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1 Introduction

In this paper, varieties are irreducible algebraic varieties over C and groups are linear
algebraic groups over C. And we study varieties that belong to the family of horospherical
varieties. Let us first introduce this family.

1.1 About horospherical varieties

Horospherical varieties are ones of the must studied normal G-varieties (i.e. varieties
endowed with an algebraic action of a group G) including flag varieties (i.e. rational
projective homogeneous spaces) and toric varieties.

Recall that toric varieties are normal T-varieties where T si a torus and such that, in
particular:

e they have an open T-orbit;

e the ring of regular functions of any T-stable affine open subset is a multiplicity free
T-module;

e they are classified in terms of fans.

There is a natural way to generalized toric varieties to normal G-varieties, for any con-
nected reductive algebraic group G, with similar properties. And it gives the family of
spherical varieties such that in particular:

e they have an open G-orbit;

e the G-modules associated to the varieties, for example global sections of G-linearized
line bundles, are multiplicity free G-modules;

e they are classified in terms of colored fans.

The colored fans of spherical varieties depend of data, called spherical data, defined from
the open G-orbit. The spherical data can differ a lot from a spherical homogeneous space
to another. It makes difficult the study of the geometry of all spherical varieties. That
is why we often focus on remarkable subfamilies, as the family of horospherical varieties
where the open G-orbit is a torus fibration over a flag variety. For horospherical varieties,
the spherical data is quite simple, so that the combinatorial objects (colored fans,...) are
a nice mix of combinatorial objects coming from toric varieties (fans, polytopes,...) and
from flag varieties (root systems).

We give a (not-exhaustive) list of recent results about horospherical varieties, related
to the results and proofs of the paper.

e There exists a smoothness criterion (really easier to apply than the general one
existing for spherical varieties) [Pas06].

e Fano horospherical varieties are classified in terms of some types of polytopes [Pas08];
this result was generalized for spherical varieties [GH15].

e Smooth projective horospherical varieties of Picard group Z are classified [Pas09] and
studied in several works: [PP10], [Lil5], [Kim17], [GPPS18],... Note that the only
smooth projective toric varieties of Picard group Z are the projective spaces, and
that for horospherical varieties we obtained non-homogeneous varieties: 5 families
of two-orbit varieties (including two infinite families).



e The Minimal Model Program (MMP) [Pasl5] and the Log MMP [Pasl17] for horo-
spherical varieties can be constructively described in terms of one-parameter families
of polytopes.

1.2 Results of the paper

We classify and give a first study of the geometry of smooth projective horospherical
varieties of Picard group Z2. For toric varieties, there are only decomposable projective
bundles over projective spaces [Kle88]. But for horospherical varieties, there are many
other cases.

Indeed, in addition to homogeneous spaces, products of two varieties and decompos-
able projective bundles over projective spaces, we distinguish several types of other such

horospherical varieties. We classify them in this paper, in particular by studying their Log
MMP.

To write as nicely as possible the classification of smooth projective horospherical
varieties of Picard group Z?, we extend the notion of simple roots to the groups C* and
{1}. We first briefly recall the case of simple groups (in this paper, a simple group has
positive semi-simple rank).

If G is a simply connected simple group, we fix a maximal torus contained in a Borel
subgroup B of G, then it defines a root system and in particular a set of simple roots. To
each simple root « is associated a fundamental weight denoted by w, and a fundamental
G-module denoted by V(w,). More generally, if y is a dominant weight (a non-negative
sum of fundamental weights) we denote by V(x) the G-module associated to x: it is
the unique irreducible G-module that contains a unique B-stable line where B acts with
weight y. A non-zero element of the B-stable line of V() is called a highest weight vector
(of weight x) and the stabilizer of the B-stable line of V() is denoted by P(x) (it is a
parabolic subgroup of G containing B).

In this paper, if G = C*, we call the identity automorphism of C* the simple root of
G; we denote it by «a, and we set w, = «. Then the natural C*-module C is denoted by
V(wq) where « is the simple root of C*. And for any n € Z, V(nw,) is the C*-module C
where C* acts with weight nw,; in particular, any character of C* is dominant. Moreover,
if G = {1}, we call the trivial morphism from G to C* the simple root of G; we denote
it by «, and we set w, = 0. In these two cases a highest weight vector is any non-zero
vector.

Suppose now that G is a product Gy X - -+ X Gy of simply connected simple groups, C*
and {1}. A simple root of G is a simple root of some G; and it is said to be trivial if G; is
equal to C* or {1}. Moreover if xo, ..., x¢ are respectively dominant weights of Gy, ..., G,
the G-module associated to x = xo + - -+ + x¢ is the tensor product V(xo) ® --- @ V(x¢)
and a highest weight vector of this G-module is a decomposable tensor product of highest
weight vectors.

In Definition 3.9, we define two types of projective horospherical varieties X' and X2
with Picard group Z?. We describe them explicitly as the closures of some G-orbit of a sum
of highest weight vectors in the projectivization of a G-module, with the convention above.
These varieties depend on the group G, on a simple root 3, on a tuple a of, eventually
trivial, simple roots of G and on a tuple a of positive integers.

We can now write the two main results of this paper.



Theorem 1.1. Let X be a smooth projective horospherical variety with Picard group 72.
Suppose that X is not the product of two varieties. Then X is isomorphic to one of the
following horospherical varieties (which we still denote by X ).

In all cases, G is a product of simply connected simple groups, C* and {1}.

Case (0): G is simple and X is an homogeneous variety G/P where P is the intersection of
two mazimal (proper) parabolic subgroups of G containing the same Borel subgroup.

Case (1): X is one of the variety X} (G, B,a,a) as in Definition 3.9 with one of the restricted
conditions (a), (b) or (¢) described in Definition 4.4.

Case (2): X is a variety X2(G,a,a) as in Definition 3.9 with one of the restricted conditions
(a), (b) or (c) described in Definition 4.4.

Remark 1.2. e In Theorem 1.1, the decomposable projective bundles over projective
spaces are some very particular varieties X! (G, 8, a, a) with restricted conditions (b)
or (c). (See Remark 4.5 for the complete description.)

e The restricted conditions are useful for two reasons: to get X smooth (and not only
locally factorial) and to delete isomorphic cases.

In Theorem 1.1, isomorphisms are not G-equivariant isomorphisms. Indeed the act-
ing group is not necessarily the same for both varieties, so we cannot even consider G-
equivariant isomorphisms. Note that in the paper, if not precised, isomorphisms are not
supposed to be G-equivariant. Nevertheless, all contractions appearing in the (Log) MMP
from a given horospherical G-varieties are automatically G-equivariant.

The horospherical varieties given in Theorem 1.1 are all distinct, i.e., pairwise not
isomorphic. This is a consequence of the following result.

Theorem 1.3. Let X be one of the varieties described in Theorem 1.1. Then “the” Log
MMP from X gives the following in each case, respectively with the restricted conditions

(a), (b) or (c).

Case (0): There are two Mori fibrations from X, respectively into Y and Z, with (general)
fibers respectively not isomorphic to Z and Y .

Case (1): (a) A “first” Log MMP consists of a Mori fibration from X to G /P(wg) with general
fibers not isomorphic to a projective space (but isomorphic to another homoge-
neous variety or to a two-orbit variety) and a “second” one consists of a flip
from X followed by a fibration.

(b) A “first” Log MMP consists of a Mori fibration from X to G/P(wg) with general
fibers isomorphic to a projective space and a “second” one consists of a finite
sequence (may be empty) of flips from X followed by a fibration. Moreover, the
fibers of this latter fibration are not all isomorphic.

(¢) A “first” Log MMP consists of a Morti fibration from X to G/P(wg) with general
fibers isomorphic to a projective space and a “second” one consists of a finite
sequence (may be empty) of flips from X followed by a divisorial contraction.

Case (2): A “first” Log MMP consists of a fibration 1) to a two-orbit variety, the general fiber
Fy, of ¢ and a “second” Log MMP are described as follows.



(a) Fy is not isomorphic to a projective space (but isomorphic to another homoge-
neous variety or to a two-orbit varity) and a “second” Log MMP consists of a
flip from X followed by a fibration.

(b) Fy is isomorphic to a projective space and a “second” Log MMP consists of a
finite sequence (not empty) of flips from X followed by a fibration.

(¢) Fy is isomorphic to a projective space and a “second” Log MMP consists of a
finite sequence (may be empty) of flips from X followed by a divisorial contrac-
tion.

Moreover, in every cases, up to reordering and up to symmetries of Dynkin diagrams,
the data G (as a product of simply connected simple groups, C* and {1}), B, a and a
are invariants of the “two canonical ways” to realize the Log MMP from X (and then
invariants of X ).

Remark 1.4. e In the paper (Proposition 3.4), we prove that for any smooth projec-
tive horospherical variety X with Picard group Z?, the nef cone of X is generated by
the two elements of a basis of Pic(X), then this gives us two canonical ways to choose
the log pair to compute Log MMP from X (see Section 5 for more details). Also, in
Cases (1) and (2), one of the “two canonical” Log MMP is “naturally” defined (see
Remark 3.3) and only consists of a fibration.

e In Case (1b), if the sequence of flips is empty, we get two fibrations from X. They
could be both into homogeneous varieties. But one and only one of these fibrations
has all its fibers isomorphic to each other (by Proposition 5.10, items 3 and 4 with
[ = k). On the contrary, in Case (0), each fibration has all their fibers isomorphic to
each other.

The paper is organized as follows.

We first recall in Section 2 the results on horospherical varieties that we use in the
paper. Then, in Section 3, we easily describe a first (but not optimal) combinatorial
classification, containing many repetitions, and we give a first geometric description of all
these latter cases that permits to define the two types of varieties X! and X2. In Section 4,
we first define the restricted conditions used in the statment of Theorem 1.1, and we prove
the theorem. Then, in Section 5, we prove Theorem 1.3, by studying the Log MMP of all
varieties of Theorem 1.1.

2 Some known results on horospherical varieties

2.1 First definitions, first properties of divisors, and smoothness crite-
rion

In this section, we write the classification of horospherical varieties in terms of colored fans
Then we give the criteria for divisors to be Cartier, globally generated, and ample. And
we state the smoothness criterion. All are generalizations of the theory of toric varieties
(without colors).

Let G be a connected reductive group. Fix a maximal torus 7" and a Borel subgroup
B containing T'. Denote by U the unipotent radical of B, by S the set of simple roots of
(G,B,T), by X(T) the lattice of characters of T' (or B) and by X(T")™ C X(T) the monoid
of dominant characters.

For any lattice L we denote by Lg the Q-vector space L ®z Q.



Definition 2.1. A horospherical variety X is a normal G-variety with an open orbit
isomorphic to G/H where H is a subgroup of G containing U.

Then G/H is a torus fibration over the flag variety G/P where P is the parabolic
subgroup of G containing B defined as the normalizer of H in G. The dimension of the
torus is called the rank of G/H or the rank of X and it is denoted by n.

We denote by M the sublattice of X(7") consisting of characters of P whose restrictions
to H are trivial. Its dual is denoted by N. (The lattices M and N are of rank n.)

Let R be the subset of S consisting of simple roots that are not simple roots of P (i.e.,
simple roots associated to fundamental weights whose some multiples are characters of P).

For any simple root o € R, the restriction of the coroot a¥ to M is a point of N,
which we denote by a),. We denote by o the map a — ay, from R to N.

Definition 2.2. 1. A colored cone of Ng is a pair (C, F) where C is a convex cone of
Ng and F is a subset of R (called the set of colors of the colored cone), such that

(i) C is generated by finitely many elements of N and contains {a), | o € F},

ii) C does not contain any line and F does not contain any « such that Y, is zero.
( ) Yy y M

2. A colored face of a colored cone (C,F) is a pair (C', F') such that C’ is a face of C
and F' is the set of a € F satisfying ay, € C'.

3. A colored fan is a finite set IF of colored cones such that

(i) any colored face of a colored cone of F is in F, and

(ii) any element of Ng is in the relative interior of at most one colored cone of F.

The main result of Luna-Vust Theory of spherical embeddings is the following classi-
fication result (see for example [Kno91]).

Theorem 2.3. (D. Luna-T. Vust) There is an explicit one-to-one correspondence between
colored fans and G-isomorphism classes of horospherical G-varieties with open orbit G/H.

Complete G/H -embeddings correspond to complete fans, i.e., to fans such that Ng is
the union of the first components of their colored cones.

If G = (C*)" and H = {1}, we recover the well-known classification of toric varieties
in terms of fans.

If X is a G/H-embedding, we denote by Fx the colored fan of X in Ng and we denote
by Fx the subset Ui¢ ryer, F of R, called the set of colors of X.

From now on, X is a complete horospherical variety as above.

We now recall the characterization of Cartier, Q-Cartier, globally generated and ample
divisors of horospherical varieties, due to M. Brion in the more general case of spherical
varieties ([Bri89]).

First, we describe the B-stable prime divisors of X. We denote by Xi,...,X,, the
G-stable prime divisors of X. The valuations of C(X) defined by the zeros and poles
along these divisors define primitive elements of N, denoted by z1,...,x,, respectively.

And the B-stable but not G-stable prime divisors of X are the closures in X of B-stable
prime divisors of G/H, which are the inverse images by the torus fibration G/H — G/P
of the Schubert divisors of the flag variety G/P. The Schubert divisors of G/P can be
naturally indexed by the subset of simple roots R. Hence, we denote the B-stable but
not G-stable prime divisors of X by D, with a € R (note that o(«a) is the element of N
defined by the valuation of C(X) defined by the zeros and poles along the divisor D).



Theorem 2.4. (/Bri89, Section 3.3]) Any divisor of X is linearly equivalent to a linear
combination of X1,..., X, and D, with « € R. Now, let D = Z:Zl a; X; + ZaeR aa Dy
be a Q-divisor of X.

1. D is Q-Cartier if and only if there exists a piecewise linear function hp : Ng — Q,
linear on each colored cone of Fx, such that for anyi € {1,...,m}, hp(z;) = a; and
for any o € Fx, hp(a),) = aq.

And D is linearly equivalent to 0 if and only if hp is linear on Ng.

Moreover, if D is a divisor, D is Cartier if and only if it is Q-Cartier and the linear
functions defined as above can be identified with elements of M.

2. Suppose that D is Q-Cartier. Then D is globally generated (resp. ample) if and
only if the piecewise linear function hp is convex (resp. strictly convex) and for any
a € R\Fx, we have hp(ay,) < aq (resp. hp(ay,) < aq).

Suppose that D is a Q-Cartier Q-divisor. We define the pseudo-moment polytope
of (X, D) to be the polytope Qp in Mg given by the following inequalities, where
X € Mg: (hp)+ x >0 and for any o € R\Fx, ao + x(a);) > 0.

Let vV := Y aer Ga@a, we define the moment polytope of (X, D) to be the polytope
Qp ="+ Qp.

3. Suppose that D is a Cartier divisor. Note that the weight of the canonical section of
D is . Then the G-module H°(X, D) is the direct sum (with multiplicities one) of
the irreducible G-modules of highest weights x +v° with x in Qp N M.

From now on, a divisor of a horospherical variety is always supposed to be B-stable,
i.e., of the form 7", a; X; + 3 cr taDa-

Theorem 2.5. ([Pas06, Theorem 0.3]) Let X be a projective horospherical variety and
let D be an ample Cartier divisor of X. Suppose that X is smooth.
Then D is very ample.

Since H D U and the unique U-stable lines of irreducible G-modules are the lines
generated by highest weight vectors, we deduce from Theorems 2.4 and 2.5 the following
result.

Corollary 2.6. Let X be a smooth projective horospherical variety and let D be an ample
Cartier divisor of X. Then X is isomorphic to the closure of the G-orbit of a sum of
highest weight vectors in P(@XGQDmMV(X +9)).

We should have V (x+v°)* instead of V (x+v?), but the corollary is still true as written
above, see [Pasl5, Remark 2.13].

From Theorem 2.4, we can also deduce a locally factoriality criterion.

Corollary 2.7. A horospherical variety X is locally factorial if and only if for any colored
cone (C,F) of Fx, C is generated by a basis of N and the map o : o — ay, induces an
injective map from F to this basis.
In particular if X is locally factorial, the Picard number of X is given by the following
formula
px =m+|R[—n=(Fx(1)| —n)+ R\ Fx|,

where Fx (1) is the set of edges (one-dimensional colored cones) of Fx.



Note that the criteria of Cartier, Q-Cartier, globally generated and ample divisors can
be also applied without the completeness assumption. In particular, Corollary 2.7 also
does not need the completeness assumption.

To write the smoothness criterion we need to give the following definition.

Definition 2.8. ([Pas06, Def. 2.4]) Let R; and R2 be two disjoint subsets of S. Let
I'r,ur, be the maximal subgraph of the Dynkin diagram of G whose vertices are in
Ri1URs.

The pair (R1, R2) is said to be smooth if, for any connected component I" of I'g, Ur,,

e there is at most one vertex of I' in Ro and,

o if & € Ry is a vertex of I'; then I' is of type A or C and « is a short extremal simple
root of I'.

Theorem 2.9. ([Pas06, Theorem 2.6]) Let X be a locally factorial horospherical variety.
Then X is smooth if and only if for any colored cone (C,F) of Fx, the pair (S\R,F)
s smooth.

Corollary 2.10. ([Pas06, Proposition 2.17]) Let X be a smooth horospherical variety.
Any G-stable subvariety of X is a smooth horospherical variety.

Remark 2.11. If X is a toric variety, Theorem 2.9 is trivial because locally factorial toric
varieties are smooth, or because for any colored cone (C,F) of Fx, the pair (S\R,F) is
necessarily (0, () (indeed the root system or the Dynkin diagram of a torus is empty).

2.2 Log MMP via moment polytopes

The MMP [Pasl5] and Log MMP [Pasl7] of horospherical varieties can be completely
computed and described by studying one-parameter families of polytopes. In this subsec-
tion, we recall the main results of this theory, as briefly as we can, in order to use them
in Section 5.

From the previous section, to any horospherical variety X, is associated a parabolic
subgroup P and a sublattice M of X(P); and moreover, any ample B-stable Q-Cartier
Q-divisor D defines a pseudo-moment polytope @ and a moment polytope Q. In fact,
the map (X, D) — (P, M, Q, Q) classifies polarized projective horospherical varieties in
terms of quadruples (P, M, @, Q)

Definition 2.12. A quadruple (P, M, Q, Q) is called admissible if it satisfies the following:

e P is a parabolic subgroup of GG containing B, M is a sublattice of X(P), Q is a
polytope of X(P)q included in :{(P)6 and @ is a polytope of Mg;

e there exists (a unique) v° € X(P)g such that Q = v + Q;
e the polytope Q is of maximal dimension in Mg (i.e., its interior in Mg is not empty);
e the polytope () intersects the interior of %(P)a

Example 2.13. Suppose that X(P) = Zw; @ Zwy and M = Zws, then @ and Q are
vertical segments of the same length, Q is in Qwsy and @ is in Q>pw; & Q>pws2 (but
not in Qws). In Figure 1, we draw three possible pairs (Q, Q) to get three admissible
quadruples (P, M, Q, Q) respectively corresponding to polarized varieties (X, D), (X, Do)
and (X', D), with Dy # Dy and X # X'.
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Figure 1: Some (pseudo-)moment polytopes

Proposition 2.14. ([Pas17, Corollary 2.10] with [Pas15, Propositions 2.10 and 2.11])

1. The map (X, D) — (P,M,Q,Q) is a bijection from the set of isomorphism classes
of polarized projective horospherical varieties to the set of admissible quadruples.

2. It induces a bijection between the set of G-orbits in X and the set of non-empty faces
of Q (or Q), preserving the natural orders of both sets. Also, the G-orbit in X asso-
ciated to a non-empty face F = 0O+ F of Q is isomorphic to a horospherical homoge-
neous space corresponding to (Pr, M) where Pp is the minimal parabolic subgroup
of G containing P and Mg is the mazimal sublattice of M such that (Pg, Mp, F, F)
is an admissible quadruple. Moreover (Pr, Mg, F, F) is the quadruple associated to
the (horospherical) closure in X of the G-orbit associated to F (polarized by some
Dp we do not need to explicit here).

Example 2.15. Consider the moment polytopes of Example 2.13. And suppose that D,
Dy and D' are very ample (if not it would be enough to consider multiples of the divisors
and of the polytopes).

Then X is the closure of G - [Vam, +2ms + V2w +3ws + V2w +4w,) I0 P(V (2001 + 2w09) &
V(2w1 +3w2) ® V(2w +4ws)) but also the closure of G+ [Ve, 4y + Ve 41, i1 P(V (01 +
w2)®V (wi1+2w2)). In the first case for example, one can easily check that there are exactly
two (closed) G-orbits in addition to the open one in X; moreover, they are G- [v2m, +20,] =
G/(P(w1)NP(w2)) and G - [Vom, +4w,] ~ G/(P(w1) N P(ws)), and they correspond to the
two vertices of the segment Q). Here, for both closed G-orbits, Pp = P and My = {0}.

Similarly, X’ is the closure of G - [Vaw; + V2m +ms + V2w, +20,] I P(V(2001) @ V(201 +
w2) @V (2w +2ws)). There are exactly two (closed) G-orbits in addition to the open one
in X', that is G - [vaw,] =~ G/P(w1) and G - [Vam, +2m,] = G/(P(w1) N P(w3)). Here, we
still have Mp = {0} for both closed G-orbits and Pr = P for the second closed G-orbit,
but Pr # P for the first one (X(Pr) = Zw).

From Proposition 2.14, we easily get the following result.

Corollary 2.16. Let (X, D) be a polarized projective horospherical variety and (P, M, @, Q)
be the corresponding admissible quadruple. Let F' be a non-empty face of Q (or Q) and Q
be the corresponding G-orbit in X. Then

dim(?) = dim(G/Pp) 4 rank(Mp) = dim(G/Pr) + dim(F).

We can also describe G-equivariant morphisms between horospherical G-varieties, in
terms of moment polytopes [Pasl5, 2.4]. We resume, very briefly, this description here.
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Figure 2: Moment polytopes and G-equivariant morphisms

Without loss of generality, we can reduce to dominant G-equivariant morphisms, i.e.
G-equivariant morphisms from a G/H-embbedding to a G/H'-embbedding where H C H’,
i.e., G-equivariant morphisms that extend the projection G/H — G/H'. In that case, we
have P C P’ and M’ € M. We keep the same notations as above for the data associated
to G/H and we use same notations with prime for the data associated to G/H'.

Let X be a projective G/H-embedding corresponding to an admissible quadruple
(P,M,Q,Q) and let X’ be a projective G/ H'-embedding corresponding to an admissible
quadruple (P’, M’,Q’, Q"). Then the projection G/H — G/H' extends to a G-equivariant
morphism from X to X if and only if for any non-empty face F of @, the set of facets (or
the corresponding halfspaces in Mg) and the set of walls of %(P)a that contain F' defines
naturally a non-empty face F’ of Q’. Moreover in that case the G-orbit of X corresponding
to F is sent to the G-orbit of X’ corresponding to F”.

Example 2.17. Consider the varieties X and X’ of Example 2.13. Each vertex of Q,
which is a facet, naturally correspond to a vertex of @’. But, the vertex 2wy of Q' is
contained in a wall of :{(P)(g and will correspond to the empty face of (). Then, here,
there exists a G-equivariant morphism ¢ from X to X’ but there is no such morphism
from X’ to X. Moreover, ¢ is an isomorphism outside one closed G-orbit where ¢ is the
projection G/(P(w1) N P(w2)) — G/P(w2).

To complete this example, consider some G/H of rank 2 such that P has a unique
fundamental weight ww. We draw in Figure 2, 3 moments polytopes of G/H and another
moment polytope of a horospherical homogeneous space G/H' of rank 1 with P/ = G
(in fact G/H' ~ C* and the segment corresponds to the variety P1). We also draw all
G-equivariant morphisms between the corresponding varieties. Note that this picture is
similar to Figure 8 with moment polytopes instead of pseudo-moment polytopes.

We also emphasis some vertices and some edges to illustrate images of G-orbits. More
precisely, if we focus at the G-orbits distinguished by a e, ¢y restricts to the projection
G/P(w) — pt. If we focus at the G-orbits distinguished by a non-dashed rectangle, ¢
restricts to the fibration P! — pt and ¢y restricts to the identity morphism P* — P, If
we focus at the G-orbits distinguished by a dashed rectangle, ¢y and qbg restrict to identity
morphisms and ¢; restricts to a fibration to a point.

Now we can state the description of the Log MMP for horospherical varieties in terms
of moment polytopes.
First we fix a basis of M (and consider the dual basis for V). Also we choose an order
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in {z1,...,2m}U{a); | @« € R}. Then we define a matrix A of size (m + |R|) x n whose
rows are the coordinates of the vectors of {z1,...,zn} U{a), | @ € R} in the chosen
basis.

Theorem 2.18. (/Pas17, Theorem 1.3 and Section 3])

Let X be a Q-factorial projective horospherical variety and let A be a B-stable Q-divisor
of X. Then for any (general) choice of an ample B-stable Q-Cartier Q-divisor D of X,
a Log MMP from the pair (X,A) is described by the following one-parameter families of
polytopes

Q°:={r e My | Az > B+eC} and Q° :=v° + Q°

where B, C and v = v° + ev! are such that, for any € > 0 small enough, Q° and Q¢ are
respectively the pseudo-moment and moment polytope of (X, D + e(Kx + A)).

Note that the matrices A, B and C can be easily computed. Indeed, A is given by the
primitive elements of the rays of the colored fan of X and the images of the colors of G/H;;
the coefficients of B are the opposite of the coefficients of D; and the coefficients of C are
the opposite of the coefficients of Kx + A. Also, the coefficients of v° and v' correspond
to the coefficients in front of the D,’s for D and Kx 4+ A respectively.

We can rewrite the conclusion of Theroem 2.18 more precisely as the existence of
rational numbers

0:= €0,0 <" < €0ky < €0kg+1 = €10 < -

e <€k < €Lk4+1 = €20 <t < €pk, < €pky+1 = €max

(with p > 1, and for any i € {0,...,p}, k; > 0) such that, (P, M, Q%, Q°) is an admissible
quadruple if and only if € € [0, €;42[, and for €, n € [0, €mq.[ the following three assertions
are equivalent:

e X¢is isomorphic to X" (where X and X" are the varieties associated to the admis-
sible quadruples (P, M, Q¢, Q°) and (P, M,Q", Q") respectively);

e the faces of Q¢ (or Q°) and Q" (or Q") are “the same”, in the following sense: up
to deleting inequalities corresponding to some z; with j € {1,...,m} but without
changing Q¢ and Q", we have for any set I of rows, the face of Q¢ corresponding to
I (defined by replacing inequalities by equalities for the rows in I) is non empty if
and only the face of Q" corresponding to I is non empty;

e there exists ¢ € {0,...,p} such that € and 1 are both in [e;0,€;1[, or both in
l€ik, € w1 with k& € {1,...,k;}, or both equal to € 5 with k € {1,... k;}.

Moreover, for any i € {0,...,p} and k € {1,...,k;} there are morphisms from X°¢
to X%+ with € < ¢} big enough and € > ¢;; small enough, defining flips. For any
i € {1,...,p}, there are morphisms from X¢ to X0 with € < ¢; o big enough, defining
divisorial contractions. Actually, divisorial contractions appear exactly when an inequality
corresponding to some z; with j € {1,...,m} becomes superfluous to define QF.

Also, there exists P’ and M’ such that (P’, M', Q¢maz Q¢ma=) is an admissible quadruple
associated to a variety X¢me= and such that there is a fibration from X€ to X¢mer with
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€ < €mag big enough. Moreover, the general fibers of this fibration is a horospherical
variety and can be described.

In fact all fibers could be described with the following strategy: consider a G-orbit
G/H" of X¢maz and list all G-orbits of X¢ with € < €4, big enough that are sent to
G/H" by the fibration, then if there is a unique biggest such G-orbit 2, the fibers over
G/H" are isomorphic to the closure of L” - v where L” is a Levi subgroup of H” and v is
the projectivization of a sum of highest weight vectors in 2. Note that in the paper, there
will always be such a biggest G-orbit.

All morphisms above are G-equivariant and images of any G-orbit can be described as
follows. To a face of Q€ (or Qe) we can associate the maximal set of rows for which equality
holds for any element x of the face (in the inequalities Ax > B + e¢C'). And similarly to a
set of rows we can also naturally associate a face of Q¢ (may be empty). For any € and ¢;
as above, for any face F€ of Q¢, we construct a face of Q%* by taking the maximal set of
rows associated to F'¢ and then the face F¢* associated to these rows. Then, since there
is a morphism ¢ from X€¢ to X%* the non-empty face F'F* corresponds to the G-orbit
image by ¢ of the G-orbit corresponding to F*.

Several examples illustrating Theorem 2.18, in rank 2, are given in Sections 5.2 and 5.4.

3 First combinatorial classification and first geometric de-
scription
3.1 Reduction to three cases

In this section, we only use Luna-Vust theory and Corollary 2.7 to reduce to the three
main cases of Theorem 1.1.

Lemma 3.1. Let X be a smooth projective horospherical variety with Picard group 72.
Then one the three following cases occurs (with notation of Section 2).

Case (0): n=0, |R| =2, Fx =0, and X = G/P.

Case (1): n > 1, R = Fx U{B}, there exist a basis (e1,...,en) of N and n integers 0 <
a; < -+ < ay, such that o induces an injective map & from Fx to {ei,...,en, €0 :=
—e1— - —en}, 0(B) = ares + -+ +ane, and

Fx ={Cr,F1) [ 1 £{0,...,n}}
where Cy is the cone generated by the e;’s with i € I, and Fr =6 1({e; | i € I}).

Case (2): n > 2, R = Fx, there exist integers r > 1, s > 1,0 < ay; < --- < a, and a basis

(Ui, ... up,v1,...,0s) of N such that o induces an injective map & from Fx =R to
{uo, oy Upy V1, ooy Vg1 by with ug := —uyp — -+ — up and ve4q = agjug + -+ - + apuy —
v — - — Vg, and

FX:{(CLJ,.FLJ) ‘ IQ{O,...,T} andjg{l,...,s—i—l}}

where Cy j is the cone generated by the u;’s with i € I and the v;’s with j € J, and
Fro=6"{w | iel}u{v | je€J}).
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Remark 3.2. If X is a toric variety, R = () then we are necessarily in Case (2), and the
lemma is already known [K1e88, Theorem 1], and X is the decomposable projective bundle
P(O® O(a1) ® --- & O(a,) over P*.

Proof. By Corollary 2.7, the map o induces an injective map from Fx to Fx(1) and the
Picard number of X is px = (|Fx(1)] — n) + |R\Fx|. But, since X and then Fx is
complete, [Fx(1)| —n > 0 with equality if and only if n = 0. (And |R\Fx| > 0.) Thus,
since px = 2 we distinguish three distinct cases:

Case (0): n =0 and |R\Fx| =2;

Case (1): |[Fx(1)| =n+1 and |[R\Fx| =1,

Case (2): |Fx(1)| =n+2 and |[R\Fx|=0.
We now detail each case.

Case (0): In the case where n = 0, X is the complete homogeneous variety G/P (and Fx = 0)).
And then |R| = 2.

Case (1): Consider the fan F := {C | (C,F) € Fx} associated to the colored fan Fy (in fact it
is the fan of the toric fiber Y of the toroidal variety X := G x¥Y obtained from X by
erasing all colors of X). Since X is locally factorial, the fan F is the fan of a smooth
toric variety of Picard number 1 (because |Fx(1)| = n + 1). Then it is well-known
that such a fan is the fan of the projective space P". In particular, there exists a
basis (e1,...,en) of N such that F = {C; | I C{0,...,n}} where eg := —e; —---—ey,
and Cy is the cone generated by the e; with i € I.

Denote by [ the unique element of R\Fx. Then, up to reordering the e;’s (for
i €{0,...,n}), we can suppose that o(f3) is in Cy .,y and equals ajeq + - -+ anpey
with 0 <a; <+ < ap.

Case (2): Asabove, consider the fan F. Since X is locally factorial, it is the fan of a smooth toric
variety of Picard number 2 (because |Fx(1)| = n+2). Then, by [Kle88, Theorem 1],

there exist intege}“s r>1,s>1,0<a; <---<a, and a basis (uy,...,up,v1,...,0s)
of N such that F = {C;; | I € {0,...,7}and J C {1,...,s + 1}}, where uy :=
—U] = —Up, Vsy1 = QUL+ - -+ apu —v1 —- - - — Vs and Cy s is the cone generated

by the u;’s with ¢ € I and the v;’s with j € J.

We conclude by the following facts: for any a € Fx and for any (C,F) € Fx, we have

a € F if and only if o(«) € C; and for any a € Fy, o(«) is the primitive element of an
edge of Fx (using again Corollary 2.7).

O

Remark 3.3. In section 5, we will use the MMP or the Log MMP to study and compare
geometrically all these varieties X. We can already describe some Mori fibrations from
these varieties, by using the following description of G-equivariant morphisms between
horospherical varieties in terms of colored fans ([Kno91]). Let G/H and G/H' be two
horospherical homogeneous spaces with H C H’, and denote by 7 : G/H — G/H' the
projection. We keep the same notations as before for the data associated to G/H and we
use same notations with prime for the data associated to G/H’. In particular, we have
M'C M, PC P and R C R. By duality, we also have a projection 7, : Ng — Ng.
Let X be a G/H-embedding with colored fan Fx and let X’ be a G/H'-embedding with
colored fan Fx,. Then the morphism 7 extends to a G-equivariant morphism from X to X’
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if and only if for any colored cone (C,F) € Fx, there exists a colored cone (C',F') € Fx
such that 7.(C) C C" and FNR' C F.

Case (0):

Case (1):

Case (2):

If X is a complete homogeneous variety G/ P of Picard group Z2, then the MMP gives
two Mori fibrations from X to the complete homogeneous varieties G/P; and G/ P»
of Picard group Z, where P; and P, are the maximal proper parabolic subgroups of
G containing B such that P = P; N P». Note moreover that G/P is a product if and
only if Aut(G/P) is not simple.

Let G/H' = X' be G/P(wp), ie. M' = {0}, P' = P(wp), Fx: = {({0},0)} (and
R’ = {B}). Then we can easily check the condition above to prove that there exists
a G-equivariant morphism from X to G/P(wg). Note that the general fiber of this
fibration is smooth horospherical of Picard group Z (in particular, it is homogeneous
or one of the two-orbit varieties described in [Pas09]).

Here Let P’ be the parabolic subgroup containing B (and P) such that R’ :=
Y{v; | j € {l,...,s+1}}). Let M’ be the sublattice of M orthogonal to
Zuy ® -+ ® Zu, C N. The pair (P, M’) corresponds to a horospherical homo-
geneous space G/H' with H' containing H. Also the dual lattice N’ of M’ is the
image of the projection from N to Zu; @- - -@®Zu,. We denote by v}, ..., v, ; the im-
ages of v1,...,vs41 in N, in particular v} | = —v] —--- —v}. And finally we denote
by Fx the colored fan {C’;,, 7)) | J C {1,...,s}} where C/} is the cone generated by
the v} with j € J, and F; = & 1({vj | j € J}). The colored fan Fy/ corresponds
to a G/H’-embedding X’. Then we can check the condition above to prove that
there exists a G-equivariant morphism from X to X', it is a Mori fibration. Note
that X’ and the general fiber of this fibration are smooth horospherical varieties of
Picard group Z (in particular, they are homogeneous or one of the two-orbit varieties
described in [Pas09]).

In the rest of the paper, in cases (1) and (2), we will denote this fibration by ¢ : X — Z.

3.2

Description via polytopes

We now describe X embedded in the projectivization of a G-module, by choosing the
smallest ample Cartier divisor of X and by applying Corollary 2.6. We first study the nef
cone of X, which is 2-dimensional.

Recall that any Cartier divisor of X is linearly equivalent to a B-stable divisor, and
any prime G-stable divisor corresponds to an edge of Fx that is not generated by some
o(a) with a € Fx, and any other B-stable prime divisor is the closure of a color of G/H.
Then in Cases (1) and (2), we have n + 2 prime B-stable divisors that we can denote
naturally as follows:

Case (1):

Case (2):

Dy1 = Dg; for any i € {0,...,n}, D; is the B-stable divisor corresponding to the
edge generated by e; (which equals D, with o € Fx = R\{8} if and only if the edge
is generated by o(«), and which is G-stable if not).

for any ¢ € {0,...,r}, D; is the B-stable divisor corresponding to the edge generated
by u;; and for any j € {1,...,s + 1}, Dj,, is the B-stable divisor corresponding to
the edge generated by v; (which equals D, with o € Fx = R if and only if the edge
is generated by o(«), and which is G-stable if not).

Proposition 3.4. In both cases (1) and (2), the nef cone of X is generated by Dy and
Dy, +1. In particular, Do + Dy11 is ample. Moreover (Do, Dp41) is a basis of Pic(X).

14



Proof. We begin by computing the piecewise linear functions hp, and hp, ,, associated to
these two Cartier divisors.

Case (1): Consider the basis (e],...,e}) of M that is dual to the basis (e1,...,e,) of N. Then
hp, is defined on Ng by: (hpgy)ic, =0if I = {1,...,n}; and for any i € {1,...,n},
(hpo)ic, = —€; where I ={0,...,i— 1,i+1,...,n}. And hp,,, =0.

n+1

Case (2): Consider the basis (u],...,uv],...,v}) of M that is dual to the basis (u1, ..., u,, v1,. ..

’ s

of N. Then hp, is defined on Ng by: for any J C {1,...,s+1}, (hpy)jc, , =0if [ =
{1,...,r}forany i € {1,...,7r}, (hpy)c; , = —u; where I = {0,...,i—1,i+1,...,7r}
and J = {1,...,s}; and, for any i € {1,...,r}, for any j € {1,...,s}, (hpy)ic,, =
—u; —a;vj where I = {0,...,i—1,i+1,...,rtand J ={1,...,j—1,j+1,...,s+1}.
And hp,, is defined on Ng by: for any I C {0,...,r}, (hp, y)ic,, = 0if J =
{1,...,s}; and for any I C {0,...,r}, for any j € {1,...,s}, (hp,\1)ic;, = —V]
where J ={1,...,5—1,7+1,...,s+1}.

By Theorem 2.4, one checks that Dy and D, 41 are globally generated but not ample.
We also check that for any a and b in Q, aDg + bD,, 41 is Cartier if and only if ¢ and b are
integers. O

Before applying Corollary 2.6, we reduce to the case where G is the product of simply
connected simple groups and a torus, with the following lemma.

Lemma 3.5. [Pas06, proof of Proposition 3.10] Let G' := [G,G] and let T be the torus
P/H. Then X is also a horospherical G' x T-variety. Moreover, if G' is the universal
cover of G', X is also a horospherical G' x T-variety.

Without loss of generality by the lemma, we now assume that G is the product G’
of simply connected simple groups and a torus T. In particular, P is the product of a
parabolic subgroup of G’ with T, and the characters of P are sums of weights of the
maximal torus of G’ and characters of T. Hence a basis of M ~ X(T) is of the form
(Xi+0i)ieq1,....ny such that (Xi)ieq1,....n) form a basis of M = X(T), and the 6;’s are weights
of the maximal torus of G'.

With these assumptions, we get the following result.

Lemma 3.6. The embbedding of X given by the ample Cartier divisor Do + Dy is:
Case (1):

n
X > PE@ Vi + @i+ (1+ a)wp)),
i=0
where xo =0, X1, ..., Xn are characters of T, and for any i € {0,...,n}, w; is either
wq if e; = o(a) with o € Fx or 0 if not.

Case (2):
s+1
X=P( P Voa+mi+ Y bl + @),
3,01,...,bs41 7j=1

where xo = Xn+1 =0, X1,- .., Xn are characters of T, and for anyi € {0,...,n+1},
w; s either wy, if u; or vi—, is o(a) with o € Fx or 0 if not; and where the sum is

taken over all s+2-tuples of non-negative integers (i,b1,...,bs+1) such that0 < i <r
and ZJSJ:F} bj =14 a; (with ap :=0).
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Proof. In each case, we describe the pseudo-moment polytope of (X, Dy + Dy41) in a
particular basis of M and then the moment polytope of (X, Dy + D,,4+1). Then we use
Corollary 2.6 to conclude.

Case (1):

Case (2):

By the previous lemma and the description of the images of colors, for any i €

{1,...,n}, the element e} is of the form x; + w; — wo + a;ws, where x1,..., X, are
characters of T and for any i € {0,...,n}, w; is either w, if ¢, = o(a) with o € Fx
or 0 if not.

The pseudo-moment polytope of (X, Dy + Dp41) is the simplex with vertices 0,

*

el,...,en. The weight of the canonical section of Dy + D)4 is @wg + wg, where g

is either w, if g = o(a) with o € Fx or 0 if not.

Hence, the moment polytope of (X, Do+ Dj,+1) is the simplex with vertices 0+ oy +
wg = Xo+wo+(14+ap)wg and (x;+w;—wo+a;wg)+(wo+wg) = xi+w;+(1+a;)wg
for any ¢ € {1,...,n}.

By the previous lemma and the description of the images of colors, for any i €
{1,...,7} the element u} is of the form x; + w; — wo + a;w,41 and for any j €
{1,...,s} the element vr is of the form x;4+; + @r4j — @n+1, Where x1,..., Xn are
characters of T, and for any i € {0,...,n+ 1}, w; is either w, if u; (with 0 < i <)
or v, (withr+1<i<n+1)iso(a) with a € Fx or 0 if not.

The pseudo-moment polytope of (X, Dy + D,11) is the polytope with the following
vertices: 0, uj,...,ur, vj,...,vs and uf + (a; + 1)11; for any 1 <4 < r and for any
1 < j < s. Note that the lattice points of this polytope are exactly 0, vj,...,v}
and for any 1 <7 < r all the points u; + Z;:l ij; where the b;’s are non-negative
integers such that Z;Zl bj < a;+1. Moreover, the weight of the canonical section of
Do+ D41 is wo+wop41, where wy (respectively wy,+1) is either w, if ug (respectively

vst1) equals (o) with a € Fx or 0 if not.

Hence, the moment polytope of (X, Dy + D,,41) is the polytope with vertices 0 +
@0+ @nt1 = Xo+ @0+ (1 +a0)(Xn+1+@nt1); forany i € {1,..., 7}, xi +wi+ (a; +
1) (Xnt1+@nt1); forany j € {1,..., s}, xo+@0+Xrtj+@rpj; and for any 1 <4 <7,
forany 1 <j <s, xi+wi—w@wo+ai@wn+1+(ai+1)(Xr+j+@rij—Tni1) + @0+ @nt1 =
Xi + @i + (@i + 1) (Xr+j + @ri)-

In particular, the lattice points of the pseudo-moment polytope translated by wg +
wpt1 are exactly the x; + w; + Zjﬂ b;j(Xr+j + @r4+;) where the sum is taken over

all s + 2-tuples of non-negative integers (i,b1,...,bs4+1) such that 0 < ¢ < r and
Z;i% bj =14 a;.
O

Recall that, by lemma 3.5, (x1,...,xn) is a basis of X(T). Hence, there exists a
subtorus S of T such that: (X;is)ie{1,....n},w;—0 1S a basis of X(§), and for any i € {1,...,n}
such that w; # 0, we have y;5 = 0.

Lemma 3.7. In both cases (1) and (2), X is also a horospherical G' x S-variety.

Proof. Consider Case (1). For any i € {1,...,n} such that w; # 0, the G-orbit and the
G’ x S-orbit of the highest weight vector vy, i w4+ (14a))w,; I Va(Xi + @i + (1 + a;)wp) ~
Varxs(xi + @i + (14 ai)wp) = Varxs(wi + (1 + a;)wg) are equal.

Case (2) is similar. O

We can replace x; 4+ w; with w,, such that
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if x;s = 0 and @; # 0, «; is a simple root of G’ (that is supposed to be a product of
simply connected simple groups);

S is a product of C*’s whose trivial simple roots are the «;’s with i such that x;g # 0
and w; = 0;

ifi=0o0rn+1, xs =0, and w; = 0, we have that «; is the trivial root of {1}.

It finally gives the following proposition.

Proposition 3.8. Let X be a smooth projective horospherical variety of Picard group 7>
as in Case (1) or (2). Then X is isomorphic to a smooth closure of a G-orbit of a sum of
highest weight vectors as follows where G is the product Gg X - - - X Gy of simply connected
simple groups, C* and {1}:

Case (1):

Case (2):

n

P(EP V(@a, + (1 + ai)wg)),
1=0

where

en>1;

e [ is a (not trivial) simple root of Go;
ap, ..., 0y are distinct simple roots (may be trivial) of G distinct from j3;

o forany ke {1,...,t}, Gy = {1} if and only if k = 1 and o is the trivial root
of Gu;

e and 0 =ag < a; <--- < a, are integers.
s+1
P( @ V(wai + Z bj (wa'r+j))7
3,b1,..,b5 41 j=1
where
e the sum is taken over all s + 2-tuples of non-negative integers (i,by,...,bs11)
such that 0 <i <r and ng bj =1+ a; (with ap :=0);

er>1,s>1landr+s=mn;
® a,...,apny1 are distinct simple roots (may be trivial) of G;

o for any k € {0,...,t}, G = {1} if and only if, k = 0 and oy is the trivial root
of Gy, or k =t and ayy1 is the trivial root of Gy;

e and 0 =ag < a; <--- < a, are integers.

These two cases of Proposition 3.8 justify the definition of two types of varieties. In
Case (2), we already only consider the case where s = 1 to simplify the definition ; we will
prove in Section 4.3 that we can reduce to this case.

Definition 3.9. Let G = Gy X - -+ X G¢ be a product of simply connected simple groups,
C* and {1} (with ¢ > 0).
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(1) Suppose Gy to be a simple group. Let  be a simple root of Gy (not trivial),
let n > max{1,t}, let ap,...,a, be distinct, eventually trivial, simple roots of G
distinct from 8 and let 0 = a9 < a1 < --- < a, be integers. Suppose also that, for
any k € {1,...,t}, G = {1} if and only if £ = 1 and «p is the trivial root of Gj.
Denote a := (ayp,...,a,) and a := (ag, ..., ap).

We define X'(G, 3, @, a) to be the closure of the G-orbit of a sum of highest weight

vectors in
P (@ V(wa, + (1+ w)m)) :
i=0

(2) Suppose t > 1. Let n > 2, let 0 = ap < a3 < --- < a,—1 be integers, and let

g, - - -, nt+1 be distinct, eventually trivial, simple roots of G. Suppose also that,
for any k € {0,...,t}, G = {1} if and only if, £ = 0 and «ag is the trivial root of
Go, or k = t and ;41 is the trivial root of G;. Denote a := (g, ...,an+1) and
a:=(ag,...,apn-1).

We define X2(G, a, a) to be the closure of the G-orbit of a sum of highest weight
vectors in
n—11+a;
P <@ EB V(@a; + bwa, + (14 a; — b)wan+l)> .
i=0 b=0
Remark 3.10. Up to reordering the Gi’s and taking ¢ minimal, we can assume that:

Case (1): the map {«ag,...,a,}\Ro — {1,...,t} is surjective and increasing, where Ry =
{ag | ag is a simple root of Go};

Case (2): the map {«ag,...,ant1} — {0,...,t} is surjective and increasing.

Example 3.11. We give here some examples of smooth horospherical varieties of types
X! and X2

Wi = Xl(EGX{O}X(C*XC*, ay(Eg), (a({0}), as(Es), a(C*), a(C*), a1 (Eg), a2(Es)), (0,0,1, 1,2, 2));
Wy = XQ(SLQ x SL3 x Spg % Spiny, (a1 (SL2), a1 (SL3), a1 (Spg), a1 (Spiny), a3 (Spiny)), (0,0, 1));

and Wi := X2({0} x C* x C* x SLy x {0}, (a({0}, a(C*), a(CT*), a(SLy), a({0})), (0,2, 3)).

We will see that W3 is the toric variety P(Op2 @ Op2(2) @ Op2(3)).

4 Reduction to the cases of Theorem 1.1

This section consists on defining the restricted conditions mentionned in Theorem 1.1, and
on proving that we can reduce the cases of Proposition 3.8 to the varieties X!(G, 8, a, a)
and X?(G, a, a) with these restricted conditions.
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4.1 Smooth horospherical varieties and G-modules

To prove Theorem 1.1 from Proposition 3.8, we replace sums of irreducible G-modules
into irreducible G-modules with G C G as soon as we can. Then we enlarge the group
G and we reduce to “smaller” cases (for example to horospherical varieties with smaller
rank). For this, we first need to apply the smoothness criterion to X (Theorem 2.9), which
comes from the fact that horospherical G-modules (i.e. G-modules that are horospherical
as varieties) are the C*-modules C, the SLg-modules V(w;) = C? and Sp,-modules (with
d even) V(w;) = C? And then we use easy facts as “the SLg x SL.-module C? @ C¢ is
isomorphic to the SLg .-module C4+e”.

As in [Pas09, Theorem 1.7], the smoothness criterion reveals 8 configurations including
the 5 configurations that give the five families of horospherical two-orbit varieties corre-
sponding to non-homogeneous smooth projective horospherical varieties of Picard group
7. We recall these 8 configurations in the following definition.

Definition 4.1. Let K be a simple algebraic group over C and let 7, § be two simple
roots of K.
The triple (K,7,d) is said to be smooth if (type of K,~,d) is one of the following 8

cases, up to exchanging v and 0 (with the notation of Bourbaki [Bou75]).
1. (Ap, a1, ayy,), with m > 2
2. (Ap, i, 1), withm >3 and i € {1,...,m — 1}

By Qm—1, i), with m > 3

Cm, @y 1) with m > 2 and i € {1,. -1}

b

y Q—1, Oy ), with m >4

7. F4, a9, Otg)

(
(
(
4. (B3, a1, 03)
(
(Dm
(
8.

G2, 01, 02)

We say that (type of K,~,d) is smooth of two-orbit type if it is one of the cases 3, 4,
5, 7 or 8 above.

Remark 4.2. The smooth triples of two-orbit type correspond bijectively to the isomor-
phism classes of non-homogeneous projective smooth horospherical varieties with Picard
group Z. These varieties have two orbits under the action of their automorphism groups,
which are given in [Pas09, Theorem 1.11] and justify that all these varieties are distinct.

Here we also need to introduce another “smooth object” (only used in Case (1)).

Definition 4.3. Let K be a simple algebraic group over C and let 8 be a simple root of
K and let R be a subset of simple roots of K distinct from . Let n be a non-negative
integer. Denote by L the Levi subgroup of the maximal parabolic subgroup P(wg) of K,
then the semi-simple part of L is a quotient by a finite central group of a product of simple
groups L', ..., L7 (with ¢ > 0).

The quadruple (K, 3, R,n) is said to be smooth if

1. n =1, R = {v,6} such that v and § are simple root of the same L¥ so that the triple
(L¥,~,d) is smooth;
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2. or for any k € {1,...,q}, at most one simple root of LFisin R, and if vy € R is a

simple root of Ly, then Ly is of type A or C' and + is a short extremal simple root
of Lk.

We can list all smooth quadruples (K, 3, R,n) (see the appendix). We remark, in par-
ticular, that R is at most of cardinality 3.

We can now define the restricted conditions that permit to state Theorems 1.1 and 1.3.

Definition 4.4. (1) Let X = X!(G,3,a,a) as in Definition 3.9. Recall that Ry is
the maximal subset of {ap,...,a,} consisting of simple roots of Gy. We say that
X satisfies the restricted condition (a), (b) or (c) respectively if it satisfies all the
following properties including (a), (b) or (c¢) respectively.

e The quadruple (G, 3, Rp,n) is smooth.

o If Ry is empty, then Gy is the universal cover of the automorphism group of
G/P(wg).

e If i < j and a; = a; then a; € Ry. Moreover, if o;; and «; are in Ry, we suppose
them to be ordered with Bourbaki’s notation as simple roots of Gjy.
e One of the three following cases occurs.

(a) We have n = t = 1, ag and a3 are both simple roots of G; so that the
triple (G1, ap, 1) is smooth; in particular, Ry = () and ag < ag.

In the two next cases, the map {ag,...,an}\Ro — {1,...,t} is surjective
and strictly increasing, and for any k € {1,...,t}, either Gy, is isomorphic
to some SLg, and «y, is the first simple root of Gy, or Gy, is isomorphic to
C* or {1} and «, is the trivial simple root of Gj.

(b) The simple root «,, is not trivial (in particular if a,—; = a,).
(¢) The simple root a, is trivial (and then a,—1 < ay,).

(2) Let X = X*(G,a,a) as in Definition 3.9. We say that X satisfies the restricted
condition (a), (b) or (c) respectively if it satisfies all the following properties including
(a), (b) or (c) respectively.

e Wehave 0 = ag < a1 < --- < ay.

e The triple (G, an, apt1) is smooth of two-orbit type; in particular, «, and
ap+1 are both simple roots of G¢) and «y, ..., a,—1 are simple roots of Gy x
Gy x - x Gy_q.

e One of the three following cases occurs.

(a) We have n =2, t = 1 and the triple (G, ap, 1) is smooth.

In the two next cases: t = n, the map {ag,...,an—1} — {0,...,t — 1}
is surjective and strictly increasing; and for any i € {1,...,t}, either G;
is isomorphic to some SLg4, and oy the first simple root of Gj;, or Gj is
isomorphic to C* or {1} and «; is the trivial simple root of G;.

(b) The simple root «,_1 is not trivial.
(¢) The simple root a,_1 is trivial.
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Remark 4.5. In Theorem 1.1, the decomposable projective bundles over projective spaces
are the horospherical varieties X in Case (1) with restricted condition (b) or (c), and
such that Ry = () and wpg is the first simple root of Gy = SLg4, for some dy > 2 (and
0<a; <---<ap).

Example 4.6. The three varieties given in Examples 3.11 do not satisfy the restricted
condition. Indeed, for W7 we have as = a3 but a3 is not not a simple root of Gy. For Wj,
we have ap = a1 and Go = Spg. And for W3, (G, ap, py1) is not smooth of two-orbit
type.

But we will prove in the rest of the section that these three varieties are isomorphic to
horospherical varieties of type X! or X2 satisfying the restricted condition. More precisely,

W1 ~ XY (Eg x {0} x SLa, a4(Fs), (a({0}), a5(Es), a(SLa), a1 (Es), a2 (Es)), (0,0, 1,2, 2))
which satifies the restricted condition (b);

Wa ~ X?(SLs x SLg x Spiny, (a1 (SLs), a1 (SLg), a1 (Spin; ), a3(Spiny)), (0, 1))
and satifies the restricted condition (b);

and W3 := X' (SL3 x{0} x C* x C*, a1 (SL3), (a({0}), a(C*), a(C*)), (0,2, 3))

and satifies the restricted condition (c).
We can give other examples satisfying the restricted condition in Case (1) (a): for any
Go and 3,
Xl(GO X SL4, B, (()41(8L4), 053(SL4)), (O, 1));

in Case (2) (a):
X*(SLy x Spe, (@1 (SLa), a2(SLa), a2(Sps), a3 (Sps) ), (0, 1));
and in Case (2) (¢):
X2({0} x C* x Fy, (a({0}), a(C*), a2(Fy), as(Fy)), (0, 1)).

We begin by applying the smoothness criterion to get some part of the restricted con-
dition.

We suppose that X is as in Proposition 3.8. Recall that the colored fans F! and F? of
the horospherical varieties in Cases (1) and (2) respectively are as follows.

The colored fan F! is the complete colored fan whose maximal colored cones are gener-
ated by all u, ..., u, except one and with all possible colors except 8, where (u1, ..., u,)
is a basis of N and ug = —u; — -+ — u,. Recall also that the map o is injective from
the set R\{B} of colors of the horospherical variety to {ug,...,u,} and o(8) = B), is
ajul + -+ Ay

The colored fan F? is the complete colored fan whose maximal colored cones are

generated by all wg,...,ur,v1,...,0s41 except one u; and one v;, and with all possi-
ble colors, where (u1,...,uy,v1,...,0s) is a basis of N, ug = —uj; — -+ — u, and vy =
ajuy + - - -+ ayu. — vy — - - - — vg. Recall also that the map o is injective from the set R of
colors of the horospherical variety to {ug,...,u,,v1,...,vs}.

Lemma 4.7.
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Case (1):

Case (2):

The quadruple (G, 8, Ro,n) is smooth.

If there exist 0 < i < j < mn such that o; and o are simple roots of the same simple
group Gy, with k € {1,...,t} thenn=1,i=0and j =1 (alsot =k =1). Moreover
in that case, the triple (G, o, o) is smooth.

If not, for anyi € {0,...,n}, the simple root c; is either trivial or in Gy or the short
extremal simple root of one of a simple group Gy with k € {1,...,t} that is of type
A orC.

If there exist 0 < ¢ < j < n+ 1 such that o; and o are simple roots of the same
simple group Gy with k € {0,...,t} then eitherr =1,i=0and j =1, or s =1,
i=mn and j =n+ 1. Moreover in that case, the triple (G, a;, oj) is smooth.

For any i € {0,...,n}, such that the simple root o is the unique o of a simple

group Gy, with k € {0, ...,t}, the root v is either trivial or the short extremal simple
root of Gy, that is of type A or C.

Proof.

Case (1):

Case (2):

With notation of Definition 4.3 (with K = Gj), suppose v and § are two simple
roots of the same L7. If n > 1, then there exists a maximal colored cone of Fyx
that contains vy, and dy,. By applying Theorem 2.9, we get a contradiction. Then
n = 1 and applying Theorem 2.9 to the two one-dimensional colored cones of Fx, we
have that the pairs (Ro\{3,4},7) and (Ro\{B,7},d) are smooth, so that (L’,,?)
is smooth (from a case by case study done in [Pas09, Proof of Theorem 1.7]).

Suppose that « is the unique simple root of L7 in Ry. By applying Theorem 2.9 to the
colored cone (Q>par),, {a}) we get that L7 is of type A or C and « is a short extremal
simple root of L7. This finishes the proof of the smoothness of (Go, 8, Ry, n).

If there exist 0 <14 < j < n such that o; and «; are simple roots of the same simple
group Gy with k € {1,...,t} then as above Theorem 2.9 implies that n = 1 and
(Gk, @i, o) is smooth. The fact that i =0, j =1 and ¢t = k = 1 is obvious.

Now, let i € {0,...,n} such that the simple root ¢ is the unique a; of a simple group
Gy with k € {1,...,t} and suppose that «; is not trivial. Apply again Theorem 2.9
to the colored cone (Q>oay,, {a}) to get that «; is the short extremal simple root
Gy, with k € {1,...,t} that is of type A or C. It finishes the proof of the lemma in
Case (1).

Suppose there exist 0 < ¢ < j < n+1 such that o; and o are simple roots of the same
simple group Gy, with k € {0,...,t}. Then Theorem 2.9 implies that (Gy, o, o) is
smooth (still from the case by case study done in [Pas09, Proof of Theorem 1.7]).
But it also gives a contradiction if there exists a maximal colored cone of Fx that
contains az\'{M and a}f a- This contradiction occurs if and only if 0 < ¢ < r and
r+1<jij<n+4+l,or0<ij<randr>2,orr+1<ij<n+1ands>2.

We conclude the proof of the lemma in Case (2) as in Case (1).

O

Now we list different ways to replace sums of irreducible G-modules into irreducible
G-modules with G C G.

Lemma 4.8. Let 7 > 1. Fori € {1,...,7}, let G; be C*, SLy, (with d; > 2) or Spy, (with
d; > 2 even). If G; = C* set d; = 1 and @} the identity character of C*. If not, set o}
the first fundamental weight of G;. Let G = Gy X - -+ X G.
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(a) Let G = SLgq where d =dy + --- + d,.
Then Vg(w1) = @, Va(@) and G- (37, vh,) CG - vy,

i=1 Y1
(b) Let G =SLg where d =dy +---+dr + 1.

Then V(@) = Va(0) @ @7, Va(wm!) and G- (14 X7, vk, ) C G- ve,, where 1 is
the unit in the trivial G-module V5 (0) = C.

With notation of Bourbaki [Bou75] (we put primes to write differently fundamental
weights of G from those of G).

(¢) Let G = SLy (with d > 3) and G = SOgq. Then Vi (w)) = Va(wi) @ Va(wi—1) and
G (Ve + V) CG gy

(d) Let G = SLq (with d > 4), G = SLg1 and 1 < i < d—2. Then Vg(wj,,) =
Va(wmi) ® Va(wiy1) and G - (v, + vy, ) C G- Ut -

1

(e) Let G = Spinyg (with d > 4) and G = Spingg, . Then Vg(w)) = Va(wi-1) D Va(wq)
and G - (de,l + de) cG- Vg, -

Moreover in each case, the projectivizations of the G-orbit and the G-orbit have the
same dimension, in particular the two projective varieties defined as the closure of these
two orbits in the corresponding projective spaces are the same.

Remark 4.9. 1. In the first case of Lemma 4.8, with 7 = 1 we have in particular that,
for d even, Vg, (1) = Vsr, (ww1). Note also that Spy /P(w1) = SLq /P(w1)(=P*1).

2. Cases (c), (d) and (e) correspond to the triples of Definition 4.1 that are not of
two-orbit type.

Proof. The first two items are easy and left to the reader.
The last three items are given in [Pas09, Propositions 1.8, 1.9 and 1.10]. O

In Case (2), we need the following generalization of Lemma 4.8.

Lemma 4.10. Let a € N*.

Let 7 > 0. Fori € {0,...,7}, let G; be C*, SLy; (with d; > 2) or Spy, (with d; > 2
even). If G; = C* set d; = 1 and w! the identity character of C*. Else set w! the first
fundamental weight of G;. Let G = Go x -+ X G.

(a) Let G = SLy where d =do+ ---+d;. Then

T

Vq;(awl): @ VG(Zbiwi)y

by sbr i=0

where the sum is taken over all (T + 1)-tuples of non-negative integers (bo,...,br)

such that Y7 o b; = a. And

S ORI E.
bo,...,br

23



(b) Let G = SLgq where d =dy+---+d, +1. Then

CLWl @ VG szwl

bo,..,br

where the sum is taken over all (T + 1)-tuples of non-negative integers (bo,...,br)
such that >~ o b; < a. And

6| T vprpnet | €6
b07~'~7b7’

With notation of Bourbaki [Bou75] (we put primes to write differently fundamental
weights of G from those of G).

(¢) Let G = SLy (with d > 3) and G = SOyy. Then

Ve (awh) = @ Va(bwi + (a — b)wg—1) and G - (Z Ubw1+(a—b)wd1> C G - Vgt -
b=0 b=0

(d) Let G =SLg (withd>4), G =SLgt1 and 1 <i<d—2. Then

awz+1 @ VG bwl - a)wi—i-l) and G - (Z vbwi+(a—b)wi+1> cG- an;Jrl .
b=0

(e) Let G = Spiny, (with d > 4) and G = Spingy, ;. Then

V((;(aw(/i) = @ Va(bwg—1 + (b—a)wy) and G - (Z Ubwd1+(b—a)wd> cG- Vaw!,-
b=0 b=0

Moreover in each case, the projectivizations the G-orbit and the G-orbit have the same
dimension, in particular the two projective varieties defined as the closure of these two
orbits in the corresponding projective spaces are the same.

Proof. Remark that for a = 1 the lemma is Lemma 4.8. For any a > 1, we denote by V,
the G-module that we consider in each case.

Consider the horospherical G-variety X defined as the closure of the G-orbit of a sum
x1 of highest weight vectors in P(V}): it is a smooth projective variety with Picard group
Z (it is isomorphic to P4~1, P41 the quadric Q*¢~2, the Grassmannian Gr(i 4+ 1,d + 1),
Spin(2d + 1)/P(wq) respectively). Moreover Vi* is the G-module of global sections of
Ox(1). And, for any a > 1, the G-module V* is the set of global sections of Ox(a). But,
in each case, X is also a homogeneous projective G-variety G/P(w) (with w = w;, w,
wy, w;,, and @), respectively) by Lemma 4.8, then V, is also the irreducible G-module
Ve (aw).

Also, the image of z; in P(V,) is the projectivization of a highest weight vector in
Vi (aw) for a good choice of a Borel subgroup of G (because G - 21 is the homogeneous
projective G-variety G/P(w)). O
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4.2 Proof of Theorem 1.1 in Case (1)

A first part is already proved by Proposition 3.8 and Lemma 4.7, in particular X is
embedded as the closure of the G-orbit of a sum of highest weight vectors in

P:=P <é V(wa, + (1 + ai)w5)> .
=0

It remains to prove that we can suppose that

— G is the universal cover of the automorphism group of Go/P(wg) if Ry is empty;
— if i < j and a; = a; then a; € Ry;

— and some groups Gy, of type C' can be replaced by groups of type A.

eo. If Ry is empty and Gy is not the universal cover of the automorphism group
of Go/P(wg), then Go/P(wg) is isomorphic to G{/P(wg) where Gf is the universal
cover of Aut(Go/P(wpg)) and (Go, 8, Gy, 5') is one of the following: (Spa,,, @1, SLom, @1),
(Go, @1, Sping, w1 ), or (Sping,, 1, @m, SPily,, 19, Wm OF Wm41). In any case, Vg, (wg) ~
Ver (wg) and Go - vw, ~ Gf - U - Hence, the fact that Ry is empty implies that
D Va(wa, + (1 +a;)wg) ~ @B Vo(wa, + (14 ai)ws) where G = G x G1 x - -+ X Gy,
and X is isomorphic to the closure of the G-orbit of a sum of highest weight vectors in

P:=P (@ Vi (wa, + (1+ ai)wﬁl)) :

1=0

e. Suppose that there is 0 < ¢ < j < n such that «; and «; are simple roots of the
same simple group among G, ...,G:. Then by Lemma 4.7, we have n =1,i =0, j =1
(also t = 1) and the triple (G, a4, ;) is smooth. In particular, X is embedded as the
closure of the G-orbit of a sum of highest weight vectors in

P (V(@ae + @p) ® V(wa, + (1 4 a1)wp)) .

If ay = 0, the G-module V(wy, + wg) ® V(wa, + (1 + a1)wg) is isomorphic to the
tensor product of the Go-module V(wg) by the Gi-module V(wq,) ® V(wa, ), so that
X is the product of G/P(wg) by the smooth projective horospherical variety of Picard
group Z defined as the closure of the Gi-orbit of a sum of highest weight vectors in
P(V(@ao) ® V(wa,))-

We conclude that if X is not a product, X is as in Case (1a) (with a; > 0).

From now on, we suppose that there is no 0 < i < j < n such that o; and «; are
simple roots of the same simple group among Gi, ..., G;.

e. Suppose that there exists 0 < i < j < n such that a; = a; and both «; and «; are
not simple roots of Gy.

Up to reordering, assume that a; and «; are simple roots of G; and G (t > 2). Note
that if ¢ = 0 and «ayp is trivial, G; = {1}. By Lemma 4.7, G; and Gy are {1}, C* (d =1
in these two cases), SLg, (with dj, > 2) or Sp,, (with d, > 2 even) and «y, respectively
a;j, is either an trivial root or a short extremal root of G, respectively Gs.

Let G = Gp x G x -+ X G¢ X SLg, +4,- By Lemma 4.8 ((a) if i > 0 or ag is not trivial
and (b) if not), the G-module V (wy, + (1 + a;)wg) © V(wa; + (1 + a;)wg) is isomorphic
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to the G-module V((1 + a;)wg) ® CH1792. And X is a subvariety of the closure X of the
G-orbit of a sum of highest weight vectors in IP under the action of G.

We can now compare the dimension of the open G-orbit 2x of X with the dimension of
the open G-orbit of X. Indeed €2x is isomorphic to a horospherical homogeneous space of
rank n — 1 over ((GO X Gy XX Gt)/(PﬁGO X Gy X+ X Gt)) X (SLd1+d2 /P(wl)), while
G/H is of rank n over ((Gop x Gz X -+ x Gt)/PN(Gyx G3 x -+ x Gy)) X ((G1 x G2)/PN
(G1 x G2)). But the dimension of SLg, 14, /P(w1) is di + d2 — 1 while the dimension
of (G1 x G2)/P N (G1 x Ga2) is (d1 — 1) 4+ (d2 — 1). Hence Qx and G/H have the same
dimension, so that X = X.

Then we can replace, without changing X, the product of the two simple groups
corresponding to two simple roots «; and «; with a; = a;, with a unique simple group of
type A. Note that n decreases by this change. (Also note that, if i = 0 and «y is trivial
then the new «y is not trivial any more.)

With similar arguments, we can also replace any group Gy, ..., G, of type C' and that
contains a unique simple root «;, by a group of type A.

e What we did just above also works in the cases where n =1, a1 =0, ap and a7 are
simple roots of G; and Gy (and ¢t = 2). In that case, it proves that X is the closure of
the SLy xGo-orbit of a highest weight vector in P (C% @ V (wg)) . Hence, in that case, X
is isomorphic to P41 x Gy /P(wp).

Hence, we conclude the proof by iteration.

4.3 Proof of Theorem 1.1 in Case (2)

A first part is already proved by Proposition 3.8 and Lemma 4.7, in particular X is
embedded as the closure of the G-orbit of a sum of highest weight vectors in

s+1
P:=P @ V(wa, + ijwarﬂ) )
1,015,051 Jj=1
where the sum is taken over all s + 2-tuples of non-negative integers (i,b1, ..., bs4+1) such

that 0 <1 < r and Z;iibjzl—i—ai.

It remains to prove that we can suppose that

— s =1, ap, ap41 are both simple roots of Gy and (G, o, a11) is smooth of two-orbit
type;

—0<a < <ay;
— and some groups Gy, of type C' can be replaced by groups of type A.

e Suppose first that s > 1, or s = 1 and a,, a,+1 are not simple roots of the same
simple group Gy. Up to reordering and applying Lemma 4.7, for any j € {1,...,s}, ar4;
is either an trivial root of G;_,4; that is C* or {1}, or a short extremal simple root of
Gi—s4; that is of type A or C. Moreover, the simple groups Gi—s41,...,G¢ contain no
other oy with i € {0,...,7}. Also, Gi—sy; = {1} if and only if j = s and «a,, is trivial.

We now apply Lemma 4.10 ((a) if a1 is not trivial and (b) otherwise). Hence, there
exists d < 2 such that, with G C G := Gy x - -+ x Gy_s X SLg, we have

s+1 T
P=P( @ V@)oV(Y bwa,,)|=F (@ Vo(a,) ® Va((1 + a»wl)) ,
j=1

2,b1,...,bs41 1=0
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X is a subvariety of the closure X of the G-orbit {2x of a sum of highest weight vectors in
P, and dim((Gy41-s X -+ X G)/P N (Gyp1-5 X -+ X G) = d — s — 1. In particular the
dimension of Qx (which is horospherical of rank ) equals the dimension of G/H. Hence,
X = X. Now remark that X is a horospherical variety as in Case (1).

e From now on, we suppose that s =1 (and n = r + 1), and that a,,, a,41 are both
simple roots of Gy (up to reordering). In particular, X is of type X?(G, a, a) and then is
embedded as the closure of the G-orbit of a sum of highest weight vectors in

n—1 1+a;
g <@ @ Vi, + bwa, ., + (1+ai— b)war+2>> .

=0 b=0

Note now that for any k € {0,...,t}, G = {1} if and only if £ = 0 and «y is trivial.

Recall that, by Lemma 4.7, «q,...,q, are not simple roots of G; and the triple
(G, any apt1) is smooth. Then X is embedded as the closure of the G-orbit of a sum
of highest weight vectors in

n—11+a;
P=P (@ @ V(wa,) @ V(bwa,,, + (14 a; — b)war+2)> :

=0 b=0

If (G, any aipt1) is not of two-orbit type, we can apply Lemma 4.10 ((c), (d) or (e)) to
get G C G := Gy x --+ X Gy—1 X Gy such that P =P (P;_, Ve(wa,) @ Ve((1+ ai)w)), X
is a subvariety of the closure X of the G-orbit Q2x of a sum of highest weight vectors in PP,
and dim(G¢/P N Gt) + 1 = dim(G;/P(w)). In particular the dimension of Qx (which is
horospherical of rank r) equals the dimension of G/H. Hence, X = X. And remark that
X is a horospherical variety as in Case (1).

e Now suppose that » > 1, or r = 1 and ag, a; are not simple roots of the same simple
group.

Let i #4" in {0,...,r} such that a; = a;. Up to reordering and applying Lemma. 4.7,
a; and oy are, trivial or short extremal, simple roots respectively of Gy and G that are
C*, {1} or simple groups of type A or C. Moreover Gy and G contain no other ay’s.

We can apply Lemma 4.8 ((a) if ¢ > 0 or ayp is trivial and (b) if not) to get G C G :=
SL; xGq - -- x Gy such that

1+ayp

P=P|| P P Ve(@wa) @ Velbwa,,, + 1+ ap — b)wa, )
ki3 b=0

14a;
® <G§ Ve (@) ® Vo (bwa, ., + (1+ai — b)ww))) :
b=0

X is a subvariety of the closure X of the G-orbit {2x of a sum of highest weight vectors
in P, and dim((Go x G1)/P N (Go x G1)) + 1 = d — 1. In particular the dimension of Qx
(which is horospherical of rank (r — 1) + 1) equals the dimension of G/H. Hence, X = X.
Now remark that X is either a horospherical variety as in Case (2) of rank one less than
X, or a horospherical variety as in Case (1) if r = 1.
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With similar arguments, we can also replace any group Gy, ...,Gi—1, of type C and
that contains a unique simple root «a;, by a group of type A.

e By iteration of the above process, we can now assume that 0 < a1 < --- < a,, or
that r = 1 (and ¢t = 1) and «p, oy are two simple roots of Gy. In the second case, note
that by Lemma. 4.7, the triple (Gg, o, ) is smooth.

Suppose r = 1, «agp, a7 are two simple roots of Gy and that a; = ap = 0. Then, X is
the closure of the Gy x G1-orbit of a sum of highest weight vectors in

P=P ((VGO (wao) D VGO (wfn)) ® (VG1 (waz) ® VGI (was))) :

Hence in that case, X is the product of two varieties: the closure of the Gg-orbit of a sum
of highest weight vectors in P ((Vig, (wa,) ® Vi, (wa,))) and the closure of the Gy-orbit of
a sum of highest weight vectors in P ((Vig, (wa,) & Vi, (wasy)))-

Hence, in any case we can assume that 0 < a1 < --- < a,. This finish the proof of
Theorem 1.1.

5 The MMP and Log MMP for smooth projective horo-
spherical varieties of Picard group 7>

The main goal of this section is to prove Theorem 1.3. For this we apply the Log MMP
from the horospherical varieties X! and X?2.

The principle of the Log MMP is the following.

We begin with a pair (X,A) where X is a not too singular projective variety and
A is a Q-divisor such that Kx + A is Q-Cartier. We want to contract curves having
negative intersections with Kx 4+ A in order to get a new variety with smaller Picard
number. In general, we can do this by choosing an extremal ray (whose curve have negative
intersections with Kx + A) in the cone of effective curves up to numerical equivalence.

In our context, note that this cone is two dimensional and then has two extremal rays;
this explains why we have two ways to do the Log MMP.

After contracting a curve it mays happen that the new variety is too singular, so that
we have to partially desingularize it in a natural and unique way; we call this a flip.

To continue the program, we have to choose again an extremal ray in the cone of
effective curves of the new variety, until we finish with a minimal model (when there is
no curve with negative intersections with Kx + A) or a fibration (when the dimension
decreases).

For horospherical varieties, we can compute a Log MMP to the end just by choosing an
ample divisor at the beginning (and not an extremal ray at each step), and by considering
a one-parameter family of polytopes (Theorem 2.18).

5.1 Generalities

Let X be a smooth projective horospherical variety with Picard group Z2. Here, we
suppose that X is as in Case (1) or (2) of Lemma 3.1 (or Theorem 1.1).

By Proposition 3.4, up to linear equivalence, the ample Cartier divisors of X are of
the form D = dgDg + dn4+1Dn+1 with positive integers dy and dj,+1.

We can apply [Pas15] to the polarized variety (X, D) and obtain a description of the
MMP from X, via moment polytopes (if X is Fano, we obtain two different paths of the
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program depending on the choice of dy and d,1; if X is not Fano, we obtain a unique
path of the program).

Moreover, we can also choose a B-stable Q-divisor A of X and apply [Pasl7] to the
polarized pair ((X,D),A) and obtain a description of the Log MMP from (X,A), via
moment polytopes as described in Section 2.2. To get a uniform Log MMP for any smooth
projective horospherical variety with Picard group Z2, we choose D = Dy + D,,,1 and
A = _Di —KX for 1 € {O,n+1}

Remark 5.1. In Case (1), an anticanonical divisor of X is (see for example [Pas08,
Proposition 3.1})

n n n
—Kx = Z b;D; + bﬂDﬁ ~ (Z bi)Do + (bg — Z aibi)DnH,

i=0 i=0 i=0
where b; = 1 if D; is G-stable, b; = by, > 2 if D; is the color D,, and bg > 2 (recall that
Dg = Dyy1). In particular, X is Fano (i.e., —Kx ample) if and only if bg > >~ | a;b;.

To describe the MMP from X we could choose the ample divisor D = (37", b;) D1 +

(bg+1)Dg, so that D+ €K x is ample for any € € [0,1[ and D+ Kx ~ (3.7 ;a;b;+1)Dg is
not ample but globally generated. Then, for that choice of D, the MMP from X consists
of the Mori fibration to G/ P(wg) described in Remark 3.3.
Moreover, this Mori fibration is also the unique contraction of the Log MMP obtained
with the choices D = Dy + D41 and A = —Dy — Kx in Theorem 2.18 (in that case, Q'
is a multiple of wg).

In Case (2), an anticanonical divisor of X is

s+1 s+1 r

—KX = Z b'LDz + Z br+jD7"+j ~ (Z bl)D(] + (Z br+j - Z aibi)DnJrla
=0 j=1 =0 j=1 =0

where b; = 1 (respectively b1 ;) if D; (respectively D,;) is G-stable and b; = by, > 2
(respectively by = ba,,; > 2) if D; is the color D,, (respectively D, ; is the color Dy, ;).
In particular, X is Fano if and only if Zjﬂ brgj > > i aib;.

To describe the MMP from X we could choose the ample divisor D = (};_,b;)Do +
(1+ ng by4j)Dnt1, so that D + eKx is ample for any € € [0,1] and D + Kx ~ (1 +
> i_oibi) Dyt is not ample but globally generated. Then, for that choice of D, the MMP
from X consists of the Mori fibration ¢ from X to Z described in Remark 3.3.
Moreover, this Mori fibration is also the unique contraction of the Log MMP obtained
with the choices D = Dy + Dj41 and A = —Dy — Kx in Theorem 2.18 (in that case, Q'
is a simplex of dimension s).

Hence, in both cases, we will describe the Log MMP obtained with the choices D =
DO + Dn+1 and A = _Dn+1 — KX.

In the next four subsections, X is one the varieties of Theorem 1.1 in Case (1) or (2).
We begin by constructing the families of polytopes for the log pairs (X,A = =D, 11— Kx)
with the choice of ample divisor D = Dy 4+ D, 11, and then we describe in detail the Log
MMP’s obtained with these families.

5.2 Case (1): the ”second” Log MMP via moment polytopes

To describe the one-parameter family (QE)56Q20 defined in Theorem 2.18, we consider the
basis (€} )ieq1,....n} of M, where for any i € {1,...,n}, €] = @wa, — @Wa, + aiws, and we
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Figure 3: The polytopes QY in the cases where a; =1 and as = 2, a; = 0 and ap = 1 and
a1 = as = 1 respectively

define the matrices A, B and C as follows

—1 e e 1 -1 0
1 0 0 0
0 . e ;

A= , B= and C =
P ; 0
o --- 0 1 0 0
ai - - ap -1 1

Then Q¢ = {z € Mg | Az > B+¢€C} is the set of x = (z1,...,xy) such that z1,...,z,
are non-negative, 1 + -+ x, < 1 and a1x1 + -+ - + apx, > € — 1.

Example 5.2. If n = 2 we are in one of the following situations:

1. as > a1 > 0 and a9 is not trivial;
2. ag > a1 > 0 and as is trivial;

3. as > a; = 0 and ay is not trivial;
4. as > a1 = 0 and ay is trivial;

5. az = ay > 0;

6. ao = a1 =0.

We draw, in Figure 3, these polytopes for € = 0 in different cases with the hyperplane
HY:={z ¢ Mg | a1z1+azzs = —1}. Note that there is no such hyperplane if az = a; = 0.

e Ifa, =0, Q° = Q° for any € € [0,1] and it is empty if ¢ > 1. Moreover, for any
€ € [0,1], Q° intersects the interior of %(P)& if and only if € < 1. In that case, the Log
MMP described by the family (Q€)ccq., consists of a fibration ¢g : X — Y.

The fibers of this fibration can be easily computed (by the strategy given in Section 2.2)
because the faces of Q¥ are “the same” as the faces of Q' and then the fibration induces a
bijection between the sets of G-orbits of X and Y. Then the fibers of ¢ are isomorphic
to the homogeneous projective spaces ([\;c; P(@q,))/(P(wg) N (ic; P(w@a;)) (of Picard
group Z), with 0 # I C {0,...,n}. Here, we use the following notation: if «; is trivial,
P(w,,;) = G (and if not, it is the proper maximal parabolic subgroup of G associated to
O[Z‘).

In particular, the general fiber of the fibration is (", P(wa,))/(P(wg) iz P(wa;))
and the smallest fibers are the P(w,,)/(P(wg) N P(w,,)) with ¢ € {0,...,n}. Then we
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deduce that oy € Ry if and only if there exists a fiber isomorphic to G/P(wg).

e Suppose now that a,, # 0, then Q° is the intersection of the simplex Q = Conv(eg, €7, . ..

with the closed half-space H := {x € Mg | a121 + --- + apx, > € — 1}, where ej := 0.
We denote by H¢  the interior of H{ and by H¢ the hyperplane H{\H .

In the next proposition, we give a description of the non-empty faces of Q¢ by distin-
guishing whether a face is in the hyperplane H¢ or not.

Note first that the non-empty faces of the simplex Q are the Fj := Conv(e! | i €
{0,...,n}\I), with I € {0,...,n}. In particular, the facets of Q are the F; := Fy;y and
for any I C {0,...,n}, Fr = ;e Fi.

Then, for any I C {0,...,n}, we define F} := FrnN H{ and Ff 5= Fy N He. They are
faces (may be empty and not distinct) of Q.

Proposition 5.3. (Recall that ag = 0 and that a, # 0 here.)
The polytope Q° is of dimension n if and only if € < max} (1 +a;) =1+ ay.
Suppose now that € < 1+ a,. The non-empty faces of Q° are the distinct following Fr
and Ff 5, with I C {0,...,n}:

o I (of codimension |I|) if € < max;gr(1+ a;);

* Fs (of codimension |I|+1 or |I| respectively) if min;gr(14a;) < € < max;gr(1+a;)
or € = minjgr(1 + a;) = max;gr(1 + a;).

In particular, the facets of Q¢ are: Ff withi € {0,...,n—1} (for any e < 1+ ay,), F} if
e<l+ap_1, Fqiﬁ ife > 1, and Fy 5 ife=1 and a,_1 = 0.

Moreover, we can write any face of Q¢ as the intersection of all the facets that contain
it, as follows.
For any I C {0,...,n} such that e < max;gr(1 + a;), Ff = ;s F.
Forany I € {0,...,n} such that ming;(14a;) < € <maxigr(1+ai), Ff 5 = Fj 5N ;ep Y-
Forany I € {0,...,n} such that € = minjgr(1+a;) = max;gr(1+a;), Ff 5 = F; 5N0(;ep Ff
ife=1,nel andan1=0o0r Ffg=\ie, Ff ife#1, n&1 oran_1 #0.

Proof. The polytope Q¢ is of dimension n if and only if Q intersects HfS , if and only if
there exists ¢ € {0,...,n} such that e € H{, if and only if there exists ¢ € {0,...,n}
such that a; > ¢ — 1 if and only if a,, > e — 1 (because 0 = ag < --- < a,). This proves the
first statement of the proposition.

Suppose now that € < 1+ a,. For any non-empty face F of QF, either F ¢ H¢ and F
is the intersection of a non-empty face of Q with HS, or ' C H® and F'is the intersection
of a non-empty face of Q with H¢.

Let I C {0,...,n}. The set F} is not empty if and only if there exists i & I such that
e; € H if and only if there exists ¢ ¢ I such that a; > e—1if and only if € < max;g;(14a;).
Moreover, Fy is not empty and not included in H€ if and only if it intersects H¢ | if and
only if there exists i ¢ I such that e € HS, if and only if there exists i ¢ I such that
a; > € — 1 if and only if € < max;gr(1 + a;). Also, in that latter case, the dimension of F}
is the same as the dimension of F7; in particular the non-empty F} that are not included
in H¢ are all distinct.

Similarly, F' 7.5 is not empty if and only if there exist ¢ and j not in I (may be equal)
such that ej € H and e;f ¢ HS | (i.e., a; > e—1 and a; < € —1). Then Ffﬁ is not
empty if and only min;g(1 + a;) < € < maxgr(1 + a;). Moreover, F} 5 is not empty
and included in no proper face of Fy (i.e., H¢ intersects the relative interior of F7) if and
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only if there exist ¢ # j not in I such that ef € H{, and e} ¢ HY (i.e., a; > e — 1 and
a; < € —1) or for any i ¢ I we have e} € H€ (i.e., a; = e—l) ThenF is not empty
and included in no proper face of Fj 1f and only min;gr(1 4+ a;) < € < rnaxlg 7(1+4a;) or
€ = mings(1 + a;) = max;gr(1 + a;). Note also that the non-empty Ff ; that are not

included in a proper face of Fy are all distinct and describe all non-empty faces of Q€
included in H€. This finishes the proof of the second statement of the proposition.

To describe the facets, it is sufficient to find the Ff with € < maxﬁgl(l + a;), the
Ff g with € = minjz; (1 + a;) = max;z(1 + a;) and F@B with 1 = min} (1 4+ a;) < e <
max} (1 +a;) =14 a,. We easily find the Ff with i € {0,...,n —1} for any € < 1+ a,,
and F for any € < 14+a,_1. We conclude by noticing that, for any i € {0,...,n}, we have
€ =minjx(14+aj) = max;x;(1+a;) <1l4a,ifandonlyifi =nand 0=ap=--- = an_1
(and in particular, € = 1).

To get the last statement, apply the fact that any face of a polytope is the intersection
of the facets containing it. O

From Proposition 5.3, we deduce the following result with the following notation. Let
o := 0,%1,...,%k,%+1 = n + 1 be increasing positive integers so that 0 = a;, = --- =
ailfl <ai1 :“':aﬂilfl < <a2-l :"':a/ilfl < <aik :...:an'

Corollary 5.4. The isomorphism classes of the horospherical varieties X€ associated to
the polytopes in the family (Qe)eeon are given by the following subsets of Q>o:

e [0,1];
o |14ay,1+aj, [ foranyle{0,... . k—2};
o {1+a;} for anyl €A{0,...,k—2};

o [1+a; ,,1+a;,] and {1+ ai_,} if ir #n (i.e., if an—1 = an) or the simple root
ay, s not trivial (i.e., when X is as in Case (1b) of Theorem 1.1);

o [1+a;_,,1+a;]ifixr =n (i.e., if an—1 < ap) and the simple root o, is trivial (i.e.,
when X is as in Case (1c) of Theorem 1.1).

Proof. We apply the theory described in Section 2.2, in particular the fact that the iso-
morphism classes of the varieties X € are obtained by looking at the €’s for which “the faces
of Q¢ change”.

Note first that, by Proposition 5.3, (P, M, QE,QE) is an admissible quadruple if and
only if € < 1+ ay,.

Also, the facets of Q¢ are: Ff with i € {0,...,n — 1}, FSif € < 14 ap_1, F@B if
e > 1, and F} 4 (orthogonal to OJX’M) if e =1 and a,—; = 0. In particular, for any
€, M€ [0 1+ an[ if a1 # 0, the facets of Q¢ and Q" are “the same” if and only if € and
n are both in [0,1] or |1,1 4 ap—1] or [1 + ap—1,1 + a,] (which may be empty). And if
an—1 = 0, the facets of Q¢ and Q” are “the same” for any €, n € [0,1+ a,| (indeed, in that
case, the facets F} if e < 1, 1f €>1, and F} 4 if e =1 are “the same”, in particular
all orthogonal to 3Y, = ay n’M).

We now use a consequence of the proof of Proposition 5.3: for any I C {0,...,n},
Nier I is not empty if and only if € < maxigr(1 + a;), Fj5 5 N (;ep £y is not empty if
and only if min;g7(1 + a;) < € < max;gr(1l + a;) and Fflﬁ N(er FY s not empty if and
only if min;g;(1 4+ a;) = € = max;gr(1 + a;). In particular for any [ € {0,...,k — 2},
suppose that for I = {ijy1,...,n} and that (,c; Fy is not empty; suppose also that for
I'=40,...,i — 1} and that Fy 5 N ();c; FY is not empty; then € = 1+ a;,. Similarly for
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Figure 4: The Log MMP described by the polytopes Q€ in the case where n = 2, a; = 1,
as = 2 and as is not trivial.

any [ € {0,...,k — 2}, suppose that that for I = {i;41 — 1,...,n} and [),c; F¥ is not
empty; suppose also that for I = {0,...,4, — 1} and that F§ g N(N;er F is not empty; then
e € [1+ay,1+a;,.,]. Ifip #mn, Ffis still a facet of Q° and what we did above with
1€{0,...,k—2} can be done as well with [ =k — 1.

Hence, it proves that if the two varieties X¢ and X" are isomorphic then € and 7 are
in one of the subsets described in the corollary.

To conclude, we have to prove that the two varieties X¢ and X" are isomorphic when
€ and 7 are in one of these subsets. It is obvious with Proposition 5.3 except in the case
where i = n and the simple root «,, is trivial. But in that case, all polytopes Q¢ with
e€[l+ap_1,1+ap[=[1+a;_,,1+a; [ are simplexes with facets F for i € {0,...,n—1}
and F(iiﬁ or F;’ﬂ if e =14 ay_1 = 1, i.e., they could be defined even deleting the row
corresponding to the simple root a,, that is trivial, so that their faces are “the same”. [

We can reformulate this corollary as follows, and get the first statement of Theorem 1.3
in Case (1). We denote X° = X and for any [ € {1,--- ,k}, X! — X with e Nltay 1+
a;,[, and for any [ € {0,--- ,k}, Y= xX1Fau,

Corollary 5.5. The family (Qe)eEQZO describes a Log MMP from X as follows:

o k flips ¢y : X' — Y «— X1 . <bl+ for any l € {0,--- ,k — 1} and a fibration
or: XF — Yk ifi, #n or the simple root o, is not trivial;

o k—1 flips ¢y : X! — Y +— XH1 gb;r for any l € {0,--- ,k — 2}, a divisorial
contraction ¢j_1 : X*¥ 1 — Y1~ X* and a fibration X¥ — Y* ~ pt, if i, =n
and the simple root cu, is trivial.

Example 5.6. In the fives different cases with n = 2 and ay # 0, we illustrate this
corollary in terms of polytopes in Figures 4, 5, 6, 7 and 8.

5.3 Proof of the last statement of Theorem 1.3 in Case (1)

The previous section proves that a;,,...,a;, are invariants of X. To finish the proof of
Theorem 1.3 in Case (1), we have to prove that Gy, ...,G¢, ag, ..., an, 8 and i1,. .., i are
also invariants of X. For this, we have to describe some exceptional loci and some fibers
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Figure 5: The Log MMP described by the polytopes Q€ in the case where n =2, a; = 1,
as = 2 and «o is trivial.
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Figure 6: The Log MMP described by the polytopes Qe in the case where n = 2, a1 = 0,
as = 1 and a9 is not trivial.
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Figure 7: The Log MMP described by the polytopes QE in the case where n = 2, a1 = 0,
as = 1 and a9 is trivial.

Figure 8: The Log MMP described by the polytopes Q° in the case where n = 2 and
a] = a2 = 1.
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of the different morphisms of the Log MMP.

We first distinguish two cases by the following result.
Proposition 5.7. Define the simple subgroups of P(wpg) as in Definition 4.3.

e Suppose that n = 1 and that oy and a1 are two simple roots of the same simple
subgroup of P(wg).

Then, the fiber of ¢ : X — G/P(wg) is either a homogeneous variety different
from a projective space (a quadric Q*™ with m > 2, a Grassmannian Gr(i,m) with
p>5and2<i<m-—2, ora spinor variety Spin(2m + 1)/ P(w,,) with m > 4), or
a two-orbit variety as in [Pas09].

o Suppose that n > 1 or that ag and ay are not two simple roots of the same simple
subgroup of P(wpg).

Then, the fiber of ¢ : X — G/P(wg) is a projective space.

Proof. The fiber of ¢ : X — G/P(wg) is the smooth projective P(wg)-variety of Picard
group Z isomorphic to the closure of the P(wg)-orbit of a sum of highest weight vectors
in P:=P(V(wy,) @@ V(wa,)). Hence, the proposition is a consequence of [Pas09,
Section 1]. O

e In the case where n = 1 and that «g and oy are two simple roots of the same simple
subgroup of P(wg), G = G, the Log MMP described by Corollary 5.5 consists of a fibra-
tion if a1 = 0, or a flip and a fibration if a; > 0.

— Suppose first that a; = 0. There are two cases to deal with.

If o is between ag and S in the Dynkin diagram of G (and similarly, up to exchanging
ap and a1, o is between oy and 3), since X C P(V(wa, +w@g) @V (wa, +w@s)) and YO C
P(V(@ay) BV (wa, ), We easily compute that the fibration ¢g : X — Y has two different
types of fibers: one isomorphic to P(wq,)/(P(wa,) N P(wg)) over a G-orbit isomorphic to
G/ P(wq,) and another one of smaller dimension isomorphic to P(wq,)/(P(w@a, ) P (wg)).

In particular, the pair (G/P(wq,),G/P(wg)) is an invariant of X. Then if Gq is
not the universal cover of the automorphism group of G/P(wgs) it must be the universal
cover of the automorphism group of G/P(w,,), so that Gy is an invariant of X. Also,
00 (G/P(wa,)) = G/(P(way) N P(wgs)), then the pair (ap, 3) is an invariant of X up to
symmetries of the Dynkin diagram of Gg.

Moreover, if 3 is fixed, the possible symmetries are the ones (which fixed /) in type 4,,
with m > 5 odd, wg = Wmi1 and any ag, type Eg with wg = w4 and w,, = w1, w3, ws
or we , and type Dy, with m > 4, wg = w; for any i € {1,...,m — 2} and wy, = Wm—1
Or Wiy

The description of the fiber of ¢ : X — G/P(wg), with Remark 4.2, implies that ag
and « are also invariants of X up to symmetries of the Dynkin diagram of Gp. .

Otherwise (occurs only in types D and E), Gg is the universal cover of the automor-
phism group of G/P(wg), and then G and /3 are invariants of X up to symmetries of the
Dynkin diagram of Gy.

We also easily compute that the fibration ¢g : X — Y has at least two different
types of fibers: one smaller isomorphic to (P(wa,) N P(wa,))/(P(@Wa,) N P(wa, ) N P(wg))
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over the open G-orbit of Y, and two others (may be isomorphic) respectively isomorphic
to P(way,)/(P(wa,) N P(wg)) and P(wa, )/(P(wa, ) N P(wg)) respectively over G/ P(wa,)
and G/P(wag,).

In particular, the pair (G/P(wq,), G/P(wa,)) is an invariant of X and then the pair
(g, 1) is also an invariant of X up to symmetries of the Dynkin diagram of Gy.

— Suppose now that a; > 0. Then X C P(V(wq, + @wg) @ V(wa, + (1 + a1)wg)),
YO C P(V(way) @ V(wa, + a1wg)), X! C P(V(w@ay + @Way) © V(2wa, + a1wg)) and
Y! ~ G/P(wa,) CP(V(wa,)). In particular X, Y and X! have two closed G-orbits and
one open G-orbit so that we easily compute exceptional locus and fibers as follows.

For example, the exceptional locus of ¢g : X — Y is the G-orbit of X isomorphic
to G/(P(wa,) N P(wg)). Then the universal cover of its automorphism group Gy is an
invariant of X. And then f is also an invariant of X up to symmetries of the Dynkin
diagram of Gy.

Note now that the exceptional locus of ¢q is sent to the G-orbit of Y isomorphic to
G/P(wq,) so that the triple (G/P(wq,), G/P(wa, ), G/P(wg)) is an invariant of G. Also
the (same) description of the fiber of ¢ : X — G/P(wg) implies that the subgroup or
P(wpg) and the pair (o, 1) are invariants of X (up to symmetries in type A, D and E
as in the case where a; = 0). Hence, the triple (3, ap, 1) is an invariant of X up to
symmetries of the Dynkin diagram of Gg.

e Now we suppose that n > 1 or that oy and aq are not two simple roots of the same
simple subgroup of P(wg).

We define different exceptional loci in X as follows. Let [ € {0,...,k — 1}, define E
to be the closure in X of the set of points € X such that z is in the open isomorphism
set of the first [ contractions and x is in the exceptional locus of ¢;.

Proposition 5.8. For anyl € {0,...,k} the exceptional locus Ej is the closure in X of the
G-orbit associated to the non-empty face Fy, of Q with I == {ij41,...,n}. In particular
Ej is isomorphic to the closure of the G-orbit of a sum of highest weight vectors in

fp1—1

P:=P( P V(wa, + (1 +a)ws)),
=0

and Ej is a smooth projective horospherical of Picard group Z? as in Case (1), unlessl =0,
i1 = 1 so that E; is homogeneous (projective of Picard group 7 or 7.2).

Note that for [ =k, I, = ) and E}, = X.

Proof. Let 1 € {0,...,k} and ¢ € Q>¢ such that X! = X,
We denote by QlI and QII,B the G-orbits of X! associated to the non-empty faces F' !
and FIQB of the polytope Q. We denote by w} and wlI”B the G-orbits of Y! = X+ai
1 i 1 7 I~y .
associated to the non-empty faces I} T and F; ;al of the polytope Q'T%:. Recall that,
for any € € Q>p, we have an order on the G-orbits of X¢ compatible with the order on

the non-empty faces of Q¢: in particular QZI C QTI, and QZI 5 C QZI, s respectively if and

only if I’ C I, and Qllﬂ C QTI (as soon as these orbits are defined, i.e., as soon as the
corresponding faces are non-empty).
For any I C {0,...,n} such that there exists ¢ > 4; not in I (i.e., such that Qll is

defined), ¢;(Q}) = w! if there exists i > 4,11 not in I, and ¢(Q}) = wlIu{o...z‘l—l}B if
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for any ¢ > 441, i € I. Indeed I U{0,...4; — 1} is the minimal subset of {0,...,n}
containing I such that wlIU {0,..i1—1},3 is defined and there is no I’ containing I such that

wll, is defined. And for any I C {0,...,n} such that there exist ¢ > 4; and i’ < 4; not in
I (i.e., such that QZI,B is defined), qﬁl(QlLﬁ) = wlfﬁ if there exists ¢ > 4,41 not in I, and

¢1(QZLB) = wlIu{o,...il—l},,B if for any ¢ > 4,41, ¢ € I. Indeed T U{0,...7; — 1} is the minimal
subset of {0,...,n} containing I such that wlIu{O,...il—l},ﬁ is defined.

In particular, we have ¢Z(Ql[l) = wlllu{o,...z‘l—l},ﬁ (which is also (ﬁl(QlIlﬁ) if { > 1). But
Ql[, and wlllu (0,.i—1},3 Are not isomorphic horospherical homogeneous spaces by Propo-
sition 2.14, so that Qf,l is in the exceptional locus of ¢;. Moreover, if {2 is a G-orbit of
X not contained in QlIl, it is of the form QZI or Qljﬁ where I; ¢ I. Hence, in that case
&1(2) = Q. And then the exceptional locus of ¢; is Qlll. Note that QOZ, e Qlll_l are not in

the exceptional locus of ¢y, ..., ¢;_1 respectively, to conclude that E; = Q%.

We use again Proposition 2.14 to see that E; = Qi% corresponds to the admissible

quadruple (Pp, Mp, F,F) with F = FIOZ (and with some ample divisor of Ej). Then we
conclude by Corollaries 2.6 and 2.10. ]

The Log MMP now defines, by restriction, fibrations qgl EN\E_1 — El’ =
for any [ € {0, ... ,k}.

I
“ru{o,...i;—1},5°

Definition 5.9. We say that the fibers of ¢; are locally maximal over w C E] if the
dimensions of the fibers of ¢; over any point of w are the same and bigger than the
dimension of the fibers of ggl over any point of a neighborhood of w that is not in w.

We say that the fibers of ¢; are locally almost maximal over w C E] if there exists

w' C w such that the fibers of ¢; are locally maximal over w’ and the fibers of <;51| 5
l
are locally maximal over w\w' C Ej\w’
We now prove the following result, which implies in particular that 4q,...,%; are in-

variant of X.

Proposition 5.10. Suppose that n > 1 or that oy and aq are not two simple roots of the
same simple subgroup of P(wpg).
Letl € {0’; .k}

The map ¢; is surjective and we distinguish four distinct cases.

1. we have ij11 — 4 = 1 and oy, is not a simple root of Go. The fibers of & are locally
mazimal over E] and dimE; — dimE;_; = 1+ dim E] (here we set dimE_; :=
dim G/P(wg) — 1 so that it stays true for | = 0). Moreover, E] is homogeneous
isomorphic to G/P(wa, ) (which is a point if o, is trivial).

2. we have 441 — 4 = 1 and oy, is a simple root of Go. The fibers of gZ;l are lo-
cally mazimal over E] and dim E; — dim E;_y # 1 + dim E] (also here dim E_; :=
dim G/P(wg) — 1 so that it stays true for | = 0). Moreover, E] is homogeneous
isomorphic to G/P(wa,,).

3. we have i1 — 4 > 1 and oy, is not a simple root of Go. The fibers of qgl are
locally maximal over a unique proper subset of EN’Z’, which is a closed G-orbit W' of
E] isomorphic to G/P(w%). Also the fibers of ¢ are locally almost mazximal over
exactly ij41 — iy — 1(> 0) subvarieties of E] containing w’, respectively of dimensions
dim G/ P(wa,, ) + dim G/P(wa;) + 1 with j € {ir +1,... 141 — 1}
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4. we have 141 — 14 > 1 and oy, is a simple root of Go. The fibers of d;l are locally
mazimal over i1 —1i; closed G-orbits, which are respectively isomorphic to G/ P(wa,)
with JjE {il, R ,il+1 — 1}.

Moreover, in the four cases, the dimension of the fibers over all pointed subsets of E}
are as follows.

1. The dimension of the fibers of ¢ is 1 + dim E;_; (in particular dim G/P(wg) if
1=0).

2. The dimension of the fibers of ¢y is
i
d;, := iy + dim <P(wail) /(P(ws) N () P(wai))> .
i=0

3. The dimension of the locally mazimal fibers of ¢ is 1 + dim E;_4 (in particular
dim G/P(wpg) ifl =0). And for any j € {i;+1,...,441—1}, the dimension of locally
almost mazimal fibers of ¢; over of the subset of E] of dimension dim G/P(w%) +
dim G/P(w,,) +1 is

i—1
d; == iy + dim (P(waj)/(P(w5) N () Pl@a)N P(waj))) :

1=0

4. For any j € {iy,... 4141 — 1}, the dimension of locally mazimal fibers of &, over of
the closed G-orbit isomorphic to G/P(w,;) is

i—1
d; == iy + dim (P(waj)/(P(w5) N () Pl@a) N P(waj))) :

1=0

Proof. We keep the notation of the proof of Proposition 5.8. And we use Corollary 2.16
to compute the dimension of the fibers.
Let w be a G-orbit of Y in wlllu{o,...z'l—l},ﬁ' Then there exists I C {0,...,n} con-

taining [; U {0,...4; — 1} such that w = wlI”B. Then gglil(w) = ||; QY where the union
is taken over all J such that J N I[;_y = I NI;_;. In particular, ¢; is surjective and
gi;l_l(w) = Qllﬂlzq‘ We then compute dim(w) = dim(FIl”B) + dim(G/ Ngr P(@a,)), and
dim(leIl_l) = dim(Frny,_,) + dim(G/P(wg) N (igsng,_, P(@a,)), so that the dimension

of a fiber of ¢; over w is

dim(Fray,_,) — dim(F] 4)) + (dim(G/(P(wg) N Nigrn,_, P(@a,)) — dim(G/ Nz P(wa,)))
=i+ dim((;¢; P(@a;)/(P(@8) N (Nigrni,_ N P(w,,))
= i+ dim(;; P(@a;)/ (Nigr P(@a,) NN P(@a;) N P(w)).

These dimensions are the biggest when I is the biggest (in particular when I =
{0,...,n}, which is not allowed to define w). Moreover, if we remove from I some i,
the dimension changes if and only if j is such that «; is in Gy (i.e., a; is not trivial and not
the only simple root a; in a simple group of G different from G, by hypothesis). From
this, we will deduce the different following cases.
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If «;, is not a simple root of Gg, then the locus in wh where the fibers of

LU{0,...i;—1},8
¢; are maximal is the unique closed G-orbit w' := w! {0, mN\ ()5 isomorphic to G/ P(w%)
This gives the first case of the proposition 1f ije1 — 4 = 1. And if 459 — 4 > 1 the
locus in wlIlU (0,11}, where the fiber of QSI is almost maximal is the union of the subsets

{0 AP} 8 Uw' with j € {i+1,...,441 — 1}, which are affine cones over G/P(w,,).
This gives the third case of the pr0p081t10n

Now, if ;, is a simple root of G (i.e., for any j € {ij,..., %41 — 1}, j is a simple root

of Gy), then the locus in wlI,u (0 where the fiber of ¢; is maximal is the (disjoint)

7"'il_1}76
union of the 4;11 —4; closed G-orbits Wio, w18 of WI0{0,..i1—1},8" which are respectively
isomorphic to G/P(w,,) for any j € {i;,..., 441 — 1}. This gives the second case of the
proposition if 441 — 4 = 1 and the fourth case if 4,11 — 4y > 1.

O

We easily deduce the following.

Corollary 5.11. With the notation of Proposition 5.10: for any j € {0,...,n},

dim G/P(wg) + dj —dim £y — 1 = dim P(w,,)/(P(wg) N P(w,;))

and
dim G/P(wa,) +dj —dim E;_; — 1 = dim P(wg)/(P(wg) N P(wa;))-

In particular, for any l € {0, ..., k}, the sets
{(dim P(@a,)/(P(@p) N P(@a,)), dim P(wg)/(P(ws) N P(@a,))) | J € {ir, .- g —1}}
are invariants of X.

And then we conclude the proof of Case (1) of Theorem 1.3 (i.e., that Gy, 8, ag, ..., ay
are invariants of X) by the following lemma (still in the case where n > 1 or that ap and
aq are not two simple roots of the same simple subgroup of P(wg)).

Lemma 5.12. Let G, G’ be two products of simply connected simple groups and C*’s. Let
B, B' be two simple roots of two of the simple factors Gy and Gy, of G and G’ respectively.
And let o, . .., o, respectively o, . .., a;, be simple roots of G, G’ both as in Case (1) of
Theroem 1.1 (with the same integers k and iy, ..., i)
Suppose that
G/P(wg) = G'/P(wy)

and for any l € {0, ..., k},

{(dim P(wa,)/(P(5) N P(wa,)), dim P(w)/(P(@5) N P(wa,))) | J € {it,..itp — 1}) =
{(dim P(w,)/(P(@) 1 P(wqr)). dim Pwp) /(P(wg) 0 Pl ) | 3 € {its.. it — 1},

Then G = G, 8 = ' and for any i € {0,--- ,n}, oy = &} up to reordering the a;’s
and of’s inside the sets {ij, ..., {11 — 1}.

Proof. Step 1: for any [ € {0,...,k}, oy, € Ry if and only if a; i ¢ R{, and in that case, o,
and a;; are both extremal Slmple roots of SLy, 11 with m = dim P(w5)/(P(w5)ﬂP(waj)) =
dim P(w3)/ (P(w3r) (1 Pz ).

Indeed, a;, ¢ R if and only if dim P(w,, )/(P(ws) N P(w@a,,)) = dimG/P(ws) =
dimG/P(wg) = dim P(wa;l)/(P(w5/) N P(wa;l)) if and only if oy & Rp. The second
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statement is obvious from the hypothesis on the o;’s and «’s. Note that o, 41, ... s Qi —1
are in Ry by hypothesis.

Step 2: Gy = G{) and 8 = (' up to symmetries of the Dynkin diagram. If not, Ry
and R{, are not empty and {(Go, wg), (G{),ws )} is one of the three following sets up to
symmetries of the Dynkin diagram (by [Akh95, Section 3.3]): {(Spay,, @1), (SLam, @1)},
{(Sping,, 1, @m), (Sping,, 4 o, @Wm+1)} or {(Ge,w1), (Sping, w1)}. Let a; € Ro, there exists
I € {0,...,k} such that j € {i,..., ;31 — 1}. By Step 1, o € Rj and up to reorder-
ing a;’s and o’s in {3y, ..., 4341 — 1} we can suppose that dim P(w,,)/(P(wg) N P(w,,)) =
dim P(wa;_)/(P(w’B)ﬂP(wa;)) and dim P(wg)/(P(wg)NP(wa,)) = dim P(wg ) /(P (s )N
P(wa;)). We have to check that this is not possible in the three cases.

If ((Go, @), (G, @pr)) is ((SPay,, @1), (SLam, @1)) then @, is the fundamental weight
@3 of Spy,, (by the smooth condition) so that dim P(w,,;)/(P(wg)NP(wa,)) = 1 and W
has to be the fundamental weight ws (by the smooth condition and because dim P (wa; )/ (P(wp )N
P(wa;)) = 1). But then dim P(wpg)/(P(ws)NP(wy,)) = 2m—3 < 2m—2 = dim P(wg)/(P(wg )N
P(wa).

If ((Go,wg), (Gg,wg)) is ((Sping,, 11, @m), (SPiNg,, 9, Wni1)) then wy, is the funda-
mental weight w; or @,,—1 of Spiny,, ;1. In both cases, dim P(wg)/(P(ws) N P(wa;)) =
m — 1. But Do, is the fundamental weight @ or w,, of Spin,,,, so that
dim P(wy)/(P(w3) 1 Pl )) = m.

If ((Go, wp), (Gg, wg)) is ((Ga, w1), (Sping, 1)), then w,; is the fundamental weight
wq of Gy and Do, is the fundamental weight ws of Spin;. But then dim P(wg)/(P(wg) N
P(w%)) =1<3= dimP(W5/)/(P(W5/) N P(wa;))

We can now assume that Gy = G{, and § = /. There are at most three simple sub-
groups of P(wg) (their Dynkin diagram can be obtained from the Dynkin diagram of Gy
by removing f3).

Step 3: let aj € Rp and o; € Rj such that dim P(wg)/(P(ws)NP(wa,)) = dim P(wg)/(P(ws)N
P(wa;)). By the smooth condition, a; and o are extremal short simple roots of a simple

subgroup of P(wg) of type A or C. If the type is A, then dim P(wg)/(P(wg) N P(wa;)) =
p. If the type is C) then dim P(wpg)/(P(ws) N P(w,,;)) = 2p — 1. Hence, we have two
cases: they are extremal short simple roots of simple subgroups of P(wg) both of type

A, or they are extremal short simple roots of simple subgroups of P(wg) of types Ag,—1
and C,.

Step 4: Suppose moreover that dim P(w,;)/(P(ws)NP(w,,)) = dim P(wa;)/(P(zDB)ﬂ
P(wa;)), then one checks that a; = a; up to symmetries, by studying all cases up to sym-

metries, where P(wg) has at least two simple subgroups of types A, and A, with p > 1,
or Ag,—1 and C), with p > 2.
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Figure 9: The polytope QO in the case where a1 = 2

Type of Gy w3 Wa; dim P(w,,)/(P(wg) N P(wy,))
A, m>5 T mt1 01 OF Tm43 (mﬂl(m_l) or mé"l, and
m odd 2 | e it s gu
B3 w9 T Or w3 2or3
Bg Wy T Or g 18 or 8
Bg Wy w3 Or g 5or 8
Cp,m>3 w; W1 O W41 (4m_'32i)(i_1) = 3i(i2_1) or 1, [
m multiple of 3 | i = %m and @ > ¢ because ¢ > 2
C’m,m23 To; wWi;—1 O W;41 2m—2i—1:i—1ori,
m multiple of 3 | ¢ = %m
D+, Wy w1 Or wry 21 or 12
Dy T4 w3 Or wWry 6 or 12
Eg Wy w1 Or ws 15 or 6

5.4 Case (2): the ”second” Log MMP via moment polytopes

To describe the one-parameter family (Qg)eeon defined in Theorem 2.18, we consider the
basis (u])ieq1,...,y U (v7) of M, where for any i € {1,...,7}, uf = @Wa, — @Way + iWa,,,
and v} = @Wq,,; — Wa,,, and we define the matrices A, B and C as follows

-1 -« —-1 0 -1 0
1 o --- 0 0 :
0 . e :

A= . , B= _ and C =
o --- 0 1 0
ar - ap —1 —1 1

Then Q¢ = {x € Mg | Az > B+€C} is the set of & = (x1,...,x,) such that zy,...,z,
are non-negative, 1 +---+x, < land ayx1 + -+ apTp — Tpyp1 — -+ — Ty > € — 1.

In particular, Q¢ is the intersection of Q¥ with the closed half-space HS := {z € My |
a1r1 + -+ apxy — Tpy1 > € — 1} We denote by H¢ | the interior of H{ and by H€ the
hyperplane H{\HS , .

Example 5.13. If n =2 (i.e.,, r = s = 1) we have a; > 0, and either oy is trivial or not.
We draw, in Figure 9, such a polytope for ¢ = 0 with the hyperplane H° := {x € My |
a1xr1 — Ty = —1}.
Note that Q° is a polytope with vertices uf =0, ul,...,uk, ul + (1 +ap)vg, ..., uf +
(14+a,)v; (recall that ag = 0) and facets Fy := Conv((u; | ¢ € I)U(uf+(1+a;)v} | ¢ € 1)),
Fri:=Conv(uf | ¢ € I)and Fro:= Conv(u}+ (14+a;)vf | i ¢ 1) with I C {0,...,r}. In
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particular, the facets of Q° are the Fj := Fpjy with i € {0,...,7}, Fp1 and Fp,. Moreover
for any I C {0,...,n}, Fr = \er Fi, Fr1 = (jer Fi N Fpy and Fro = (e Fi N Fy o

Then, for any I C {0,...,r}, we define F} := FiNHY, Ffy=FNHS, Ffy:= FiNH®
and Ff,, = Fr1 N H¢ They are faces (may be empty and not distinct) of Q°. (Recall
0O=ap<a;<---<arandn=r-+1.)

Proposition 5.14. The polytope Q° is of dimension n if and only if € < 1+ a,.

Suppose now that e < 1+ a,. The non-empty faces of Q¢ are the distinct following Fy,
Fiy, Fig and Ff o with I {0,...,7}:

o I} (of codimension |I|) if € < max;gr(1+ a;);
o I, (of codimension |I| + 1) if € < max;gr(1 + a;);
o I}, (of codimension |I| +1) if € < maxigr(1l + a;);

° I, (of codimension |I|42 or |I|+1 respectively) if min;gr(1+a;) < € < max;gr(1+
a;) or € = min;gr(1 + a;) = max;gr(1 + a;).

In particular, the facets of Q¢ are: Ff withie{0,...,r—1}, Ffife <1+a,_1, Ey and
FQ)E,z'

Moreover, we can write any face of Q¢ as the intersection of all the facets that contain
it, as follows.
For any I C {0,...,r} such that e < max;gr(1+ a;), Ff = (;c; Fy.
For any I CA{0,...,r} such that € < maxgr(1+ a;), Fi, = (Nep Ff O Fy .
For any I C {0,...,r} such that € < max;gr(1 + a;), Fiy= Nicr £ N F o
For any I € {0,...,7} such that minjgr(1+ a;) < € <maxigr(1+ a;), Fry9=Nier Fi N
Fjy 1 F

Remark that, if € = min;g;(1 + a;) = max;gr(1 + a;), then I = {0,...,r}\{i} where i
is such that e =1 + ai.
Note also that Q7% is the point u* so that Q'+ is the point w,, .

Proof. For any € > 0, the polytope Q¢ is of dimension n if and only if Q¥ intersects HS
if and only if there exists ¢ € {0,...,r} such that «; (or u; + (1 + a;)v]) is in H{ | if
and only if there exists ¢ € {0,...,r} such that a; > e —1 (or =1 > € — 1) if and only if
ar > € — 1. This proves the first statement of the proposition.

Suppose now that € < 1 4+ a,. A non-empty face of Q¢ is either the intersection with
H¢ of a non-empty face of Q° that intersects H < ., or the intersection of a non-empty face
of Q° with He.

Let I € {0,...,r}. The set F} is not empty if and only if there exists i ¢ I such that
uj (or uy + (14 a;)vy) is in H if and only if there exists i ¢ I such that a; > € — 1 (or
—1 > € —1) if and only if € < max;¢r(1 + a;). Moreover with the same argument, F} is
not empty and intersects H , if and only if € < max;gr(1 + a;). Also, in that case, the
dimension of F7} is the same as the dimension of F7; in particular the non-empty F} that
intersect HS , are all distinct.

Similarly, F7; is not empty if and only if there exists ¢ ¢ I such that u; € HS if and
only if there exists i ¢ I such that a; > ¢ — 1 if and only if € < max;g;(1 + a;). Also,
Ff’l is not empty and intersects H¢ , if and only if € < max;¢7(1 + a;). In that case, the
dimension of F7, is the same as the dimension of F71; in particular the non-empty FF,
that intersect Hi . are all distinct and also distinct from the non-empty F7. 7
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Let I € {0,...,7}. Note that for any ¢ > 0 (respectively € > 0) and for any i €
{0,...,rh uf + (1 +a;)v] & HY, (vespectively uf + (1 + a;)v] ¢ HY). Then the set Fy,
is not empty if and only if there exists ¢ ¢ I such that «; € H¢ if and only if there exists
i & I such that a; > e—1 if and only if € < max;¢7(1+4a;). Moreover, FIE,2 is not empty and
H¢€ intersects FT in its relative interior if and only if there exists ¢ &€ I such that a; > e—1
if and only if € < max;gr(1 + a;). Hence, the dimension of Ff, is the dimension of Fy
minus 1 if € < max;g;(1+ a;) and it equals the dimension of FI7if € = max;gr(1+a;). In
the first case, the F7, are all distinct and describe all non-empty faces of Q¢ included in
H* but not in Fy;. In the second case, FTy = T ,.

Now, the set Fj,, is not empty if and only if there exist ¢ and j not in I (may be
equal) such that u; € H{ and u; ¢ HY if and only if there exist ¢ and j not in [/
such that a; > € — 1 and a; < € — 1 if and only if min;g;(1 + a;) < € < maxgr(1 + a;).
Moreover, Ff, 5 is not empty and included in no proper face of Fy 1 if and only if there
exist ¢ and j not in I such that uj € H{, and u; ¢ Hf if and only if there exist
and j not in I such that a; > e —1 and a; < e —1 (e, a; < e —1 and a; > € — 1)
or for any ¢ ¢ I we have u; € H® (ie., a; = € —1). Then F7, 4 1s not empty and
included in no proper face of Fy if and only if min;gr(1 + a;) < € < max;gr(1 + a;) or
€ = min;gs(1+a;) = max;gr(1+a;). In particular, the dimension of FTY 1 5 is the dimension
of Fr1 minus 1 if min;g;(1 + a;) < € < max;gr(1 + a;) and it equals the dimension of F7 ;
if € = minygr(1 + a;) = max;gr(1 + a;). Note also that the non-empty F7, , that are not
included in a proper face of Fy; are all distinct and describe all non-empty faces of Q°
included in H® N Fp ;. This finishes the proof of the second statement of the proposition.

To get the last statements, apply that a facet is a face of codimension 1 and that any
face of a polytope is the intersection of the facets containing it. O

From Proposition 5.14, we deduce the following result.

Corollary 5.15. The isomorphism classes of the horospherical varieties X€ associated to
the polytopes in the family (Qe)eeQZO are given by the following subsets of Q>o:

 [0,1[;
o |1+a; 1+ aj1] for anyie€{0,...,r —2};
o {1+ a;} foranyie{0,...,r —2};

o |1+ar—1,14+a,| and {1+ a,—1} if the simple root cv,. is not trivial (i.e., when X is
as in Case (2b) of Theorem 1.1);

o [1+ ar_1,1+ a,] if the simple root o, is trivial (i.e., when X is as in Case (2c) of
Theorem 1.1).

Proof. We apply the theory described in Section 2.2, in particular the fact that the iso-
morphism classes of the varieties X are obtained by looking at the €’s for which “the faces
of Q¢ change”.

Note first that, by Proposition 5.14, (P, M,Q¢,Q¢) is an admissible quadruple if and
only if e < 1+ a,.

Also, the facets of Q¢ are: Ff (orthogonal to aXM) with i € {0,...,r—1}, F¢ (orthog-
onal to a/,) if € < 1+ay—1, Fjj (orthogonal to o’ ; 5,) and Fyj, (orthogonal to o,/ 5 5/).
In particular, for any €, n € [0,1+ a,[, the facets of Q¢ and Q" are “the same” if and only
if € and n are both in [0,1 4 a,—1[ or [1 + ar—1,1 + ar[.
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Figure 10: The Log MMP described by the polytopes Q€ in the case where n = 2, a; = 2
and o is not trivial.

We now use a consequence of the proof of Proposition 5.14: for any I € {0,...,7},
Nicr F¥ is not empty if and only if € < max;gr(1 + a;), o0 Nicr F¥ is not empty if and
only if € < maxigr(1+ a;), Fi5, N(\;e; FY is not empty if and only if € < max;gr(1 + a;),
and F®E71,2 N(ier F5 is not empty if and only if min;g;(1 + a;) < € < maxgr(1 +a;). In
particular, for any i € {0,...,r—2}, suppose that for I = {i+1,...,r} and that (),c; Fy is
not empty; suppose also that for I = {0,...,7— 1} and that F(?)E,L? N(ier F¥ is not empty;
then € = 14 q;. Similarly for any ¢ € {0,...,r—2}, suppose that for I = {i+2,...,n} and
that (;c; F¥ is not empty; suppose also that for I = {0,...,i—1} and that F5,1,20miel F¥
is not empty; then € € [1 4+ a;, 1 + a;41].

Hence, this proves that if two varieties X¢ and X" are isomorphic then ¢ and n are a
one of the subsets described in the corollary.

To conclude, we have to prove that the two varieties X¢ and X" are isomorphic when
€ and 7 are in one of these subsets. It is obvious with Proposition 5.14 except in the
case where the simple root «,, is trivial. But in that case, all polytopes Q¢ with ¢ €
14 ar—1,1+ a,[ could be defined even deleting the row corresponding to the simple root
a, that is trivial, so that their faces are “the same” (they are simplexes with facets Ff for
ie{0,...,r—1}, Ej 4 and F52) O

We can reformulate this corollary as follows, and get the first statement of Theorem 1.3
in Case (2). We denote Xg = X and for any i € {1,--- ,r}, X* := X¢ with e €]14-a;_1,1+
a;[ and for any i € {0,--- ,r}, Y := XH+ai,

Corollary 5.16. The family (Q)eceqs, describes a Log MMP from X as follows:

o r flips ¢ » X! — Y «+— X 1 ¢F for any i € {0,---,r — 1} and a fibration
¢r : X" — Y7, if the simple root a. is not trivial;

o r—1 flips ¢ : X! — Yi— XHL o 6F for anyi € {0,--- ,k — 2}, a divisorial
contraction ¢p_1 : X"™1 — Y™l ~ X" and a fibration X" — Y ~ pt, if the
stmple root oy, is trivial.

Example 5.17. In the two different cases with n = 2 and a; = 2, we illustrate this
corollary in terms of polytopes in Figures 10 and 11.
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Figure 11: The Log MMP described by the polytopes Q€ in the case where n = 2, a; = 2
and o is trivial.

5.5 Proof of the last statement of Theorem 1.3 in Case (2)

The previous section proves that ai,...,a, are invariants of X. To finish the proof of
Theorem 1.3 in Case (2), we have to prove that Go,...,G; and ag,..., a2 are also
invariants. Since the ”first” Log MMP consists of a fibration ¢ : X — Z where Z is a
two-orbit variety embedded in P(V(wq,, ;) ® V(wa,,,)) as in [Pas09], G¢, ap41 and a;4o
are invariants of X. As in Case (1), we will describe some exceptional loci and some fibers
of different morphisms of the Log MMP, but we first distinguish two cases by the following
result.

Proposition 5.18. e Suppose that r = 1 and that oy and oy are two simple roots of
Go (and thent =1).

Then, the general fiber of ¢ : X — Z is either a homogeneous variety different
from a projective space (a quadric Q*™ with m > 2, a Grassmannian Gr(i,m) with
m>5and 2 <i<m—2, or a spinor variety Spin(2m + 1)/ P(w,,) with m > 4),
or a two-orbit variety as in [Pas09].

e Suppose that r > 1 or that ag and a1 are simple roots of Gy and G1 respectively.
Then, the general fiber of ¥ : X — Z is a projective space.
Proof. The general fiber of ¢/ : X — Z is the smooth projective horospherical Gy x - - - X
G';_1-variety of Picard group Z isomorphic to the closure of the Gg x - - - x Gy_1-orbit of a

sum of highest weight vectors in P := P(V(wq,) ® -+ @ V(w,,)). Hence, the proposition
is a consequence of [Pas09, Section 1]. O

e In the case where » = 1 and that ag and oy are two simple roots of Gy, G = Go x G
and the description of the general fiber of ¢ : X — G/P(wg), with Remark 4.2, implies
that Gg, ag and «q are invariants of X.
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e Now we suppose that r > 1 or that ag and a; are not two simple roots of the same
simple subgroup of P(wg).

We define different exceptional loci in X as follows. Let i € {0,...,7}, define E; to be
the closure in X of the set of points € X such that z is in the open isomorphism set of
the first ¢ contractions and z is in the exceptional locus of ¢;.

Proposition 5.19. For any i € {0,...,r} the exceptional locus E; is the closure in X of
the G-orbit associated to the non-empty face Fy, with I :== {i+1,...,r}. In particular E;
is tsomorphic to the closure of the G-orbit of a sum of highest weight vectors in

i l+4a;
P:=P|P P V(wa, +bwa,,, + 1+ a; —b)@a,,.) |
j=0 b=0
hence fori € {1,...,r}, E; is a smooth projective horospherical variety of Picard group 7>

as in Case (2), and Ey is the product a two-orbit variety with a homogeneous (projective
of Picard group 7Z) variety.

Note that E,. = X and that in any case, the rank of the horospherical G-variety FE; is
i+ 1.

Proof. Let i € {0,...,r} and ¢ € Q>q such that X' = X¢.

We denote by Qi], Q?l, Qi[’Z and QiI,L? the Ci—orbits of X* associa'utedlto thg non empty
faces F}', F;jl, Fry and F;jl,Q of the polytope Q. We denote by wy, wy , wj, and wy; ,
the G-orbits of Y = X114 associated to the non-empty faces F 11 tai B 11 teF 11 3% and
F}Jf‘;’ of the polytope Q1% . Recall that, for any € € Q>0, we have an order on the

G-orbits of X¢ compatible with the order on the non-empty faces of Q% in particular
Qf c QL Q&C Q’},vl, QZ'LQ C Qil,’2 and 93,172 C 93,7172 respectively if and only if I’ C I,

and Q}l c O, 3?2 c O, ?1’2 C Qh and 937172 C Q?Q (as soon as these orbits are
defined, i.e., as soon as the corresponding faces are non-empty).

For any I C {0,...,7} such that there exists j > i not in I (i.e., such that QY is
defined), ¢;(€2}) = w? if there exists j > + 1 not in I, and ¢;(Q%) = wé\{ihl,? if for any
j>i+1,5 €l Indeed IU{0,...i — 1} = I\{i} is the minimal subset of {0,...,r}
containing I such that wé\ (i}1.2 is defined and there is no I’ containing I such that w},,
w},J or w},g is defined. Similarly, with & = 1 or 2, for any I C {0,...,r} such that
there exists j > ¢ not in I (i.e., such that Q}k is defined), qbZ(QZIk) = w}}k if there exists
j > i+ 1notin I, and (bz(QZI’k) = w20,~~-,r}\{i}71,2 if forany j > i+ 1, j € I. Indeed
I1UA{0,...i—1} ={0,...,7}\{¢} is the minimal subset of {0,...,r} containing I such that
wi()wm}\{i},lﬂ is defined and there is no I’ containing I such that w},’k is defined.

And for any I C {0,...,r} such that there exist j > i and j' < i not in I (i.e.,
such that QZ'I,M is defined), qbi(QlI,LQ) = w}}m if there exists ¢ > ¢ + 1 not in I, and
¢i(Q’}7172) = wiﬂ,m,r}\{i}ﬁ if forany j > i+1, j € I. Indeed {0, ...,r}\{i} = 1U{0,...4;—1}

is the minimal subset of {0,...,n} containing I such that wio P12 is defined.
In particular, we have gbl(QZL) = w}\{i}’m. But Q}Z and wéO,...,r}\{i},lQ are not iso-

morphic horospherical homogeneous spaces by Proposition 2.14, so that Q}Z is in the

exceptional locus of ¢;. Moreover, if  is a G-orbit of X’ not contained in QZ, it is of the
form Qf,, QiI,lv Q?Q or 937172 where I; ¢ I. Hence, in that case ¢;(2) = Q. And then the
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exceptional locus of ¢; is Qilll Note that Q%, ey Qfl are not in the exceptional locus of

o0, - - ., Pi—1 respectively, to conclude that F; = Q%.

We use again Proposition 2.14 to see that F; = Qi(}i corresponds to the admissible
quadruple (Pp, Mp, F, F ) with F = Fg (and with some ample divisor of E;). Then we
conclude by Corollaries 2.6 and 2.10. [

The Log MMP now defines, by restriction, fibrations d)z E\E;_1 — E| = w{o L2
for any i € {0,...,i}.

Proposition 5.20. For any i € {0,...,r}, E! is a closed G-orbit ~of Y isomorphic to
G/P(wa,) (which is a point if oy is trivial). In particular, the map ¢; is surjective.
Moreover, the dimension of fibers of ¢; is

7
i+ 14 dim P(wa,)/(P(@a,,,) N P(@a,,,) N ﬂ (@a,))

Proof. Let i € {0,...,r}. The face F{OJ““ P12 of Q' is the vertex u} and then the
corresponding face of Q7% is the vertex w,,. In particular, the G-orbit wio,...,r}\ (11,2 is
closed and isomorphic to G/P(w,, ).

Now, since ngz is G-equivariant, it must be surjective.

Moreover, the dimension of the fibers of (]5, is

dim E; — dim E} = (i + 1 + dim G/(P(wa,,,) N P(®@a,,) ﬂ (@a;))) —dim G/ P(wa,)

that is i + 1+ dim P(@a,)/(P(@a,,,) N P(@a,,,) N Nieg P(@a,)). O

Corollary 5.21. The dimension of the fibers of ¢; is

1—1
i+ 14 dim G/(P(w@a,,,) N P(@a,,,)) + Y dim G/P(wy,).
j=0

In particular the dimensions d; of the G/P(w.,,)’s, which are projective space under
G; = SLg,+1, are invariants of X.

Proof. Since r > 1, or r = 1 and «g, 1 are not two simple roots of the same simple sub-

group of GG, the simple roots ayg, ..., a, are respectively the first simple roots of Gy, ..., G,
that are of type A. (And a;41, a2 are simple roots of Gy41.) Then the corollary can be
easily deduced from the proposition. O

6 Appendix

Proposition 6.1. Let (K,3,R,n) be a smooth quadruple. Then we are in one of the
following cases, up to symmetries.

1. n =1 and one of the following case occurs..
o K is of type Ay, (m >3). Then, = ay with3 <k <m and R = {a1,ap-1};

or f=ag withd <k <m and R={aj, i1} with1 <i <k —2.
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2. R is

K is of type By, (m > 3). Then, B = oy with 3 <k <m and R = {a1,ap_1}
or R ={aj,a;41} with1 < i <k—2; 0or 8 =0ap withl <k <m-—2 and
R ={am—1,am}; or B = am—3 and R = {am—2,amn}.

K is of type Cp, (m >3). Then, B = ay with 3 <k <m and R = {ay,ap_1};
or B =ap with4d <k <m and R = {a;, i1} with1 <i<k—2; 8 = oy with
1<k<m-—2and R={aj,a;y1} with1 <i<k—2.

K is of type Dy, (m > 4). Then, f = ap with3 <k <m—2 or k =m and
R={a1,ap1}; or f=ap withd <k <m-—2ork=m and R = {aj, i1}
withl <1 <k—2;8=a withl <k<m-—4 and R = {am—1,m}; orm >5,
B = am—3 and R is any subset of cardinality 2 of {am—2, ¥m—1,Qm}; orm > 5,
B = am—2 and R = {am—_1,am}; all modulo symmetries.

K is of type Eg. Then f = a1 and R = {ag,a3}; or B = ag and R =
{a1,a6}, {a1, a3} or{as,a4}; or B = a3 and R = {ag, a5}, {a2, as}, {ou, a5}
or {as,a6}; or f=ay and R = {a1,as}.

K is of type Er. Then f = a1 and R = {ag,as}; or B = ag and R =
{ai,a7}, {a1,a3}, R = {as, a4}, {au, a5}, {as, a6} or {ag,ar}; or B = as
and R = {ag,ar}, {ag,as}, {au, a5}, {as, a6} or {ag,ar}; or B = a4 and
R = {au,as}, {as,ar}, {as, a6} or {ag,ar}; or = as and R = {a1,as},
{aq,as}, {as, a4}, {ag, a4} or {ag,ar}; or B = ag and R = {ag,as}.

K is of type Eg. Then = a1 and R = {aa,as}; or f = as and R = {a1,as},
{a1,a3}, R={as,as}, {aq, a5}, {as, as}, {as, a7} or {ar,as}; or f = az and
R = {ag,as}, {ag, a4}, {a4, a5}, {as, a6}, {as, a7} or {ar,as}; or B = ay
and R = {a1,as}, {as,as}, {as, a6}, {as, a7} or {az,as}; or B = a5 and
R = {a1, a0}, {a1,a3}, {as,as}, {ag, as}, {as, a8}, {as, a7} or {az,as}; or
B =ag and R = {ag, a5} or {ar,asg}.

K is of type Fy. Then B = a1 and R = {as,as} or {az,as}; f = as and
R={as,as}; f=as and R = {a1,as}; f = as and R = {9, as} or {a1,as3}.

empty or one of the following case occurs.

K is of type Ay, (m > 2). Then, B = a1 and R is {a} or {am} (if m > 3);
B = oy with2 <k <% and R is a subset of {a1, g1}, {o1, am}, a1, g1 }
(if k >3) or ag_1,am} (ifk>3); or B = Amyt (if m is odd) and R is a subset
of {an,am} or R={ak_1}, {alphai, a1} or ag_1, aps1} (if m > 5).

K is of type By, (m > 3). Then, m =3, 8 = a1 and R is {a3}; B = oy with
2<k<m-—3and R is {a1} or {ax_1} (ifk>3); or B = am—a (m>4) and
R is a subset of {a1,am} or {am—3,m} (if m >5); or f = am —1 and R is
a subset of {1, m} or R is {am—2} (if m >4) or {am—2,am} (if m >5); or
B =am and R is {a1} or {am-1}.

K is of type Cp, (m > 2). Then, 5 = a1 and R is {as}; or B = ap with
2<k<m-—1(m>3)and R is a subset of {a1, 11} or {ag_1,041} (if
k>3 andm >4); or B = ay, and R = {a1} or {am-1} (if m > 3).

K is of type Dy, (m > 4). Then, 8 = ap with2 <k <m—4 (m >6) and R
is {on} or {ag—1} (if k>3 and m >7); or f = a3 and R is {am-1}, or a
subset of {1, -1} (if m >5) or {am—a,m—1} (if m >6); or B = qup—2 and
R is {a1}, {oq,am—1} or {a1,am—1,am}, or R is a subset of {am—3,m—1}
(if m >5), R is {tm—3,am—1,0m} (if m >5); or B = au and R is {a1} or

{am_l}.
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K is of type Eg. Then 8 = as and R = {a1}; or B = as and R is a subset of
{a1, 00} or {a1,06}; or f = ay and R is subset of {aa, o, a5} withi =1 or 3
and j =5 or 6 modulo symmetries.

K is of type E7. Then B = az and R = {a1} or {az}; or B = az and R is a
subset of {a1, 0} or {on,ar}; or B = au and R is subset of {an, a;, o5} with
i=1or3andj=>5o0r7 orf =as and R is a subset of {a;, o} with i =1
or 2.and j =6 or 7; or = ag and R = {ar}.

K is of type Eg. Then B = ag and R = {aq} or {ag}; or B = as and R is a
subset of {a1, 0} or {on,ag}; or B = au and R is subset of {ao, a;, o5} with
i=1or3andj=>5or8 orf =as and R is a subset of {a;, o} with i =1
or 2and j =06 or 8 or 5 =ag and R is ar or ag; or f = a7 and R = {ag}.
K is of type Fy. Then B = a1 and R = {as}; B = a2 and R is a subset of
{aq, a3} or {a1,a4}; B =as and R is a subset of {a1, a4} or {ag,a4}.

K is of type Go. Then B = a1 and R ={as}; or f = as and R ={ay}

The proof, which is a long but not difficult case by case verification, is left to the

reader.
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