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1 Introduction

In this paper, varieties are irreducible algebraic varieties over C and groups are algebraic
groups over C.

Smooth projective horospherical varieties of Picard group Z are known since 2009
[Pas09] and give useful examples in various theories. For toric varieties there are only pro-
jective spaces. But for horospherical varieties, in addition to homogeneous spaces, there
are 5 families of two-orbit varieties (two of them are infinite families).

Here we classify and give a first study of the geometry of smooth projective horo-
spherical varieties of Picard group Z2. For toric varieties, there are only decomposable
projective bundles over projective spaces [Kle88]. But for horospherical varieties, there
are many other cases.

Indeed, in addition to homogeneous spaces, products of two varieties and decompos-
able projective bundles over projective spaces, we distinguish several types of other such
horospherical varieties. We classify them in this paper, in particular by studying their Log
MMP.

To write as nicely as possible the classification of smooth projective horospherical
varieties of Picard group Z2, we extend the notion of simple roots to the groups C∗ and
{1}. We first briefly recall the case of simple groups.

If G is a simply connected simple group, we fix a maximal torus contained in a Borel
subgroup B of G, then it defines a root system and in particular a set of simple roots. To
each simple root α is associated a fundamental weight denoted by $α and a fundamental
G-module denoted by V ($α). More generally, if χ is a dominant weight (a non-negative
sum of fundamental weights) we denote by V (χ) the G-module associated to χ: it is
the unique irreducible G-module that contains a unique B-stable line where B acts with
weight χ. A non-zero element of the B-stable line of V (χ) is called a highest weight vector
(of weight χ) and the stabilizer of the B-stable line of V (χ) is denoted by P (χ) (it is a
parabolic subgroup of G containing B).

In this paper, if G = C∗, we call the identity automorphism of C∗ the simple root of
G; we denote it by α, and we set $α = α. Then the natural C∗-module C is denoted by
V ($α) where α is the simple root of C∗. And for any n ∈ Z, V (n$α) is the C∗-module C
where C∗ acts with weight n$α; in particular, any character of C∗ is dominant. Moreover,
if G = {1}, we call the trivial morphism from G to C∗ the simple root of G; we denote
it by α, and we set $α = 0. In these two cases a highest weight vector is any non-zero
vector.

Suppose now that G is a product G0 × · · · × Gt of simply connected simple groups,
C∗ and {1}. A simple root of G is a simple root of some Gi and it is said to be imag-
inary if it Gi is equal to C∗ or {1}. Moreover if χ0, . . . , χt are respectively dominant
weights of G0, . . . , Gt, the G-module associated to χ = χ0 + · · ·+ χt is the tensor product
V (χ0)⊗· · ·⊗V (χt) and a highest weight vector of this G-module is a decomposable tensor
product of highest weight vectors.

In Definition 3.8, we define two types of projective horospherical varieties X1 and X2

with Picard group Z2. We describe them explicitly as the closures of some G-orbit of a sum
of highest weight vectors in the projectivization of a G-module, with the convention above.
These varieties depend on the group G, on a simple root β, on a tuple α of, eventually
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imaginary, simple roots of G and on a tuple a of positive integers.
We can now write the two main results of this paper.

Theorem 1.1. Let X be a smooth projective horospherical variety with Picard group Z2.
Suppose that X is not the product of two varieties. Then X is isomorphic to one of the
following horospherical varieties (which we still denote by X).

In all cases, G is a product of simply connected simple groups, C∗ and {1}.

Case (0): G is simple and X is an homogeneous variety G/P where P is the intersection of
two maximal (proper) parabolic subgroups of G.

Case (1): X is one of the variety X1(G, β, α, a) as in Definition 3.8 with one of the restricted
conditions (a), (b) or (c) described in Definition 4.4.

Case (2): X is a variety X2(G,α, a) as in Definition 3.8 with one of the restricted conditions
(a), (b) or (c) described in Definition 4.4.

Remark 1.2. • In Theorem 1.1, the decomposable projective bundles over projective
spaces are some very particular varieties X1(G, β, α, a) with restricted conditions (b)
or (c). (See Remark 4.5 for the complete description.)

• The restricted conditions are useful for two reasons: to get X smooth (and not only
locally factorial) and to delete isomorphic cases.

In Theorem 1.1, isomorphisms are not G-equivariant isomorphisms. Indeed the act-
ing group is not necessarily the same for both varieties, so we cannot even consider G-
equivariant isomorphisms. Note that in the paper, if not precised, isomorphisms are not
supposed to be G-equivariant. Nevertheless, all contractions appearing in the (Log) MMP
from a given horospherical G-varieties are automatically G-equivariant.

The horospherical varieties given in Theorem 1.1 are all distinct, i.e., pairwise not
isomorphic. This is a consequence of the following result.

Theorem 1.3. Let X be one of the varieties described in Theorem 1.1. Then “the” Log
MMP from X gives the following in each case, respectively with the restricted conditions
(a), (b) or (c).

Case (0): There are two Mori fibrations from X, respectively into Y and Z, with (general)
fibers respectively not isomorphic to Z and Y .

Case (1): (a) A “first” Log MMP consists of a Mori fibration from X to G/P ($β) with general
fibers not isomorphic to a projective space (but isomorphic to another homoge-
neous variety or to a two-orbit variety) and a “second” one consists of a flip
from X followed by a fibration.

(b) A “first” Log MMP consists of a Mori fibration from X to G/P ($β) with general
fibers isomorphic to a projective space and a “second” one consists of a finite
sequence (may be empty) of flips from X followed by a fibration.

(c) A “first” Log MMP consists of a Mori fibration from X to G/P ($β) with general
fibers isomorphic to a projective space and a “second” one consists of a finite
sequence (may be empty) of flips from X followed by a divisorial contraction.

Case (2): A “first” Log MMP consists of a fibration ψ to a two-orbit variety, the general fiber
Fψ of ψ and a “second” Log MMP are described as follows.
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(a) Fψ is not isomorphic to a projective space (but isomorphic to another homoge-
neous variety or to a two-orbit varity) and a “second” Log MMP consists of a
flip from X followed by a fibration.

(b) Fψ is isomorphic to a projective space and a “second” Log MMP consists of a
finite sequence (not empty) of flips from X followed by a fibration.

(c) Fψ is isomorphic to a projective space and a “second” Log MMP consists of a
finite sequence (may be empty) of flips from X followed by a divisorial contrac-
tion.

Moreover, in every cases, up to reordering and up to symmetries of Dynkin diagrams,
the data G (as a product of simply connected simple groups, C∗ and {1}), β, α and a
are invariants of the “two canonical ways” to realize the Log MMP from X (and then
invariants of X).

Remark 1.4. • In the paper (Proposition 3.3), we prove that for any smooth projec-
tive horospherical variety X with Picard group Z2, the nef cone of X is generated by
the two elements of a basis of Pic(X), then this gives us two canonical ways to choose
the log pair to compute Log MMP from X (see Section 5 for more details). Also, in
Cases (1) and (2), one of the “two canonical” Log MMP is “naturally” defined (see
Remark 3.2) and only consists of a fibration.

• In Case (1b), if the sequence of flips is empty, we get two fibrations from X. They
could be both into homogeneous varieties. But one and only one of these fibrations
has all its fibers isomorphic to each other. (On the contrary, in Case (0), each
fibration has all their fibers isomorphic to each other.)

The paper is organized as follows.
We first recall in Section 2 the results on horospherical varieties that we use in the

paper. Then, in Section 3, we easily describe a first (but not optimal) combinatorial
classification, containing many repetitions, and we give a first geometric description of all
these latter cases that permits to define the two types of varieties X1 and X1. In Section 4,
we first define the restricted conditions used in the statment of Theorem 1.1, and we prove
the theorem. Then, in Section 5, we prove Theorem 1.3, by studying the Log MMP of all
varieties of Theorem 1.1.

2 Some known results on horospherical varieties

2.1 First definitions, first properties of divisors, and smoothness crite-
rion

Let G be a connected reductive group. Fix a maximal torus T and a Borel subgroup B
containing T . Denote by U the unipotent radical of B, by S the set of simple roots of
(G,B, T ), by X(T ) the lattice of characters of T (or B) and by X(T )+ ⊂ X(T ) the cone of
dominant characters.

For any lattice L we denote by LQ the Q-vector space L⊗Z Q.

Definition 2.1. A horospherical variety X is a normal G-variety with an open orbit
isomorphic to G/H where H is a subgroup of G containing U .

Then G/H is a torus fibration over the flag variety G/P where P is the parabolic
subgroup of G containing B defined as the normalizer of H in G. The dimension of the
torus is called the rank of G/H or the rank of X and it is denoted by n.
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We denote by M the sublattice of X(T ) consisting of characters of P whose restrictions
to H are trivial. Its dual is denoted by N . (The lattices M and N are of rank n.)

Let R be the subset of S consisting of simple roots that are not simple roots of P (i.e.,
simple roots associated to fundamental weights whose some multiples are characters of P ).

For any simple root α ∈ R, the restriction of the coroot α∨ to M is a point of N ,
which we denote by α∨M . We denote by σ the map α 7−→ α∨M from R to N .

Definition 2.2. 1. A colored cone of NQ is a couple (C,F) where C is a convex cone
of NQ and F is a subset of R (called the set of colors of the colored cone), such that

(i) C is generated by finitely many elements of N and contains {α∨M | α ∈ F},
(ii) C does not contain any line and F does not contain any α such that α∨M is zero.

2. A colored face of a colored cone (C,F) is a couple (C′,F ′) such that C′ is a face of C
and F ′ is the set of α ∈ F satisfying α∨M ∈ C′.

3. A colored fan is a finite set F of colored cones such that

(i) any colored face of a colored cone of F is in F, and

(ii) any element of NQ is in the relative interior of at most one colored cone of F.

The main result of Luna-Vust Theory of spherical embeddings is the following classi-
fication result (see for example [Kno91]).

Theorem 2.3. (D. Luna-T. Vust) There is an explicit one-to-one correspondence between
colored fans and G-isomorphism classes of horospherical G-varieties with open orbit G/H.

Complete G/H-embeddings correspond to complete fans, i.e., to fans such that NQ is
the union of the first components of their colored cones.

If G = (C∗)n and H = {1}, we recover the well-known classification of toric varieties.
If X is a G/H-embedding, we denote by FX the colored fan of X in NQ and we denote

by FX the subset ∪(C,F)∈FXF of R, called the set of colors of X.

From now on, X is a complete horospherical variety as above.

We now recall the characterization of Cartier, Q-Cartier, globally generated and ample
divisors of horospherical varieties, due to M. Brion in the more general case of spherical
varieties ([Bri89]).

First, we describe the B-stable prime divisors of X. We denote by X1, . . . , Xm the
G-stable prime divisors of X. The valuations of C(X) defined by the zeros and poles
along these divisors define primitive elements of N , denoted by x1, . . . , xm respectively.

And the B-stable but not G-stable prime divisors of X are the closures in X of B-stable
prime divisors of G/H, which are the inverse images by the torus fibration G/H −→ G/P
of the Schubert divisors of the flag variety G/P . The Schubert divisors of G/P can be
naturally indexed by the subset of simple roots R. Hence, we denote the B-stable but
not G-stable prime divisors of X by Dα with α ∈ R (note that σ(α) is the element of N
defined by the valuation of C(X) defined by the zeros and poles along the divisor Dα).

Theorem 2.4. ([Bri89, Section 3.3]) Every divisor of X is linearly equivalent to a linear
combination of X1, . . . , Xm and Dα with α ∈ R. Now, let D =

∑m
i=1 aiXi +

∑
α∈R aαDα

be a Q-divisor of X.

5



1. D is Q-Cartier if and only if there exists a piecewise linear function hD, linear on
each colored cone of FX , such that for any i ∈ {1, . . . ,m}, hD(xi) = ai and for any
α ∈ FX , hD(α∨M ) = aα.

And D is linearly equivalent to 0 if and only if hD is linear on NQ.

Moreover, if D is a divisor, D is Cartier if and only if it is Q-Cartier and the linear
functions defines as above can be identified with elements of M .

2. Suppose that D is Q-Cartier. Then D is globally generated (resp. ample) if and
only if the piecewise linear function hD is convex (resp. strictly convex) and for any
α ∈ R\FX , we have hD(α∨M ) ≤ aα (resp. hD(α∨M ) < aα).

3. Suppose that D is a Q-Cartier Q-divisor. Let Q̃D be the polytope in MQ (called
pseudo-moment polytope) defined by the following inequalities, where χ ∈ MQ:
(hD) + χ ≥ 0 and for any α ∈ R\FX , aα + χ(α∨M ) ≥ 0.

Let v0 :=
∑

α∈R aα$α, then the polytope v0 + Q̃D is called the moment polytope
of D (or (X,D)).

4. Suppose that D is a Cartier divisor. Note that the weight of the canonical section of
D is v0. Then the G-module H0(X,D) is the direct sum (with multiplicities one) of
the irreducible G-modules of highest weights χ+ v0 with χ in Q̃D ∩M .

From now on, a divisor of a horospherical variety is always supposed to be B-stable,
i.e., of the form

∑m
i=1 aiXi +

∑
α∈R aαDα.

Theorem 2.5. ([Pas06, Theorem 0.3]) Let X be a projective horospherical variety and
let D be an ample Cartier divisor of X. Suppose that X is smooth.

Then D is very ample.

Since H ⊃ U and the unique U -stable lines of irreducible G-modules are the lines
generated by highest weight vectors, we deduce from Theorems 2.4 and 2.5 the following
result.

Corollary 2.6. Let X be a smooth projective horospherical variety and let D be an ample
Cartier divisor of X. Then X is isomorphic to the closure of the G-orbit of a sum of
highest weight vectors in P(⊕χ∈Q̃D∩MV (χ+ v0)).

We should have V (χ+v0)∗ instead of V (χ+v0), but the corollary is still true as written
above, see [Pas15, Remark 2.13].

From Theorem 2.4, we can also deduce a locally factoriality criterion.

Corollary 2.7. A horospherical variety X is locally factorial if and only if for any colored
cone (C,F) of FX , C is generated by a basis of N and the map σ : α 7−→ α∨M induces an
injective map from F to this basis.

In particular if X is locally factorial, the Picard number of X is given by the following
formula

ρX = m+ |R| − n = (|FX(1)| − n) + |R\FX |,

where FX(1) is the set of edges (one-dimensional colored cones) of FX .

To write the smoothness criterion we need to give the following definition.
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Definition 2.8. ([Pas06, Def. 2.4]) Let R1 and R2 be two disjoint subsets of S. Let
ΓR1∪R2 be the maximal subgraph of the Dynkin diagram of G whose vertices are in
R1 ∪R2.

The couple (R1,R2) is said to be smooth if, for any connected component Γ of ΓR1∪R2 ,

• there is at most one vertex of Γ in R2 and,

• if α ∈ R2 is a vertex of Γ, then Γ is of type A or C and α is a short extremal simple
root of Γ.

Theorem 2.9. ([Pas06, Theorem 2.6]) Let X be a locally factorial horospherical variety.
Then X is smooth if and only if for any colored cone (C,F) of FX , the couple (S\R,F)

is smooth.

Corollary 2.10. ([Pas06, Proposition 2.17]) Let X be a smooth horospherical variety.
Any G-stable subvariety of X is a smooth horospherical variety.

2.2 Log MMP via moment polytopes

The MMP [Pas15] and Log MMP [Pas17] of horospherical varieties can be completely
computed and described by studying one-parameter families of polytopes. In this subsec-
tion, we recall the main results of this theory, as briefly as we can, in order to use them
in Section 5.

From the previous section, to any horospherical variety X, is associated a parabolic
subgroup P and a sublattice M of X(P ); and moreover, any ample B-stable Q-Cartier
Q-divisor D defines a pseudo-moment polytope Q̃ and a moment polytope Q. In fact,
the map (X,D) 7−→ (P,M,Q, Q̃) classifies polarized projective horospherical varieties in
terms of quadruples (P,M,Q, Q̃).

Definition 2.11. A quadruple (P,M,Q, Q̃) is called admissible if it satisfies the following:

• P is a parabolic subgroup of G containing B, M is a sublattice of X(P ), Q is a
polytope of X(P )Q included in X(P )+Q and Q̃ is a polytope of MQ;

• there exists (a unique) v0 ∈ X(P )Q such that Q = v0 + Q̃;

• the polytope Q̃ is of maximal dimension in MQ (i.e., its interior in MQ is not empty);

• the polytope Q intersects the interior of X(P )+Q.

Example 2.12. Suppose that X(P ) = Z$1 ⊕ Z$2 and M = Z$2, then Q and Q̃ are
vertical segments of the same length, Q̃ is in Q$2 and Q is in Q≥0$1 ⊕ Q≥0$2 (but
not in Q$2). In Figure 1, we draw three possible couples (Q, Q̃) to get three admissible
quadruples (P,M,Q, Q̃) respectively corresponding to polarized varieties (X,D1), (X,D2)
and (X ′, D′), with D1 6= D2 and X 6' X ′.

Proposition 2.13. ([Pas17, Corollary 2.10] with [Pas15, Propositions 2.10 and 2.11])

1. The map (X,D) 7−→ (P,M,Q, Q̃) is a bijection from the set of isomorphism classes
of polarized projective horospherical varieties to the set of admissible quadruples.

2. It induces a bijection between the set of G-orbits in X and the set of non-empty faces
of Q (or Q̃), preserving the natural orders of both sets. Also, the G-orbit in X asso-
ciated to a non-empty face F = v0+F̃ of Q is isomorphic to a horospherical homoge-
neous space corresponding to (PF ,MF ) where PF is the minimal parabolic subgroup
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Figure 1: Some (pseudo-)moment polytopes

of G containing P and MF is the maximal sublattice of M such that (PF ,MF , F, F̃ )
is an admissible quadruple. Moreover (PF ,MF , F, F̃ ) is the quadruple associated to
the (horospherical) closure in X of the G-orbit associated to F (polarized by some
DF we do not need to explicit here).

Example 2.14. Consider the moment polytopes of Example 2.12. And suppose that D1,
D2 and D′ are very ample (if not it would be enough to consider multiples of the divisors
and of the polytopes).

Then X is the closure of G · [v2$1+2$2 + v2$1+3$2 + v2$1+4$2 ] in P(V (2$1 + 2$2)⊕
V (2$1+3$2)⊕V (2$1+4$2)) but also the closure of G · [v$1+$2 +v$1+1$2 ] in P(V ($1+
$2)⊕V ($1+2$2)). In the first case for example, one can easily check that there are exactly
two (closed) G-orbits in addition to the open one in X; moreover, they are G · [v2$1+2$2 ] '
G/(P ($1)∩P ($2)) and G · [v2$1+4$2 ] ' G/(P ($1)∩P ($2)), and they correspond to the
two vertices of the segment Q. Here, for both closed G-orbits, PF = P and MF = {0}.

Similarly, X ′ is the closure of G · [v2$1 + v2$1+$2 + v2$1+2$2 ] in P(V (2$1)⊕V (2$1 +
$2)⊕V (2$1 +2$2)). There are exactly two (closed) G-orbits in addition to the open one
in X ′, that is G · [v2$1 ] ' G/P ($1) and G · [v2$1+2$2 ] ' G/(P ($1) ∩ P ($2)). Here, we
still have MF = {0} for both closed G-orbits and PF = P for the second closed G-orbit,
but PF 6= P for the first one (X(PF ) = Z$1).

From Proposition 2.13, we easily get the following result.

Corollary 2.15. Let (X,D) be a polarized projective horospherical variety and (P,M,Q, Q̃)
be the corresponding admissible quadruple. Let F be a non-empty face of Q (or Q̃) and Ω
be the corresponding G-orbit in X. Then

dim(Ω) = dim(G/PF ) + rank(MF ) = dim(G/PF ) + dim(F ).

We can also describe G-equivariant morphisms between horospherical G-varieties, in
terms of moment polytopes [Pas15, 2.4]. We resume, very briefly, this description here.

Without loss of generality, we can reduce to dominant G-equivariant morphisms, i.e.
G-equivariant morphisms from a G/H-embbedding to a G/H ′-embbedding where H ⊂ H ′,
i.e., G-equivariant morphisms that extend the projection G/H −→ G/H ′. In that case,
we have P ⊂ P ′ and M ′ ⊂M .

Let X be a projective G/H-embedding corresponding to an admissible quadruple
(P,M,Q, Q̃) and let X ′ be a projective G/H-embedding corresponding to an admissible
quadruple (P ′,M ′, Q′, Q̃′). Then the projectionG/H −→ G/H ′ extends to aG-equivariant
morphism from X to X ′ if and only if for any non-empty face F of Q, the set of facets (or
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Figure 2: Moment polytopes and G-equivariant morphisms

the corresponding halfspaces in MQ) and the set of walls of X(P )+Q that contain F defines
naturally a non-empty face F ′ of Q′. Moreover in that case the G-orbit of X corresponding
to F is sent to the G-orbit of X ′ corresponding to F ′.

Example 2.16. Consider the varieties X and X ′ of Example 2.12. Each vertex of Q,
which is a facet, naturally correspond to a vertex of Q′. But, the vertex 2$1 of Q′ is
contained in a wall of X(P )+Q and will correspond to the empty face of Q. Then, here,
there exists a G-equivariant morphism φ from X to X ′ but there is no such morphism
from X ′ to X. Moreover, φ is an isomorphism outside one closed G-orbit where φ is the
projection G/(P ($1) ∩ P ($2)) −→ G/P ($2).

To complete this example, consider some G/H of rank 2 such that P has a unique
fundamental weight $. We draw in Figure 2, 3 moments polytopes of G/H and another
moment polytope of a horospherical homogeneous space G/H ′ of rank 1 with P ′ = G
(in fact G/H ′ ' C∗ and the segment corresponds to the variety P1). We also draw all
G-equivariant morphisms between the corresponding varieties. Note that this picture is
similar to Figure 8 with moment polytopes instead of pseudo-moment polytopes.

We also emphasis some vertices and some edges to illustrate images of G-orbits. More
precisely, if we focus at the G-orbits distinguished by a •, φ0 restricts to the projection
G/P ($) −→ pt. If we focus at the G-orbits distinguished by a non-dashed rectangle, φ+0
restricts to the fibration P1 −→ pt and φ1 restricts to the identity morphism P1 −→ P1. If
we focus at the G-orbits distinguished by a dashed rectangle, φ0 and φ+0 restrict to identity
morphisms and φ1 restricts to a fibration to a point.

Now we can state the description of the Log MMP for horospherical varieties in terms
of moment polytopes.

First we fix a basis of M (and consider the dual basis for N). Also we choose an order
in {x1, . . . , xm} ∪ {α∨M | α ∈ R}. Then we define a matrix A of size (m+ |R|)× n whose
rows are the coordinates of the vectors of {x1, . . . , xm} ∪ {α∨M | α ∈ R} in the chosen
basis.

Theorem 2.17. ([Pas17, Theorem 1.3 and Section 3])
Let X be a Q-factorial projective horospherical variety and let ∆ be a B-stable Q-divisor

of X. Then for any (general) choice of an ample B-stable Q-Cartier Q-divisor D of X,
a Log MMP from the pair (X,∆) is described by the following one-parameter families of
polytopes
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Q̃ε := {x ∈MQ | Ax ≥ B + εC} and Qε := vε + Q̃ε

where B, C and vε = v0 + εv1 are such that, for any ε ≥ 0 small enough, Q̃ε and Qε are
respectively the pseudo-moment and moment polytope of (X,D + ε(KX + ∆)).

More precisely, there exist rational numbers

0 := ε0,0 < · · · < ε0,k0 < ε0,k0+1 = ε1,0 < · · ·
· · · < ε1,k1 < ε1,k1+1 = ε2,0 < · · · < εp,kp < εp,kp+1 = εmax

(with p ≥ 1, and for any i ∈ {0, . . . , p}, ki ≥ 0) such that, (P,M,Qε, Q̃ε) is an admissible
quadruple if and only if ε ∈ [0, εmax[, and for ε, η ∈ [0, εmax[ the following three assertions
are equivalent:

• Xε is isomorphic to Xη (where Xε and Xη are the varieties associated to the admis-
sible quadruples (P,M,Qε, Q̃ε) and (P,M,Qη, Q̃η) respectively);

• the faces of Qε (or Q̃ε) and Qη (or Q̃η) are “the same”, in the following sense: up
to deleting inequalities corresponding to some xj with j ∈ {1, . . . ,m} but without
changing Q̃ε and Q̃η, we have for any set I of rows, the face of Q̃ε corresponding to
I (defined by replacing inequalities by equalities for the rows in I) is non empty if
and only the face of Q̃η corresponding to I is non empty;

• there exists i ∈ {0, . . . , p} such that ε and η are both in [εi,0, εi,1[, or both in
]εi,k, εi,k+1[ with k ∈ {1, . . . , ki}, or both equal to εi,k with k ∈ {1, . . . , ki}.

Moreover, for any i ∈ {0, . . . , p} and k ∈ {1, . . . , ki} there are morphisms from Xε

to Xεi,k with ε < εi,k big enough and ε > εi,k small enough, defining flips. For any
i ∈ {1, . . . , p}, there are morphisms from Xε to Xεi,0 with ε < εi,0 big enough, defining
divisorial contractions. Actually, divisorial contractions appear exactly when an inequality
corresponding to some xj with j ∈ {1, . . . ,m} becomes superfluous to define Q̃ε.

Also, there exists P ′ andM ′ such that (P ′,M ′, Qεmax , Q̃εmax) is an admissible quadruple
associated to a variety Xεmax and such that there is a fibration from Xε to Xεmax with
ε < εmax big enough. Moreover, the general fibers of this fibration is a horospherical
variety and can be described.

In fact all fibers could be described with the following strategy: consider a G-orbit
G/H ′′ of Xεmax and list all G-orbits of Xε with ε < εmax big enough that are sent to
G/H ′′ by the fibration, then if there is a unique biggest such G-orbit Ω, the fibers over
G/H ′′ are isomorphic to the closure of L′′ · v where L′′ is a Levi subgroup of H ′′ and v is
the projectivization of a sum of highest weight vectors in Ω. Note that in the paper, there
will always be such a biggest G-orbit.

All morphisms above are G-equivariant and images of any G-orbit can be described as
follows. To a face of Qε (or Q̃ε) we can associate the maximal set of rows for which equality
holds for any element x of the face (in the inequalities Ax ≥ B + εC). And similarly to a
set of rows we can also naturally associate a face of Qε (may be empty). For any ε and εi,k
as above, for any face F ε of Q̃ε, we construct a face of Q̃εi,k by taking the maximal set of
rows associated to F ε and then the face F εi,k associated to these rows. Then, since there
is a morphism φ from Xε to Xεi,k , the non-empty face F εi,k corresponds to the G-orbit
image by φ of the G-orbit corresponding to F ε.

Several examples illustrating Theorem 2.17, in rank 2, are given in Sections 5.2 and 5.4.
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3 First combinatorial classification and first geometric de-
scription

3.1 Reduction to three cases

In this section, we only use Luna-Vust theory and Corollary 2.7 to reduce to the three
main cases of Theorem 1.1.

Lemma 3.1. Let X be a smooth projective horospherical variety with Picard group Z2.
Then one the three following cases occurs (with notation of Section 2).

Case (0): n = 0, |R| = 2, FX = ∅, and X = G/P .

Case (1): n ≥ 1, R = FX t {β}, there exist a basis (e1, . . . , en) of N and n integers 0 ≤
a1 ≤ · · · ≤ an such that σ induces an injective map σ̃ from FX to {e1, . . . , en, e0 :=
−e1 − · · · − en}, σ(β) = a1e1 + · · ·+ anen and

FX = {(CI ,FI) | I ( {0, . . . , n}}

where CI is the cone generated by the ei’s with i ∈ I, and FI = σ̃−1({ei | i ∈ I}).

Case (2): n ≥ 2, R = FX , there exist integers r ≥ 1, s ≥ 1, 0 ≤ a1 ≤ · · · ≤ ar and a basis
(u1, . . . , ur, v1, . . . , vs) of N such that σ induces an injective map σ̃ from FX = R to
{u0, . . . , ur, v1, . . . , vs+1}, with u0 := −u1 − · · · − ur and vs+1 := a1u1 + · · ·+ arur −
v1 − · · · − vs, and

FX = {(CI,J ,FI,J) | I ( {0, . . . , r} and J ( {1, . . . , s+ 1}}

where CI,J is the cone generated by the ui’s with i ∈ I and the vj’s with j ∈ J , and
FI,J = σ̃−1({ui | i ∈ I} ∪ {vj | j ∈ J}).

Proof. By Corollary 2.7, the map σ induces an injective map from FX to FX(1) and the
Picard number of X is ρX = (|FX(1)| − n) + |R\FX |. But, since X and then FX is
complete, |FX(1)| − n ≥ 0 with equality if and only if n = 0. (And |R\FX | ≥ 0.) Thus,
since ρX = 2 we distinguish three distinct cases:

Case (0): n = 0 and |R\FX | = 2;

Case (1): |FX(1)| = n+ 1 and |R\FX | = 1;

Case (2): |FX(1)| = n+ 2 and |R\FX | = 0.

We now detail each case.

Case (0): In the case where n = 0, X is the complete homogeneous variety G/P (and FX = ∅).
And then |R| = 2.

Case (1): Consider the fan F̃ := {C | (C,F) ∈ FX} associated to the colored fan FX (in fact it
is the fan of the toric fiber Y of the toroidal variety X̃ := G×P Y obtained from X by
erasing all colors of X). Since X is locally factorial, the fan F̃ is the fan of a smooth
toric variety of Picard number 1 (because |F̃X(1)| = n + 1). Then it is well-known
that such a fan is the fan of the projective space Pn. In particular, there exists a
basis (e1, . . . , en) of N such that F̃ = {CI | I ( {0, . . . , n}} where e0 := −e1−· · ·−en
and CI is the cone generated by the ei with i ∈ I.

Denote by β the unique element of R\FX . Then, up to reordering the ei’s (for
i ∈ {0, . . . , n}), we can suppose that σ(β) is in C{1,...,n} and equals a1e1 + · · ·+ anen
with 0 ≤ a1 ≤ · · · ≤ an.
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Case (2): As above, consider the fan F̃. SinceX is locally factorial, it is the fan of a smooth toric
variety of Picard number 2 (because |F̃X(1)| = n+ 2). Then, by [Kle88, Theorem 1],
there exist integers r ≥ 1, s ≥ 1, 0 ≤ a1 ≤ · · · ≤ ar and a basis (u1, . . . , ur, v1, . . . , vs)
of N such that F̃ = {CI,J | I ( {0, . . . , r} and J ( {1, . . . , s + 1}}, where u0 :=
−u1−· · ·−ur, vs+1 := a1u1 + · · ·+arur−v1−· · ·−vs and CI,J is the cone generated
by the ui’s with i ∈ I and the vj ’s with j ∈ J .

We conclude by the following facts: for any α ∈ FX and for any (C,F) ∈ FX , we have
α ∈ F if and only if σ(α) ∈ C; and for any α ∈ FX , σ(α) is the primitive element of an
edge of FX (using again Corollary 2.7).

Remark 3.2. In section 5, we will use the MMP or the Log MMP to study and compare
geometrically all these varieties X. We can already describe some Mori fibrations from
these varieties.

Case (0): If X is a complete homogeneous variety G/P of Picard group Z2, then the MMP gives
two Mori fibrations from X to the complete homogeneous varieties G/P1 and G/P2

of Picard group Z, where P1 and P2 are the maximal proper parabolic subgroups of
G containing B such that P = P1 ∩P2. Note moreover that G/P is a product if and
only if Aut(G/P ) is not simple.

Case (1): There exists a G-equivariant morphism ψ from X to G/P ($β). Note that the general
fiber of ψ is smooth of Picard group Z (in particular, it is homogeneous or one of
the two-orbit varieties described in [Pas09]).

Case (2): Let PZ be the parabolic subgroup containing B (and P ) such that RZ := RPZ =
σ̃−1({vj | j ∈ {1, . . . , s + 1}}). Let MZ be the sublattice of M orthogonal to
Zu1⊕· · ·⊕Zur ⊂ N . The pair (PZ ,MZ) corresponds to a horospherical homogeneous
space G/HZ with HZ containing H. Also the dual lattice NZ of MZ is the image
of the projection from N to Zu1 ⊕ · · · ⊕ Zur. We denote by v1,Z , . . . , vs+1,Z the
images of v1, . . . , vs+1 in NZ , in particular vs+1,Z = −v1,Z − · · · − vs,Z . And finally
we denote by FZ the colored fan {CJ,Z ,FJ,Z) | J ( {1, . . . , s}} where CJ,Z is the
cone generated by the vj,Z with j ∈ J , and FJ,Z = σ̃−1({vj | j ∈ J}). The colored
fan FZ corresponds to a G/HZ-embedding Z. Moreover, we have a G-equivariant
morphism ψ from X to Z, it is a Mori fibration. Note that Z and the general fiber
of ψ are smooth horospherical varieties of Picard group Z (in particular, they are
homogeneous or one of the two-orbit varieties described in [Pas09]).

3.2 Description via polytopes

We now describe X embedded in the projectivization of a G-module, by choosing the
smallest ample Cartier divisor of X and by applying Corollary 2.6. We first study the nef
cone of X, which is 2-dimensional.

Recall that any Cartier divisor of X is linearly equivalent to a B-stable divisor, and
any prime G-stable divisor corresponds to an edge of FX that is not generated by some
σ(α) with α ∈ FX , and any other B-stable prime divisor is the closure of a color of G/H.
Then in Cases (1) and (2), we have n + 2 prime B-stable divisors that we can denote
naturally as follows:

Case (1): Dn+1 = Dβ; for any i ∈ {0, . . . , n}, Di is the B-stable divisor corresponding to the
edge generated by ei (which equals Dα with α ∈ FX = R\{β} if and only if the edge
is generated by σ(α), and which is G-stable if not).
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Case (2): for any i ∈ {0, . . . , r}, Di is the B-stable divisor corresponding to the edge generated
by ui; and for any j ∈ {1, . . . , s+ 1}, Dj+r is the B-stable divisor corresponding to
the edge generated by vi (which equals Dα with α ∈ FX = R if and only if the edge
is generated by σ(α), and which is G-stable if not).

Proposition 3.3. In both cases (1) and (2), the nef cone of X is generated by D0 and
Dn+1. In particular, D0 +Dn+1 is ample. Moreover (D0, Dn+1) is a basis of Pic(X).

Proof. We begin by computing the piecewise linear functions hD0 and hDn+1 associated to
these two Cartier divisors.

Case (1): Consider the basis (e∗1, . . . , e
∗
n) of M that is dual to the basis (e1, . . . , en) of N . Then

hD0 is defined on NQ by: (hD0)|CI = 0 if I = {1, . . . , n}; and for any i ∈ {1, . . . , n},
(hD0)|CI = −e∗i where I = {0, . . . , i− 1, i+ 1, . . . , n}. And hDn+1 = 0.

Case (2): Consider the basis (u∗1, . . . , u
∗
r , v
∗
1, . . . , v

∗
s) ofM that is dual to the basis (u1, . . . , ur, v1, . . . , vs)

of N . Then hD0 is defined on NQ by: for any J ( {1, . . . , s+1}, (hD0)|CI,J = 0 if I =
{1, . . . , r}; for any i ∈ {1, . . . , r}, (hD0)|CI,J = −u∗i where I = {0, . . . , i−1, i+1, . . . , r}
and J = {1, . . . , s}; and, for any i ∈ {1, . . . , r}, for any j ∈ {1, . . . , s}, (hD0)|CI,J =
−u∗i −aiv∗j where I = {0, . . . , i−1, i+1, . . . , r} and J = {1, . . . , j−1, j+1, . . . , s+1}.
And hDn+1 is defined on NQ by: for any I ( {0, . . . , r}, (hDn+1)|CI,J = 0 if J =
{1, . . . , s}; and for any I ( {0, . . . , r}, for any j ∈ {1, . . . , s}, (hDn+1)|CI,J = −v∗j
where J = {1, . . . , j − 1, j + 1, . . . , s+ 1}.

By Theorem 2.4, one checks that D0 and Dn+1 are globally generated but not ample.
We also check that for any a and b in Q, aD0 + bDn+1 is Cartier if and only if a and b are
integers.

Before applying Corollary 2.6, we reduce to the case where G is the product of simply
connected simple groups and a torus, with the following lemma.

Lemma 3.4. [Pas06, proof of Proposition 3.10] Let G′ := [G,G] and let T be the torus
P/H. Then X is also a horospherical G′ × T-variety. Moreover, if Ĝ′ is the universal
cover of Ĝ′, X is also a horospherical Ĝ′ × T-variety.

Without loss of generality by the lemma, we now assume that G is the product G′

of simply connected simple groups and a torus T. In particular, P is the product of a
parabolic subgroup of G′ with T, and the characters of P are sums of weights of the
maximal torus of G′ and characters of T. Hence a basis of M ' X(T) is of the form
(χi+θi)i∈{1,...,n} such that (χi)i∈{1,...,n} form a basis of M = X(T), and the θi’s are weights
of the maximal torus of G′.

With these assumptions, we get the following result.

Lemma 3.5. The embbedding of X given by the ample Cartier divisor D0 +Dn+1 is:

Case (1):

X ↪→ P(

n⊕
i=0

V (χi +$i + (1 + ai)$β)),

where χ0 = 0, χ1, . . . , χn are characters of T, and for any i ∈ {0, . . . , n}, $i is either
$α if ei = σ(α) with α ∈ FX or 0 if not.
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Case (2):

X ↪→ P(
⊕

i,b1,...,bs+1

V (χi +$i +
s+1∑
j=1

bj(χr+j +$r+j)),

where χ0 = χn+1 = 0, χ1, . . . , χn are characters of T, and for any i ∈ {0, . . . , n+ 1},
$i is either $α if ui or vi−r is σ(α) with α ∈ FX or 0 if not; and where the sum is
taken over all s+2-tuples of non-negative integers (i, b1, . . . , bs+1) such that 0 ≤ i ≤ r
and

∑s+1
j=1 bj = 1 + ai (with a0 := 0).

Proof. In each case, we describe the pseudo-moment polytope of (X,D0 + Dn+1) in a
particular basis of M and then the moment polytope of (X,D0 + Dn+1). Then we use
Corollary 2.6 to conclude.

Case (1): By the previous lemma and the description of the images of colors, for any i ∈
{1, . . . , n}, the element e∗i is of the form χi +$i −$0 + ai$β, where χ1, . . . , χn are
characters of T and for any i ∈ {0, . . . , n}, $i is either $α if ei = σ(α) with α ∈ FX
or 0 if not.

The pseudo-moment polytope of (X,D0 + Dn+1) is the simplex with vertices 0,
e∗1, . . . , e

∗
n. The weight of the canonical section of D0 +Dn+1 is $0 +$β, where $0

is either $α if e0 = σ(α) with α ∈ FX or 0 if not.

Hence, the moment polytope of (X,D0 +Dn+1) is the simplex with vertices 0+$0 +
$β = χ0+$0+(1+a0)$β and (χi+$i−$0+ai$β)+($0+$β) = χi+$i+(1+ai)$β

for any i ∈ {1, . . . , n}.

Case (2): By the previous lemma and the description of the images of colors, for any i ∈
{1, . . . , r} the element u∗i is of the form χi + $i − $0 + ai$n+1 and for any j ∈
{1, . . . , s} the element v∗j is of the form χr+j + $r+j −$n+1, where χ1, . . . , χn are
characters of T, and for any i ∈ {0, . . . , n+ 1}, $i is either $α if ui (with 0 ≤ i ≤ r)
or vi−r (with r + 1 ≤ i ≤ n+ 1) is σ(α) with α ∈ FX or 0 if not.

The pseudo-moment polytope of (X,D0 +Dn+1) is the polytope with the following
vertices: 0, u∗1, . . . , u

∗
r , v

∗
1, . . . , v

∗
s and u∗i + (ai + 1)v∗j for any 1 ≤ i ≤ r and for any

1 ≤ j ≤ s. Note that the lattice points of this polytope are exactly 0, v∗1, . . . , v
∗
s

and for any 1 ≤ i ≤ r all the points u∗i +
∑s

j=1 bjv
∗
j where the bj ’s are non-negative

integers such that
∑s

j=1 bj ≤ ai+1. Moreover, the weight of the canonical section of
D0+Dn+1 is $0+$n+1, where $0 (respectively $n+1) is either $α if u0 (respectively
vs+1) equals σ(α) with α ∈ FX or 0 if not.

Hence, the moment polytope of (X,D0 + Dn+1) is the polytope with vertices 0 +
$0 +$n+1 = χ0 +$0 +(1+a0)(χn+1 +$n+1); for any i ∈ {1, . . . , r}, χi+$i+(ai+
1)(χn+1+$n+1); for any j ∈ {1, . . . , s}, χ0+$0+χr+j+$r+j ; and for any 1 ≤ i ≤ r,
for any 1 ≤ j ≤ s, χi+$i−$0+ai$n+1+(ai+1)(χr+j+$r+j−$n+1)+$0+$n+1 =
χi +$i + (ai + 1)(χr+j +$r+j).

In particular, the lattice points of the pseudo-moment polytope translated by $0 +
$n+1 are exactly the χi + $i +

∑s+1
j=1 bj(χr+j + $r+j) where the sum is taken over

all s + 2-tuples of non-negative integers (i, b1, . . . , bs+1) such that 0 ≤ i ≤ r and∑s+1
j=1 bj = 1 + ai.

Recall that, by lemma 3.4, (χ1, . . . , χn) is a basis of X(T). Hence, there exists a
subtorus S of T such that: (χi|S)i∈{1,...,n}, $i=0 is a basis of X(S), and for any i ∈ {1, . . . , n}
such that $i 6= 0, we have χi|S = 0.
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Lemma 3.6. In both cases (1) and (2), X is also a horospherical G′ × S-variety.

Proof. Consider Case (1). For any i ∈ {1, . . . , n} such that $i 6= 0, the G-orbit and the
G′ × S-orbit of the highest weight vector vχi+$i+(1+ai)$β in VG(χi + $i + (1 + ai)$β) '
VG′×S(χi +$i + (1 + ai)$β) = VG′×S($i + (1 + ai)$β) are equal.

Case (2) is similar.

We can replace χi +$i with $αi such that

• if χi|S = 0 and $i 6= 0, αi is a simple root of G′ (that is supposed to be a product of
simply connected simple groups);

• S is a product of C∗’s whose imaginary simple roots are the αi’s with i such that
χi|S 6= 0 and $i = 0;

• if i = 0 or n+ 1, χi|S = 0 and $i = 0, αi is the imaginary root of {1}.

It finally gives the following proposition.

Proposition 3.7. Let X be a smooth projective horospherical variety of Picard group Z2

as in Case (1) or (2). Then X is isomorphic to a smooth closure of a G-orbit of a sum of
highest weight vectors as follows where G is the product G0× · · · ×Gt of simply connected
simple groups, C∗ and {1}:

Case (1):

P(
n⊕
i=0

V ($αi + (1 + ai)$β)),

where n ≥ 1;
β is a (not imaginary) simple root of G0;
α0, . . . , αn are distinct simple roots (may be imaginary) of G distinct from β;
for any k ∈ {1, . . . , t}, Gk = {1} if and only if k = 1 and α0 is the imaginary root
of G1;
and 0 = a0 ≤ a1 ≤ · · · ≤ an are integers.

Case (2):

P(
⊕

i,b1,...,bs+1

V ($αi +
s+1∑
j=1

bj($αr+j )),

where the sum is taken over all s+ 2-tuples of non-negative integers (i, b1, . . . , bs+1)
such that 0 ≤ i ≤ r and

∑s+1
j=1 bj = 1 + ai (with a0 := 0);

r ≥ 1, s ≥ 1 and r + s = n;
α0, . . . , αn+1 are distinct simple roots (may be imaginary) of G;
for any k ∈ {0, . . . , t}, Gk = {1} if and only if, k = 0 and α0 is the imaginary root
of G0, or k = t and αn+1 is the imaginary root of Gt;
and 0 = a0 ≤ a1 ≤ · · · ≤ ar are integers.

These two cases of Proposition 3.7 justify the definition of two types of varieties. In
Case (2), we only consider the case where s = 1.

Definition 3.8. Let G = G0 × · · · ×Gt be a product of simply connected simple groups,
C∗ and {1} (with t ≥ 0).
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(1) Suppose G0 to be a simple group. Let β be a simple root of G0 (not imaginary),
let n ≥ max{1, t}, let α0, . . . , αn be distinct, eventually imaginary, simple roots of G
distinct from β and let 0 = a0 ≤ a1 ≤ · · · ≤ an be integers. Suppose also that, for
any k ∈ {1, . . . , t}, Gk = {1} if and only if k = 1 and α0 is the imaginary root of G1.
We define X1(G, β, α, a) to be the closure of the G-orbit of a sum of highest weight
vectors in

P

(
n⊕
i=0

V ($αi + (1 + ai)$β)

)
.

(2) Suppose t ≥ 1. Let n ≥ 2, let 0 = a0 ≤ a1 ≤ · · · ≤ an−1 be integers, and let
α0, . . . , αn+1 be distinct, eventually imaginary, simple roots of G. Suppose also that,
for any k ∈ {0, . . . , t}, Gk = {1} if and only if, k = 0 and α0 is the imaginary root
of G0, or k = t and αn+1 is the imaginary root of Gt.
We define X2(G,α, a) to be the closure of the G-orbit of a sum of highest weight
vectors in

P

(
n−1⊕
i=0

1+ai⊕
b=0

V ($αi + b$αn + (1 + ai − b)$αn+1)

)
.

4 Reduction to the cases of Theorem 1.1

This section consists on defining the restricted conditions mentionned in Theorem 1.1, and
on proving that we can reduce the cases of Proposition 3.7 to the varieties X1(G, β, α, a)
and X2(G,α, a) with these restricted conditions.

4.1 Smooth horospherical varieties and G-modules

To prove Theorem 1.1 from Proposition 3.7, we replace sums of irreducible G-modules
into irreducible G-modules with G ⊂ G as soon as we can. Then we enlarge the group
G and we reduce to “smaller” cases (for example to horospherical varieties with smaller
rank). For this, we first need to apply the smoothness criterion to X (Theorem 2.9),
which comes from the fact that smooth horospherical G-modules are the C∗-modules C,
the SLd-modules V ($1) = Cd and Spd-modules (with d even) V ($1) = Cd. And then
we use easy facts as “the SLd×SLe-module Cd ⊕ Ce is isomorphic to the SLd+e-module
Cd+e”.

As in [Pas09, Theorem 1.7], the smoothness criterion reveals 8 configurations including
the 5 configurations that give the five families of horospherical two-orbit varieties corre-
sponding to non-homogeneous smooth projective horospherical varieties of Picard group
Z. We recall these 8 configurations in the following definition.

Definition 4.1. Let K be a simple algebraic group over C and let γ, δ be two simple
roots of K.

The triple (K, γ, δ) is said to be smooth if (type of K, γ, δ) is one of the following 8
cases, up to exchanging γ and δ (with the notation of Bourbaki [Bou75]).

1. (Am, α1, αm), with m ≥ 2

2. (Am, αi, αi+1), with m ≥ 3 and i ∈ {1, . . . ,m− 1}

3. (Bm, αm−1, αm), with m ≥ 3

4. (B3, α1, α3)
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5. (Cm, αi, αi+1) with m ≥ 2 and i ∈ {1, . . . ,m− 1}

6. (Dm, αm−1, αm), with m ≥ 4

7. (F4, α2, α3)

8. (G2, α1, α2)

We say that (type of K, γ, δ) is smooth of two-orbit type if it is one of the cases 3, 4,
5, 7 or 8 above.

Remark 4.2. The smooth triples of two-orbit type correspond bijectively to the isomor-
phism classes of non-homogeneous projective smooth horospherical varieties with Picard
group Z. These varieties have two orbits under the action of their automorphism groups,
which are given in [Pas09, Theorem 1.11] and justify that all these varieties are distinct.

Here we also need to introduce another “smooth object” (only used in Case (1)).

Definition 4.3. Let K be a simple algebraic group over C and let β be a simple root of
K and let R be a subset of simple roots of K distinct from β. Let n be a non-negative
integer. Denote by L a Levi subgroup of the maximal parabolic subgroup P ($β) of K,
then the semi-simple part of L is a quotient by a finite central group of a product of simple
groups L1, . . . , Lq (with q ≥ 0).

The quadruple (K,β,R, n) is said to be smooth if

1. n = 1, R = {γ, δ} such that γ and δ are simple root of the same Lk so that the triple
(Lk, γ, δ) is smooth;

2. or for any k ∈ {1, . . . , q}, at most one simple root of Lk is in R, and if γ ∈ R is a
simple root of Lk, then Lk is of type A or C and γ is a short extremal simple root
of Lk.

We can list all smooth quadruples (K,β,R, n) (see the appendix). We remark, in par-
ticular, that R is at most of cardinality 3.

We can now define the restricted conditions that permit to state Theorems 1.1 and 1.3.

Definition 4.4. (1) Let X = X1(G, β, α, a) as in Definition 3.8. We say that X satis-
fies the restricted condition (a), (b) or (c) respectively if it satisfies all the following
properties including (a), (b) or (c) respectively.

Denote by R0 the maximal subset of {α0, . . . , αn} consisting of simple roots of G0.
The quadruple (G0, β, R0, n) is smooth.

If R0 is empty, thenG0 is the universal cover of the automorphism group ofG/P ($β).

Let 0 ≤ i1 < · · · < it′ ≤ n such that R0 = {αi | i 6∈ {i1, . . . , it′}} (t ≥ t′ ≥ 0). Then
ai1 < · · · < ait′ .

If i < j and ai = aj then αj ∈ R0. Moreover, if αi and αj are in R0, we suppose
them to be ordered with Bourbaki’s notation as simple roots of G0.

And one of the three following cases occurs.
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(a) We have n = t = 1, α0 and α1 are both simple roots of G1 so that the triple
(G1, α0, α1) is smooth; in particular, R0 = ∅, t′ = 2, i1 = 0 and i2 = 1.

In the two next cases, t = t′ (≥ 0), and for any k ∈ {1, . . . , t}, either Gk
is isomorphic to some SLdk and αik is the first simple root of Gk, or Gk is
isomorphic to C∗ or {1} and αik is the imaginary simple root of Gk.

(b) The simple root αn is not imaginary or an−1 = an.

(c) The simple root αn is imaginary and an−1 < an.

(2) Let X = X2(G,α, a) as in Definition 3.8. We say that X satisfies the restricted con-
dition (a), (b) or (c) respectively if it satisfies all the following properties including
(a), (b) or (c) respectively.

We have 0 = a0 < a1 < · · · < an. The triple (Gt, αn, αn+1) is smooth of two-orbit
type; in particular, αn and αn+1 are both simple roots of Gt) and α0, . . . , αn−1 are
simple roots of G0 ×G1 × · · · ×Gt−1.
And one of the three following cases occurs.

(a) We have n = 2, t = 1 and the triple (G0, α0, α1) is smooth.

In the two next cases: t = n and for any i ∈ {1, . . . , t}, either Gi is isomorphic
to some SLdi and αi the first simple root of Gi, or Gi is isomorphic to C∗ or
{1} and αi is the imaginary simple root of Gi.

(b) The simple root αn−1 is not imaginary.

(c) The simple root αn−1 is imaginary.

Remark 4.5. In Theorem 1.1, the decomposable projective bundles over projective spaces
are the horospherical varieties X in Case (1) with restricted condition (b) or (c), and
such that R0 = ∅ and $β is the first simple root of G0 = SLd0 for some d0 ≥ 2 (and
0 < a1 < · · · < an).

We begin by applying the smoothness criterion to get some part of the restricted con-
dition.

We suppose that X is as in Proposition 3.7.

Lemma 4.6.

Case (1): The quadruple (G0, β, R0, n) is smooth.

If there exist 0 ≤ i < j ≤ n such that αi and αj are simple roots of the same simple
group Gk with k ∈ {1, . . . , t} then n = 1, i = 0 and j = 1 (also t = k = 1). Moreover
in that case, the triple (Gk, αi, αj) is smooth.

If not, for any i ∈ {0, . . . , n}, the simple root αi is either imaginary or in G0 or the
short extremal simple root of one of a simple group Gk with k ∈ {1, . . . , t} that is of
type A or C.

Case (2): If there exist 0 ≤ i < j ≤ n + 1 such that αi and αj are simple roots of the same
simple group Gk with k ∈ {0, . . . , t} then either r = 1, i = 0 and j = 1, or s = 1,
i = n and j = n+ 1. Moreover in that case, the triple (Gk, αi, αj) is smooth.
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For any i ∈ {0, . . . , n}, such that the simple root αi is the unique αj of a simple
group Gk with k ∈ {0, . . . , t}. Then αi is either imaginary or the short extremal
simple root of Gk that is of type A or C.

Proof.

Case (1): With notation of Definition 4.3 (with K = G0), suppose γ and δ are two simple
roots of the same Lj . If n > 1, then there exists a maximal colored cone of FX that
contains γ∨M and δ∨M . By applying Theorem 2.9, we get a contradiction. Then n = 1
and applying Theorem 2.9 to the two one-dimensional colored cones of FX , we have
that the couples (R0\{β, δ}, γ) and (R0\{β, γ}, δ) are smooth, so that (Lj , γ, δ) is
smooth (from a case by case study done in [Pas09, Proof of Theorem 1.7]).

Suppose that α is the unique simple root of Lj in R0. By applying Theorem 2.9 to the
colored cone (Q≥0α∨M , {α}) we get that Lj is of type A or C and α is a short extremal
simple root of Lj . This finishes the proof of the smoothness of (G0, β, R0, n).

If there exist 0 ≤ i < j ≤ n such that αi and αj are simple roots of the same simple
group Gk with k ∈ {1, . . . , t} then as above Theorem 2.9 implies that n = 1 and
(Gk, αi, αj) is smooth. The fact that i = 0, j = 1 and t = k = 1 is obvious.

Now, let i ∈ {0, . . . , n} such that the simple root αi is the unique αj of a simple
group Gk with k ∈ {1, . . . , t} and suppose that αi is not imaginary. Apply again
Theorem 2.9 to the colored cone (Q≥0α∨M , {α}) to get that αi is the short extremal
simple root Gk with k ∈ {1, . . . , t} that is of type A or C. It finishes the proof of
the lemma in Case (1).

Case (2): Suppose there exist 0 ≤ i < j ≤ n+1 such that αi and αj are simple roots of the same
simple group Gk with k ∈ {0, . . . , t}. Then Theorem 2.9 implies that (Gk, αi, αj) is
smooth (still from the case by case study done in [Pas09, Proof of Theorem 1.7]).
But it also gives a contradiction if there exists a maximal colored cone of FX that
contains α∨i,M and α∨j,M . This contradiction occurs if and only if 0 ≤ i ≤ r and
r + 1 ≤ j ≤ n+ 1, or 0 ≤ i, j ≤ r and r ≥ 2, or r + 1 ≤ i, j ≤ n+ 1 and s ≥ 2.

We conclude the proof of the lemma in Case (2) as in Case (1).

Now we list different ways to replace sums of irreducible G-modules into irreducible
G-modules with G ⊂ G.

Lemma 4.7. Let τ ≥ 1. For i ∈ {1, . . . , τ}, let Gi be C∗, SLdi (with di ≥ 2) or Spdi (with
di ≥ 2 even). If Gi = C∗ set di = 1 and $i

1 the identity character of C∗. If not, set $i
1

the first fundamental weight of Gi. Let G = G1 × · · · ×Gτ .

(a) Let G = SLd where d = d1 + · · ·+ dτ .

Then VG($1) =
⊕τ

i=1 VG($i
1) and G ·

(∑τ
i=1 v

i
$1

)
⊂ G · v$1.

(b) Let G = SLd where d = d1 + · · ·+ dτ + 1.

Then VG($1) = VG(0)⊕
⊕τ

i=1 VG($i
1) and G ·

(
1 +

∑τ
i=1 v

i
$1

)
⊂ G · v$1, where 1 is

the unit in the trivial G-module VG(0) = C.

With notation of Bourbaki [Bou75] (we put primes to write differently fundamental
weights of G from those of G).
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(c) Let G = SLd (with d ≥ 3) and G = SO2d. Then VG($′1) = VG($1)⊕ VG($d−1) and
G ·
(
v$1 + v$d−1

)
⊂ G · v$′1.

(d) Let G = SLd (with d ≥ 4), G = SLd+1 and 1 ≤ i ≤ d − 2. Then VG($′i+1) =
VG($i)⊕ VG($i+1) and G ·

(
v$i + v$i+1

)
⊂ G · v$′i+1

.

(e) Let G = Spin2d (with d ≥ 4) and G = Spin2d+1. Then VG($′d) = VG($d−1)⊕VG($d)
and G ·

(
v$d−1

+ v$d
)
⊂ G · v$′d.

Moreover in each case, the projectivizations of the G-orbit and the G-orbit have the
same dimension, in particular the two projective varieties defined as the closure of these
two orbits in the corresponding projective spaces are the same.

Remark 4.8. In the first case of Lemma 4.7, with τ = 1 we have in particular that, for
d even, VSpd($1) = VSLd($1). Note also that Spd /P ($1) = SLd /P ($1)(= Pd−1)

Proof. The first two items are easy and left to the reader.
The last three items are given in [Pas09, Propositions 1.8, 1.9 and 1.10].

In Case (2), we need the following generalization of Lemma 4.7.

Lemma 4.9. Let a ∈ N∗.
Let τ ≥ 0. For i ∈ {0, . . . , τ}, let Gi be C∗, SLdi (with di ≥ 2) or Spdi (with di ≥ 2

even). If Gi = C∗ set di = 1 and $i
1 the identity character of C∗. Else set $i

1 the first
fundamental weight of Gi. Let G = G0 × · · · ×Gτ .

(a) Let G = SLd where d = d0 + · · ·+ dτ . Then

VG(a$1) =
⊕

b0,...,bτ

VG(

τ∑
i=0

bi$
i
1),

where the sum is taken over all (τ + 1)-tuples of non-negative integers (b0, . . . , bτ )
such that

∑τ
i=0 bi = a. And

G ·

 ∑
b0,...,bτ

v∑τ
i=0 bi$

i
1

 ⊂ G · va$1 .

(b) Let G = SLd where d = d0 + · · ·+ dτ + 1. Then

VG(a$1) =
⊕

b1,...,bτ

VG(

τ∑
i=0

bi$
i
1),

where the sum is taken over all (τ + 1)-tuples of non-negative integers (b0, . . . , bτ )
such that

∑τ
i=0 bi ≤ a. And

G ·

 ∑
b1,...,bτ

v∑τ
i=0 bi$

i
1

 ⊂ G · va$1 .

With notation of Bourbaki [Bou75] (we put primes to write differently fundamental
weights of G from those of G).
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(c) Let G = SLd (with d ≥ 3) and G = SO2d. Then

VG(a$′1) =
a⊕
b=0

VG(b$1 + (a− b)$d−1) and G ·

(
a∑
b=0

vb$1+(a−b)$d−1

)
⊂ G · va$′1 .

(d) Let G = SLd (with d ≥ 4), G = SLd+1 and 1 ≤ i ≤ d− 2. Then

VG(a$′i+1) =
a⊕
b=0

VG(b$i + (b− a)$i+1) and G ·

(
a∑
b=0

vb$i+(a−b)$i+1

)
⊂ G · va$′i+1

.

(e) Let G = Spin2d (with d ≥ 4) and G = Spin2d+1. Then

VG(a$′d) =
a⊕
b=0

VG(b$d−1 + (b− a)$d) and G ·

(
a∑
b=0

vb$d−1+(b−a)$d

)
⊂ G · va$′d .

Moreover in each case, the projectivizations the G-orbit and the G-orbit have the same
dimension, in particular the two projective varieties defined as the closure of these two
orbits in the corresponding projective spaces are the same.

Proof. Remark that for a = 1 the lemma is Lemma 4.7. For any a ≥ 1, we denote by Va
the G-module that we consider in each case.

Consider the horospherical G-variety X defined as the closure of the G-orbit of a sum
x1 of highest weight vectors in P(V1): it is a smooth projective variety with Picard group
Z (it is isomorphic to Pd−1, Pd−1, the quadric Q2d−2, the Grassmannian Gr(i+ 1, d+ 1),
Spin(2d + 1)/P ($d) respectively). Moreover V ∗1 is the G-module of global sections of
OX(1). And, for any a ≥ 1, the G-module V ∗a is the set of global sections of OX(a). But,
in each case, X is also a homogeneous projective G-variety G/P ($) (with $ = $1, $1,
$′1, $

′
i+1 and $′d respectively) by Lemma 4.7, then Va is also the irreducible G-module

VG(a$).
Also, the image of x1 in P(Va) is the projectivization of a highest weight vector in

VG(a$) for a good choice of a Borel subgroup of G (because G · x1 is the homogeneous
projective G-variety G/P ($)).

4.2 Proof of Theorem 1.1 in Case (1)

A first part is already proved by Proposition 3.7 and Lemma 4.6, in particular X is
embedded as the closure of the G-orbit of a sum of highest weight vectors in

P := P

(
n⊕
i=0

V ($αi + (1 + ai)$β)

)
.

It remains to prove that we can suppose that

− G0 is the universal cover of the automorphism group of G0/P ($β) if R0 is empty;

− if i < j and ai = aj then αj ∈ R0;

− and some groups Gk of type C can be replaced by groups of type A.
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•. If R0 is empty and G0 is not the universal cover of the automorphism group
of G0/P ($β), then G0/P ($β) is isomorphic to G′0/P ($β′) where G′0 is the universal
cover of Aut(G0/P ($β)) and (G0, β,G

′
0, β
′) is one of the following: (Sp2m, $1, SL2m, $1),

(G2, $1,Spin7, $1), or (Spin2m+1, $m,Spin2m+2, $m or $m+1). In any case, VG0($β) '
VG′0($β′) and G0 · v$β ' G′0 · v$β′ . Hence, the fact that R0 is empty implies that⊕n

i=0 VG($αi + (1 + ai)$β) '
⊕n

i=0 VG($αi + (1 + ai)$β′) where G = G′0×G1× · · ·×Gt,
and X is isomorphic to the closure of the G-orbit of a sum of highest weight vectors in

P := P

(
n⊕
i=0

VG($αi + (1 + ai)$β′)

)
.

•. Suppose that there is 0 ≤ i < j ≤ n such that αi and αj are simple roots of the
same simple group among G1, . . . , Gt. Then by Lemma 4.6, we have n = 1, i = 0, j = 1
(also t = 1) and the triple (G1, αi, αj) is smooth. In particular, X is embedded as the
closure of the G-orbit of a sum of highest weight vectors in

P (V ($α0 +$β)⊕ V ($α1 + (1 + a1)$β)) .

If a1 = 0, the G-module V ($α0 + $β) ⊕ V ($α1 + (1 + a1)$β) is isomorphic to the
tensor product of the G0-module V ($β) by the G1-module V ($α0) ⊕ V ($α1), so that
X is the product of G/P ($β) by the smooth projective horospherical variety of Picard
group Z defined as the closure of the G1-orbit of a sum of highest weight vectors in
P(V ($α0)⊕ V ($α1)).

We conclude that if X is not a product, X is as in Case (1a) (with a1 > 0).

From now on, we suppose that there is no 0 ≤ i < j ≤ n such that αi and αj are
simple roots of the same simple group among G1, . . . , Gt.

•. Suppose that there exists 0 ≤ i < j ≤ n such that ai = aj and both αi and αj are
not simple roots of G0.

Up to reordering, assume that αi and αj are simple roots of G1 and G2 (t ≥ 2). Note
that if i = 0 and α0 is imaginary, G1 = {1}. By Lemma 4.6, G1 and G2 are {1}, C∗ (dk = 1
in these two cases), SLdk (with dk ≥ 2) or Spdk (with dk ≥ 2 even) and αi, respectively
αj , is either an imaginary root or a short extremal root of G1, respectively G2.

Let G = G0 × G3 × · · · × Gt × SLd1+d2 . By Lemma 4.7 ((a) if i > 0 or α0 is not
imaginary and (b) if not), the G-module V ($αi + (1 + ai)$β) ⊕ V ($αj + (1 + aj)$β) is
isomorphic to the G-module V ((1 +ai)$β)⊗Cd1+d2 . And X is a subvariety of the closure
X of the G-orbit of a sum of highest weight vectors in P under the action of G.

We can now compare the dimension of the open G-orbit ΩX of X with the dimension of
the open G-orbit of X. Indeed ΩX is isomorphic to a horospherical homogeneous space of
rank n− 1 over ((G0×G3×· · ·×Gt)/(P ∩G0×G3×· · ·×Gt))× (SLd1+d2 /P ($1)), while
G/H is of rank n over ((G0 ×G3 × · · · ×Gt)/P ∩ (G0 ×G3 × · · · ×Gt))× ((G1 ×G2)/P ∩
(G1 × G2)). But the dimension of SLd1+d2 /P ($1) is d1 + d2 − 1 while the dimension
of (G1 × G2)/P ∩ (G1 × G2) is (d1 − 1) + (d2 − 1). Hence ΩX and G/H have the same
dimension, so that X = X.

Then we can replace, without changing X, the product of the two simple groups
corresponding to two simple roots αi and αj with ai = aj , with a unique simple group of
type A. Note that n decreases by this change. (Also note that, if i = 0 and α0 is imaginary
then the new α0 is not imaginary any more.)
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With similar arguments, we can also replace any group G1, . . . , Gt, of type C and that
contains a unique simple root αi, by a group of type A.

• What we did just above also works in the cases where n = 1, a1 = 0, α0 and α1 are
simple roots of G1 and G2 (and t = 2). In that case, it proves that X is the closure of
the SLd×G0-orbit of a highest weight vector in P

(
Cd
⊗
V ($β)

)
. Hence, in that case, X

is isomorphic to Pd−1 ×G0/P ($β).
Hence, we conclude the proof by iteration.

4.3 Proof of Theorem 1.1 in Case (2)

A first part is already proved by Proposition 3.7 and Lemma 4.6, in particular X is
embedded as the closure of the G-orbit of a sum of highest weight vectors in

P := P

 ⊕
i,b1,...,bs+1

V ($αi +
s+1∑
j=1

bj$αr+j )

 ,

where the sum is taken over all s+ 2-tuples of non-negative integers (i, b1, . . . , bs+1) such
that 0 ≤ i ≤ r and

∑s+1
j=1 bj = 1 + ai.

It remains to prove that we can suppose that

− s = 1, αn, αn+1 are both simple roots of Gt and (Gt, αn, αn+1) is smooth of two-orbit
type;

− 0 < a1 < · · · < ar;

− and some groups Gk of type C can be replaced by groups of type A.

• Suppose first that s > 1, or s = 1 and αn, αn+1 are not simple roots of the same
simple group Gk. Up to reordering and applying Lemma 4.6, for any j ∈ {1, . . . , s}, αr+j
is either an imaginary root of Gt−s+j that is C∗ or {1}, or a short extremal simple root
of Gt−s+j that is of type A or C. Moreover, the simple groups Gt−s+1, . . . , Gt contain no
other αi with i ∈ {0, . . . , r}. Also, Gt−s+j = {1} if and only if j = s and αr+s is imaginary.

We now apply Lemma 4.9 ((a) if αr+s is not imaginary and (b) otherwise). Hence,
there exists d ≤ 2 such that, with G ⊂ G := G0 × · · · ×Gt−s × SLd, we have

P = P

 ⊕
i,b1,...,bs+1

V ($αi)⊗ V (

s+1∑
j=1

bj$αr+j )

 = P

(
r⊕
i=0

VG($αi)⊗ VG((1 + ai)$1)

)
,

X is a subvariety of the closure X of the G-orbit ΩX of a sum of highest weight vectors in
P, and dim((Gt+1−s × · · · × Gt)/P ∩ (Gt+1−s × · · · × Gt) = d − s − 1. In particular the
dimension of ΩX (which is horospherical of rank r) equals the dimension of G/H. Hence,
X = X. Now remark that X is a horospherical variety as in Case (1).

• From now on, we suppose that s = 1 (and n = r + 1), and that αn, αn+1 are both
simple roots of Gt (up to reordering). In particular, X is embedded as the closure of the
G-orbit of a sum of highest weight vectors in

P

(
n−1⊕
i=0

1+ai⊕
b=0

V ($αi + b$αr+1 + (1 + ai − b)$αr+2)

)
.
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Note now that for any k ∈ {0, . . . , t}, Gk = {1} if and only if k = 0 and α0 is imaginary.

Recall that, by Lemma 4.6, α0, . . . , αr are not simple roots of Gt and the triple
(Gt, αn, αn+1) is smooth. Then X is embedded as the closure of the G-orbit of a sum
of highest weight vectors in

P := P

(
n−1⊕
i=0

1+ai⊕
b=0

V ($αi)⊗ V (b$αr+1 + (1 + ai − b)$αr+2)

)
.

If (Gt, αn, αn+1) is not of two-orbit type, we can apply Lemma 4.9 ((c), (d) or (e)) to
get G ⊂ G := G0 × · · · ×Gt−1 ×Gt such that P = P (

⊕r
i=0 VG($αi)⊗ VG((1 + ai)$)), X

is a subvariety of the closure X of the G-orbit ΩX of a sum of highest weight vectors in P,
and dim(Gt/P ∩ Gt) + 1 = dim(Gt/P ($)). In particular the dimension of ΩX (which is
horospherical of rank r) equals the dimension of G/H. Hence, X = X. And remark that
X is a horospherical variety as in Case (1).

• Now suppose that r > 1, or r = 1 and α0, α1 are not simple roots of the same simple
group.

Let i 6= i′ in {0, . . . , r} such that ai = ai′ . Up to reordering and applying Lemma. 4.6,
αi and αi′ are, imaginary or short extremal, simple roots respectively of G0 and G1 that
are C∗, {1} or simple groups of type A or C. Moreover G0 and G1 contain no other αk’s.

We can apply Lemma 4.7 ((a) if i > 0 or α0 is imaginary and (b) if not) to get
G ⊂ G := SLd×G2 · · · ×Gt such that

P = P

⊕
k 6=i, i′

1+ak⊕
b=0

VG($αk)⊗ VG(b$αr+1 + (1 + ak − b)$αr+2)


⊕

(
1+ai⊕
b=0

VG($)⊗ VG(b$αr+1 + (1 + ai − b)$αr+2)

))
,

X is a subvariety of the closure X of the G-orbit ΩX of a sum of highest weight vectors
in P, and dim((G0 ×G1)/P ∩ (G0 ×G1)) + 1 = d− 1. In particular the dimension of ΩX
(which is horospherical of rank (r− 1) + 1) equals the dimension of G/H. Hence, X = X.
Now remark that X is either a horospherical variety as in Case (2) of rank one less than
X, or a horospherical variety as in Case (1) if r = 1.

With similar arguments, we can also replace any group G0, . . . , Gt−1, of type C and
that contains a unique simple root αi, by a group of type A.

• By iteration of the above process, we can now assume that 0 < a1 < · · · < ar, or
that r = 1 (and t = 1) and α0, α1 are two simple roots of G0. In the second case, note
that by Lemma. 4.6, the triple (G0, α0, α1) is smooth.

Suppose r = 1, α0, α1 are two simple roots of G0 and that a1 = a0 = 0. Then, X is
the closure of the G0 ×G1-orbit of a sum of highest weight vectors in

P = P ((VG0($0)⊕ VG0($1))⊗ (VG1($α2)⊕ VG1($α3))) .

Hence in that case, X is the product of two varieties: the closure of the G0-orbit of a sum
of highest weight vectors in P ((VG0($0)⊕ VG0($1))) and the closure of the G1-orbit of a
sum of highest weight vectors in P ((VG1($2)⊕ VG1($3))).
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Hence, in any case we can assume that 0 < a1 < · · · < ar. This finish the proof of
Theorem 1.1.

5 The MMP and Log MMP for smooth projective horo-
spherical varieties of Picard group Z2

The main goal of this section is to prove Theorem 1.3.

5.1 Generalities

Let X be a smooth projective horospherical variety with Picard group Z2. Here, we
suppose that X is as in Case (1) or (2) of Lemma 3.1 (or Theorem 1.1).

By Proposition 3.3, up to linear equivalence, the ample Cartier divisors of X are of
the form D = d0D0 + dn+1Dn+1 with positive integers d0 and dn+1.

We can apply [Pas15] to the polarized variety (X,D) and obtain a description of the
MMP from X, via moment polytopes (if X is Fano, we obtain two different paths of the
program depending on the choice of d0 and dn+1; if X is not Fano, we obtain a unique
path of the program).

Moreover, we can also choose a B-stable Q-divisor ∆ of X and apply [Pas17] to the
polarized pair ((X,D),∆) and obtain a description of the Log MMP from (X,∆), via
moment polytopes as described in Section 2.2. To get a uniform Log MMP for any smooth
projective horospherical variety with Picard group Z2, we choose D = D0 + Dn+1 and
∆ = Di −KX for i ∈ {0, n+ 1}.

Remark 5.1. In Case (1), an anticanonical divisor of X is (see for example [Pas08,
Proposition 3.1])

−KX =

n∑
i=0

biDi + bβDβ ∼ (

n∑
i=0

bi)D0 + (bβ −
n∑
i=0

aibi)Dn+1,

where bi = 1 if Di is G-stable, bi = bαi ≥ 2 if Di is the color Dαi and bβ ≥ 2 (recall that
Dβ = Dn+1). In particular, X is Fano (i.e., −KX ample) if and only if bβ >

∑n
i=1 aibi.

To describe the MMP from X we could choose the ample divisor D = (
∑n

i=0 bi)D1 +
(bβ +1)Dβ, so that D+εKX is ample for any ε ∈ [0, 1[ and D+KX ∼ (

∑n
i=0 aibi+1)Dβ is

not ample but globally generated. Then, for that choice of D, the MMP from X consists
of the Mori fibration to G/P ($β) described in Remark 3.2.
Moreover, this Mori fibration is also the unique contraction of the Log MMP obtained
with the choices D = D0 +Dn+1 and ∆ = D0 −KX in Theorem 2.17 (in that case, Q1 is
a multiple of $β).

In Case (2), an anticanonical divisor of X is

−KX =
r∑
i=0

biDi +
s+1∑
j=1

br+jDr+j ∼ (
r∑
i=0

bi)D0 + (
s+1∑
j=1

br+j −
r∑
i=0

aibi)Dn+1,

where bi = 1 (respectively br+j) if Di (respectively Dr+j) is G-stable and bi = bαi ≥ 2
(respectively br+j = bαr+j ≥ 2) if Di is the color Dαi (respectively Dr+j is the color Dαr+j ).

In particular, X is Fano if and only if
∑s+1

j=1 br+j >
∑r

i=0 aibi.
To describe the MMP from X we could choose the ample divisor D = (

∑r
i=0 bi)D0 +

(1 +
∑s+1

j=1 br+j)Dn+1, so that D + εKX is ample for any ε ∈ [0, 1[ and D + KX ∼ (1 +
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∑r
i=0 aibi)Dn+1 is not ample but globally generated. Then, for that choice of D, the MMP

from X consists of the Mori fibration ψ from X to Z described in Remark 3.2.
Moreover, this Mori fibration is also the unique contraction of the Log MMP obtained
with the choices D = D0 +Dn+1 and ∆ = D0 −KX in Theorem 2.17 (in that case, Q1 is
a simplex of dimension s).

Hence, in both cases, we will describe the Log MMP obtained with the choices D =
D0 +Dn+1 and ∆ = Dn+1 −KX .

In the next four subsections, X is one the varieties of Theorem 1.1 in Case (1) or (2).
We begin by constructing the families of polytopes for the log pairs (X,∆ = Dn+1 −KX)
with the choice of ample divisor D = D0 +Dn+1, and then we describe in detail the Log
MMP’s obtained with these families.

5.2 Case (1): the ”second” Log MMP via moment polytopes

To describe the one-parameter family (Q̃ε)ε∈Q≥0
defined in Theorem 2.17, we consider the

basis (e∗i )i∈{1,...,n} of M , where for any i ∈ {1, . . . , n}, e∗i = $αi − $α0 + ai$β, and we
define the matrices A, B and C as follows

A =



−1 · · · · · · −1
1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1
a1 · · · · · · an


, B =



−1
0
...
...
0
−1


and C =



0
...
...
0
0
1


.

Then Q̃ε = {x ∈MQ | Ax ≥ B+εC} is the set of x = (x1, . . . , xn) such that x1, . . . , xn
are non-negative, x1 + · · ·+ xn ≤ 1 and a1x1 + · · ·+ anxn ≥ ε− 1.

Example 5.2. If n = 2 we are in one of the following situations:

1. a2 > a1 > 0 and α2 is not imaginary;

2. a2 > a1 > 0 and α2 is imaginary;

3. a2 > a1 = 0 and α2 is not imaginary;

4. a2 > a1 = 0 and α2 is imaginary;

5. a2 = a1 > 0;

6. a2 = a1 = 0.

We draw, in Figure 3, these polytopes for ε = 0 in different cases with the hyperplane
H0 := {x ∈MQ | a1x1+a2x2 = −1}. Note that there is no such hyperplane if a2 = a1 = 0.

• If an = 0, Q̃ε = Q̃0 for any ε ∈ [0, 1] and it is empty if ε > 1. Moreover, for any
ε ∈ [0, 1], Qε intersects the interior of X(P )+Q if and only if ε < 1. In that case, the Log

MMP described by the family (Qε)ε∈Q≥0
consists of a fibration φ0 : X −→ Y 0.

The fibers of this fibration can be easily computed (by the strategy given in Section 2.2)
because the faces of Q0 are “the same” as the faces of Q1 and then the fibration induces a

26



0
H0

0
H0

0

H0

Figure 3: The polytopes Q̃0 in the cases where a1 = 1 and a2 = 2, a1 = 0 and a2 = 1 and
a1 = a2 = 1 respectively

bijection between the sets of G-orbits of X and Y 0. Then the fibers of φ0 are isomorphic
to the homogeneous projective spaces (

⋂
i∈I P ($αi))/(P ($β) ∩

⋂
i∈I P ($αi)) (of Picard

group Z), with ∅ 6= I ⊂ {0, . . . , n}. Here, we use the following notation: if αi is imaginary,
P ($αi) = G (and if not, it is the proper maximal parabolic subgroup of G associated to
αi).

In particular, the general fiber of the fibration is (
⋂n
i=0 P ($αi))/(P ($β)∩

⋂n
i=0 P ($αi))

and the smallest fibers are the P ($αi)/(P ($β) ∩ P ($αi)) with i ∈ {0, . . . , n}. Then we
deduce that α0 6∈ R0 if and only if there exists a fiber isomorphic to G/P ($β).

• Suppose now that an 6= 0, then Q̃ε is the intersection of the simplex Q̃ = Conv(e∗0, e
∗
1, . . . , e

∗
n)

with the closed half-space Hε
+ := {x ∈ MQ | a1x1 + · · · + anxn ≥ ε − 1}, where e∗0 := 0.

We denote by Hε
++ the interior of Hε

+ and by Hε the hyperplane Hε
+\Hε

++.

In the next proposition, we give a description of the non-empty faces of Q̃ε by distin-
guishing whether a face is in the hyperplane Hε or not.

Note first that the non-empty faces of the simplex Q̃ are the FI := Conv(e∗i | i ∈
{0, . . . , n}\I), with I ( {0, . . . , n}. In particular, the facets of Q̃ are the Fi := F{i} and
for any I ( {0, . . . , n}, FI =

⋂
i∈I Fi.

Then, for any I ( {0, . . . , n}, we define F εI := FI ∩Hε
+ and F εI,β := FI ∩Hε. They are

faces (may be empty and not distinct) of Q̃ε.

Proposition 5.3. (Recall that a0 = 0 and that an 6= 0 here.)
The polytope Q̃ε is of dimension n if and only if ε < maxni=0(1 + ai) = 1 + an.

Suppose now that ε < 1 + an. The non-empty faces of Q̃ε are the distinct following F εI
and F εI,β, with I ( {0, . . . , n}:

• F εI (of codimension |I|) if ε < maxi 6∈I(1 + ai);

• F εI,β (of codimension |I|+1 or |I| respectively) if mini 6∈I(1+ai) < ε < maxi 6∈I(1+ai)
or ε = mini 6∈I(1 + ai) = maxi 6∈I(1 + ai).

In particular, the facets of Q̃ε are: F εi with i ∈ {0, . . . , n− 1} (for any ε < 1 + an), F εn if
ε < 1 + an−1, F ε∅,β if ε > 1, and F εn,β if ε = 1 and an−1 = 0.

Moreover, we can write any face of Q̃ε as the intersection of all the facets that contain
it, as follows.
For any I ( {0, . . . , n} such that ε < maxi 6∈I(1 + ai), F

ε
I =

⋂
i∈I F

ε
i .

For any I ( {0, . . . , n} such that mini 6∈I(1+ai) < ε < maxi 6∈I(1+ai), F
ε
I,β = F ε∅,β∩

⋂
i∈I F

ε
i .

For any I ( {0, . . . , n} such that ε = mini 6∈I(1+ai) = maxi 6∈I(1+ai), F
ε
I,β = F εn,β∩

⋂
i∈I F

ε
i

if ε = 1, n ∈ I and an−1 = 0 or F εI,β =
⋂
i∈I F

ε
i if ε 6= 1, n 6∈ I or an−1 6= 0.

Proof. The polytope Q̃ε is of dimension n if and only if Q̃ intersects Hε
++ if and only if

there exists i ∈ {0, . . . , n} such that e∗i ∈ Hε
++ if and only if there exists i ∈ {0, . . . , n}
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such that ai > ε− 1 if and only if an > ε− 1 (because 0 = a0 ≤ · · · ≤ an). This proves the
first statement of the proposition.

Suppose now that ε < 1 + an. For any non-empty face F of Q̃ε, either F 6⊂ Hε and F
is the intersection of a non-empty face of Q̃ with Hε

+, or F ⊂ Hε and F is the intersection

of a non-empty face of Q̃ with Hε.
Let I ( {0, . . . , n}. The set F εI is not empty if and only if there exists i 6∈ I such that

e∗i ∈ Hε
+ if and only if there exists i 6∈ I such that ai ≥ ε−1 if and only if ε ≤ maxi 6∈I(1+ai).

Moreover, F εI is not empty and not included in Hε if and only if it intersects Hε
++ if and

only if there exists i 6∈ I such that e∗i ∈ Hε
++ if and only if there exists i 6∈ I such that

ai > ε− 1 if and only if ε < maxi 6∈I(1 + ai). Also, in that latter case, the dimension of F εI
is the same as the dimension of FI ; in particular the non-empty F εI that are not included
in Hε are all distinct.

Similarly, F εI,β is not empty if and only if there exist i and j not in I (may be equal)
such that e∗i ∈ Hε

+ and e∗j 6∈ Hε
++ (i.e., ai ≥ ε − 1 and aj ≤ ε − 1). Then F εI,β is not

empty if and only mini 6∈I(1 + ai) ≤ ε ≤ maxi 6∈I(1 + ai). Moreover, F εI,β is not empty
and included in no proper face of FI (i.e., Hε intersects the relative interior of FI) if and
only if there exist i 6= j not in I such that e∗i ∈ Hε

++ and e∗j 6∈ Hε
+ (i.e., ai > ε − 1 and

aj < ε − 1) or for any i 6∈ I we have e∗i ∈ Hε (i.e., ai = ε − 1). Then F εI,β is not empty
and included in no proper face of FI if and only mini 6∈I(1 + ai) < ε < maxi 6∈I(1 + ai) or
ε = mini 6∈I(1 + ai) = maxi 6∈I(1 + ai). Note also that the non-empty F εI,β that are not

included in a proper face of FI are all distinct and describe all non-empty faces of Q̃ε

included in Hε. This finishes the proof of the second statement of the proposition.
To describe the facets, it is sufficient to find the F εi with ε < maxj 6=i(1 + aj), the

F εi,β with ε = minj 6=i(1 + aj) = maxj 6=i(1 + aj) and F ε∅,β with 1 = minni=0(1 + ai) < ε <
maxni=0(1 + ai) = 1 + an. We easily find the F εi with i ∈ {0, . . . , n− 1} for any ε < 1 + an,
and F εn for any ε < 1+an−1. We conclude by noticing that, for any i ∈ {0, . . . , n}, we have
ε = minj 6=i(1 + aj) = maxj 6=i(1 + aj) < 1 + an if and only if i = n and 0 = a0 = · · · = an−1
(and in particular, ε = 1).

To get the last statement, apply the fact that any face of a polytope is the intersection
of the facets containing it.

From Proposition 5.3, we deduce the following result with the following notation. Let
i0 := 0, i1, . . . , ik, ik+1 := n + 1 be increasing positive integers so that 0 = ai0 = · · · =
ai1−1 < ai1 = · · · = ai1−1 < · · · < ail = · · · = ail−1 < · · · < aik = · · · = an. (Note that
0 < i1 < · · · < ik < n+ 1 are the integers defined in Theorem 1.1 with k = t′.)

Corollary 5.4. The isomorphism classes of the horospherical varieties Xε associated to
the polytopes in the family (Qε)ε∈Q≥0

are given by the following subsets of Q≥0:

• [0, 1[;

• ]1 + ail , 1 + ail+1
[ for any l ∈ {0, . . . , k − 2};

• {1 + ail} for any l ∈ {0, . . . , k − 2};

• ]1 + aik−1
, 1 + aik [ and {1 + aik−1

} if ik 6= n (i.e., if an−1 = an) or the simple root
αn is not imaginary (i.e., when X is as in Case (1b) of Theorem 1.1);

• [1 + aik−1
, 1 + aik [ if ik = n (i.e., if an−1 < an) and the simple root αn is imaginary

(i.e., when X is as in Case (1c) of Theorem 1.1).
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Proof. We apply the theory described in Section 2.2, in particular the fact that the iso-
morphism classes of the varieties Xε are obtained by looking at the ε’s for which “the faces
of Qε change”.

Note first that, by Proposition 5.3, (P,M,Qε, Q̃ε) is an admissible quadruple if and
only if ε < 1 + an.

Also, the facets of Q̃ε are: F εi with i ∈ {0, . . . , n − 1}, F εn if ε < 1 + an−1, F
ε
∅,β if

ε > 1, and F εn,β (orthogonal to α∨n,M ) if ε = 1 and an−1 = 0. In particular, for any
ε, η ∈ [0, 1 + an[, if an−1 6= 0, the facets of Qε and Qη are “the same” if and only if ε and
η are both in [0, 1] or ]1, 1 + an−1[ or [1 + an−1, 1 + an[ (which may be empty). And if
an−1 = 0, the facets of Qε and Qη are “the same” for any ε, η ∈ [0, 1 +an[ (indeed, in that
case, the facets F εn if ε < 1, F ε∅,β if ε > 1, and F εn,β if ε = 1 are “the same”, in particular

all orthogonal to β∨M = anα
∨
n,M ).

We now use a consequence of the proof of Proposition 5.3: for any I ( {0, . . . , n},⋂
i∈I F

ε
i is not empty if and only if ε ≤ maxi 6∈I(1 + ai), F

ε
∅,β ∩

⋂
i∈I F

ε
i is not empty if

and only if mini 6∈I(1 + ai) ≤ ε ≤ maxi 6∈I(1 + ai) and F εn,β ∩
⋂
i∈I F

ε
i is not empty if and

only if mini 6∈I(1 + ai) = ε = maxi 6∈I(1 + ai). In particular for any l ∈ {0, . . . , k − 2},
suppose that for I = {il+1, . . . , n} and that

⋂
i∈I F

ε
i is not empty; suppose also that for

I = {0, . . . , il − 1} and that F ε∅,β ∩
⋂
i∈I F

ε
i is not empty; then ε = 1 + ail . Similarly for

any l ∈ {0, . . . , k − 2}, suppose that that for I = {il+1 − 1, . . . , n} and
⋂
i∈I F

ε
i is not

empty; suppose also that for I = {0, . . . , il−1} and that F ε∅,β ∩
⋂
i∈I F

ε
i is not empty; then

ε ∈ [1 + ail , 1 + ail+1
]. If ik 6= n, F εn is still a facet of Qε and what we did above with

l ∈ {0, . . . , k − 2} can be done as well with l = k − 1.
Hence, it proves that if the two varieties Xε and Xη are isomorphic then ε and η are

in one of the subsets described in the corollary.
To conclude, we have to prove that the two varieties Xε and Xη are isomorphic when

ε and η are in one of these subsets. It is obvious with Proposition 5.3 except in the
case where ik = n and the simple root αn is imaginary. But in that case, all polytopes
Qε with ε ∈ [1 + an−1, 1 + an[= [1 + aik−1

, 1 + aik [ are simplexes with facets F εi for
i ∈ {0, . . . , n − 1} and F ε∅,β or F εn,β if ε = 1 + an−1 = 1, i.e., they could be defined even
deleting the row corresponding to the simple root αn that is imaginary, so that their faces
are “the same”.

We can reformulate this corollary as follows, and get the first statement of Theorem 1.3
in Case (1). We denote X0 = X and for any l ∈ {1, · · · , k}, X l := Xε with ε ∈]1+ail−1

, 1+
ail [, and for any l ∈ {0, · · · , k}, Y l := X1+ail .

Corollary 5.5. The family (Qε)ε∈Q≥0
describes a Log MMP from X as follows:

• k flips φl : X l −→ Y l ←− X l+1 : φ+l for any l ∈ {0, · · · , k − 1} and a fibration
φk : Xk −→ Y k, if ik 6= n or the simple root αn is not imaginary;

• k − 1 flips φl : X l −→ Y l ←− X l+1 : φ+l for any l ∈ {0, · · · , k − 2}, a divisorial
contraction φk−1 : Xk−1 −→ Y k−1 ' Xk and a fibration Xk −→ Y k ' pt, if ik = n
and the simple root αn is imaginary.

Example 5.6. In the fives different cases with n = 2 and a2 6= 0, we illustrate this
corollary in terms of polytopes in Figures 4, 5, 6, 7 and 8.

5.3 Proof of the last statement of Theorem 1.3 in Case (1)

The previous section proves that ai1 , . . . , aik are invariants of X. To finish the proof of
Theorem 1.3 in Case (1), we have to prove that G0, . . . , Gt, α0, . . . , αn, β and i1, . . . , ik are
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Figure 4: The Log MMP described by the polytopes Q̃ε in the case where n = 2, a1 = 1,
a2 = 2 and α2 is not imaginary.
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Figure 5: The Log MMP described by the polytopes Q̃ε in the case where n = 2, a1 = 1,
a2 = 2 and α2 is imaginary.
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Figure 6: The Log MMP described by the polytopes Q̃ε in the case where n = 2, a1 = 0,
a2 = 1 and α2 is not imaginary.
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Figure 7: The Log MMP described by the polytopes Q̃ε in the case where n = 2, a1 = 0,
a2 = 1 and α2 is imaginary.
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Figure 8: The Log MMP described by the polytopes Q̃ε in the case where n = 2 and
a1 = a2 = 1.

also invariants of X. For this, we have to describe some exceptional loci and some fibers
of the different morphisms of the Log MMP.

We first distinguish two cases by the following result.

Proposition 5.7. Define the simple subgroups of P ($β) as in Definition 4.3.

• Suppose that n = 1 and that α0 and α1 are two simple roots of the same simple
subgroup of P ($β).

Then, the fiber of ψ : X −→ G/P ($β) is either a homogeneous variety different
from a projective space (a quadric Q2m with m ≥ 2, a Grassmannian Gr(i,m) with
p ≥ 5 and 2 ≤ i ≤ m− 2, or a spinor variety Spin(2m+ 1)/P ($m) with m ≥ 4), or
a two-orbit variety as in [Pas09].

• Suppose that n > 1 or that α0 and α1 are not two simple roots of the same simple
subgroup of P ($β).

Then, the fiber of ψ : X −→ G/P ($β) is a projective space.

Proof. The fiber of ψ : X −→ G/P ($β) is the smooth projective P ($β)-variety of Picard
group Z isomorphic to the closure of the P ($β)-orbit of a sum of highest weight vectors
in P := P(V ($α0) ⊕ · · · ⊕ V ($αn)). Hence, the proposition is a consequence of [Pas09,
Section 1].

• In the case where n = 1 and that α0 and α1 are two simple roots of the same simple
subgroup of P ($β), G = G0, the Log MMP described by Corollary 5.5 consists of a fibra-
tion if a1 = 0, or a flip and a fibration if a1 > 0.

– Suppose first that a1 = 0. There are two cases to deal with.

If α1 is between α0 and β in the Dynkin diagram of G0 (and similarly, up to exchanging
α0 and α1, α0 is between α1 and β), since X ⊂ P(V ($α0 +$β)⊕V ($α1 +$β)) and Y 0 ⊂
P(V ($α0)⊕V ($α1)), we easily compute that the fibration φ0 : X −→ Y 0 has two different
types of fibers: one isomorphic to P ($α0)/(P ($α0)∩P ($β)) over a G-orbit isomorphic to
G/P ($α0) and another one of smaller dimension isomorphic to P ($α1)/(P ($α1)∩P ($β)).
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In particular, the couple (G/P ($α0), G/P ($β)) is an invariant of X. Then if G0 is
not the universal cover of the automorphism group of G/P ($β) it must be the universal
cover of the automorphism group of G/P ($α0), so that G0 is an invariant of X. Also,
φ−10 (G/P ($α0)) = G/(P ($α0) ∩ P ($β)), then the couple (α0, β) is an invariant of X up
to symmetries of the Dynkin diagram of G0.

Moreover, if β is fixed, the possible symmetries are the ones (which fixed β) in type Am
with m ≥ 5 odd, $β = $m+1

2
and any α0, type E6 with $β = $4 and $α0 = $1, $3, $5

or $6 , and type Dm with m ≥ 4, $β = $i for any i ∈ {1, . . . ,m − 2} and $α0 = $m−1
or $m.

The description of the fiber of ψ : X −→ G/P ($β), with Remark 4.2, implies that α0

and α1 are also invariants of X up to symmetries of the Dynkin diagram of G0. .

Otherwise (occurs only in types D and E), G0 is the universal cover of the automor-
phism group of G/P ($β), and then G0 and β are invariants of X up to symmetries of the
Dynkin diagram of G0.

We also easily compute that the fibration φ0 : X −→ Y 0 has at least two different
types of fibers: one smaller isomorphic to (P ($α0)∩P ($α1))/(P ($α0)∩P ($α1)∩P ($β))
over the open G-orbit of Y 0, and two others (may be isomorphic) respectively isomorphic
to P ($α0)/(P ($α0)∩P ($β)) and P ($α1)/(P ($α1)∩P ($β)) respectively over G/P ($α0)
and G/P ($α1).

In particular, the pair (G/P ($α0), G/P ($α1)) is an invariant of X and then the pair
(α0, α1) is also an invariant of X up to symmetries of the Dynkin diagram of G0.

– Suppose now that a1 > 0. Then X ⊂ P(V ($α0 + $β) ⊕ V ($α1 + (1 + a1)$β)),
Y 0 ⊂ P(V ($α0) ⊕ V ($α1 + a1$β)), X1 ⊂ P(V ($α0 + $α1) ⊕ V (2$α1 + a1$β)) and
Y 1 ' G/P ($α1) ⊂ P(V ($α1)). In particular X, Y 0 and X1 have two closed G-orbits and
one open G-orbit so that we easily compute exceptional locus and fibers as follows.

For example, the exceptional locus of φ0 : X −→ Y 0 is the G-orbit of X isomorphic
to G/(P ($α0) ∩ P ($β)). Then the universal cover of its automorphism group G0 is an
invariant of X. And then β is also an invariant of X up to symmetries of the Dynkin
diagram of G0.

Note now that the exceptional locus of φ0 is sent to the G-orbit of Y 0 isomorphic to
G/P ($α0) so that the triple (G/P ($α0), G/P ($α1), G/P ($β)) is an invariant of G. Also
the (same) description of the fiber of ψ : X −→ G/P ($β) implies that the subgroup or
P ($β) and the pair (α0, α1) are invariants of X (up to symmetries in type A, D and E
as in the case where a1 = 0). Hence, the triple (β, α0, α1) is an invariant of X up to
symmetries of the Dynkin diagram of G0.

• Now we suppose that n > 1 or that α0 and α1 are not two simple roots of the same
simple subgroup of P ($β).

We define different exceptional loci in X as follows. Let l ∈ {0, . . . , k − 1}, define El
to be the closure in X of the set of points x ∈ X such that x is in the open isomorphism
set of the first l contractions and x is in the exceptional locus of φl.

Proposition 5.8. For any l ∈ {0, . . . , k} the exceptional locus El is the closure in X of the
G-orbit associated to the non-empty face FIl of Q with Il := {il+1, . . . , n}. In particular
El is isomorphic to the closure of the G-orbit of a sum of highest weight vectors in

P := P(

il+1−1⊕
i=0

V ($αi + (1 + ai)$β)),
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and El is a smooth projective horospherical of Picard group Z2 as in Case (1), unless l = 0,
i1 = 1 so that El is homogeneous (projective of Picard group Z or Z2).

Note that for l = k, Ik = ∅ and Ek = X.

Proof. Let l ∈ {0, . . . , k} and εl ∈ Q≥0 such that X l = Xεl .
We denote by Ωl

I and Ωl
I,β the G-orbits of X l associated to the non-empty faces F εlI

and F εlI,β of the polytope Q̃εl . We denote by ωlI and ωlI,β the G-orbits of Y l = X1+ail

associated to the non-empty faces F
1+ail
I and F

1+ail
I,β of the polytope Q̃1+ail . Recall that,

for any ε ∈ Q≥0, we have an order on the G-orbits of Xε compatible with the order on

the non-empty faces of Q̃ε: in particular Ωl
I ⊂ Ωl

I′ and Ωl
I,β ⊂ Ωl

I′,β respectively if and

only if I ′ ⊂ I, and Ωl
I,β ⊂ Ωl

I (as soon as these orbits are defined, i.e., as soon as the
corresponding faces are non-empty).

For any I ( {0, . . . , n} such that there exists i ≥ il not in I (i.e., such that Ωl
I is

defined), φl(Ω
l
I) = ωlI if there exists i ≥ il+1 not in I, and φl(Ω

l
I) = ωlI∪{0,...il−1},β if

for any i ≥ il+1, i ∈ I. Indeed I ∪ {0, . . . il − 1} is the minimal subset of {0, . . . , n}
containing I such that ωlI∪{0,...il−1},β is defined and there is no I ′ containing I such that

ωlI′ is defined. And for any I ( {0, . . . , n} such that there exist i ≥ il and i′ < il not in
I (i.e., such that Ωl

I,β is defined), φl(Ω
l
I,β) = ωlI,β if there exists i ≥ il+1 not in I, and

φl(Ω
l
I,β) = ωlI∪{0,...il−1},β if for any i ≥ il+1, i ∈ I. Indeed I ∪ {0, . . . il − 1} is the minimal

subset of {0, . . . , n} containing I such that ωlI∪{0,...il−1},β is defined.

In particular, we have φl(Ω
l
Il

) = ωlIl∪{0,...il−1},β (which is also φl(Ω
l
Il,β

) if l ≥ 1). But

Ωl
Il

and ωlIl∪{0,...il−1},β are not isomorphic horospherical homogeneous spaces by Propo-

sition 2.13, so that Ωl
Il

is in the exceptional locus of φl. Moreover, if Ω is a G-orbit of

Xεl not contained in Ωl
Il

, it is of the form Ωl
I or Ωl

I,β where Il 6⊂ I. Hence, in that case

φl(Ω) = Ω. And then the exceptional locus of φl is Ωl
Il

. Note that Ω0
Il
, . . . ,Ωl−1

Il
are not in

the exceptional locus of φ0, . . . , φl−1 respectively, to conclude that El = Ω0
Il

.

We use again Proposition 2.13 to see that El = Ω0
Il

corresponds to the admissible

quadruple (PF ,MF , F, F̃ ) with F = F 0
Il

(and with some ample divisor of El). Then we
conclude by Corollaries 2.6 and 2.10.

The Log MMP now defines, by restriction, fibrations φ̃l : El\El−1 −→ E′l := ωlIl∪{0,...il−1},β,

for any l ∈ {0, . . . , k}.

Definition 5.9. We say that the fibers of φ̃l are locally maximal over ω ⊂ E′l if the
dimensions of the fibers of φ̃l over any point of ω are the same and bigger than the
dimension of the fibers of φ̃l over any point of a neighborhood of ω that is not in ω.

We say that the fibers of φ̃l are locally almost maximal over ω ⊂ E′l if there exists
ω′ ( ω such that the fibers of φ̃l are locally maximal over ω′ and the fibers of φ̃l|φ̃l

−1
(E′l\ω′)

are locally maximal over ω\ω′ ⊂ E′l\ω′

We now prove the following result, which implies in particular that i1, . . . , ik are in-
variant of X.

Proposition 5.10. Suppose that n > 1 or that α0 and α1 are not two simple roots of the
same simple subgroup of P ($β).

Let l ∈ {0, . . . , k}.
The map φ̃l is surjective and we distinguish four distinct cases.
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1. we have il+1 − il = 1 and αil is not a simple root of G0. The fibers of φ̃l are locally
maximal over E′l and dimEl − dimEl−1 = 1 + dimE′l (here we set dimE−1 :=
dimG/P ($β) − 1 so that it stays true for l = 0). Moreover, E′l is homogeneous
isomorphic to G/P ($αil

) (which is a point if αil is imaginary).

2. we have il+1 − il = 1 and αil is a simple root of G0. The fibers of φ̃l are lo-
cally maximal over E′l and dimEl − dimEl−1 6= 1 + dimE′l (also here dimE−1 :=
dimG/P ($β) − 1 so that it stays true for l = 0). Moreover, E′l is homogeneous
isomorphic to G/P ($αil

).

3. we have il+1 − il > 1 and αil is not a simple root of G0. The fibers of φ̃l are
locally maximal over a unique proper subset of E′l, which is a closed G-orbit ω′ of
E′l isomorphic to G/P ($αil

). Also the fibers of φ̃l are locally almost maximal over
exactly il+1− il− 1(> 0) subvarieties of E′l containing ω′, respectively of dimensions
dimG/P ($αil

) + dimG/P ($αj ) + 1 with j ∈ {il + 1, . . . , il+1 − 1}.

4. we have il+1 − il > 1 and αil is a simple root of G0. The fibers of φ̃l are locally
maximal over il+1−il closed G-orbits, which are respectively isomorphic to G/P ($αj )
with j ∈ {il, . . . , il+1 − 1}.

Moreover, in the four cases, the dimension of the fibers over all pointed subsets of E′l
are as follows.

1. The dimension of the fibers of φ̃l is 1 + dimEl−1 (in particular dimG/P ($β) if
l = 0).

2. The dimension of the fibers of φ̃l is

dil := il + dim

(
P ($αil

)/(P ($β) ∩
il⋂
i=0

P ($αi))

)
.

3. The dimension of the locally maximal fibers of φ̃l is 1 + dimEl−1 (in particular
dimG/P ($β) if l = 0). And for any j ∈ {il+1, . . . , il+1−1}, the dimension of locally
almost maximal fibers of φ̃l over of the subset of E′l of dimension dimG/P ($αil

) +
dimG/P ($αj ) + 1 is

dj := il + dim

(
P ($αj )/(P ($β) ∩

il−1⋂
i=0

P ($αi) ∩ P ($αj ))

)
.

4. For any j ∈ {il, . . . , il+1 − 1}, the dimension of locally maximal fibers of φ̃l over of
the closed G-orbit isomorphic to G/P ($αj ) is

dj := il + dim

(
P ($αj )/(P ($β) ∩

il−1⋂
i=0

P ($αi) ∩ P ($αj ))

)
.

Proof. We keep the notation of the proof of Proposition 5.8. And we use Corollary 2.15
to compute the dimension of the fibers.

Let ω be a G-orbit of Y l in ωlIl∪{0,...il−1},β. Then there exists I ( {0, . . . , n} con-

taining Il ∪ {0, . . . il − 1} such that ω = ωlI,β. Then φ̃l
−1

(ω) =
⊔
J Ωl

J where the union
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is taken over all J such that J ∩ Il−1 = I ∩ Il−1. In particular, φ̃l is surjective and

φ̃l
−1

(ω) = Ωl
I∩Il−1

. We then compute dim(ω) = dim(F lI,β) + dim(G/
⋂
i 6∈I P ($αi)), and

dim(Ωl
I∩Il−1

) = dim(FI∩Il−1
) + dim(G/P ($β) ∩

⋂
i 6∈I∩Il−1

P ($αi)), so that the dimension

of a fiber of φ̃l over ω is

dim(FI∩Il−1
)− dim(F lI,β)) + (dim(G/(P ($β) ∩

⋂
i 6∈I∩Il−1

P ($αi))− dim(G/
⋂
i 6∈I P ($αi)))

= il + dim(
⋂
i 6∈I P ($αi)/(P ($β) ∩

⋂
i 6∈I∩Il−1

P ($αi))

= il + dim(
⋂
i 6∈I P ($αi)/(

⋂
i 6∈I P ($αi) ∩

⋂il−1
i=0 P ($αi) ∩ P ($β)).

These dimensions are the biggest when I is the biggest (in particular when I =
{0, . . . , n}, which is not allowed to define ω). Moreover, if we remove from I some i,
the dimension changes if and only if j is such that αi is in G0 (i.e., αi is not imaginary
and not the only simple root αj in a simple group of G different from G0, by hypothesis).
From this, we will deduce the different following cases.

If αil is not a simple root of G0, then the locus in ωlIl∪{0,...il−1},β where the fibers of

φ̃l are maximal is the unique closed G-orbit ω′ := ωl{0,...n}\{il},β isomorphic to G/P ($αil
).

This gives the first case of the proposition if il+1 − il = 1. And if il+1 − il > 1 the

locus in ωlIl∪{0,...il−1},β where the fiber of φ̃l is almost maximal is the union of the subsets

ωl{0,...n}\{il,j},β ∪ ω
′ with j ∈ {il + 1, . . . , il+1 − 1}, which are affine cones over G/P ($αi).

This gives the third case of the proposition.
Now, if αil is a simple root of G0 (i.e., for any j ∈ {il, . . . , il+1− 1}, αj is a simple root

of G0), then the locus in ωlIl∪{0,...il−1},β where the fiber of φ̃l is maximal is the (disjoint)

union of the il+1− il closed G-orbits ωl{0,...n}\{j},β of ωlIl∪{0,...il−1},β, which are respectively

isomorphic to G/P ($αj ) for any j ∈ {il, . . . , il+1 − 1}. This gives the second case of the
proposition if il+1 − il = 1 and the fourth case if il+1 − il > 1.

We easily deduce the following.

Corollary 5.11. With the notation of Proposition 5.10: for any j ∈ {0, . . . , n},

dimG/P ($β) + dj − dimEl−1 − 1 = dimP ($αj )/(P ($β) ∩ P ($αj ))

and
dimG/P ($αj ) + dj − dimEl−1 − 1 = dimP ($β)/(P ($β) ∩ P ($αj )).

In particular, for any l ∈ {0, . . . , k}, the sets

{(dimP ($αj )/(P ($β)∩P ($αj )), dimP ($β)/(P ($β)∩P ($αj ))) | j ∈ {il, . . . , il+1− 1}}

are invariants of X.

And then we conclude the proof of Case (1) of Theorem 1.3 (i.e., that G0, β, α0, . . . , αn
are invariants of X) by the following lemma (still in the case where n > 1 or that α0 and
α1 are not two simple roots of the same simple subgroup of P ($β)).

Lemma 5.12. Let G, G′ be two products of simply connected simple groups and C∗’s. Let
β, β′ be two simple roots of two of the simple factors G0 and G′0 of G and G′ respectively.
And let α0, . . . , αn, respectively α′0, . . . , α

′
n be simple roots of G, G′ both as in Case (1) of

Theroem 1.1 (with the same integers k and i1, . . . , ik).
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Suppose that
G/P ($β) ' G′/P ($β′)

and for any l ∈ {0, . . . , k},

{(dimP ($αj )/(P ($β) ∩ P ($αj )), dimP ($β)/(P ($β) ∩ P ($αj ))) | j ∈ {il, . . . , il+1 − 1}} =
{(dimP ($α′j

)/(P ($β′) ∩ P ($α′j
)),dimP ($β′)/(P ($β′) ∩ P ($α′j

))) | j ∈ {il, . . . , il+1 − 1}}.

Then G = G′, β = β′ and for any i ∈ {0, · · · , n}, αi = α′i up to reordering the αi’s
and α′i’s inside the sets {il, . . . , il+1 − 1}.

Proof. Step 1: for any l ∈ {0, . . . , k}, αil 6∈ R0 if and only if αi′l 6∈ R
′
0, and in that case, αil

and αi′l are both extremal simple roots of SLm+1 withm = dimP ($β)/(P ($β)∩P ($αj )) =
dimP ($β′)/(P ($β′) ∩ P ($α′j

)).

Indeed, αil 6∈ R0 if and only if dimP ($αil
)/(P ($β) ∩ P ($αil

)) = dimG/P ($β) =
dimG/P ($β′) = dimP ($α′il

)/(P ($β′) ∩ P ($α′il
)) if and only if αi′l 6∈ R′0. The second

statement is obvious from the hypothesis on the αi’s and α′i’s. Note that αil+1, . . . , αil+1−1
are in R0 by hypothesis.

Step 2: G0 = G′0 and β = β′ up to symmetries of the Dynkin diagram. If not, R0

and R′0 are not empty and {(G0, $β), (G′0, $β′)} is one of the three following sets up to
symmetries of the Dynkin diagram (by [Akh95, Section 3.3]): {(Sp2m, $1), (SL2m, $1)},
{(Spin2m+1, $m), (Spin2m+2, $m+1)} or {(G2, $1), (Spin7, $1)}. Let αj ∈ R0, there exists
l ∈ {0, . . . , k} such that j ∈ {il, . . . , il+1 − 1}. By Step 1, α′j ∈ R′0 and up to reorder-
ing αi’s and α′i’s in {il, . . . , il+1−1} we can suppose that dimP ($αj )/(P ($β)∩P ($αj )) =
dimP ($α′j

)/(P ($′β)∩P ($α′j
)) and dimP ($β)/(P ($β)∩P ($αj )) = dimP ($β′)/(P ($β′)∩

P ($α′j
)). We have to check that this is not possible in the three cases.

If ((G0, $β), (G′0, $β′)) is ((Sp2m, $1), (SL2m, $1)) then $αj is the fundamental weight
$2 of Sp2m (by the smooth condition) so that dimP ($αj )/(P ($β)∩P ($αj )) = 1 and $α′j

has to be the fundamental weight$2 (by the smooth condition and because dimP ($α′j
)/(P ($β′)∩

P ($α′j
)) = 1). But then dimP ($β)/(P ($β)∩P ($αj )) = 2m−3 < 2m−2 = dimP ($β′)/(P ($β′)∩

P ($α′j
)).

If ((G0, $β), (G′0, $β′)) is ((Spin2m+1, $m), (Spin2m+2, $m+1)) then $αj is the funda-
mental weight $1 or $m−1 of Spin2m+1. In both cases, dimP ($β)/(P ($β) ∩ P ($αj )) =
m− 1. But $α′j

is the fundamental weight $1 or $m of Spin2m+2 so that

dimP ($β′)/(P ($β′) ∩ P ($α′j
)) = m.

If ((G0, $β), (G′0, $β′)) is ((G2, $1), (Spin7, $1)), then $αj is the fundamental weight
$2 of G2 and $α′j

is the fundamental weight $3 of Spin7. But then dimP ($β)/(P ($β)∩
P ($αj )) = 1 < 3 = dimP ($β′)/(P ($β′) ∩ P ($α′j

)).

We can now assume that G0 = G′0 and β = β′. There are at most three simple sub-
groups of P ($β) (their Dynkin diagram can be obtained from the Dynkin diagram of G0

by removing β).

Step 3: let αj ∈ R0 and α′j ∈ R′0 such that dimP ($β)/(P ($β)∩P ($αj )) = dimP ($β)/(P ($β)∩
P ($α′j

)). By the smooth condition, αj and α′j are extremal short simple roots of a simple

subgroup of P ($β) of type A or C. If the type is Ap then dimP ($β)/(P ($β)∩P ($αj )) =
p. If the type is Cp then dimP ($β)/(P ($β) ∩ P ($αj )) = 2p − 1. Hence, we have two
cases: they are extremal short simple roots of simple subgroups of P ($β) both of type
Ap, or they are extremal short simple roots of simple subgroups of P ($β) of types A2p−1
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and Cp.

Step 4: Suppose moreover that dimP ($αj )/(P ($β)∩P ($αj )) = dimP ($α′j
)/(P ($β)∩

P ($α′j
)), then one checks that αj = α′j up to symmetries, by studying all cases up to sym-

metries, where P ($β) has at least two simple subgroups of types Ap and Ap with p ≥ 1,
or A2p−1 and Cp with p ≥ 2.

Type of G0 $β $αj dimP ($αj )/(P ($β) ∩ P ($αj ))

Am, m ≥ 5 $m+1
2

$1 or $m+3
2

(m+1)(m−1)
4 or m+1

2 , and

m odd (m+1)(m−1)
4 = m+1

2
m−1
2 ≥ 2m+1

2

B3 $2 $1 or $3 2 or 3

B6 $4 $1 or $6 18 or 8

B6 $4 $3 or $6 5 or 8

Cm, m ≥ 3 $i $1 or $i+1
(4m−3i)(i−1)

2 = 3i(i−1)
2 or i,

m multiple of 3 i = 2
3m and 3i(i−1)

2 > i because i ≥ 2

Cm, m ≥ 3 $i $i−1 or $i+1 2m− 2i− 1 = i− 1 or i,
m multiple of 3 i = 2

3m

D7 $4 $1 or $7 21 or 12

D7 $4 $3 or $7 6 or 12

E6 $4 $1 or $5 15 or 6

5.4 Case (2): the ”second” Log MMP via moment polytopes

To describe the one-parameter family (Q̃ε)ε∈Q≥0
defined in Theorem 2.17, we consider the

basis (u∗i )i∈{1,...,r} ∪ (v∗1) of M , where for any i ∈ {1, . . . , r}, u∗i = $αi − $α0 + ai$αr+2

and v∗1 = $αr+1 −$αr+2 and we define the matrices A, B and C as follows

A =



−1 · · · −1 0
1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1
a1 · · · ar −1


, B =



−1
0
...
...
0
−1


and C =



0
...
...
...
0
1


.

Then Q̃ε = {x ∈MQ | Ax ≥ B+εC} is the set of x = (x1, . . . , xn) such that x1, . . . , xn
are non-negative, x1 + · · ·+ xr ≤ 1 and a1x1 + · · ·+ arxr − xr+1 − · · · − xn ≥ ε− 1.

In particular, Q̃ε is the intersection of Q̃0 with the closed half-space Hε
+ := {x ∈MQ |

a1x1 + · · ·+ arxr − xr+1 ≥ ε− 1}. We denote by Hε
++ the interior of Hε

+ and by Hε the
hyperplane Hε

+\Hε
++.

Example 5.13. If n = 2 (i.e., r = s = 1) we have a1 > 0, and either α1 is imaginary or
not.

We draw, in Figure 9, such a polytope for ε = 0 with the hyperplane H0 := {x ∈MQ |
a1x1 − x2 = −1}.

Note that Q̃0 is a polytope with vertices u∗0 := 0, u∗1, . . . , u
∗
r , u

∗
0 + (1 + a0)v

∗
0, . . . , u

∗
r +

(1+ar)v
∗
1 (recall that a0 = 0) and facets FI := Conv((u∗i | i 6∈ I)∪(u∗i +(1+ai)v

∗
1 | i 6∈ I)),

FI,1 := Conv(u∗i | i 6∈ I) and FI,2 := Conv(u∗i + (1 + ai)v
∗
1 | i 6∈ I) with I ( {0, . . . , r}. In
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0
H0

Figure 9: The polytope Q̃0 in the case where a1 = 2

particular, the facets of Q̃0 are the Fi := F{i} with i ∈ {0, . . . , r}, F∅,1 and F∅,2. Moreover
for any I ( {0, . . . , n}, FI =

⋂
i∈I Fi, FI,1 =

⋂
i∈I Fi ∩ F∅,1 and FI,2 =

⋂
i∈I Fi ∩ F∅,2.

Then, for any I ( {0, . . . , r}, we define F εI := FI∩Hε
+, F εI,1 := FI,1∩Hε

+, F εI,2 := FI∩Hε

and F εI,1,2 := FI,1 ∩ Hε. They are faces (may be empty and not distinct) of Q̃ε. (Recall
0 = a0 < a1 < · · · < ar and n = r + 1.)

Proposition 5.14. The polytope Q̃ε is of dimension n if and only if ε < 1 + ar.

Suppose now that ε < 1 + ar. The non-empty faces of Q̃ε are the distinct following F εI ,
F εI,1, F εI,2 and F εI,1,2 with I ( {0, . . . , r}:

• F εI (of codimension |I|) if ε < maxi 6∈I(1 + ai);

• F εI,1 (of codimension |I|+ 1) if ε < maxi 6∈I(1 + ai);

• F εI,2 (of codimension |I|+ 1) if ε < maxi 6∈I(1 + ai);

• F εI,1,2 (of codimension |I|+2 or |I|+1 respectively) if mini 6∈I(1+ai) < ε < maxi 6∈I(1+
ai) or ε = mini 6∈I(1 + ai) = maxi 6∈I(1 + ai).

In particular, the facets of Q̃ε are: F εi with i ∈ {0, . . . , r− 1}, F εr if ε < 1 + ar−1, F ε∅,1 and
F ε∅,2.

Moreover, we can write any face of Q̃ε as the intersection of all the facets that contain
it, as follows.
For any I ( {0, . . . , r} such that ε < maxi 6∈I(1 + ai), F

ε
I =

⋂
i∈I F

ε
i .

For any I ( {0, . . . , r} such that ε < maxi 6∈I(1 + ai), F
ε
I,1 =

⋂
i∈I F

ε
i ∩ F ε∅,1.

For any I ( {0, . . . , r} such that ε < maxi 6∈I(1 + ai), F
ε
I,2 =

⋂
i∈I F

ε
i ∩ F ε∅,2.

For any I ( {0, . . . , r} such that mini 6∈I(1 + ai) ≤ ε ≤ maxi 6∈I(1 + ai), F
ε
I,1,2 =

⋂
i∈I F

ε
i ∩

F ε∅,1 ∩ F
ε
∅,2.

Remark that, if ε = mini 6∈I(1 + ai) = maxi 6∈I(1 + ai), then I = {0, . . . , r}\{i} where i
is such that ε = 1 + ai.

Note also that Q̃1+ar is the point u∗r so that Q1+ar is the point $αr .

Proof. For any ε ≥ 0, the polytope Q̃ε is of dimension n if and only if Q̃0 intersects Hε
++

if and only if there exists i ∈ {0, . . . , r} such that u∗i (or u∗i + (1 + ai)v
∗
1) is in Hε

++ if
and only if there exists i ∈ {0, . . . , r} such that ai > ε − 1 (or −1 > ε − 1) if and only if
ar > ε− 1. This proves the first statement of the proposition.

Suppose now that ε < 1 + ar. A non-empty face of Q̃ε is either the intersection with
Hε

+ of a non-empty face of Q̃0 that intersects Hε
++, or the intersection of a non-empty face

of Q̃0 with Hε.
Let I ( {0, . . . , r}. The set F εI is not empty if and only if there exists i 6∈ I such that

u∗i (or u∗i + (1 + ai)v
∗
1) is in Hε

+ if and only if there exists i 6∈ I such that ai ≥ ε − 1 (or
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−1 ≥ ε − 1) if and only if ε ≤ maxi 6∈I(1 + ai). Moreover with the same argument, F εI is
not empty and intersects Hε

++ if and only if ε < maxi 6∈I(1 + ai). Also, in that case, the
dimension of F εI is the same as the dimension of FI ; in particular the non-empty F εI that
intersect Hε

++ are all distinct.
Similarly, F εI,1 is not empty if and only if there exists i 6∈ I such that u∗i ∈ Hε

+ if and
only if there exists i 6∈ I such that ai ≥ ε − 1 if and only if ε ≤ maxi 6∈I(1 + ai). Also,
F εI,1 is not empty and intersects Hε

++ if and only if ε < maxi 6∈I(1 + ai). In that case, the
dimension of F εI,1 is the same as the dimension of FI,1; in particular the non-empty F εI,1
that intersect Hε

++ are all distinct and also distinct from the non-empty F εI .
Let I ( {0, . . . , r}. Note that for any ε ≥ 0 (respectively ε > 0) and for any i ∈

{0, . . . , r}, u∗i + (1 + ai)v
∗
1 6∈ Hε

++ (respectively u∗i + (1 + ai)v
∗
1 6∈ Hε

+). Then the set F εI,2
is not empty if and only if there exists i 6∈ I such that u∗i ∈ Hε

+ if and only if there exists
i 6∈ I such that ai ≥ ε−1 if and only if ε ≤ maxi 6∈I(1+ai). Moreover, F εI,2 is not empty and
Hε intersects FI in its relative interior if and only if there exists i 6∈ I such that ai > ε− 1
if and only if ε < maxi 6∈I(1 + ai). Hence, the dimension of F εI,2 is the dimension of FI
minus 1 if ε < maxi 6∈I(1 + ai) and it equals the dimension of FI if ε = maxi 6∈I(1 + ai). In
the first case, the F εI,2 are all distinct and describe all non-empty faces of Q̃ε included in
Hε but not in F∅,1. In the second case, F εI,2 = F εI,1,2.

Now, the set F εI,1,2 is not empty if and only if there exist i and j not in I (may be
equal) such that u∗i ∈ Hε

+ and u∗j 6∈ Hε
++ if and only if there exist i and j not in I

such that ai ≥ ε − 1 and aj ≤ ε − 1 if and only if mini 6∈I(1 + ai) ≤ ε ≤ maxi 6∈I(1 + ai).
Moreover, F εI,1,2 is not empty and included in no proper face of FI,1 if and only if there
exist i and j not in I such that u∗i ∈ Hε

++ and u∗j 6∈ Hε
+ if and only if there exist i

and j not in I such that ai > ε − 1 and aj < ε − 1 (i.e., ai < ε − 1 and aj > ε − 1)
or for any i 6∈ I we have u∗i ∈ Hε (i.e., ai = ε − 1). Then F εI,1,2 is not empty and
included in no proper face of FI,1 if and only if mini 6∈I(1 + ai) < ε < maxi 6∈I(1 + ai) or
ε = mini 6∈I(1+ai) = maxi 6∈I(1+ai). In particular, the dimension of F εI,1,2 is the dimension
of FI,1 minus 1 if mini 6∈I(1 + ai) < ε < maxi 6∈I(1 + ai) and it equals the dimension of FI,1
if ε = mini 6∈I(1 + ai) = maxi 6∈I(1 + ai). Note also that the non-empty F εI,1,2 that are not

included in a proper face of FI,1 are all distinct and describe all non-empty faces of Q̃ε

included in Hε ∩ F∅,1. This finishes the proof of the second statement of the proposition.
To get the last statements, apply that a facet is a face of codimension 1 and that any

face of a polytope is the intersection of the facets containing it.

From Proposition 5.14, we deduce the following result.

Corollary 5.15. The isomorphism classes of the horospherical varieties Xε associated to
the polytopes in the family (Qε)ε∈Q≥0

are given by the following subsets of Q≥0:

• [0, 1[;

• ]1 + ai, 1 + ai+1[ for any i ∈ {0, . . . , r − 2};

• {1 + ai} for any i ∈ {0, . . . , r − 2};

• ]1 + ar−1, 1 + ar[ and {1 + ar−1} if the simple root αr is not imaginary (i.e., when
X is as in Case (2b) of Theorem 1.1);

• [1 + ar−1, 1 + ar[ if the simple root αr is imaginary (i.e., when X is as in Case (2c)
of Theorem 1.1).
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Proof. We apply the theory described in Section 2.2, in particular the fact that the iso-
morphism classes of the varieties Xε are obtained by looking at the ε’s for which “the faces
of Qε change”.

Note first that, by Proposition 5.14, (P,M,Qε, Q̃ε) is an admissible quadruple if and
only if ε < 1 + ar.

Also, the facets of Q̃ε are: F εi (orthogonal to α∨i,M ) with i ∈ {0, . . . , r− 1}, F εr (orthog-
onal to α∨r,M ) if ε < 1+ar−1, F

ε
∅,1 (orthogonal to α∨r+1,M ) and F ε∅,2 (orthogonal to α∨r+2,M ).

In particular, for any ε, η ∈ [0, 1 + ar[, the facets of Qε and Qη are “the same” if and only
if ε and η are both in [0, 1 + ar−1[ or [1 + ar−1, 1 + ar[.

We now use a consequence of the proof of Proposition 5.14: for any I ( {0, . . . , r},⋂
i∈I F

ε
i is not empty if and only if ε ≤ maxi 6∈I(1 + ai), F

ε
∅,1 ∩

⋂
i∈I F

ε
i is not empty if and

only if ε ≤ maxi 6∈I(1 + ai), F
ε
∅,2 ∩

⋂
i∈I F

ε
i is not empty if and only if ε ≤ maxi 6∈I(1 + ai),

and F ε∅,1,2 ∩
⋂
i∈I F

ε
i is not empty if and only if mini 6∈I(1 + ai) ≤ ε ≤ maxi 6∈I(1 + ai). In

particular, for any i ∈ {0, . . . , r−2}, suppose that for I = {i+1, . . . , r} and that
⋂
i∈I F

ε
i is

not empty; suppose also that for I = {0, . . . , i− 1} and that F ε∅,1,2 ∩
⋂
i∈I F

ε
i is not empty;

then ε = 1+ai. Similarly for any i ∈ {0, . . . , r−2}, suppose that for I = {i+2, . . . , n} and
that

⋂
i∈I F

ε
i is not empty; suppose also that for I = {0, . . . , i−1} and that F ε∅,1,2∩

⋂
i∈I F

ε
i

is not empty; then ε ∈ [1 + ai, 1 + ai+1].
Hence, this proves that if two varieties Xε and Xη are isomorphic then ε and η are a

one of the subsets described in the corollary.
To conclude, we have to prove that the two varieties Xε and Xη are isomorphic when

ε and η are in one of these subsets. It is obvious with Proposition 5.14 except in the
case where the simple root αn is imaginary. But in that case, all polytopes Qε with
ε ∈ [1 + ar−1, 1 + ar[ could be defined even deleting the row corresponding to the simple
root αr that is imaginary, so that their faces are “the same” (they are simplexes with
facets F εi for i ∈ {0, . . . , r − 1}, F ε∅,1 and F ε∅,2).

We can reformulate this corollary as follows, and get the first statement of Theorem 1.3
in Case (2). We denote X0 = X and for any i ∈ {1, · · · , r}, Xi := Xε with ε ∈]1+ai−1, 1+
ai[ and for any i ∈ {0, · · · , r}, Y i := X1+ai .

Corollary 5.16. The family (Qε)ε∈Q≥0
describes a Log MMP from X as follows:

• r flips φi : Xi −→ Y i ←− Xi+1 : φ+i for any i ∈ {0, · · · , r − 1} and a fibration
φr : Xr −→ Y r, if the simple root αr is not imaginary;

• r − 1 flips φi : Xi −→ Y i ←− Xi+1 : φ+i for any i ∈ {0, · · · , k − 2}, a divisorial
contraction φr−1 : Xr−1 −→ Y r−1 ' Xr and a fibration Xr −→ Y r ' pt, if the
simple root αn is imaginary.

Example 5.17. In the two different cases with n = 2 and a1 = 2, we illustrate this
corollary in terms of polytopes in Figures 10 and 11.

5.5 Proof of the last statement of Theorem 1.3 in Case (2)

The previous section proves that a1, . . . , ar are invariants of X. To finish the proof of
Theorem 1.3 in Case (2), we have to prove that G0, . . . , Gt and α0, . . . , αr+2 are also
invariants. Since the ”first” Log MMP consists of a fibration ψ : X −→ Z where Z is a
two-orbit variety embedded in P(V ($αr+1)⊕ V ($αr+2)) as in [Pas09], Gt, αr+1 and αr+2

are invariants of X. As in Case (1), we will describe some exceptional loci and some fibers
of different morphisms of the Log MMP, but we first distinguish two cases by the following
result.
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0
H0

0

H1

0

H2

0
•

H3

φ0 φ+0 φ1

Figure 10: The Log MMP described by the polytopes Q̃ε in the case where n = 2, a1 = 2
and α1 is not imaginary.

0
H0

0

H1

0
•

H3

φ0

φ1

Figure 11: The Log MMP described by the polytopes Q̃ε in the case where n = 2, a1 = 2
and α1 is imaginary.
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Proposition 5.18. • Suppose that r = 1 and that α0 and α1 are two simple roots of
G0 (and then t = 1).

Then, the general fiber of ψ : X −→ Z is either a homogeneous variety different
from a projective space (a quadric Q2m with m ≥ 2, a Grassmannian Gr(i,m) with
m ≥ 5 and 2 ≤ i ≤ m − 2, or a spinor variety Spin(2m + 1)/P ($m) with m ≥ 4),
or a two-orbit variety as in [Pas09].

• Suppose that r > 1 or that α0 and α1 are simple roots of G0 and G1 respectively.

Then, the general fiber of ψ : X −→ Z is a projective space.

Proof. The general fiber of ψ : X −→ Z is the smooth projective horospherical G0×· · ·×
Gt−1-variety of Picard group Z isomorphic to the closure of the G0× · · · ×Gt−1-orbit of a
sum of highest weight vectors in P := P(V ($α0)⊕ · · · ⊕ V ($αr)). Hence, the proposition
is a consequence of [Pas09, Section 1].

• In the case where r = 1 and that α0 and α1 are two simple roots of G0, G = G0×G1

and the description of the general fiber of ψ : X −→ G/P ($β), with Remark 4.2, implies
that G0, α0 and α1 are invariants of X.

• Now we suppose that r > 1 or that α0 and α1 are not two simple roots of the same
simple subgroup of P ($β).

We define different exceptional loci in X as follows. Let i ∈ {0, . . . , r}, define Ei to be
the closure in X of the set of points x ∈ X such that x is in the open isomorphism set of
the first i contractions and x is in the exceptional locus of φi.

Proposition 5.19. For any i ∈ {0, . . . , r} the exceptional locus Ei is the closure in X of
the G-orbit associated to the non-empty face FIi with Ii := {i+ 1, . . . , r}. In particular Ei
is isomorphic to the closure of the G-orbit of a sum of highest weight vectors in

P := P

 i⊕
j=0

1+aj⊕
b=0

V ($αj + b$αr+1 + (1 + aj − b)$αr+2)

 ,

hence for i ∈ {1, . . . , r}, Ei is a smooth projective horospherical variety of Picard group Z2

as in Case (2), and E0 is the product a two-orbit variety with a homogeneous (projective
of Picard group Z) variety.

Note that Er = X and that in any case, the rank of the horospherical G-variety Ei is
i+ 1.

Proof. Let i ∈ {0, . . . , r} and εi ∈ Q≥0 such that Xi = Xεi .
We denote by Ωi

I , Ωi
I,1, Ωi

I,2 and Ωi
I,1,2 the G-orbits of Xi associated to the non empty

faces F εiI , F εiI,1, F
εi
I,2 and F εiI,1,2 of the polytope Q̃εi . We denote by ωiI , ω

i
I,1, ω

i
I,2 and ωiI,1,2

the G-orbits of Y i = X1+ai associated to the non-empty faces F 1+ai
I , F 1+ai

I,1 , F 1+ai
I,2 and

F 1+ai
I,1,2 of the polytope Q̃1+ai . Recall that, for any ε ∈ Q≥0, we have an order on the

G-orbits of Xε compatible with the order on the non-empty faces of Q̃ε: in particular
Ωi
I ⊂ Ωi

I′ , Ωi
I,1 ⊂ Ωi

I′,1, Ωi
I,2 ⊂ Ωi

I′,2 and Ωi
I,1,2 ⊂ Ωi

I′,1,2 respectively if and only if I ′ ⊂ I,

and Ωi
I,1 ⊂ Ωi

I , Ωi
I,2 ⊂ Ωi

I , Ωi
I,1,2 ⊂ Ωi

I,1 and Ωi
I,1,2 ⊂ Ωi

I,2 (as soon as these orbits are
defined, i.e., as soon as the corresponding faces are non-empty).
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For any I ( {0, . . . , r} such that there exists j ≥ i not in I (i.e., such that Ωi
I is

defined), φi(Ω
i
I) = ωiI if there exists j ≥ i + 1 not in I, and φi(Ω

i
I) = ωiI\{i},1,2 if for any

j ≥ i + 1, j ∈ I. Indeed I ∪ {0, . . . i − 1} = I\{i} is the minimal subset of {0, . . . , r}
containing I such that ωiI\{i},1,2 is defined and there is no I ′ containing I such that ωiI′ ,

ωiI′,1 or ωiI′,2 is defined. Similarly, with k = 1 or 2, for any I ( {0, . . . , r} such that

there exists j ≥ i not in I (i.e., such that Ωi
I,k is defined), φi(Ω

i
I,k) = ωiI,k if there exists

j ≥ i + 1 not in I, and φi(Ω
i
I,k) = ωi{0,...,r}\{i},1,2 if for any j ≥ i + 1, j ∈ I. Indeed

I ∪{0, . . . i−1} = {0, . . . , r}\{i} is the minimal subset of {0, . . . , r} containing I such that
ωi{0,...,r}\{i},1,2 is defined and there is no I ′ containing I such that ωiI′,k is defined.

And for any I ( {0, . . . , r} such that there exist j ≥ i and j′ < i not in I (i.e.,
such that Ωi

I,1,2 is defined), φi(Ω
l
I,1,2) = ωiI,1,2 if there exists i ≥ i + 1 not in I, and

φi(Ω
i
I,1,2) = ωi{0,...,r}\{i},β if for any j ≥ i+1, j ∈ I. Indeed {0, . . . , r}\{i} = I∪{0, . . . il−1}

is the minimal subset of {0, . . . , n} containing I such that ωi{0,...,r}\{i},1,2 is defined.

In particular, we have φi(Ω
i
Ii

) = ωiI\{i},1,2. But Ωi
Ii

and ωi{0,...,r}\{i},1,2 are not iso-

morphic horospherical homogeneous spaces by Proposition 2.13, so that Ωi
Ii

is in the

exceptional locus of φl. Moreover, if Ω is a G-orbit of Xi not contained in Ωi
Ii

, it is of the

form Ωi
I , Ωi

I,1, Ωi
I,2 or Ωi

I,1,2 where Ii 6⊂ I. Hence, in that case φi(Ω) = Ω. And then the

exceptional locus of φi is Ωi
Ii

. Note that Ω0
Ii
, . . . ,Ωl−1

Ii
are not in the exceptional locus of

φ0, . . . , φi−1 respectively, to conclude that Ei = Ω0
Ii

.

We use again Proposition 2.13 to see that Ei = Ω0
Ii

corresponds to the admissible

quadruple (PF ,MF , F, F̃ ) with F = F 0
Ii

(and with some ample divisor of Ei). Then we
conclude by Corollaries 2.6 and 2.10.

The Log MMP now defines, by restriction, fibrations φ̃i : Ei\Ei−1 −→ E′i := ωi{0,...,r}\{i},1,2,

for any i ∈ {0, . . . , i}.

Proposition 5.20. For any i ∈ {0, . . . , r}, E′i is a closed G-orbit of Y i isomorphic to
G/P ($αi) (which is a point if αi is imaginary). In particular, the map φ̃i is surjective.

Moreover, the dimension of fibers of φ̃i is

i+ 1 + dimP ($αi)/(P ($αr+1) ∩ P ($αr+2) ∩
i⋂

j=0

P ($αj )).

Proof. Let i ∈ {0, . . . , r}. The face F 1+ai
{0,...,r}\{i},1,2 of Q̃1+ai is the vertex u∗i and then the

corresponding face of Q1+ai is the vertex $αi . In particular, the G-orbit ωi{0,...,r}\{i},1,2 is

closed and isomorphic to G/P ($αi).
Now, since φ̃i is G-equivariant, it must be surjective.
Moreover, the dimension of the fibers of φ̃i is

dimEi − dimE′i = (i+ 1 + dimG/(P ($αr+1) ∩ P ($αr+2) ∩
i⋂

j=0

P ($αj )))− dimG/P ($αi)

that is i+ 1 + dimP ($αi)/(P ($αr+1) ∩ P ($αr+2) ∩
⋂i
j=0 P ($αj )).

Corollary 5.21. The dimension of the fibers of φ̃i is

i+ 1 + dimG/(P ($αr+1) ∩ P ($αr+2)) +

i−1∑
j=0

dimG/P ($αj ).
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In particular the dimensions dj of the G/P ($αj )’s, which are projective space under
Gi = SLdj+1, are invariants of X.

Proof. Since r > 1, or r = 1 and α0, α1 are not two simple roots of the same simple sub-
group of G, the simple roots α0, . . . , αr are respectively the first simple roots of G0, . . . , Gr
that are of type A. (And αr+1, αr+2 are simple roots of Gr+1.) Then the corollary can be
easily deduced from the proposition.

6 Appendix

Proposition 6.1. Let (K,β,R, n) be a smooth quadruple. Then we are in one of the
following cases, up to symmetries.

1. n = 1 and one of the following case occurs..

• K is of type Am (m ≥ 3). Then, β = αk with 3 ≤ k ≤ m and R = {α1, αk−1};
or β = αk with 4 ≤ k ≤ m and R = {αi, αi+1} with 1 ≤ i ≤ k − 2.

• K is of type Bm (m ≥ 3). Then, β = αk with 3 ≤ k ≤ m and R = {α1, αk−1}
or R = {αi, αi+1} with 1 ≤ i ≤ k − 2; or β = αk with 1 ≤ k ≤ m − 2 and
R = {αm−1, αm}; or β = αm−3 and R = {αm−2, αm}.

• K is of type Cm (m ≥ 3). Then, β = αk with 3 ≤ k ≤ m and R = {α1, αk−1};
or β = αk with 4 ≤ k ≤ m and R = {αi, αi+1} with 1 ≤ i ≤ k − 2; β = αk with
1 ≤ k ≤ m− 2 and R = {αi, αi+1} with 1 ≤ i ≤ k − 2.

• K is of type Dm (m ≥ 4). Then, β = αk with 3 ≤ k ≤ m − 2 or k = m and
R = {α1, αk−1}; or β = αk with 4 ≤ k ≤ m − 2 or k = m and R = {αi, αi+1}
with 1 ≤ i ≤ k−2; β = αk with 1 ≤ k ≤ m−4 and R = {αm−1, αm}; or m ≥ 5,
β = αm−3 and R is any subset of cardinality 2 of {αm−2, αm−1, αm}; or m ≥ 5,
β = αm−2 and R = {αm−1, αm}; all modulo symmetries.

• K is of type E6. Then β = α1 and R = {α2, α3}; or β = α2 and R =
{α1, α6}, {α1, α3} or {α3, α4}; or β = α3 and R = {α2, α6}, {α2, α4}, {α4, α5}
or {α5, α6}; or β = α4 and R = {α1, α3}.
• K is of type E7. Then β = α1 and R = {α2, α3}; or β = α2 and R =
{α1, α7}, {α1, α3}, R = {α3, α4}, {α4, α5}, {α5, α6} or {α6, α7}; or β = α3

and R = {α2, α7}, {α2, α4}, {α4, α5}, {α5, α6} or {α6, α7}; or β = α4 and
R = {α1, α3}, {α5, α7}, {α5, α6} or {α6, α7}; or β = α5 and R = {α1, α2},
{α1, α3}, {α3, α4}, {α2, α4} or {α6, α7}; or β = α6 and R = {α2, α5}.
• K is of type E8. Then β = α1 and R = {α2, α3}; or β = α2 and R = {α1, α8},
{α1, α3}, R = {α3, α4}, {α4, α5}, {α5, α6}, {α6, α7} or {α7, α8}; or β = α3 and
R = {α2, α8}, {α2, α4}, {α4, α5}, {α5, α6}, {α6, α7} or {α7, α8}; or β = α4

and R = {α1, α3}, {α5, α8}, {α5, α6}, {α6, α7} or {α7, α8}; or β = α5 and
R = {α1, α2}, {α1, α3}, {α3, α4}, {α2, α4}, {α6, α8}, {α6, α7} or {α7, α8}; or
β = α6 and R = {α2, α5} or {α7, α8}.
• K is of type F4. Then β = α1 and R = {α3, α4} or {α2, α3}; β = α2 and
R = {α3, α4}; β = α3 and R = {α1, α2}; β = α4 and R = {α2, α3} or {α1, α3}.

2. R is empty or one of the following case occurs.

• K is of type Am (m ≥ 2). Then, β = α1 and R is {α2} or {αm} (if m ≥ 3);
β = αk with 2 ≤ k ≤ m

2 and R is a subset of {α1, αk+1}, {α1, αm}, αk−1, αk+1}
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(if k ≥ 3) or αk−1, αm} (if k ≥ 3); or β = αm+1
2

(if m is odd) and R is a subset

of {α1, αm} or R = {αk−1}, {alpha1, αk+1} or αk−1, αk+1} (if m ≥ 5).

• K is of type Bm (m ≥ 3). Then, m = 3, β = α1 and R is {α3}; β = αk with
2 ≤ k ≤ m− 3 and R is {α1} or {αk−1} (if k ≥ 3); or β = αm−2 (m ≥ 4) and
R is a subset of {α1, αm} or {αm−3, αm} (if m ≥ 5); or β = αm − 1 and R is
a subset of {α1, αm} or R is {αm−2} (if m ≥ 4) or {αm−2, αm} (if m ≥ 5); or
β = αm and R is {α1} or {αm−1}.
• K is of type Cm (m ≥ 2). Then, β = α1 and R is {α2}; or β = αk with

2 ≤ k ≤ m − 1 (m ≥ 3) and R is a subset of {α1, αk+1} or {αk−1, αk+1} (if
k ≥ 3 and m ≥ 4); or β = αm and R = {α1} or {αm−1} (if m ≥ 3).

• K is of type Dm (m ≥ 4). Then, β = αk with 2 ≤ k ≤ m − 4 (m ≥ 6) and R
is {α1} or {αk−1} (if k ≥ 3 and m ≥ 7); or β = αm−3 and R is {αm−1}, or a
subset of {α1, αm−1} (if m ≥ 5) or {αm−4, αm−1} (if m ≥ 6); or β = αm−2 and
R is {α1}, {α1, αm−1} or {α1, αm−1, αm}, or R is a subset of {αm−3, αm−1}
(if m ≥ 5), R is {αm−3, αm−1, αm} (if m ≥ 5); or β = αm and R is {α1} or
{αm−1}.
• K is of type E6. Then β = α2 and R = {α1}; or β = α3 and R is a subset of
{α1, α2} or {α1, α6}; or β = α4 and R is subset of {α2, αi, αj} with i = 1 or 3
and j = 5 or 6 modulo symmetries.

• K is of type E7. Then β = α2 and R = {α1} or {α7}; or β = α3 and R is a
subset of {α1, α2} or {α1, α7}; or β = α4 and R is subset of {α2, αi, αj} with
i = 1 or 3 and j = 5 or 7; or β = α5 and R is a subset of {αi, αj} with i = 1
or 2 and j = 6 or 7; or β = α6 and R = {α7}.
• K is of type E8. Then β = α2 and R = {α1} or {α8}; or β = α3 and R is a

subset of {α1, α2} or {α1, α8}; or β = α4 and R is subset of {α2, αi, αj} with
i = 1 or 3 and j = 5 or 8; or β = α5 and R is a subset of {αi, αj} with i = 1
or 2 and j = 6 or 8; or β = α6 and R is α7 or α8; or β = α7 and R = {α8}.
• K is of type F4. Then β = α1 and R = {α4}; β = α2 and R is a subset of
{α1, α3} or {α1, α4}; β = α3 and R is a subset of {α1, α4} or {α2, α4}.
• K is of type G2. Then β = α1 and R = {α2}; or β = α2 and R = {α1}

The proof, which is a long but not difficult case by case verification, is left to the
reader.
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sphériques, Duke Math. J. 58 (1989), no. 2, 397–424.

[Kle88] Peter Kleinschmidt, A classification of toric varieties with few generators, Ae-
quationes Math. 35 (1988), no. 2-3, 254–266.

46



[Kno91] Friedrich Knop, The Luna-Vust theory of spherical embeddings, Proceedings of
the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (Madras),
Manoj Prakashan, 1991, pp. 225–249.

[Pas06] Boris Pasquier, Variétés horosphériques de Fano, Ph.D. thesis, Université Joseph
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