vol. 34, no. 12, pp. 1641–1645, 1998.

[3] S. D. G. Cumming, “Design of observers of reduced dynamics,” Electron.

Lett., vol. 5, no. 10, pp. 213–214, 1969.
[4] M. Darouach, “Existence and design of functional observers for linear

systems,” IEEE Trans. Autom. Control, vol. AC-45, no. 5, pp. 940–943,
May 2000.

[5] S. Diop and M. Fliess, “Nonlinear observability, identifiability, persis-
tent trajectories,” in Proc. 30th IEEE Conf. Decision Control, 1991,
pp. 714–719.

[6] T. L. Fernando, H. Trinh, and L. Jennings, “Functional observability and
the design of minimum order linear functional observers,” IEEE Trans.

Autom. Control, vol. AC-55, no. 5, pp. 1268–1273, May 2010.
[7] T. Fernando, L. Jennings, and H. Trinh, “Functional observability,” in

Proc. 2010 5th IEEE Int. Conf. Inform. Autom. Sustainability: Sus-

tainable Develop. Through Effective Man-Machine Co-Existence, 2010,
pp. 421–423.

[8] T. Fernando, L. Jennings, and H. Trinh, “Numerical implementation of
a functional observability algorithm: A singular value decomposition
approach,” in Proc. 2010 IEEE Asia Pacific Conf. Circuits Syst., 2010,
pp. 796–799.

[9] T. Fernando and H. Trinh, “A system decomposition approach to
the design of functional observers,” Int. J. Control, vol. 87, no. 9,
pp. 1846–1860, 2014.

[10] T. E. Fortmann and D. Williamson, “Design of low-order observers for
linear feedback control laws,” IEEE Trans. Autom. Control, vol. AC-17,
no. 2, pp. 301–308, 1972.

[11] P. A. Fuhrmann and U. Helmke, “On the parametrization of conditioned
invariant subspaces and observer theory,” Lin. Alg. Appl., no. 332–334,
pp. 265–353, 2001.

[12] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, MD,
USA: Johns Hopkins, 1996.

[13] G. Golub and W. Kahan, “Calculating the singular values and pseudo-
inverse of a matrix,” J. Soc. Ind. Appl. Math, ser. B: Numerical Analysis,
vol. 2, no. 2, pp. 205–224, 1965.

[14] Gopinath, “On the control of linear multiple input-output systems,” Bell

Syst. Tech. J., vol. 50, pp. 1063–1081, 1971.
[15] A. Graham, Kronecker Products and Matrix Calculus: With Applications.

Chichester, U.K.: Horwood, 1981, vol. 108.
[16] L. S. Jennings, T. L. Fernando, and H. M. Trinh, “Existence conditions

for functional observability from an eigenspace perspective,” IEEE Trans.

Autom. Control, vol. AC-56, no. 12, pp. 2957–2961, Dec. 2011.
[17] T. Kailath, Linear Systems. Upper Saddle River, NJ, USA: Prentice-

Hall, 1980.
[18] S. K. Korovin and V. V. Fomichev, State Observers for Linear Sys-

tems With Uncertainty, in Russian, Fitzmatgiz, 2007, English translation.,
Walter de Gruyter, 2009.
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