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1 Introduction

In this paper, varieties are algebraic varieties over C and groups are algebraic groups over
C.

Smooth projective horospherical varieties of Picard group Z are known since 2009
[Pas09] and give useful examples in various theories. For toric varieties there are only pro-
jective spaces. But for horospherical varieties, in addition to homogeneous spaces, there
are b families of two-orbit varieties (two of them are infinite families).

Here we classify and give a first study of the geometry of smooth projective horo-
spherical varieties of Picard group Z2. For toric varieties, there are only decomposable
projective bundles over projective spaces [Kle88]. But for horospherical varieties, there
are many other cases.

Indeed, in addition to homogeneous spaces, products of two varieties and decompos-
able projective bundles over projective spaces, we distinguish several types of other such
horospherical varieties. We classify them in this paper, in particular by studying their Log
MMP.

To write as nice as possible the classification of smooth projective horospherical vari-
eties of Picard group Z?, we extend the notion of simple roots to the groups C* and {1}.
We first briefly recall the case of simple groups.

If G is a simple group, we fix a maximal torus contained in a Borel subgroup B of G,
then it defines a root system and in particular a set of simple roots. To each simple root «
is associated a fundamental weight denoted by w, and a fundamental G-module denoted
by V(w,). More generally, if x is a dominant weight (a non-negative sum of fundamental
weights) we denote by V(x) the G-module associated to x: it is the unique irreducible
G-module that contains a unique B-stable line where B acts with weight x. A non-zero
element of the B-stable line of V() is called a highest weight vector (of weight x) and
the stabilizer of the B-stable line of V() is denoted by P(x) (it is a parabolic subgroup
of G containing B).

In this paper, if G = C*, the simple root a of G denotes the identity endomorphism
of C* and we set w, = a. Then the natural C*-module C is denoted by V(w,) where «
is the simple root of C*. And for any n € Z, V(nw,) is the C*-module C where C* acts
with weight ntw,; in particular, any character of C* is dominant. Moreover, if G = {1},
the simple root a of G denotes the trivial morphism from G to C* and we set w, = 0. In
these two cases a highest weight vector is any non-zero vector.

Suppose now that G is a product Gy x - - - X Gy of simple groups, C* and {1}. A simple
root of GG is a simple root of some G; and it is said to be imaginary if it G; is equal to C* or
{1}. Moreover if xo, ..., xt are respectively dominant weights of Gy, ..., G¢, the G-module
associated to x = xo + -+ + x¢ is the tensor product V(xo) ® -+ ® V(x¢) and a highest
weight vector of this G-module is a decomposable tensor product of highest weight vectors.

We can now write the two main results of this paper.

Theorem 1.1. Let X be a smooth projective horospherical variety with Picard group 72.
Suppose that X is not the product of two varieties. Then X is isomorphic to one of the
following horospherical variety (which we still denote by X ).

Let G = Gy x Gy X -+ X Gy be a product of simply connected simple groups, C* and

{1}.



Case (0):

Case (1):

Case (2):

t =0, Gy is simple and X is an homogeneous variety Go/P where P is the intersec-
tion of two mazximal (proper) parabolic subgroup of Gy.

t >0 and X is the closure of the G-orbit of a sum of highest weight vectors in

P (@ V(wa, + (1 + a»wﬁ)) ,
=0

where n > max{1,t}, 5 is a simple root of Gy, v, ..., a, are distinct simple roots of
G distinct from B and 0 = ag < a1 < --- < a, are integers, satisfying the following
properties.

Denote by Ry the mazximal subset of {ag,...,an} consisting of simple roots of Gy.
The quadruple (G, 8, Ro,n) is smooth (see Definition 4.2 or Proposition 6.1).

If Ry is empty, then G is the universal cover of the automorphism group of G/P(wg).
Let 0 <y < -+ <y <n such that Ry = {o; | i & {i1,...,ip}} t >t >0). Then
ai, <o <aj,.

If i < j and a; = aj then o;j € Ry. Moreover, if o; and «; are in Rg, we suppose
them to be ordered with Bourbaki’s notation as simple roots of Gy.

And one of the three following cases occurs.

(a) n=t=1, ag and oy are both simple roots of G1 so that the triple (G, p,aq)
is smooth (see Definition 4.1); in particular, Ry =0, t' =2, i1 =0 and iy = 1.

In the two next cases, t =t', and for any k € {1,...,t}, either Gy, is isomorphic
to some SLg, and oy, is the first simple root of Gy, or G}, is isomorphic to C*
or {1} and «;, is the imaginary simple root of Gy. Moreover, Gy, is isomorphic
to {1} if and only if k =1, i1 = 0 and «;, is imaginary.

(b) The simple root o, is not imaginary or an—1 = ay,.

(c) The simple oot o, is imaginary and a,—1 < Gy,

t > 2 and X is the closure of the G-orbit of a sum of highest weight vectors in

n—11+a;
P <@ @ V(@a,; + bwa, + (14 a; — b)wanﬂ)) ,

=0 b=0

where n > 2, 0 =ag < a1 < --- < ap—1 are integers, and qg,...,0n+1 are distinct
simple roots of G satisfying the following properties.

The triple (Gt, o, tnt1) 18 sSmooth of two-orbit type (see Definition 4.1; in particular,
oy, and a1 are both simple roots of Gy) and ay, . .., an—1 are simple roots of Gy x
Gy x - x Gy_q.
Moreover, for any k € {0,...,t}, Gy is isomorphic to {1} if and only if k = 0 and
Qg 18 1maginary.

And one of the three following cases occurs.

(a) n=2,t=1 and the triple (Go, ag, 1) is smooth (see Definition 4.1).

In the two next cases: t =mn and for any i € {1,...,t}, either G; is isomorphic
to some SLg, and oy the first simple root of Gy, or G; is isomorphic to C* or
{1} and «; is the imaginary simple root of G;.



(b) The simple oot cv,—1 is not imaginary.

(¢) The simple oot cu,—1 is imaginary.

Remark 1.2. In Theorem 1.1, the decomposable projective bundles over projective spaces
are the horospherical varieties X in Cases (1b) and (1c) with Ry = () and wg is the first
simple root of Gy = SLg, for some dp > 2 (and 0 < a1 < -+ < ay).

The horospherical varieties described in Theorem 1.1 are all distinct. This is a conse-
quence of the following result.

Theorem 1.3. Let X be one of the varieties described in Theorem 1.1. Then “the” Log
MMP from X gives the following in each case.

Case (0): There are two Mori fibrations from X, respectively into Y and Z, with (general)
fibers respectively not isomorphic to Z and Y .

Case (1): (a) A “first” Log MMP consists of a Mori fibration from X to G/ P(wg) with general
fibers not isomorphic to a projective space (but isomorphic to another homoge-
neous variety or to a two-orbit variety) and a “second” one consists of a flip
from X followed by a fibration.

(b) A “first” Log MMP consists of a Mort fibration from X to G/P(wg) with general
fibers isomorphic to a projective space and a “second” one consists of a finite
sequence (may be empty) of flips from X followed by a fibration.

(c) A “first” Log MMP consists of a Mori fibration from X to G/P(wg) with general
fibers isomorphic to a projective space and a “second” one consists of a finite
sequence (may be empty) of flips from X followed by a divisorial contraction.

Case (2): A “first” Log MMP consists of a fibration 1) to a two-orbit variety, the general fiber
Fy of ¥ and a “second” Log MMP are described as follows.

(a) Fy is not isomorphic to a projective space (but isomorphic to another homoge-
neous variety or to a two-orbit varity) and a “second” Log MMP consists of a
flip from X followed by a fibration.

(b) Fy is isomorphic to a projective space and a “second” Log MMP consists of a
finite sequence (not empty) of flips from X followed by a fibration.

(¢) Fy is isomorphic to a projective space and a “second” Log MMP consists of a
finite sequence (may be empty) of flips from X followed by a divisorial contrac-
tion.

Moreover, in every cases, up to reordering and up to symmetries of Dynkin dia-
grams, the data ay,...,a, (respectively ai,...,a,), Go,...,Gy, ag,...,an, B (respectively
QQ, - -, ap+1) are invariants of the “two canonical ways” to realize the Log MMP from X
(and then invariants of X ).

Remark 1.4. e In the paper (Proposition 3.3), we prove that for any smooth projec-
tive horospherical variety X with Picard group Z?, the nef cone of X is generated by
the two elements of a basis of Pic(X), then this gives us two canonical ways to choose
the log pair to compute Log MMP from X (see Section 5 for more details). Also, in
Cases (1) and (2), one of the “two canonical” Log MMP is “naturally” defined (see
Remark 3.2) and only consists of a fibration.



e In Case (1b), if the sequence of flips is empty, we get two fibrations from X. They
could be both into homogeneous varieties. But one and only one of these fibrations
has all its fibers isomorphic to each others. (On the contrary, in Case (0), each
fibration has all their fibers isomorphic to each others.)

The paper is organized as follows.

We first recall in Section 2 the results on horospherical varieties that we use in the
paper. Then, in Section 3, we easily describe a first (but not optimal) combinatorial clas-
sification, containing many repetitions. In Section 4, we give a first geometric description
of all these latter cases in order to reduce the number of cases and prove Theorem 1.1.
Then, in Section 5, we prove Theorem 1.3, by studying the Log MMP of all varieties of
Theorem 1.1.

2 Some known results on horospherical varieties

2.1 First definitions, first properties of divisors, and smooth criterion

Let G be a connected reductive group. Fix a maximal torus T" and a Borel subgroup B
containing 7. Denote by U the unipotent radical of B, by S the set of simple roots of
(G, B,T), by X(T) the lattice of characters of T' (or B) and by X(T")" C X(T') the cone of
dominant characters.

For any lattice L we denote by Lg the Q-vector space L ®z Q.

Definition 2.1. A horospherical variety X is a normal G-variety with an open orbit
isomorphic to G/H where H is a subgroup of G containing U.

Then G/H is a torus fibration over the flag variety G/P where P is the parabolic
subgroup of G containing B defined as the normalizer of H in GG. The dimension of the
torus is called the rank of G/H or the rank of X and it is denoted by n.

We denote by M the sublattice of X(7") consisting of characters of P whose restrictions
to H are trivial. Its dual is denoted by N. (The lattices M and N are of rank n.)

Let R be the subset of S consisting of simple roots that are not simple roots of P (ie,
simple roots associated to fundamental weights that are characters of P).

For any simple root a@ € R, the restriction of the coroot a¥ to M is a point of NN,
which we denote by ay),. We denote by o the map o — ay, from R to N.

Definition 2.2. 1. A colored cone of Ng is a couple (C,F) where C is a convex cone
of Ng and F is a subset of R (called the set of colors of the colored cone), such that
(i) C is generated by finitely many elements of N and contains {ay, | a € F},
(ii) C does not contain any line and F does not contain any « such that ay, is zero.
2. A colored face of a colored cone (C, F) is a couple (C’, F') such that C’ is a face of C
and F' is the set of a € F satisfying ay, € C'.

A colored fan is a finite set F of colored cones such that

(i) any colored face of a colored cone of F is in F,

(ii) and any element of Ng is in the interior of at most one colored cone of F.

The main result of Luna-Vust Theory of spherical embeddings is the following classi-
fication result (see for example [Kno91]).



Theorem 2.3. (D. Luna-T. Vust) There is an explicit one-to-one correspondence between
colored fans and isomorphic classes of horospherical G-varieties with open orbit G/H.

Complete G /H-embeddings correspond to complete fans, ie, to fans such that Ng is
the union of their colored cones.

If G = (C*)" and H = {1}, we recover the well-known classification of toric varieties.
If X is a G/H-embedding, we denote by Fx the colored fan of X in Ng and we denote
by Fx the subset U r)eryF of R, called the set of colors of X.

We now recall the characterization of Cartier, Q-Cartier, globally generated and ample
divisors of horospherical varieties, due to M. Brion in the more general case of spherical
varieties ([Bri89)]).

First, we describe the B-stable prime divisors of X. We denote by Xi,...,X,, the
G-stable prime divisors of X. The valuations of C(X) defined by the zeros and poles
along these divisors define primitive elements of N, denoted by z1,...,x,, respectively.

And the B-stable but not G-stable prime divisors of X are the closures in X of B-stable
prime divisors of G/H, which are the inverse images by the torus fibration G/H — G/P
of the Schubert divisors of the flag variety G/P. The Schubert divisors of G/P can be
naturally indexed by the subset of simple roots R. Hence, we denote the B-stable but
not G-stable prime divisors of X by D, with a € R (note that o(«a) is the element of N
defined by the valuation of C(X) defined by the zeros and poles along the divisor D).

Theorem 2.4. ([Bri89, Section 3.3]) Every divisor of X is linearly equivalent to a linear
combinaison of X1,...,X,, and Dy with o € R. Now, let D = Zgl a; X; + ZaeR aa Dy
be a Q-divisor of X.

1. D is Q-Cartier if and only if there exists a piecewise linear function hp, linear on
each colored cone of Fx, such that for any i € {1,...,m}, hp(x;) = a; and for any
a € Fx, hD(aL) = Qq-

And D s linearly equivalent to 0 if and only if hp is linear on Ng.

Moreover, if D is a divisor, D is Cartier if and only if it is Q-Cartier and the linear
functions defines as above can be identified to elements of M.

2. Suppose that D is Q-Cartier. Then D is globally generated (resp. ample) if and
only if the piecewise linear function hp is convex (resp. strictly convex) and for any
a € R\Fx, we have hp(ay,) < aq (resp. hp(aj;) < aq)-

3. Suppose that D is a Q-Cartier Q-divisor. Let Qp be the polytope in Mg (called
pseudo-moment polytope) defined by the following inequalities, where x € Mg: (hp)+
x > 0 and for any o € R\Fx, aq + x(ay;) > 0.

Let o0 := Y acR Ga@a, then the polytope 0+ QD is called the moment polytope of
D (or (X,D)).

4. Suppose that D is a Cartier divisor. Note that the weight of the canonical section of
D is 09, Then the G-module H°(X, D) is the direct sum (with ‘multiplicities one) of
the irreducible G-modules of highest weights x + v° with x in Qp N M.

From now on, a divisor of a horospherical variety is always supposed to be B-stable,
ie, of the form Y71 a; X; + > cr @aDa-

Theorem 2.5. ([Pas06, Theorem 0.3]) Let X be a projective horospherical variety and
let D be an ample Cartier divisor of X. Suppose that X is smooth.
Then D is very ample.



Since H D U and the unique U-stable lines of irreducible G-modules are the lines
generated by highest weight vectors, we deduce from Theorems 2.4 and 2.5 the following
result. (See also [Pasl5, Remark 2.13] to explain why we can ignore duals.)

Corollary 2.6. Let X be a smooth projective horospherical variety and let D be an ample
Cartier divisor of X. Then X 1is isomorphic to the closure of the G-orbit of a sum of
highest weight vectors in P(®, cg V(X + v?)).

From Theorem 2.4, we can also deduce a locally factorial criterion.

Corollary 2.7. A horospherical variety X is locally factorial if and only if for any colored
cone (C,F) of Fx, C is generated by a basis of N and the map o : o — ay, induces an
injective map from F to this basis.
In particular if X is locally factorial, the Picard number of X is given by the following
formula
px =m+[R|—n=(Fx(1)] —n) + [R\Fx],

where Fx (1) is the set of edges (one-dimensional colored cones) of Fx.
To write the smooth criterion we need to give the following definition.

Definition 2.8. ([Pas06, Def. 2.4]) Let R; and Ry be two disjoint subsets of S. Let
I'r,ur, be the maximal subgraph of the Dynkin diagram of G whose vertices are in
R1UTRs.

The couple (R1,R2) is said to be smooth if, for any connected component I' of I'g, R,

e there is at most one vertex of I in R9 and,

e if & € Ry is a vertex of I', then I is of type A or C' and « is a short extremal simple
root of I'.

Theorem 2.9. ([Pas06, Theorem 2.6]) Let X be a locally factorial horospherical variety.
Then X is smooth if and only if for any colored cone (C,F) of Fx, the couple (S\R,F)
s smooth.

Corollary 2.10. ([Pas06, Proposition 2.17]) Let X be a smooth horospherical variety.
Any G-stable subvariety of X is a smooth horospherical variety.

2.2 Log MMP via moment polytopes

The MMP [Pas15] and Log MMP [Pasl7] of horospherical varieties can be completely
computed and described by studying one-parameter families of polytopes. In this subsec-
tion, we recall the main results of this theory, as briefly as we can, in order to use them
in Section 5.

From the previous section, to any horospherical variety X, is associated a parabolic
subgroup P and a sublattice M of X(P); and moreover, any ample B-stable Q-Cartier
Q-divisor D defines a pseudo-moment polytope @ and a moment polytope Q. In fact,
the map (X, D) — (P, M, Q, Q) classifies polarized projective horospherical varieties in
terms of quadruples (P, M, Q, Q)

Definition 2.11. A quadruple (P, M, Q, Q) is called admissible if it satisfies the following:

e P is a parabolic subgroup of G containing B, M is a sublattice of X(P), Q is a
polytope of X(P)q included in %(P)a and @ is a polytope of Mg;



e there exists (a unique) v € X(P)g such that Q = v° + Q;
e the polytope Q is of maximal dimension in Mg (ie, its interior in Mg is not empty);
e the polytope () intersects the interior of %(P)a

Proposition 2.12. 1. The map (X, D) — (P, M,Q,Q) is a bijection from the set of
isomorphic classes of polarized projective horospherical varieties to the set of admis-
sible quadruples.

2. It induces a bijection between the set of G-orbits in X and the set of non-empty faces
of Q (or Q), preserving the natural orders of both sets. Also, the G-orbit in X asso-
ciated to a non-empty face F = 10+ F of Q is isomorphic to a horospherical homoge-
nous space corresponding to (Pp, Mp) where Pp is the minimal parabolic subgroup
of G containing P and Mg is the mazimal sublattice of M such that (Pp, Mp, F, l*:')
is an admissible quadruple. Moreover (Pg, M, F, F) s the quadruple associated to
the (horospherical) closure in X of the G-orbit associated to F (polarized by some
Dp we do not need to explicit here).

In particular, we easily get the following consequence.

Corollary 2.13. Let (X, D) be a polarized projective horospherical variety and (P, M, Q, Q)
be the corresponding admissible quadruple. Let F' be a non-empty face of Q (or Q) and Q
be the corresponding G-orbit in X. Then

dim(?) = dim(G/Pr) + rank(Mp) = dim(G/Pr) + dim(F).

We fix a basis of M (and consider the dual basis for N). Also we choose an order in
{z1,...,2m} U{a}; | @ € R}. Then we define A € M,,; |z »(Q) whose rows are the
coordinates of the vectors of {z1,...,2m} U{a}, | @ € R} in the chosen basis.

Theorem 2.14. Let X be a Q-factorial projective horospherical variety and let A be a
B-stable Q-divisor of X. Then for any (general) choice of an ample B-stable Q-Cartier
Q-divisor D of X, a Log MMP from the pair (X,A) is described by the following one-
parameter families of polytopes

Q°:={rx € My | Az > B+¢C} and Q° := v° + Q°

where B, C and v¢ = v° + ev! are such that, for any € > 0 small enough, Q¢ and Q¢ are
respectively the pseudo-moment and moment polytope of (X, D + e(Kx + A)).

More precisely, there exist rational numbers
0:= €0,0 < - < €0ky < €0,kg+1 = €1,0 < "
s <€k < €Lk 41 = €20 <t < €pky, < €pkp+1 = €max

(with p > 1, and for any i € {0,...,p}, k; > 0) such that, (P, M, Q, Q%) is an admissible
quadruple if and only if € € [0, €42 [, and for €, n € [0, €14, the following three assertions
are equivalent:

e X is isomorphic to X" (where X and X" are the varieties associated to the admis-
sible quadruples (P, M, Q¢, Q) and (P, M,Q", Q") respectively);



e the faces of Q° (or QE) and Q" (or Q”) are “the same”: up to deleting inequalities
corresponding to some z; with j € {1,...,m} but without changing Q¢ and Q", we
have for any set I of rows, the face of Q¢ corresponding to I (defined by replacing
inequalities by equalities for the rows in I) is non empty if and only the face of Q"

corresponding to [ is non empty;

e there exists ¢ € {0,...,p} such that e and n are both in [e;0,€;1[, or both in
l€ik, € k1] with k€ {1,...,k;}, or both equal to €; ; with k € {1,... k;}.

Moreover, for any i € {0,...,p} and k € {1,...,k;} there are morphisms from X*¢
to X+ with € < ¢} big enough and € > ¢;; small enough, defining flips. For any
i € {1,...,p}, there are morphisms from X to X with € < ¢; ¢ big enough, defining
divisorial contractions. Actually, divisorial contractions appear exactly when an inequality
corresponding to some z; with j € {1,...,m} becomes useless to define Q°.

Also, there exists P’ and M’ such that (P’, M, Q™= Qme=) is an admissible quadru-
ple associated to a variety X¢"e* and such that there is a fibration from X°¢ to X¢mes
with € < €4, big enough. Moreover, the general fibers of this fibration is a horospherical
variety and can be described.

All morphisms above are G-equivariant and images of any G-orbit can be described as
follows. To a face of Q¢ (or QE) we can associate the maximal set of rows for which equality
holds for any element x of the face (in the inequalities Ax > B + eC'). And similarly to a
set of rows we can also naturally associate a face of Q¢ (may be empty). For any € and €;
as above, for any face F¢ of Q¢, we construct a face of Q%+ by taking the maximal set of
rows associated to F'° and then the face F“i* associated to these rows. Then, since there
is a morphism ¢ from X€¢ to X¢* the non-empty face F.* corresponds to the G-orbit
image by ¢ of the G-orbit corresponding to F*.

3 First combinatorial classification and first geometric de-
scription
3.1 Reduction to three cases

In this section, we only use Luna-Vust theory and Corollary 2.7 to reduce to the three
main cases of Theorem 1.1.

Lemma 3.1. Let X be a smooth projective horospherical variety with Picard group 72.
Then one the three following cases occurs (with notation of Section 2).

Case (0): n=0, |R|=2, Fx =0, and X = G/P.

Case (1): n > 1, R = Fx U {B}, there exist a basis (e1,...,en) of N and n integers 0 <
ap < -+ < ay such that o induces an injective map & from Fx to {e1,...,en,€p =
—e1 — - —ent, o(f) =arer + -+ ane, and

Fx ={(Cr,F1) | I €{0,...,n}}
where Cy is the cone generated by the e;’s with i € I, and Fr =6 *({e; | i € I}).

Case (2): n > 2, R = Fx, there ezist integers r > 1, s > 1,0 < a; < --- < a, and a basis
(U1, ..oy Up,V1,...,0s) of N such that o induces an injective map & from Fx =R to



{ugy .y Up, U1, .oy Vsp1 by With ug := —ug — -+ — Uy and Vg1 := aguy + -+ + apuy —
v] — - — Ug, and

FX:{(CI,JafI,J) | Ig{()v’T} and‘]g{17'--73+1}}

where Cr j is the cone generated by the u;’s with i € I and the v;’s with j € J, and
Fro=6"{w | ieI}U{v; | j€J}).

Proof. By Corollary 2.7, the map o induces an injective map from Fx to Fx (1) and the
Picard number of X is px = (|Fx(1)] — n) + |[R\Fx|. But, since X and then Fx is
complete, |Fx(1)] —n > 0 with equality if and only if n = 0. (And |[R\Fx| > 0.) Thus,
since px = 2 we distinguish three distinct cases:

Case (0):
Case (1):
Case (2):

n =0 and |R\Fx| = 2;
IFx(1)] =n+1and |[R\Fx|=1;
|Fx(1)] =n+ 2 and |R\Fx|=0.

We now detail each case.

Case (0):

Case (1):

Case (2):

In the case where n = 0, X is the complete homogeneous variety G/P (and Fx = ().
And then |R| = 2.

Consider the fan F := {C | (C,F) € Fx} associated to the colored fan Fx (in fact it
is the fan of the toric fiber Y of the toroidal variety X := G x*Y obtained from X by
erasing all colors of X). Since X is locally factorial, the fan F is the fan of a smooth
toric variety of Picard number 1 (because [Fx (1)] = n + 1). Then it is well-known
that such a fan is the fan of the projective space P™. In particular, there exists a
basis (e1,...,en) of N such that F = {C; | I €{0,...,n}} whereep := —e; —---—e,
and Cy is the cone generated by the e; with ¢ € I.

Denote by [ the unique element of R\Fx. Then, up to reordering the e;’s (for
i €{0,...,n}), we can suppose that o(f) is in Cy _,} and equals aje; + - -+ anpey
with 0 < ay < -+ < a.

As above, consider the fan F. Since X is locally factorial, it is the fan of a smooth toric
variety of Picard number 2 (because |Fx(1)] = n+2). Then, by [Kle88, Theorem 1],

there exist integers r > 1,5 > 1,0 < a1 < --- < a, and a basis (u1,...,uy,v1,...,Vs)
of N such that F = {C;; | I € {0,...,7}and J C {1,...,s+ 1}}, where uy :=
—Up == Uy, Vg1 i= QUL+ -+ QU — V] — - - —Ug and Cr,  is the cone generated

by the u;’s with ¢ € I and the v;’s with j € J.

We conclude by the following facts: for any a € Fx and for any (C,F) € Fx, we have
a € F if and only if o(a) € C; and for any o € Fx, o(«) is the primitive element of an
edge of Fx (using again Corollary 2.7).

O

Remark 3.2. In section 5, we will use the MMP or the Log MMP to study and compare
geometrically all these varieties X. We can already describe some Mori fibrations from
these varieties.

Case (0):

If X is a complete homogeneous variety G/ P of Picard group Z2, then the MMP gives
two Mori fibrations from X to the complete homogeneous varieties G/P; and G/ P»
of Picard group Z, where P; and P, are the maximal proper parabolic subgroups of
G containing B such that P = P; N P,. Note moreover that G/P is a product if and
only if Aut(G/P) is not simple.
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Case (1): There exists a G-equivariant morphism ¢ from X to G/P(wg). Note that the general
fiber of v is smooth of Picard group Z (in particular, it is homogeneous or one of
the two-orbit varieties described in [Pas09]).

Case (2): Let Pz be the parabolic subgroup containing B (and P) such that Rz := Rp, =
6 {v; | 5 € {1,...,8+ 1}}). Let My be the sublattice of M orthogonal to
Zui®- - -@®Zu, C N. The pair (Pz, M) corresponds to a horospherical homogeneous
space G/Hz with Hz containing H. Also the dual lattice Nz of My is the image
of the projection from N to Zuj; @ --- ® Zu,. We denote by vy z,...,vs41,7 the
images of v1,...,vs41 in Nz, in particular vey1 z = —v1,z — -+ — vs,z. And finally
we denote by Fy the colored fan {C;z,Fsz) | J € {1,...,s}} where C;z is the
cone generated by the v; 7 with j € J, and F;z =6 1({vj | j € J}). The colored
fan F corresponds to a G/Hz-embedding Z. Moreover, we have a G-equivariant
morphism 1 from X to Z, it is a Mori fibration. Note that Z and the general fiber
of 1 are smooth horospherical varieties of Picard group Z (in particular, they are
homogeneous or one of the two-orbit varieties described in [Pas09]).

3.2 Description via polytopes

We now describe X embedded in the projectivization of a G-module, by choosing the
smallest ample Cartier divisor of X and by applying Corollary 2.6. We first study the nef
cone of X, which is 2-dimensional.

Recall that any Cartier divisor of X is linearly equivalent to a B-stable divisor, and
any prime G-stable divisor corresponds to an edge of Fx that is not generated by some
o(a) with o € Fy, and any other prime B-stable divisor is a color of G/H. Then in Cases
(1) and (2), we have n+ 2 prime B-stable divisors that we can denote naturally as follows:

Case (1): Dy41 = Dg; for any i € {0,...,n}, D; is the B-stable divisor corresponding to the
edge generated by e; (which equals D, with o € Fx = R\{f} if and only if the edge
is generated by o(«a), and which is G-stable if not).

Case (2): for any i € {0,...,r}, D; is the B-stable divisor corresponding to the edge generated
by u;; and for any j € {1,...,s + 1}, Dj,, is the B-stable divisor corresponding to
the edge generated by v; (which equals D, with o € Fx = R if and only if the edge
is generated by o(«a), and which is G-stable if not).

Proposition 3.3. In both cases (1) and (2), the nef cone of X is generated by Dy and
Dy, 11. In particular, Do + Dyy1 is ample. Moreover (Dgy, Dy+1) is a basis of Pic(X).

Proof. By Theorem 2.4, we prove that Dy and D,,;1 are globally generated but not ample.
We also check that for any a and b in Q, aDgy + bD,, 11 is Cartier if and only if @ and b are
integers. U

Before to apply Corollary 2.6, we reduce to the case where GG is the product of simply
connected simple groups and a torus, with the following lemma and remark.

Lemma 3.4. [Pas06, proof of Proposition 3.10] We can suppose that G is the product
of a semi-simple group with a torus by replacing G by the product of its semi-simple part
G’ := [G,G] and the torus T = P/H. In particular, P is the product of a parabolic
subgroup of G' with T, and the characters of P are sums of weights of the mazximal torus
of G' and characters of T. Hence a basis of M ~ X(T) is of the form (xi + 0i)ief1,...n}
such that (Xi)ie{1,..,ny form a basis of M = X(T), and the 0;’s are weights of the mazimal
torus of G'.

11



Remark 3.5. We can moreover assume G’ to be the product of simply connected simple
groups by taking the universal cover of G'.

With these assumptions, we get the following result.

Lemma 3.6. The embbedding of X given by the ample Cartier Dy + Dy1q is:

Case (1):

Case (2):

n
X < PE Vi + @i+ (1+ai)wp)),
i=0
where xo =0, X1, ..., Xn are characters of T, and for any i € {0,...,n}, w; is either
wq if e; = o(a) with a € Fx or 0 if not.

s+1
X<=P( P Vo+mi+ > bi(xerj+ @),
i,b1,..,b541 Jj=1

where X0 = Xn+1 =0, X1, .-, Xn are characters of T, and for any i € {0,...,n+1},
w; is either wy, if u; or vi—, is o(a) with a € Fx or 0 if not; and where the sum is

taken over all s+2-uplets of non-negative integers (i,b1,...,bst1) such that 0 < i <r
and ng bj =14 a; (with ag:=0).

Proof. In each case, we describe the pseudo-moment polytope of (X, Dy + Dy41) in a
particular basis of M and then the moment polytope of (X, Dy + Dy+1). Then we use
Corollary 2.6 to conclude.

Case (1):

Case (2):

Consider the basis (], ..., e}) of M that is dual to the basis (ey, ..., e,) of N. By the
previous lemma and the description of the images of colors, for any i € {1,...,n},
the element e is of the form x; + w; — wo + a;wg, where x1, ..., X, are characters
of T and for any i € {0,...,n}, w; is either w, if ¢; = o(a) with a € Fx or 0 if not.

The pseudo-moment polytope of (X, Dy + Djp4+1) is the simplex with vertices 0,
el,...,en. The weight of the canonical section of Dy + D,,41 is @wg + wg, where @
is either w,, if ¢y = o(a)) with a € Fx or 0 if not.

Hence, the moment polytope of (X, Dy + Dj,+1) is the simplex with vertices 0+ g+
wp = Xo+wo+(1+ag)wg and (x;+w;—wo+a;ws)+(wo+wg) = Xi+wi+(1+a;)ws
for any i € {1,...,n}.

*

Consider the basis (uj,...,u,v],...,v}) of M that is dual to the basis (uy, ..., u,,v1,. ..

’vs
of N. By the previous lemma and the description of the images of colors, for any

i € {1,...,r} the element v} is of the form x; + w; — wo + a;wy+1 and for any
j€{1,...,s} the element v} is of the form X;4; + @r4j — @Wnt1, where x1,...,Xn
are characters of T, and for any i € {0,...,n + 1}, w; is either w, if u; (with
0<i<r)orv_, (withr+1<i<n+1)iso(a) with a € Fx or 0 if not.

The pseudo-moment polytope of (X, Dy + D,11) is the polytope with the following
vertices: 0, uj,...,u;, vf,...,v; and uj + (a; + 1)v} for any 1 <4 < r and for any
1 < j < s. Note that the lattice points of this polytope are exactly 0, vj,...,v}
and for any 1 <7 < r all the points u] + ijl bjv; where the b;’s are non-negative
integers such that 2;21 bj < a;+ 1. Moreover, the weight of the canonical section of
Do+ Dy, 41 is wo+wn41, where wy (respectively wy,+1) is either w, if ug (respectively

vs+1) equals o(a) with a € Fx or 0 if not.

12
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Hence, the moment polytope of (X, Dy + Dy+1) is the polytope with vertices 0 +
o+ @Wnt1 = Xo+@o + (1 +ao) (Xn+1 +@ny1); for any i € {1,...,r}, x;+ @+ (a; +
1)(Xnt1+w@n41); for any j € {1,..., s}, xo+@o+Xrt+j+w@r4j; and forany 1 <i <7,
forany 1 < j <'s, i+ @i —@o+a;i@nt1+ (i +1)(Xr+j+Trtj— Tnt1) + @0+ @nt1 =
Xi + @i + (CLZ' + 1)(Xr+j + WT_H').

In particular, the lattice points of the pseudo-moment polytope translated by wg +
wn11 are exactly the y; + w; + Zjﬁ bj(Xr+j + @r4+;) where the sum is taken over

all s 4+ 2-uplets of non-negative integers (i,b1,...,bs41) such that 0 < ¢ < r and
Zji% bj =1+a;.
O

Recall that, by lemma 3.4, (x1,...,xn) is a basis of X(T). Hence, there exists a
subtorus S of T such that: (x;is)ie{1,...,n}, w0 is & basis of X(S), and for any i € {1,...,n}
such that w; # 0, we have x;s = 0.

Lemma 3.7. In both cases, X is also a horospherical G' x S-variety.

Proof. Consider Case (1). For any i € {1,...,n} such that w; # 0, the G-orbit and the
G’ x S-orbit of the highest weight vector vy, 1w, t(11a,)ws 0 Va(Xi + @i + (1 + a;)wp) ~
Varxs(xi + @i + (14 ai)wg) = Vgrxs(wi + (1 + a;)wg) are equal.

Case (2) is similar. O

We can replace x; 4+ w; with w,, such that

e if ;5 =0 and @; # 0, ; is a simple root of G’ (that is supposed to be a product of
simply connected simple groups);

e S is a product of C*’s whose imaginary simple roots are the «a;’s with ¢ such that
Xijs # 0 and @; = 0;

e ifi=0o0rn+1, x;s =0 and @; =0, o; is the imaginary root of {1}.
It finally gives the following proposition.

Proposition 3.8. Let X be a smooth projective horospherical variety of Picard group 7>
as in Case (1) or (2). Then X is isomorphic to a smooth closure of a G-orbit of a sum of
highest weight vectors as follows where G is the product Gy X --- X Gy of simply connected
simple groups, C* and {1}:

Case (1):

n
PPV (wa, + (1 + ai)wp)),

i=0
where n > 1;
B is a simple root of Go;
Qg, . .., ap are distinct simple roots (may be imaginary) of G distinct from B;
forany k € {1,...,t}, G = {1} if and only if k =1 and o is imaginary;
and 0 =ag < a1 < --- < a, are integers.

Case (2):
s+1

P( @ V(w&i + Z bj (wdr+]’))v
j=1

i7b17"'7bs+1
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where the sum is taken over all s + 2-uplets of non-negative integers (i,b1,...,bs11)
such that 0 < i <r and ZSHb =1+ a; (with ag :=0);

r>1,s>1 andr—i—s—n

QgQ, .. .,ant1 are distinct simple roots (may be imaginary) of G;

for any k € {0,...,t}, Gr = {1} if and only if, k = 0 and ag is imaginary, or k =t
and cny1 1S 1maginary;

and 0 =ag < a1 <--- < a, are integers.

Note that the two cases in Proposition 3.8, with s = 1 in Case (2), are similar to the
ones of Theorem 1.1.

4 Reduction to the cases of Theorem 1.1

4.1 Smooth horospherical varieties and G-modules

To prove Theorem 1.1 from Proposition 3.8, we glue together G-modules as soon as we
can, in order to enlarge the group G and reduce to “smaller” cases. For this, we first need
to apply the smooth criterion to X (Theorem 2.9), which comes from the fact that smooth
horospherical G-modules are the C*-modules C, the SLg-modules V(w;) = C? and Sp,-
modules (with d even) V(1) = C%. And then we use easy facts as “the SLg x SLe-module
C? @ C¢ is isomorphic to the SLgy.-module C4+¢”.

Asin [Pas09, Theorem 1.7], the smooth criterion reveals 8 configurations including the 5
configurations that give the five families of horospherical two-orbit varieties corresponding
to non-homogeneous smooth projective horospherical varieties of Picard group Z. We
recall these 8 configurations in the following definition.

Definition 4.1. Let K be a simple algebraic group over C and let v, § be two simple
roots of K.

The triple (K,7,d) is said to be smooth if (type of K,~,d) is one of the following 8
cases, up to exchanging v and 0 (with the notation of Bourbaki [Bou75]).

1. (Ap, a1, auy), with m > 2
2. (Ap, i, 41), withm >3 and i € {1,...,m — 1}
By, a1, ), with m > 3

Bs,aq,a3)

Cm, i, ipq) withm >2and i€ {1,...,m—1}
Dy, -1, i), with m > 4

7. F4,042,0é3)

(
(
(
(
(
(
(
(

8. GQ, aq, Ozg)

We say that (type of K,~,0d) is smooth of two-orbit type if it is one of the cases 3, 4,
5, 7 or 8 above.

Here we also need to introduce another “smooth object” (only used in Case (1)).
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Definition 4.2. Let K be a simple algebraic group over C and let 8 be a simple root of
K and let R be a subset of simple roots of K distinct from 5. Let n be a non-negative
integer. Denote by L a Levi subgroup of the maximal parabolic subgroup P(wg), then
the semi-simple part of L is a quotient by a finite central group of a product of simple
groups L', ..., L7 (with ¢ > 0).

The quadruple (K, 8, R,n) is said to be smooth if

1. n=1, R = {v,0} such that v and § are simple root of the same LF so that the triple
(L¥,~,6) is smooth;

2. or for any k € {1,...,q}, at most one simple root of LFisin R, and if y € R is a

simple root of Ly, then Ly is of type A or C' and + is a short extremal simple root
of Lk.

We can list all smooth quadruple (K, 5, R,n) (see the appendix). We remark, in par-
ticular, that R is at most of cardinality 3.

We obtain the following result by applying the smooth criterion to the smooth pro-
jective horospherical variety X with Picard group Z? in both cases (1) and (2). Here, we
suppose that X is as in Proposition 3.8, and in Case (1) we suppose that /3 is root of Gj.

Lemma 4.3.

Case (1): The quadruple (Gg, 3, Ry,n) is smooth.

If there exist 0 < i < j < n such that a; and o are simple roots of the same simple
group Gy, with k € {1,...,t} thenn=1,i=0andj=1 (alsot =k =1). Moreover
in that case, the triple (G, oy, aj) is smooth.

If not, for any i € {0,...,n}, the simple root «; is either imaginary or in Go or the
short extremal simple oot of one of a simple group Gy with k € {1,...,t} that is of
type A or C'.

Case (2): If there exist 0 < i < j < n+ 1 such that o; and «; are simple roots of the same
simple group Gy with k € {0,...,t} then eitherr =1,i=0and j =1, or s =1,
i=n and j =n+ 1. Moreover in that case, the triple (G, oy, aj) is smooth.

For any i € {0,...,n}, such that the simple root o is the unique o of a simple
group Gy with k € {0,...,t}. Then «; is either imaginary or the short extremal
simple root of one of Gy, that is of type A or C.

Proof.

Case (1): With notation of Definition 4.2, suppose v and § are two simple roots of the same
L7. If n > 1, then there exists a maximal colored cone of Fx that contains vy and
8Y;. By applying Theorem 2.9, we get a contradiction. Then n = 1 and applying
Theorem 2.9 to the two one-dimensional colored cones of Fx, we prove that the
couples (Ro\{B,d},7) and (Ro\{3,7},6) are smooth, so that (L’,~,d) is smooth.

Suppose that o is the unique simple root of L7 in Ry. By applying Theorem 2.9 to
the colored cone (Qspay;,{a}) we get that L7 is of type A or C and « is a short
extremal simple root of L7. It finishes the proof of the smoothness of (G, 3, Ry, n).

If there exist 0 <14 < j < n such that o; and «; are simple roots of the same simple
group Gy with k& € {1,...,t} then as above Theorem 2.9 implies that n = 1 and
(G, 0y, aj) is smooth. The fact that i =0, j =1 and t = k =1 is obvious.
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Now, let i € {0,...,n} such that the simple root «; is the unique «; of a simple
group Gy with k € {1,...,t} and suppose that «; is not imaginary. Apply again
Theorem 2.9 to the colored cone (Qspa),,{a}) to get that «; is the short extremal
simple root Gy with k € {1,...,t} that is of type A or C. It finishes the proof of
the lemma in Case (1).

Case (2): Suppose there exist 0 < i < j < n+1 such that o; and «; are simple roots of the same
simple group Gy, with k € {0,...,t}. Then Theorem 2.9 implies that (G, o, a;) is
smooth. But it also gives a contradiction if there exists a maximal colored cone of
Fx that contains aiVM and a]V.M. This contradiction occurs if and only if 0 < ¢ <r
andr+1<j<n+l,or0<s,j<randr>2,orr+1<1¢j5<n+1ands>2.

We conclude the proof of the lemma in Case (2) as in Case (1).

Now we list different ways to gather G-modules into a G-module with G C G.

Lemma 4.4. Let 7 > 1. Fori € {1,...,7}, let G; be C*, SLy, (with d; > 2) or Spy, (with
di > 2 even). If G; = C* set d; = 1 and @ the identity character of C*. If not, set @}
the first fundamental weight of G;. Let G = G1 x --- x G.

(a) Let G = SLy where d=dy + -+ + d;.
Then Vg (w1) = @), Va(w@i) and G- (37 vh,) CG - vy,

=1 w1
(b) Let G =SLy where d=dy +--- +d, + 1.

Then Vg(w1) = Va(0) @ @], Va(w?) and G- (14 X7, v ) C G- ve,, where 1 is
the unit in the trivial G-module Vi (0) = C.

With notation of Bourbaki [Bou75] (we put primes to write differently fundamental
weights of G from those of G).

(¢) Let G = SLy (with d > 3) and G = SOgq. Then Vg(w)) = Va(wi) ® Va(wa—1) and
G- (Ve + Ve, ) C G- vgy -

(d) Let G = SLq (with d > 4), G = SLgy and 1 < i < d —2. Then Vg(wj, ) =
Va(w;) ® Vg (wiy1) and G - (vwi + vwiﬂ) cG- Vgt -

1

(e) Let G = Spinyy (with d > 4) and G = Spingg, ;. Then Vg(w)) = Va(wi—1)® Ve (wa)
and G - (vwd_l +de) - G'Uwfi'

Moreover in each case, the projectivizations of the G-orbit and the G-orbit have the
same dimension, in particular the two projective varieties defined as the closure of these
two orbits in the corresponding projective spaces are the same.

Remark 4.5. In the first case of Lemma 4.4, with 7 = 1 we have in particular that, for
d even, Vg, (w1) = Vsr, (w1). Note also that Spy /P(w1) = SLq /P(w;)(=P?1)

Proof. The first two items are easy and left to the reader.
The last three items are given in [Pas09, Propositions 1.8, 1.9 and 1.10]. ]

In Case (2), we need the following generalization of Lemma 4.4.
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Lemma 4.6. Let a € N*.

Let 7 > 0. Fori € {0,...,7}, let G; be C*, SLqg, (with d; > 2) or Spg, (with d; > 2
even). If G; = C* set d; = 1 and @' the identity character of C*. Else set w! the first
fundamental weight of G;. Let G = Gy x --- X G.-.

(a) Let G = SLy where d =dog+ ---+d;. Then
c(ato) @ Vo szwl
b0, br i=0

where the sum is taken over all (T + 1)-uplets of non-negative integers (bo, . ..,b;)
such that > _,b; = a. And

G- E UZZ—:O bl cG- Vawoq -
bo,..br

(b) Let G = SLq where d =do+---+d, + 1. Then
c(ato) @ Vo szwl
bi,ebr i=0

where the sum is taken over all (T + 1)-uplets of non-negative integers (bo, . ..,b;)
such that > _,b; < a. And

G- E UZZ—:O bt cG- Vawoy -
bi..br

With notation of Bourbaki [Bou75] (we put primes to write differently fundamental
weights of G from those of G).

(¢) Let G = SLy (with d > 3) and G = SOyy. Then
Vi (aw)) = @ Va(bw + (a — b)wg—1) and G - (Z Ubw1+(a—b)wd1) C G - Vygert -
b=0 b=0
(d) Let G =SLg (with d>4), G=SLg11 and 1 <i<d—2. Then
c(awiy ) @VG (bww; + (b—a)wit1) and G- (Z vbwi+(a—b)wi+1> C G-vawgﬂ.
b=0
(e) Let G = Spinyy (with d > 4) and G = Spingy, ;. Then
Vi (awh) = @VG bwg_1 + (b—a)wy) and G - (Z Vbeoy_1+(b—a)w ) C G'an&'
b=0

Moreover in each case, the projectivizations the G-orbit and the G-orbit have the same
dimension, in particular the two projective varieties defined as the closure of these two
orbits in the corresponding projective spaces are the same.
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Proof. Remark that for a = 1 the lemma is Lemma 4.4. For any a > 1, we denote by V,
the G-module that we consider in each case.

Consider the horospherical G-variety X defined as the closure of the G-orbit of a
sum x1 of highest weight vectors in P(V}): it is a smooth projective variety with Picard
group 7Z (it is isomorphic to P41, P41 Q242 Gr(i + 1,d + 1), Spin(2d + 1)/P(wq)
respectively). Moreover V;* is the G-module of global sections of Ox(1). And, for any
a > 1, the G-module V* is the set of global sections of Ox (a). But, in each case, X is
also a homogeneous projective G-variety G/P(w) (with w = w; w, w}, wj,, and @,
respectively) by Lemma 4.4, then V, is also the irreducible G-module Vg (aw).

Also, the image of 21 in P(V},) is the projectivization of a highest weight vector of weight
in Vg(aw) for a good choice of a Borel subgroup of G (because G - z1 is the homogeneous
projective G-variety G/P(w)). O

4.2 Proof of Theorem 1.1 in Case (1)

A first part is already proved by Proposition 3.8 and Lemma 4.3, in particular X is
embedded as the closure of the G-orbit of a sum of highest weight vectors in

P:=P <é V(wa, + (14 ai)w5)) .
=0

It remains to prove that we can suppose that

— G is the universal cover of the automorphism group of Go/P(wg) if Ry is empty;
— if i < j and a; = a; then o; € Ry;

— and some groups Gy, of type C can be replaced by groups of type A.

eo. If Ry is empty and Gp is not the universal cover of the automorphism group
of Go/P(wg), then Gy/P(wg) is isomorphic to Gj/P(wg) where G is the universal
cover of Aut(Go/P(wg)) and (Go, 5, Gy, B’) is one of the following: (Spy,,, @1, SLam, @1),
(Go, @1, Sping, w1 ), or (Sping,, 1, @m, SPilly,, 19, Wm OF Wm+1). In any case, Vg, (wpg) ~
Ve (wgr) and Go - vey =~ Gy - Vs, Hence, the fact that Ry is empty implies that
D Valwa, + (1 +a;)wg) ~ B Vo(wa, + (14 ai)ws) where G = G x Gy x -+ - X Gy,
and X is isomorphic to the closure of the G-orbit of a sum of highest weight vectors in

1=0

P:=P (@ Vo (wa, + (1+ ai)wﬁ/)> .

e. Suppose that there is 0 < ¢ < j < n such that a; and «; are simple roots of the
same simple group Gi,...,G;. Then by Lemma 4.3, we have n =1, ¢ = 0, j = 1 (also
t = 1) and the triple (G1, a4, @) is smooth. In particular, X is embedded as the closure
of the G-orbit of a sum of highest weight vectors in

B (V (@ay +%5) & V(@ + (1 +a1)5)

If ay = 0, the G-module V(w,, + wg) ® V(wa, + (1 + a1)wg) is isomorphic to the
tensor product of the Go-module V(wg) by the Gi-module V(wy,) ® V(wa, ), so that
X is the product of G/P(wg) by the smooth projective horospherical variety of Picard
group Z defined as the closure of the Gi-orbit of a sum of highest weight vectors in
P(V(wa,) ® V(w@a, ))-
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We conclude that if X is not a product, X is as in Case (1la) (with a; > 0).

From now on, we suppose that there is no 0 < 4 < j < n such that o; and «; are
simple roots of the same simple group Gi,..., Gs.

e. Suppose that there exists 0 < i < j < n such that a; = a; and both o; and «; are
not simple roots of Gy.

Up to reordering, assume that a; and «; are simple roots of G; and G (t > 2). Note
that if i = 0 and «y is imaginary, G; = {1}. By Lemma 4.3, G} and G are {1}, C* (d =1
in these two cases), SLg, (with d > 2) or Sp,, (with dj, > 2 even) and «;, respectively
«yj, is either an imaginary root or a short extremal root of Gy, respectively Gs.

Let G = Gg x G3 X -+ X Gt x SLg,4+4,- By Lemma 4.4 ((a) if ¢ > 0 or ag is not
imaginary and (b) if not), the G-module V(w,, + (1 + a;)wg) © V(wa, + (1 + a;)wp) is
isomorphic to the G-module V ((1+a;)wg) ® C41792. And X is a subvariety of the closure
X of the G-orbit of a sum of highest weight vectors in P under the action of G.

We can now compare the dimension of the open G-orbit 2x of X with the dimension of
the open G-orbit of X. Indeed Q2x is isomorphic to a horospherical homogeneous space of
rank n — 1 over ((Go x Gz X --- x Gy)/(PNGoGg X x -+ x Gyt)) x (SLg, 14, /P(w1)), while
G/H is of rank n over ((Gog x Gz X -+ x Gy)/PN(Gy x Gz X --- x Gy)) x ((G1 x G3)/PN
(G x G2)). But the dimension of SLg, 44, /P(w1) is di + d2 — 1 while the dimension
of (G1 x G2)/P N (G1 x Ga) is (di — 1) 4+ (d2 — 1). Hence Qx and G/H have the same
dimension, so that X = X.

Then we can replace, without changing X, the product of the two simple groups
corresponding to two simple roots a; and «; with a; = a;, with a unique simple group of
type A. Note that n decrease by this change. (Also note that, if i = 0 and «ag is imaginary
then the new «y is not imaginary any more.)

With similar arguments, we can also replace any group G, ..., Gy, of type C and that
contains a unique simple root «;, by a group of type A.

e What we did just above also works in the cases where n =1, a; = 0, ap and a; are
simple roots of G; and G (and t = 2). In that case, it proves that X is the closure of
the SLg x Go-orbit of a highest weight vector in PP (C? @ V (wg)) . Hence, in that case, X
is isomorphic to P41 x Gy /P(wp).

Hence, we conclude the proof by iteration.

4.3 Proof of Theorem 1.1 in Case (2)

A first part is already proved by Proposition 3.8 and Lemma 4.3, in particular X is
embedded as the closure of the G-orbit of a sum of highest weight vectors in

s+1

P:=P @ V(wa, + Z bjwar+j) )
j=1

3,01, ,bs541

where the sum is taken over all s + 2-uplets of non-negative integers (i,b1,...,bs11) such

that 0 <4 <7 and Z;J:r%bjzl—kai.

It remains to prove that we can suppose that

— s =1, ay, a4 are both simple roots of Gy and (Gy, oy, ap11) is smooth of two-orbit
type;
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—0<a; <-- <ay;
— and some groups G}, of type C' can be replaced by groups of type A.

e Suppose first that s > 1, or s = 1 and «,, a,+1 are not simple roots of the same
simple group Gy. Up to reordering and applying Lemma 4.3, for any j € {1,...,s}, ar4;
is either an imaginary root of G;_,1; that is C* or {1}, or a short extremal simple root
of Gi—s4; that is of type A or C. Moreover, the simple groups G;_s41,. .., G contain no
other o; with ¢ € {0,...,7}. Also, Gy—s4; = {1} if and only if j = s and o4 is imaginary.

We now apply Lemma 4.6 ((a) if a,45 is not imaginary and (b) if not). Hence, there
exists d < 2 such that, with G C G := Gy x --- X Gy_s X SLy, we have

s+1 r
P=P @ V(wai) & V(z:l bjwar+j) =P <@ VG(wai) ® VG((l + ai)w1)> )
j=

,b1,..,b0541 =0

X is a subvariety of the closure X of the G-orbit {2x of a sum of highest weight vectors in P,
and dim((Gyp1-s X+ -+ X Gy) /PN (Giy1-s X - - - X Gy) = d—s—1. In particular the dimension
of Qx (which is horospherical of rank r) equals the dimension of G/H. Hence, X = X. Now
remark that X is a horospherical variety as in Case (1) (case that we previously deal with).

e From now on, we suppose that s = 1 (and n = r + 1), and that oy, a,41 are both
simple roots of Gy (up to reordering). In particular, X is embedded as the closure of the
G-orbit of a sum of highest weight vectors in

n—1 1+a;
P (@ P V(wa, +bwa,,, + (1 +a; - b)wam)) .

i=0 b=0

Note now that for any k € {0,...,t}, Gy = {1} if and only if £ = 0 and «y is imaginary.

Recall that, by Lemma 4.3, «q,...,q, are not simple roots of G; and the triple
(G, iy 1) is smooth. Then X is embedded as the closure of the G-orbit of a sum
of highest weight vectors in

n—11+a;
P=P (@ P V(@) ® V(bwa,y, +(1+a; - b)war+2)) -

1=0 b=0

If (G¢, an, ap1) is not of two-orbit type, we can apply Lemma 4.6 ((c), (d) or (e)) to
get G C G := Gy x --- X Gy—1 x Gy such that P =P (P;_, Ve(wa,) @ Ve((1+ aj)w)), X
is a subvariety of the closure X of the G-orbit (2x of a sum of highest weight vectors in P,
and dim(G¢/P N Gt) + 1 = dim(G;/P(w)). In particular the dimension of Qx (which is
horospherical of rank r) equals the dimension of G/H. Hence, X = X. And remark that
X is a horospherical variety as in Case (1).

e Now suppose that » > 1, or r = 1 and ag, a1 are not simple roots of the same simple
group.

Let i # ¢ in {0,...,r} such that a; = a;. Up to reordering and applying Lemma. 4.3,
a; and oy are, imaginary or short extremal, simple roots respectively of Gg and G that
are C*, {1} or simple groups of type A or C. Moreover Gy and G1 contain no other ay’s.
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We can apply Lemma 4.4 ((a) if ¢ > 0 or «ag is imaginary and (b) if not) to get
G CG:=SLy;xGy -+ x Gy such that

1+ay

P=P|| P P Ve(wa,)® Volbwma,,, + (1 +ar — b)wa,,,)
k4,1 b=0

1+ai
® (EB Vo(w) © Vi (bwa,,, + (1+a; - b)wam))) ,
b=0

X is a subvariety of the closure X of the G-orbit {2x of a sum of highest weight vectors
in P, and dim((Go x G1)/P N (Go x G1)) + 1 =d — 1. In particular the dimension of Qx
(which is horospherical of rank (r — 1) + 1) equals the dimension of G/H. Hence, X = X.
Now remark that X is either a horospherical variety as in Case (2) of rank one less than
X, or a horospherical variety as in Case (1) if r = 1.

With similar argument, we can also replace any group Gy, ...,G¢_1, of type C' and
that contains a unique simple root «a;, by a group of type A.

e By iteration of the above process, we can now assume that 0 < a1 < --- < a,, or
that » = 1 (and t = 1) and agp, g are two simple roots of G. In the second case, note
that by Lemma. 4.3, the triple (Gg, o, ) is smooth.

Suppose r = 1, ag, a; are two simple roots of Gy and that a; = ag = 0. Then, X is
the closure of the Gy x G1-orbit of a sum of highest weight vectors in

P=P ((VGO(WO) @ VGo(wl)) ® (VG1 (wa2) @ VGl (wa3))) :

Hence in that case, X is the product of two varieties: the closure of the Gg-orbit of a sum
of highest weight vectors in P ((Vg,(wo) ® Vg, (w1))) and the closure of the Gp-orbit of a
sum of highest weight vectors in P ((Vg, (w2) ® Vg, (w3))).

Hence, in any case we can assume that 0 < a; < --- < a,. This finish the proof of
Theorem 1.1.

5 The MMP and Log MMP for smooth projective horo-
spherical varieties of Picard group Z?

The main goal of this section is to prove Theorem 1.3.

5.1 Generalities

Let X be a smooth projective horospherical variety with Picard group Z2. Here, we
suppose that X is as in Case (1) or (2) of Lemma 3.1 (or Theorem 1.1).

By Proposition 3.3, up to linear equivalence, the ample Cartier divisors of X are the
D =dyDy + dp41Dp+1 with positive integers dy and dj, 1.

We can apply [Pasl5] to the polarized variety (X, D) and obtain a description of the
MMP from X, via moment polytopes (if X is Fano, we obtain two different paths of the
program depending on the choice of dy and d,1; if X is not Fano, we obtain a unique
path of the program).

Moreover, we can also choose a B-stable Q-divisor A of X and apply [Pasl7] to the
polarized pair ((X,D),A) and obtain a description of the Log MMP from (X,A), via
moment polytopes as described in Section 2.2. To get a uniform Log MMP for any smooth
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projective horospherical variety with Picard group Z2, we choose D = Dy + D, .1 and
A=D;—Kx forie{0,n+1}.

Remark 5.1. In Case (1), an anticanonical divisor of X is (see for example [Pas08,
Proposition 3.1])

—Kx = Z b;D; + bgDﬁ ~ (Z bZ)DO + (b/g — Z aibi)DnH,
=0 =0 =0

where b; = 1 if D; is G-stable, b; = by, > 2 if D; is the color D,, and bg > 2 (recall that
Dg = Dy41). In particular, X is Fano (i.e., —Kx ample) if and only if bg > > | a;b;.
To describe the MMP from X we could choose the ample divisor D = (37" ,b;)D1 +
(bg+1)Dg, so that D+ €K x is ample for any € € [0, 1[ and D+ Kx ~ (3.7 ja;b;+1)Dg is
not ample but globally generated. Then, for that choice of D, the MMP from X consists
of the Mori fibration to G/P(wg) described in Remark 3.2.
Moreover, this Mori fibration is also the unique contraction of the Log MMP obtained
with the choices D = Dy + D41 and A = Dy — Kx.

In Case (2), an anticanonical divisor of X is

T s+1 r s+1 r
~Kx =Y bDi+ Y by ~ (Y ) Do+ (3 briy — > aibi) Dy,
=0 Jj=1 1=0 j=1 i=0

where b; = 1 (respectively b,4;) if D; (respectively D,;) is G-stable and b; = by, > 2
(respectively by = ba,,; > 2) if D; is the color D,, (respectively D, ; is the color D,, , ;).
In particular, X is Fano if and only if ng brgj > Do aib;.

To describe the MMP from X we could choose the ample divisor D = (}_;_,b;)Do +
(14 Zjﬁ bryj)Dny1, so that D 4+ eKx is ample for any € € [0,1] and D + Kx ~ (1 +
> i @ibi) Dy 1 is not ample but globally generated. Then, for that choice of D, the MMP
from X consists of the Mori fibration v from X to Z described in Remark 3.2.
Moreover, this Mori fibration is also the unique contraction of the Log MMP obtained
with the choices D = Dy + D, .1 and A = Dy — Kx.

Hence, in both cases, we will describe the Log MMP obtained with the choices D =
DO + Dn+1 and A = Dn+1 — KX

In the next four subsections, X is one the varieties of Theorem 1.1 in Case (1) or (2).
We begin by constructing the families of polytopes for the log pairs (X, A = D11 — Kx)
with the choice of ample divisor D = Dy 4+ D,,11, and then we describe in detail the Log
MMP’s obtained with these families.

5.2 Case (1): the ”second” Log MMP via moment polytopes

To describe the one-parameter family (Q€)ccq., defined in Theorem 2.14, we consider the
basis (€] )ief1,...ny of M, where for any i € {1,...,n}, €] = @Wa, — Wa, + a;ws, and we
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= 0 Q)]

Figure 1: The polytopes QY in the cases where a; =1 and as = 2, a; = 0 and ap = 1 and
a1 = ao = 1 respectively

define the matrices A, B and C as follows

B | -1 0
1 0 0 0
0 . :

A= , B= and C' =
P : 0
o --- 0 1 0 0
ap - - ap -1 1

Then Q¢ = {z € Mgy | Az > B+€C} is theset of z = (x4, . ..,2,) such that zy,. ..z,
are non-negative, xr1 + - +x, <1 and a1z + - - - + apx, > € — 1.

Example 5.2. If n = 2 we are in one of the following situations:

1. as > a1 > 0 and a9 is not imaginary;
2. as > a1 > 0 and as is imaginary;

3. as > a; = 0 and as is not imaginary;
4. a9 > a1 =0 and as is imaginary;

5. as = ay > 0;

6. ao = a1 =0.

We draw, in Figure 1, these polytopes for € = 0 in different cases with the hyperplane
HY:={z ¢ Mg | ayz1+agz2 = —1}. Note that there is no such hyperplane if ag = a; = 0.

eIfa, =0, Q° = Q" for any € € [0,1] and it is empty if € > 1. Moreover, for any
e € [0,1], Q° intersects the interior of %(P)a if and only if € < 1. In that case, the Log
MMP described by the family (Q)ccqs, consists of a fibration ¢o: X — Yo,

The fibers of this fibration can be easily computed because the faces of Q¥ are “the
same” as the faces of Q' and then the fibration induces a bijection between the sets of
G-orbits of X and Y. More precisely, we deduce the fibers of ¢ from the description of G-
orbits of X and YV given in Section 2.2: they are isomorphic to the homogeneous projective
spaces ((;e; P(@a,;))/ (P(ws) ;e P(wa,;)) (of Picard group Z), with ) # I C {0,...,n}.
Here, we use the following notation: if «; is imaginary, P(w,,) = G (and if not, it is the
(proper) maximal parabolic subgroup of G associated to «;).

In particular, the general fiber of the fibration is (", P(@a,))/(P(ws) iz P(wa,;))
and the smallest fibers are the P(w,,)/(P(wg) N P(w,,)) with ¢ € {0,...,n}. Then we
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deduce that oy € Ry if and only if there exists a fiber isomorphic to G/P(wg).

e Suppose now that a, # 0, then Q¢ is the intersection of the simplex Q = Conv(eg, €7, . ..

with the closed half-space H{ = {x € Mg | a1z1 + --- + apx, > € — 1}, where ef := 0.
We denote by H¢ , the interior of H{ and by H¢ the hyperplane H{\H .

In the next proposition, we give a description of the non-empty faces of Qe by distin-
guishing whether a face is in the hyperplane H¢ or not.

Note first that the non-empty faces of the simplex Q are the Fj := Conv(e! | i €
{0,...,n}\I), with I C {0,...,n}. In particular, the facets of Q are the Fj := Fy;y and
for any I C {0,...,n}, Fr = ;e Fi.

Then, for any I C {0,...,n}, we define Ff := FrN H{ and Ff 5= Frn He. They are
faces (may be empty and not distinct) of Q.

(Recall that ag = 0 and that a, # 0 here.)

Proposition 5.3. The polytope QF is of dimension n if and only if € < max] o(1+a;) =
1+ a,.

Suppose now that € < 1+ a,. The non-empty faces of Q° are the distinct following Fy
and Ff g, with I C{0,...,n}:

o [} (of codimension |I|) if € < max;gr(1+ a;);

o I} 5 (of codimension [I|+1 or |I| respectively) if minigr(1+a;) < € < max;gr(1+a;)
or € = mingr(1 4 a;) = max;gr(1 + a;).

In particular, the facets of Q¢ are: Ff with i €{0,...,n—1} (for any e <1+ ay), FS if
e<l+ap_1, Fﬁiﬁ ife > 1, and F;,,B ife=1 and a,—1 = 0.

Moreover, for any I C{0,...,n} such that € < maxgr(1+a;), Ff = (;c; Fy-
Forany I C {0, ...,n} such that minjg;(14a;) < € < maxgr(1+a;), Ff g = Fj 50 ;e Ff-
For any I C {0,...,n} such that e = min;g;(14-a;) = max;gr(14a;), Ffp= Fne,ﬁﬁﬂiel F¥
ife=1,nel andan1=0o0r Ffg= e, Ff ife# 1, n &1 ora,—1 #0.

Proof. The polytope Q¢ is of dimension n if and only if Q intersects HS , if and only if
there exists ¢ € {0,...,n} such that ef € Hf, if and only if there exists i € {0,...,n}
such that a; > ¢ — 1 if and only if a,, > e — 1 (because 0 = ag < --- < a,). This proves the
first statement of the proposition.

Suppose now that € < 1+ a,. For any non-empty face F' of Q¢, either F ¢ H and F
is the intersection of a non-empty face of Q with HS, or ' C H® and F is the intersection
of a non-empty face of Q with H¢.

Let I € {0,...,n}. The set F} is not empty if and only if there exists ¢ ¢ I such that
e; € H¢ if and only if there exists i ¢ I such that a; > e—1if and only if € < max;g;(1+4a;).
Moreover, Fy is not empty and not included in H€ if and only if it intersects H¢ . if and
only if there exists i ¢ I such that e € HS, if and only if there exists i ¢ I such that
a; > € — 1 if and only if € < max;g7(1 + a;). Also, in that latter case, the dimension of F}
is the same as the dimension of F7; in particular the non-empty F} that are not included
in H¢ are all distinct.

Similarly, F' 7. is not empty if and only if there exist ¢ and j not in / (may be equal)
such that e € Hf and ej- ¢ H. (i, a; > e —1 and a; < € —1). Then FIG,B is not
empty if and only min;g;(1 + a;) < € < maxgr(1 + a;). Moreover, F 7 is not empty
and included in no proper face of Fy (ie, H¢ intersects the relative interior of Fy) if and
only if there exist ¢ # j not in I such that e; € H{, and € ¢ HY (ie, a; > e — 1 and
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aj < e—1) or for any ¢ ¢ I we have ej € H (ie, a; = ¢ —1). Then F} ; is not empty
and included in no proper face of Fy if and only min;gr(1 +a;) < € < maxlg_z (14 a;) or
€ = minjgr(1 + a;) = max;gr(1 + a;). Note also that the non-empty F} 5 that are not

included in a proper face of Fy are all distinct and describe all non-empty faces of Q°
included in H€. This finishes the proof of the second statement of the proposition.

To describe the facets, it is sufficient to find the Ff with € < maxﬁgz(l + aj), the
Ffg with € = minj;(1 + a;) = max;z(1 + a;) and FEB with 1 = min? ;(1+a;) < € <
max’ (1 +a;) = 1+ a,. We easily find the Ff with ¢ € {0,...,n —1} for any € < 1+ a,,
and F for any € < 14a,_1. We conclude by noticing that, for any i € {0,...,n}, we have
€ =minj;(14aj) = max;jx(1+a;) <1l4a,ifandonly ifi =nand 0 =ap = --- = ap—1
(and in particular, € = 1).

To get the last statement, apply the fact that any face of a polytope is the intersection
of the facets containing it. O

From Proposition 5.3, we deduce the following result with the following notation. Let
t0 := 0,%1,...,%,%%+1 = n + 1 be positive integers so that 0 = a;;, = -+ = a;,-1 <
a, = - = aj—1 < - < a; = =a;-1 < -+ < a, = = ay (Note that
0<iy <-- <ir <n+1 are the integers defined in Theorem 1.1 with k =¢'.)

Corollary 5.4. The isomorphic classes of the horospherical varieties X€¢ associated to the
polytopes in the family (QE)EGQZO are given by the following subsets of Q>o:

o [0,1];
o |1 +aq, 1 +a, [ for anyl € {0,... k—2};
o {1+4a;} for anyl €0,... .k —2};

o |1+a; ,,1+a;] and{1+a;_,} ifix #n (ie, if an—1 = ay,) or the simple root oy,
is not imaginary (ie, when X is as in Case (1b) of Theorem 1.1);

o 1+4ai_,,1+ail ifix =n (ie, if an—1 < a,) and the simple root oy, is imaginary
(ie, when X is as in Case (1c) of Theorem 1.1).

Proof. We apply the theory described in Section 2.2, in particular the fact that the iso-
morphic classes of the varieties X¢ are obtained with looking at the €’s for which “the
faces of Q€ change”.

Note first that, by Proposition 5.3, (P, M, QE,QE) is an admissible quadruple if and
only if e < 1+ ay,.

Also, the facets of Q¢ are: Ff withie{0,...,n—1}, FSif e <14 ap_1, Fygife>1,
and Fneﬁ (orthogonal to oY, ,) if € = 1 and a,,—1 = 0. In particular, for any €, n € [0, 1+ay |,
if a,—1 # 0, the facets of Q¢ and Q" are “the same” if and only if € and 7 are both in [0, 1]
or |1,1 4+ ap—1[ or [1 + ap—1,1 + ay,[ (which may be empty). And if a,—; = 0, the facets
of Q€ and Q" are “the same” for any €, n € [0,1 + a,| (indeed, in that case, the facets F¢
if e <1, Fﬁiﬁ if e > 1, and Fi s if e =1 are “the same”, in particular all orthogonal to
B = ancyyyy)-

We now use a consequence of the proof of Proposition 5.3: for any I C {0,...,n},
(Nier FY is not empty if and only if € < maxigr(1 4 a;), Fj g5 N[ V;ep FY is not empty if
and only if min;g;(1 + a;) < € < max;gr(1 + a;) and Fy w0 Nicr F5 is not empty if and
only if min;g;(1 + a;) = € = max;gr(1 + a;). In partlcular for any [ € {0, .. — 2},
suppose that for I = {ij41,...,n} and that (,.; Fy is not empty; suppose also that for
I =H0,...,i— 1} and that Fj 50 Mics F¥ is not empty; then € = 1 + a;,. Similarly for
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Figure 2: The Log MMP described by the polytopes Qe in the case where n = 2, a1 = 1,
az = 2 and g is not imaginary.

any | € {0,...,k — 2}, suppose that that for I = {i;;; —1,...,n} and (;c; Fy is not
empty; suppose also that for I = {0,...,4;— 1} and that 1Y N(;er FY is not empty; then
e € [1+a;,1+ay,] If i, #n, F; is still a facet of Q° and what we did above with
1€{0,...,k— 2} can be done as well with [ =k — 1.

Hence, it proves that if the two varieties X¢ and X" are isomorphic then € and 7 are
a one of the subsets described in the corollary.

To conclude, we have to prove that the two varieties X¢ and X" are isomorphic when
€ and 1 are in one of these subsets. It is obvious with Proposition 5.3 except in the
case where i = n and the simple root «,, is imaginary. But in that case, all polytopes
Q° with € € [1 +ap—1,1 + ap[= [1 + a;,_,,1 + a;, [ are simplexes with facets Ff for
i€ {0,...,n—1} and Fjgor Fygif € =14 ap—1 = 1, ie, they could be defined with
deleting the row corresponding to the simple root «,, that is imaginary, so that their faces
are “the same”. O

We can reformulate this corollary as follows, and get the first statement of Theorem 1.3
in Case (1). We denote X = X and for any [ € {1,--- ,k}, X! := X€ with e llta, 1+
a;,[, and for any I € {0,--- ,k}, Y := X1To,

Corollary 5.5. The family (QE)GEQZO describes a Log MMP from X as follows:

o k flips ¢y » X! — Y +— X1 . (bf for any 1 € {0,--- ,k — 1} and a fibration
or: XE— YFE ifi, #n or the simple oot o, is not imaginary;

o k—1 flips ¢ : X! — Y — XIH1 . gbl+ for any 1l € {0,--- ,k — 2}, a divisorial
contraction ¢j_1 : X*¥ 1 — Y"1~ X* and a fibration X¥ — Y* ~ pt, if i, =n
and the simple root au, is imaginary.

Example 5.6. In the fives different cases with n = 2 and ay # 0, we illustrate this
corollary in terms of polytopes in Figures 2, 3, 4, 5 and 6

5.3 Proof of the last statement of Theorem 1.3 in Case (1)

The previous section proves that a;,,...,a;, are invariants of X. To finish the proof of
Theorem 1.3 in Case (1), we have to prove that Gy, ...,Gt, ag, ..., an, 8 and i1, ..., i are
also invariants of X. For this, we have to describe some exceptional loci and some fibers
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Figure 3: The Log MMP described by the polytopes Qe in the case where n = 2, a1 = 1,
az = 2 and s is imaginary.
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Figure 4: The Log MMP described by the polytopes Qe in the case where n = 2, a1 = 0,
az = 1 and s is not imaginary.
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Figure 5: The Log MMP described by the polytopes Qe in the case where n = 2, a1 = 0,
az = 1 and as is imaginary.

.‘Yo ¢(T/ \ibl

0~ 0

Figure 6: The Log MMP described by the polytopes QG in the case where n = 2 and
a1 =ay = 1.
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of the different morphisms of the Log MMP.

We first distinguish two cases by the following result.
Proposition 5.7. Define the simple subgroups of P(wg) as in Definition 4.2.

e Suppose that n = 1 and that oy and a1 are two simple roots of the same simple
subgroup of P(wpg).

Then, the fiber of ¥ : X — G/P(wg) is either a homogeneous variety different
from a projective space (a quadric Q*™ with m > 2, a Grassmannian Gr(i,m) with
p>5and 2 <i<m—2, or a spinor variety Spin(2m + 1)/ P(w,,) with m > 4), or
a two-orbit variety as in [Pas09].

e Suppose that n > 1 or that ag and aq are not two simple roots of the same simple
subgroup of P(wpg).

Then, the fiber of ¢ : X — G /P(wg) is a projective space.

Proof. The fiber of ¢ : X — G/P(wg) is the smooth projective P(wg)-variety of Picard
group Z isomorphic to the closure of the P(wg)-orbit of a sum of highest weight vectors
in P:=P(V(wy,) &+ @ V(wa,)). Hence, the proposition is a consequence of [Pas09,
Section 1]. O

e In the case where n = 1 and that ag and a; are two simple roots of the same simple
subgroup of P(wg), G = Gy, the Log MMP described by Corollary 5.5 consists of a fibra-
tion if a3 = 0, or a flip and a fibration if a; > 0.

If a; = 0, up to exchanging ay and a1, we can suppose that a; is between «( and
A in the Dynkin diagram of Gy. Since X C P(V(wq, + @) ® V(wa, + ws)) and YO C
P(V (oo )@V (s, ), we easily compute that the fibration ¢ : X — Y has two different
types of fibers: one isomorphic to P(wq,)/(P(wa,) N P(wg)) over a G-orbit isomorphic to
G/ P(w,,) and another one of smaller dimension isomorphic to P(wy, )/(P(wa, )NP(wg)).

In particular, G/P(wq,) (as G/P(wg)) is an invariant of X. Then if Gy is not the
universal cover of the automorphism group of G/P(wg) it must be the universal cover of
the automorphism group of G/P(w,,), so that Go is an invariant of X. And then 3 is
also an invariant of X up to symmetries of the Dynkin diagram of Gyg. The description of
the fiber of ¢ : X — G/P(wp) implies that o and «; are also invariants of X unless
may be if two simple subgroups of P(wg) have the same type (and rank > 2). This could
happens if and only if: G is of type A,, with m > 5 odd and wg = WmiL, OF G| is of type
Eg¢ and wg = w3. In these two cases ap and «q are invariants of X up to symmetries.

Ifa; >0, X CP(V(wa +@5) ®V(way + (1 +a1)ws)), YO CP(V(way) ® V(wa, +
a1@g)), X' C P(V(@ay + @ay) &V (204, + a1w@p)) and Y ~ G/P(wy,) C P(V(wa,))-
In particular X, Y2 and X' have two closed G-orbits and one open G-orbit so that we
easily compute exceptional locus and fibers as follows.

For example, the exceptional locus of ¢g : X — Y0 is the G-orbit of X isomorphic
to G/(P(wqa,) N P(wg)). Then the universal cover of its automorphism group Gy is an
invariant of X. And then f is also an invariant of X up to symmetries of the Dynkin
diagram of Gy. As for the case where a; = 0, the (same) description of the fiber of
Y : X — G/P(wg) implies that the pair (ap, 1) is an invariant of X (up to symme-
tries). Note now that the exceptional locus of ¢q is sent to the G-orbit of YV isomorphic
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to G/P(wg, ), so that the couple (ap, ) is an invariant of X (still up to symmetries).

e Now we suppose that n > 1 or that ag and «a; are not two simple roots of the same
simple subgroup of P(wg).

We define different exceptional loci in X as follows. Let [ € {0,...,k — 1}, define E;
to be the closure in X of the set of points x € X such that z is in the open isomorphic set
of the first [ contractions and x is in the exceptional locus of ¢;.

Proposition 5.8. For anyl € {0,...,k} the exceptional locus Ej is the closure in X of the
G-orbit associated to the non-empty face Fr, of Q with Ij := {ij41,...,n}. In particular
E; is isomorphic to the closure of the G-orbit of a sum of highest weight vectors in

il+1_1

P:=P( P V(wa + (1+a)wp)),
1=0

and E; is a smooth projective horospherical of Picard group Z? as in Case (1), unlessl =0,
i1 = 1 so that E; is homogeneous (projective of Picard group 7 or 7.2).

Note that for { =k, I, = 0 and E;, = X.

Proof. Let 1 € {0,...,k} and ¢ € Q¢ such that X! = X<,
We denote by QZI and QZI 3 the G-orbits of X! associated to the non-empty faces F}!

and FIQB of the polytope Q. We denote by wlI and wlI,B the G-orbits of Y! = X1t

. 14+a; 14+a; ~ .
associated to the non-empty faces I} T and F I;al of the polytope Q'™%:. Recall that,
for any € € Q>, we have an order on the G-orbits of X¢ compatible with the order on the

non-empty faces of Q¢ in particular QZI c QF, and QlI 5 C Qlﬂ 5 respectively if and only if

I' c I, and QZI 5 C QlI (as soon as these orbits are defined, ie, as soon as the corresponding
faces are non-empty).

For any I ¢ {0,...,n} such that there exists i > i, not in I (ie, such that Q is defined),
¢l(QlI) = wlI if there exists ¢ > 4;,1 not in I, and ¢l(QlI) = wlIu{O,...il—l},,B if for any i > 4,41,
i € 1. Indeed T U{0,...4 — 1} is the minimal subset of {0,...,n} containing I such that

wlIU (0,.i1—1},3 is defined and there is no I’ containing I such that wlp is defined. And for

any I C {0,...,n} such that there exist i > i; and ¢’ < i; not in I (ie, such that QZI,B is
defined), qbl(QlLﬁ) = wlI’ﬁ if there exists ¢ > 4,41 not in I, and gbl(QlLﬁ) = wlIU{O,...z‘l—l},B
if for any ¢ > 441, ¢ € I. Indeed I U{0,...4 — 1} is the minimal subset of {0,...,n}
containing I such that wlIU (0,.i1—1 is defined.

PR }75

In particular, we have ngl(QlIl) = wlIlU{O,...il—l},B (which is also ¢I(Ql1l”3) if ] > 1). But

QlIl and wlllu (0,.i—1},3 A€ not isomorphic horospherical homogeneous spaces by Propo-
sition 2.12, so that Qlll is in the exceptional locus of ¢;. Moreover, if {2 is a G-orbit of

X not contained in Q_lIl, it is of the form QlI or QZI 5 where I; ¢ I. Hence, in that case

#1(2) = Q. And then the exceptional locus of ¢; is QlIl. Note that QOI, e ,Qlfl_l are not in
the exceptional locus of ¢y, ..., ¢;_1 respectively, to conclude that E; = Q%.

We use again Proposition 2.12 to see that E; = Q% corresponds to the admissible

quadruple (Pp, Mp, F, F) with F' = Fg (and with some ample divisor of E;). Then we
conclude by Corollaries 2.6 and 2.10. O

The Log MMP now defines, by restriction, fibrations q;l E\E_1 — EJ :
for any [ € {0, ..., k}.

_ 1
= Ynu{o,...i;—1},8°
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Definition 5.9. We say that the fibers of <;§l are locally maximal over w C Ej if the
dimensions of the fibers of ¢; over any point of w are the same and bigger than the fibers
of <;§l over any point of a neighborhood of w that is not in w.

We say that the fibers of ¢; are locally almost maximal over w C E] if there exists

w’ C w such that the fibers of qgl are locally maximal over w’ and the fibers of q§l| 5 (BN
l
are locally maximal over w\w' C Ej\w’
We now prove the following result, which implies in particular that 4q,...,4; are in-

variant of X.

Proposition 5.10. (We still are in the case where n > 1 or that o and aq are not two
simple roots of the same simple subgroup of P(wg).)

Let 1 € {0,... ,k}.

The map q;l 1s surjective and we distinguish four distinct cases.

1. 441 — 4 = 1 and «y, is not a simple root of Go. The fibers of (;gl are locally mazximal
over E] and dim E;—dim E;_; = 1+dim E] (here we set dim E_; := dim G /P (wg)—
1 so that it stays true for | = 0). Moreover, E] is homogeneous isomorphic to
G/P(wa,,) (which is a point if o, is imaginary).

2. 41— = 1 and oy, s a stimple oot of Go. The fibers of & are locally mazimal over
E] and dim E; — dim E;_; # 1+ dim E] (here also dim E_; := dim G/P(wg) — 1 so
that it stays true for | = 0). Moreover, Ej is homogeneous isomorphic to G/P(w@a,, )-

3. ii41 — 14 > 1 and «y, s not a simple root of Go. The fibers of & are locally mazimal
over a unique proper subset of E], which is a closed G-orbit W' of E| isomorphic
to G/P(wail). Also the fibers of ¢y are locally almost mazimal over exactly i1, —
iy — 1(> 0) subsets of E; containing W', respectively of dimensions dim G/P(wail) +
dim G/P(wa,) + 1 with j € {ig+1,...,i;41 — 1}.

4. i1 — 9 > 1 and oy, is a simple root of Go. The fibers of (;;l are locally mazimal
over iy1 — iy closed G-orbits, which are respectively isomorphic to G/P(w@,;) with
j € {ilw”ail-i-l - 1}

Moreover, in the four cases, we can compute with Corollary 2.13 the dimensions of the
fibers over all pointed subsets of Ej.

1. The dimension of fibers of ¢y is 1+ dim E;_; (in particular dim G/P(wg) ifl=0).
2. The dimension of fibers of le 1
i
d;, := iy + dim (P(wail )/(P(wg) N ) P(wai))> .
i=0

3. The dimension of the locally maximal fibers of (51 is 1 + dim E;_1 (in particular
dimG/P(wg) ifl =0). And for any j € {i;+1, ..., 441 —1}, the dimension of locally
almost mazimal fibers of ¢, over of the subset of Ej of dimension dim G/P(w,, ) +
dim G/ P(wa,) + 1 is

i—1
d; == iy + dim (P(wa].) /(P(ws) N () Pwa,) N P(wa].))> :
=0
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4. For any j € {i,...,i1+1 — 1}, the dimension of locally maximal fibers of (;gl over of
the closed G-orbit isomorphic to G/P(w.,,) is

3 —1
d; == iy + dim (P(wa].) /(P(ws) N (] P(wa,) N P(wa].))> :

1=0

Proof. We keep the notation of the proof of Proposition 5.8.

Let w be a G-orbit of Y in wlIlU (o Then there exists I C {0,...,n} con-

ety —1},8°
taining ; U {0,...4; — 1} such that w = wlI”B. Then (;51_ (w) = L, Q% where the union
is taken over all J such that J NIy = I NI;_y. In particular, ¢; is surjective and
ggl_l( ) = le[ . We then compute dim(w) = dim(FIl’ﬁ) + dim(G/ ;¢ P(@q,)), and
dim(QmIl_l) = dlm(FmIl,l) + dim(G/P(wg) N Nigrar,_, P(®@a;)), so that the dimension

of a fiber of ¢; over w is

dim(Finy, ) — dim(F} g)) + (dim(G/(P(wg) N Nigrar,_, P(@a;)) — dim(G/ Nz P(wa,)))
=1+ dim(ﬂigl P(wa,)/(P(ws) N ngmll 1 P(wa,))
= it + dim (g P(@a,) / (Nigr P(@a;) NN P(@a;) N P(w5)).

These dimensions are the biggest when I is the biggest (in particular when I =
{0,...,n}, which is not allowed to define w). Moreover, if we remove to I some i, the
dimension changes if and only if j is such that «a; is in Gy (ie, a; is not imaginary and not
the only simple root «; in a simple group of G different from Gj, by hypothesis). From
this, we will deduce the different following cases.

If o, is not a simple root of G, then the locus in wlI {0, where the fibers of

d4—1},8
¢; are maximal is the unique closed G-orbit w’ := w! {0, mN\fi}.6 isomorphic to G/ P(wa”)
This gives the first case of the proposition 1f fie1 — 4 = 1. And if 4.9 — 9 > 1 the
locus in wlIlU (0,11}, where the fiber of qbl is almost maximal is the union of the subsets
wl{o,...n}\{il,j},ﬁ Uw' with j € {4 +1,...,441 — 1}, which are affine cones over G/P(w,,).
This gives the third case of the proposition.

Now, if «;, is a simple root of Gy (ie, for any j € {i;,...,441 — 1}, a; is a simple root

of Gy), then the locus in wlIlU (0 where the fiber of ¢; is maximal is the (disjoint)

7"'il_l}76
. . . . I — . .

union of the i;,1 —4; closed G-orbits Wi, nP\{j1a of W00y —1},87 which are respectively

isomorphic to G/P(w,,) for any j € {i,... 441 — 1}. This gives the second case of the

proposition if i1 — 4, = 1 and the fourth case if 4,11 —4; > 1.
O

We easily deduce the following.
Corollary 5.11. With the notation of Proposition 5.10: for any j € {0,...,n},

dim G/P(wg) + dj — dim Ej_y — 1 = dim P(w,,)/(P(ws) N P(wa;))

and
dim G/P(wa,) +dj —dim E;_; — 1 = dim P(wg)/(P(wg) N P(w,,)).

In particular, for any l € {0, ..., k}, the sets
{(dim P(a,)/(P(5) N P(a, ), dim P(w3)/(P(w5) 1 P(0,))) | 3 € {it,...vitea — 11}

are invariants of X.
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And then we conclude the proof of Case (1) of Theorem 1.3 (ie, that Go, S, ag,...,an
are invariants of X) by the following lemma (still in the case where n > 1 or that o and
aq are not two simple roots of the same simple subgroup of P(wg)).

Lemma 5.12. Let G, G’ be two products of simply connected simple groups and C*’s. Let
B, B' be two simple roots of two simple subgroups Gy and Gfy of G and G’ respectively.
And let o, . .., oy, Tespectively o, ..., al, be simple roots of G, G' both as in Case (1) of
Theroem 1.1 (with the same integers k and iy, ..., ).
Suppose that
G/P(wp) = G P(wy)

and for any 1 € {0,... k},

{(dim P(w,,)/(P(wg) N P(w,,)), dim P(wg)/(P(ws) N P(w,,)))

| 5 € it iggr — 1)} =
{(dim P(wog)/(Plw) 1 P(o, ). dim Pw)(P(30) 0 Pliy) |

JE {Z.lv"')iH-l - 1}}

Then G = G', B = ' and for any i € {0,--- ,n}, oy = &} up to reordering the a;’s
and of’s inside the sets {ij, ..., 4141 — 1}.

Proof. Step 1: for any [ € {0,...,k}, oy, & Ry if and only if o ¢ R{, and in that case, o,
aI‘ld ayy are both extremal simple roots of SLi,+1 with m = dim P(w@g)/(P(wg)NP(w@a,)) =
dim P(WB/)/(P(WB/) N P(wa;))

Indeed, o, ¢ Ry if and only if dim P(w,, )/(P(ws) N P(w,, ) = dimG/P(wg) =
dim G/P(wg) = dim P(w,, )/(P(wg) N P(w,; ) if and only if oy & Rp. The second

2 2

statement is obvious from the hypothesis on the a;’s and «}’s. Note that a;,41, ..., q;, -1
are in Rg by hypothesis.

Step 2: Gy = G{) and 8 = (' up to symmetries of the Dynkin diagram. If not, Ry
and R{, are not empty and {(Go,wg), (G}, s )} is one of the three following sets up to
symmetries of the Dynkin diagram (by [Akh95, Section 3.3]): {(Spa,,@1), (SLam,w@1)},
{(Sping,,, 11, @m), (Sping,, o, @Wm+1)} or {(G2,@™1), (Sping, @w1)}. Let a; € Ry, there exists
1 €{0,...,k} such that 5 € {ij,...,941 — 1}. By Step 1, a; € R{, and up to reorder-
ing a;’s and «’s in {4y, ..., 4141 — 1} we can suppose that dim P(w,, )/(P(wg) N P(w,,)) =
dim P(Wag. )/(P(wg)ﬂP(wa; )) and dim P(wg)/(P(wg)NP(w,,)) = dim P(wg)/(P(ws )N
P(wag)). We have to check that this is not possible in the three cases.

If ((Go, @g), (Goy, @pr)) is ((SPay,, @1), (SLam, @1)) then w,, is the fundamental weight
@y of Spy,,, (by the smooth condition) so that dim P(w,;)/(P(ws) N P(w,;)) = 1 and W,
has to be the fundamental weight coy (by the smooth condition and because dim P(wa;_ )/ (P (g )N
P(wa;_)) = 1). But then dim P(wg)/(P(wg)NP(wy,)) = 2m—3 < 2m—2 = dim P(wg )/ (P(wg )N
P(wa).

If ((Go,wp), (Go, @a)) is ((SpPingy, 41, @m), (SPiNg,, 19, @Wmt1)) then @y, is the funda-
mental weight w; or @1 of Spiny,, ;. In both cases, dim P(wg)/(P(ws) N P(wa,)) =
m — 1. But Do, is the fundamental weight @y or w,, of Spin,,, ,, so that
dim P(w)/(Pwg) O P(w,)) = m.

If ((Go, wp), (Go, ws)) is ((Ga,@1), (Sping, 1)), then w,; is the fundamental weight
wy of G2 and Do, is the fundamental weight w3 of Spin;. But then dim P(wg)/(P(ws)N
P(waj)) =1<3= dimP(w5/)/(P(w5r) N P(wag))

We can now assume that Gp = G{, and § = /. There are at most three simple sub-
groups of P(wg) (their Dynkin diagram could be obtained from the Dynkin diagram of
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Go by removing ().

Step 3: let o € Rp and o € Ry such that dim P(wg)/(P(wg)NP(we,;)) = dim P(wg)/(P(ws)N
P(wa;_)). By the smooth condition, «; and a;- are extremal short simple roots of a simple
subgroup of P(wpg) of type A or C. If the type is A}, then dim P(wg)/(P(wg) N P(wa;)) =
p. If the type is €, then dim P(wg)/(P(wg) N P(w,,;)) = 2p — 1. Hence, we have two
cases: they are extremal short simple roots of simple subgroups of P(wg) both of type

A,, or they are extremal short simple roots of simple subgroups of P(wg) of types Asp_1
and Cp.

Step 4: Suppose moreover that dim P(w,,)/(P(wg)NP(w,,;)) = dim P(wa;)/(P(wlg)ﬂ
P(wa;_)), then we prove that a; = a;- up to symmetries, by studying all cases up to sym-
metries, where P(wg) has at least two simple subgroups of types A, and A, with p > 1,
or Ag,—1 and C, with p > 2.

Type of Gy w3 Wa; dim P(w,,)/(P(wg) N P(w,,))
A,,m>5 0 mt1 01 O TWm4+3 (m+1)4(m_1) or m;rl, and
m odd 2 2 (mHL(m_l) = "”2“ mg_l > 2m;1
B3 w9 w1 Or w3 2or3
Bg Wy w1 Or wg 18 or 8
Bg Wy w3 Or wg 5or 8
Cm, m>3 w; w1 OF Wit (4m_'3§)(i_1) = 3i(i2_1) or 1, [
m multiple of 3 | ¢ = %m and w > ¢ because 7 > 2
Cm, m>3 w; wWi_1 OF Wiy 2m —2i—1=14i—1or i,
m multiple of 3 | 7 = %m
D Ty w1 Or wry 21 or 12
D Wy w3 Or wry 6 or 12
Eg Wy w1 Or ws 15 or 6

5.4 Case (2): the ”second” Log MMP via moment polytopes

To describe the one-parameter family (QE)GEQZO defined in Theorem 2.14, we consider the
basis (u;)ief1,...ry U (v7) of M, where for any i € {1,...,7}, uj = @Wa, — @Way + GiWay,,
and v] = @q, ., — Wa,,, and we define the matrices A, B and C as follows

-1 -+ —-1 0 -1 0
1 0 - 0 0 :
0 .o 5

A= , B= and C' =
o -~ 0 1 0 0
ap - ar —1 —1 1

Then Q¢ = {z € Mgy | Az > B+€C} is the set of © = (x1,...,2,) such that zy,. ..z,
are non-negative, z; +---+a, <land 121+ + apxp —XTpyp1 — - —xp > € — 1.

In particular, Q¢ is the intersection of Q° with the closed half-space HS = {z € My |
ayry + -+ apxy — xpy1 > € — 1} We denote by H¢ | the interior of H{ and by H€ the
hyperplane H{\HS | .
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Figure 7: The polytope Q" in the case where a; = 2

Example 5.13. If n = 2 (ie, r = s = 1) we have a; > 0, and either a;y is imaginary or
not.

We draw, in Figure 7, such a polytope for ¢ = 0 with the hyperplane H? := {z € My |
ajry —x9 = —1}.

Note that Q° is a polytope with vertices uh =0, uj,...,us, uy+ (14 ao)vs, ..., us +
(14-a,)v; (recall that ag = 0) and facets Fy := Conv((u} | ¢ € I)U(u;+(1+a;)v] | ¢ € 1)),
Fry:=Conv(uf | i ¢ I)and Fro := Conv(u} + (1+a;)vy | ¢ ¢ 1) with I C {0,...,r}. In
particular, the facets of Q° are the Fj := Fyy with i € {0,...,7}, Fp; and Fp,. Moreover
for any I C {0,...,n}, Fr = (\ier Fis Fr1 = Nier Fi N Fpq and Fro = (e 5 N Fp .

Then, for any I C {0,...,r}, we define F} := FrNH¢, Ffy=FaNHS, Ff o= FiNH*
and Ff 5 = Fr1 N H¢ They are faces (may be empty and not distinct) of Q°. (Recall
0O=ap<a;<---<arandn=r+1)

Proposition 5.14. The polytope Q¢ is of dimension n if and only if € < 1+ a,.

Suppose now that € < 1+ a,. The non-empty faces of Q¢ are the distinct following Fy,
Ffy, Fiy and Ffq 5 with I C {0,...,7}:

F§ (of codimension |I|) if € < max;gr(1 4 a;);

Ffy (of codimension |I|+ 1) if € < max;gr(1 4+ a;);

Ff, (of codimension |I| 4+ 1) if € < max;gr(1 4 a;);

Fii, (of codimension |I|+2 or |I|+1 respectively) if min;gr(1+a;) < € < max;gr(1+
a;) or € = mingr(1 + a;) = max;gr(1 + a;).

In particular, the facets of Q¢ are: Ff withie{0,...,r—1}, Ff ife <14a,_q, F5,1 and
F&Q.

Moreover, for any I C{0,...,r} such that € < max;gr(1+ a;), Ff = (;cp Fy-
For any I € {0,...,r} such that € <max;gr(1+ a;), Ffy = ;e FY NEFy ;.
For any I C {0,...,r} such that € < max;gr(1 + a;), Fi, = Nicr £ N Fj -
For any I C {0,...,7} such that minigr(1 + a;) < € < maxigr(1+a;), Ffi 5= Ny F¥ N
Fﬁil N F&Q.

Remark that, if € = min;g;(1 + a;) = max;gr(1+ a;), then I = {0,...,7}\{i} where ¢
is such that e =1 + a;.
Note also that Q7% is the point u} so that Q'+ is the point w,, .

Proof. For any € > 0, the polytope Q€ is of dimension n if and only if Q intersects HS
if and only if there exists ¢ € {0,...,r} such that u (or u] + (1 + a;)v}) is in H{ if
and only if there exists ¢ € {0,...,r} such that a; > e —1 (or —1 > ¢ — 1) if and only if
a, > € — 1. This proves the first statement of the proposition.
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Suppose now that € < 1 + a,. A non-empty face of Q¢ is either the intersection with
H¢ of a non-empty face of Q" that intersects H < ., or the intersection of a non-empty face
of Q° with HE.

Let I C {0,...,r}. The set F} is not empty if and only if there exists ¢ ¢ I such that
u; (or ui 4 (14 a;)v]) is in HS if and only if there exists ¢ ¢ I such that a; > € — 1 (or
—1>¢e—1)if and only if € < max;gr(1 + a;). Moreover with the same argument, Ff is
not empty and intersects H¢  if and only if € < max;g7(1 + a;). Also, in that case, the
dimension of FF is the same as the dimension of F; in particular the non-empty Ff that
intersect H¢ , are all distinct.

Similarly, F7, is not empty if and only if there exists ¢ ¢ I such that «; € HS if and
only if there exists i ¢ I such that a; > e — 1 if and only if € < max;g(1 + a;). Also,
Ff, is not empty and intersects HS, if and only if € < max;g/(1 + a;). In that case, the
dimension of Fi,is the same as the dimension of F71; in particular the non-empty Fry
that intersect HS , are all distinct and also distinct from the non-empty F7.

Let I € {0,...,7r}. Note that for any ¢ > 0 (respectively ¢ > 0) and for any i €
{0,...,rh uf + (1 +a;)vy & HS, (vespectively uf + (1 + a;)v] & HS). Then the set Fy,
is not empty if and only if there exists ¢ ¢ I such that «; € HS if and only if there exists
i & I such that a; > e—1if and only if € < max;¢7(1+4a;). Moreover, F. f’2 is not empty and
H¢€ intersects FT in its relative interior if and only if there exists ¢ € I such that a; > e—1
if and only if € < max;gs(1 + a;). Hence, the dimension of F 1672 is the dimension of FJ
minus 1 if € < max;gs(1 + a;) and it equals the dimension of F if € = max;g/(1 + a;). In
the first case, the Fp, are all distinct and describe all non-empty faces of Q¢ included in
H® but not in Fj ;. In the second case, Ff, = Ff 5.

Now, the set Ff,, is not empty if and only7if there exist ¢ and j not in I (may be
equal) such that u; € Hf and u; ¢ HS | if and only if there exist ¢ and j not in I such that
a; > e—1and a; < e—1if and only if min;gr(14a;) < € < max;gr(1+a;). Moreover, Fy, ,
is not empty and included in no proper face of Fy; if and only if there exist ¢ and j not
in I such that uj € H{ , and u; ¢ H¢ if and only if there exist ¢ and j not in I such that
a; >e—landa; <e—1 (ie, a; <e—1and a; > e—1) or for any i ¢ I we have u] € H¢ (ie,
a; = € — 1). Then Ff , is not empty and included in no proper face of Fy; if and only if
min;gr(14a;) < e < ’niaxigj(l +a;) or € = min;gr(1 + a;) = max;gr(1+ a;). In particular,
the dimension of FT | , is the dimension of 7 ; minus 1 if min;gr(1+a;) < € < max;gr(1+a;)
and it equals the dimension of Fy; if € = min;gr(1 + a;) = max;g;(1 + a;). Note also that
the non-empty Fj, , that are not included in a proper face of Fy; are all distinct and
describe all non-empty faces of Q¢ included in H¢ N Fp,. This finishes the proof of the
second statement of the proposition.

To get the last statements, apply that a facet is a face of codimension 1 and that any
face of a polytope is the intersection of the facets containing it. O

From Proposition 5.14, we deduce the following result.

Corollary 5.15. The isomorphic classes of the horospherical varieties X€ associated to
the polytopes in the family (QE)GEQZO are given by the following subsets of Q>o:

e [0,1];

o |1+ a;, 14 ajp1] for any i€ {0,...,r —2};

o {1+a;} foranyie{0,...,r —2};

o |1 +ar_1,1+a,] and {1+ a,_1} if the simple root o, is not imaginary (ie, when X

is as in Case (2b) of Theorem 1.1);
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o [1+a,_1,1+ a,[ if the simple root v, is imaginary (ie, when X is as in Case (2c)
of Theorem 1.1).

Proof. We apply the theory described in Section 2.2, in particular the fact that the iso-
morphic classes of the varieties X¢ are obtained with looking at the €’s for which “the
faces of Q¢ change”.

Note first that, by Proposition 5.14, (P, M, Q°, Qf) is an admissible quadruple if and
only if ¢ < 1+ a,.

Also, the facets of Q€ are: F¥ (orthogonal to o}y,) with ¢ € {0,...,r—1}, F¢ (orthogonal
to ay'y) if € < 1+4a,—1, Fjj, (orthogonal to a(VTH)M) and Fj, (orthogonal to azn”)M).
In particular, for any €, n € [0,1 + a,[, the facets of Q¢ and Q" are “the same” if and only
if € and n are both in [0,1 4 a,—1[ or [1 +a—1,1 + a,[.

We now use a consequence of the proof of Proposition 5.14: for any I € {0,...,7},
Nicr £y is not empty if and only if € < max;gr(1 + a;), Fyon Nicr £y is not empty if and
only if € < max;gr(1 + a;), F@EQ N (V;er F5 is not empty if and only if € < max;gr(1 + a;),
and F, 5 N[ N;er FY is not empty if and only if ming/(1 + a;) < € < maxgr(1 +a;). In
particular, for any i € {0,...,r—2}, suppose that for I = {i+1,...,r} and that (),c; Ff is
not empty; suppose also that for I = {0,...,i— 1} and that Fii,0 Nicr FY is not empty;
then € = 1+ a;. Similarly for any i € {0,...,r—2}, suppose that for I = {i+2,...,n} and
that (), Fy is not empty; suppose also that for I = {0,...,i—1} and that F5,1,2ﬁﬂiel F¥
is not empty; then € € [1 4+ a;,1 + a;41].

Hence, it proves that if two varieties X€ and X" are isomorphic then € and 7 are a one
of the subsets described in the corollary.

To conclude, we have to prove that the two varieties X and X" are isomorphic when
e and n are in one of these subsets. It is obvious with Proposition 5.14 except in the
case where the simple root «,, is imaginary. But in that case, all polytopes ¢ with
€ € [14+ar_1,1+ ar[ could be defined with deleting the row corresponding to the simple
root «, that is imaginary, so that their faces are “the same” (they are simplexes with
facets F for i € {0,...,r — 1}, Fjj, and F,). O

We can reformulate this corollary as follows, and get the first statement of Theorem 1.3
in Case (2). We denote X = X and for any i € {1,--- ,7}, X’ := X¢ with ¢ €]14+a;_1,1+
a;[ and for any i € {0,--- ,r}, Y := X*Tai,

Corollary 5.16. The family (Q)ccqs, describes a Log MMP from X as follows:

o1 flips ¢ » X' — Y +— X 1 ¢F for any i € {0,---,r — 1} and a fibration
¢r : X" — Y7, if the simple root a,- is not imaginary;

o —1 flips ¢+ X' — Yi«— XL 2 oF for any i € {0, ,k — 2}, a divisorial
contraction ¢p_1 : X'™1 — Y"1 ~ X" and a fibration X" — Y ~ pt, if the
stmple root o, is imaginary.

Example 5.17. In the two different cases with n = 2 and a1 = 2, we illustrate this
corollary in terms of polytopes in Figures 8 and 9.
5.5 Proof of the last statement of Theorem 1.3 in Case (2)

The previous section proves that aq,...,a, are invariants of X. To finish the proof of
Theorem 1.3 in Case (2), we have to prove that Gy,...,Gy and ag,..., a2 are also
invariants. Since the ”first” Log MMP consists of a fibration ¢ : X — Z where Z is a
two-orbit variety embedded in P(V(wq,,,) ® V(wa,,,)) as in [Pas09], Gy, ar11 and a4
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;

Figure 8: The Log MMP described by the polytopes Q€ in the case where n = 2, a; = 2
and o is not imaginary.
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Figure 9: The Log MMP described by the polytopes Q€ in the case where n = 2, a; = 2
and o is imaginary.
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are invariants of X. As in Case (1), we will describe some exceptional loci and some fibers
of different morphisms of the Log MMP, but we first distinguish two cases by the following
result.

Proposition 5.18. e Suppose that r = 1 and that oy and oy are two simple roots of
Go (and thent =1).

Then, the general fiber of ¢ : X — Z is either a homogeneous variety different
from a projective space (a quadric Q*™ with m > 2, a Grassmannian Gr(i,m) with
m >5and 2 < i< m—2, or a spinor variety Spin(2m + 1)/P(w,,) with m > 4),
or a two-orbit variety as in [Pas09].

e Suppose that r > 1 or that oy and aq are simple roots of Go and G1 respectively.

Then, the general fiber of v : X — Z is a projective space.

Proof. The general fiber of v : X — Z is the smooth projective horospherical Gg X - - - x
G_1-variety of Picard group Z isomorphic to the closure of the G x - -+ X Gy_1-orbit of a
sum of highest weight vectors in P := P(V(wq,) ® -+ & V(w,,)). Hence, the proposition
is a consequence of [Pas09, Section 1]. O

e In the case where r = 1 and that ag and aq are two simple roots of Gy, G = G x G
and the description of the general fiber of ¢ : X — G/P(wg) implies that Go, oy and
«1 are invariants of X.

e Now we suppose that r > 1 or that ag and «a; are not two simple roots of the same
simple subgroup of P(wg).

We define different exceptional loci in X as follows. Let i € {0,...,r}, define E; to be
the closure in X of the set of points x € X such that z is in the open isomorphic set of
the first ¢ contractions and z is in the exceptional locus of ¢;.

Proposition 5.19. For any i € {0,...,r} the exceptional loci E; is the closure in X of
the G-orbit associated to the non-empty face Fr, with I; :== {i+1,...,r}. In particular E;
s isomorphic to the closure of the G-orbit of a sum of highest weight vectors in

) 1+a]-
P:=P @ @ V(@wa; +bwa, . +(1+a; —b)wa, ) |
§j=0 b=0
hence for i € {1,...,r}, E; is a smooth projective horospherical of Picard group 7* as

in Case (2), and Ey is the product a two-orbit variety with a homogeneous (projective of
Picard group 7.) variety.

Note that E,. = X and that in any case, the rank of the horospherical G-variety E; is
i1+ 1.

Proof. Let i € {0,...,r} and ¢; € Q> such that X' = X¢.

We denote by 07, Q7 ,, QZLQ and QZLL2 the G-orbits of X* associated to the non empty
faces Fy', F;fl, FIGZ2 and Flﬁjl,2 of the polytope Q<. We denote by w?, w?l, wb and w?m
the G-orbits of Y? = X!+ associated to the non-empty faces FIH(“, FII’JI”“, FIIJQF‘“ and
F }Jf‘;l of the polytope Q% . Recall that, for any € € Q>p, we have an order on the

G-orbits of X€¢ compatible with the order on the non-empty faces of Q¢: in particular
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QY C Q—?, Q?l C Q}, QZIQ C QI,2 and 9112 C QI, 12 respectively if and only if I’ C I,
and €} 71 C QI, QY 72 C le 9“2 C Qll and 9112 C 912 (as soon as these orbits are
deﬁned ie, as soon as the correspondlng faces are non—empty)

For any I C {0,...,r} such that there exists j > i not in I (ie, such that Q7 is defined),
¢i(Q2%) = w if there exists j > i+ 1 not in I, and ¢;(Q) = wg\{i}’w if for any 7 > i+ 1,
j € I. Indeed T U{0,...i—1} = I\{i} is the minimal subset of {0,...,r} containing I
such that wI\ (i}.1,2 is defined and there is no I’ containing I such that w? 7y Wi 171 Or W 218
defined. Slmllarly, with £ =1 or 2, for any 1C {0 .,7} such that there exists j > i not
in I (ie, such that Q% is defined), ¢; (€2 TE) =Wk 1f there exists j > ¢+ 1 not in I, and
$i(Q k) = Wiy ppiyae if forany j > i+1, j € I. Indeed IU{O =1} ={0,...,r}\{i}
is the minimal subset of {0, . . r} containing I such that w}O,...,r}\ (i1.1,2 is defined and there
isno I’ contammg I such that wI, k18 defined.

And for any I C {0,...,r} such that there exist j > i and j° < i not in I (le,
such that 93,172 is deﬁned), qﬁZ(QLLQ) = w171,2 if there exists ¢ > ¢ + 1 not in I, and
$i(Q7 1) = Wiy, iy, i forany j >i+1, j € I. Indeed {0,...,7}\{i} = TU{0,...4y—1}
is the minimal subset of {0,...,n} containing I such that w? {0, P\ (i}, 1,2 is defined.

In particular, we have (;SZ(QI) = wl\{z} 1o But QI and Wi, 4 (12 are not iso-
morphic horospherical homogeneous spaces by Proposition 2.12; so that Q'i is in the
exceptional locus of ¢;. Moreover, if Q is a G-orbit of X’ not contained in QZ? it is of the
form QY 93,17 (222 or 937172 where I; ¢ I. Hence, in that case ¢;(2) = Q. And then the

exceptional locus of ¢; is QZIZ Note that Q%, e ,QlIi_l are not in the exceptional locus of

oo, - - -, P;—1 respectively, to conclude that F; = Q%.
We use again Proposition 2.12 to see that F; = Q—% corresponds to the admissible

quadruple (Pp, Mp, F, F) with F = FIOi (and with some ample divisor of E;). Then we
conclude by Corollaries 2.6 and 2.10. O

The Log MMP now defines, by restriction, fibrations ¢; : E; \Ei_1 — E| = w{o 1,27
for any ¢ € {0,...,i}.

Proposition 5.20. For any i € {0,...,r}, E! is a closed G-orbit of }fz isomorphic to
G/P(wq,;) (which is a point if o is imaginary). In particular, the map ¢; is surjective.
Moreover, the dimension of fibers of ¢; is

i+ 14 dim P(wai)/(P(war+1) N P( war+2 m wo‘ﬂ

Proof. Let i € {0,...,r}. The face F{O+a P12 of Q1% is the vertex uf and then the
corresponding face of Q7% is the vertex Wa,;- In particular, the G-orbit WEO,---,T}\ (i},1,2 is
closed and isomorphic to G/P(w@, ).

Now, since ¢; is G-equivariant, it must be surjective.

Moreover, the dimension of the fibers of ¢; is

dim E; — dim E} = (i + 1 + dim G/(P(®@a,.,) N P(@a,,») ﬂ (wa,))) — dim G/P(w,,)
that is i + 1+ dim P(wa,)/(P(@a,,) N P(@a,.,) N Nieg P(@a,)). O
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Corollary 5.21. The dimension of the fibers of (;§Z 18

1—1
i+1+4dimG/(P(@a,,,) N P(@a,.,)) + Y dimG/P(w,,).
j=0

In particular the dimensions d; of the G/P(waj) ’s, which are projective space under
G; = SLg,+1, are invariants of X.

Proof. Since r > 1, or r = 1 and «g, ;1 are not two simple roots of the same simple sub-

groups of GG, the simple roots «y, . .., a, are respectively the first simple roots of Gy, ..., G,
that are of type A. (And a,41, a,49 are simple roots of G,41.) Then the corollary can be
easily deduced from the proposition. O

6 Appendix

Proposition 6.1. Let (K,(3,R,n) be a smooth quadruple. Then we are in one of the
following cases, up to symmetries.

1. n =1 and one of the following case occurs..

o K is of type Ay, (m >3). Then, = ay with 3 <k <m and R = {aq,ap_1};
or B =ay with4d <k <m and R={a;,a;41} with 1 <i <k —2.

o K is of type By, (m > 3). Then, § = oy with 3 <k <m and R = {oq, a1}
or R ={aj,ajp1} with 1 <i < k—2; or 8 =0op withl <k <m-—2 and
R={am-1,am}; or B =am—3 and R = {a,—2,m}.

o K is of type Cy, (m >3). Then, 5= ap with3 <k <m and R = {aq,ap_1};
or B=ag withd <k <m and R = {o;, 11} with 1 <i <k —2; 8 = ay with
1<k<m-—2and R={a;,q;11} with1 <i<k—2.

e K is of type D, (m >4). Then, B = ap with3 <k <m—2 or k =m and
R={aj,a_1}; or f=ap withd <k <m-—2ork=m and R = {a;, a1}
withl1 <1 <k—2;8=a withl <k<m—4 and R = {am—1,0m}; orm >5,
B = am—3 and R is any subset of cardinality 2 of {qm—2, m—1,Qm}; orm > 5,
B =am—2 and R = {am—1,an}; all modulo symmetries.

o K is of type Eg. Then B = a1 and R = {ag,as}; or B = as and R =
{a1,06}, {a1,a3} or {as,a4}; or B = a3 and R = {ag, a5}, {a2, a4}, {ay, a5}
or {as,a6}; or B =ay4 and R = {aq, as}.

o K is of type E7. Then B = a1 and R = {ag,as}; or f = as and R =
{a1,a7}, {a1,a3}, R = {as, a4}, {ay, a5}, {as,a6} or {ag,ar}; or p = ag
and R = {ag,ar}, {ag,as}, {ag, a5}, {as, a6} or {ag,ar}; or B = a4 and
R = {1, a3}, {as,ar}, {as, a6} or {ag,ar}; or = a5 and R = {a1, a3},
{aq,as}, {as, a4}, {ag, a4} or {ag,ar}; or B =ag and R = {ag,as}.

o K is of type Eg. Then = a1 and R = {ag,as}; or f = as and R = {a1,as},
{aq,a3}, R={as, a4}, {ag, a5}, {as, a6}, {ag, a7} or{ar,as}; or 8 = a3 and
R = {ag, a8}, {az, a4}, {ag, a5}, {as,a6}, {ag, a7} or {ar,as}; or B = ay
and R = {a1,a3}, {as,as}, {as, a6}, {as, a7} or {ar,as}; or B = a5 and
R = {1, a2}, {a1,a3}, {as,as}, {ag,as}, {as,as}, {as, a7} or {a7,as}; or
B =ag and R = {ag, a5} or {ay,asg}.

o K is of type Fy. Then 8 = a1 and R = {as, a4} or {ag,as}; B = ay and
R={as,a4}; f=as and R ={ay,as}; f = asg and R = {ag,as} or {a1,as3}.
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2. R is empty or one of the following case occurs.

o K is of type Ay, (m > 2). Then, B = a; and R is {aa} or {am} (if m > 3);

B = oy with2 <k <% and R is a subset of {a1, g1}, {1, am}, a1, g1}
(if k> 3) or ag_1,am} (ifk>3); or B = Qi1 (if m is odd) and R is a subset
of {a1,am} or R = {ai_1}, {alphay, a1} or a1, 011} (if m >5).

K is of type By, (m > 3). Then, m =3, B = a1 and R is {as}; B = oy with
2<k<m-—3and R is {a1} or {ax_1} (if k> 3); or B =am—_o (m>4) and
R is a subset of {a1,am} or {am—3,am} (if m>5); or B =ay, —1 and R is
a subset of {1, am} or R is {am—2} (if m >4) or {am—o,am} (if m>5); or
B =am, and R is {a1} or {am—1}.

K is of type Cp, (m > 2). Then, 8 = a1 and R is {as}; or B = ap with
2<k<m-—1(m>3)and R is a subset of {a1,ap+1} or {ag—1,511} (if
k>3 andm>4); or 8 =a, and R = {a1} or {am-1} (if m > 3).

K is of type Dy, (m > 4). Then, 8 = ap with2 <k <m—4 (m >6) and R
is {on} or {ag—1} (if k>3 and m >7); or f = a3 and R is {am-1}, or a
subset of {a1, -1} (if m >5) or {am—yg,m—1} (if m >6); or f = ap—2 and
R is {a1}, {oq,m—1} or {a1,am—1,am}, or R is a subset of {am—3,m—1}
(if m >5), R is {am-3,¥m—1,m} (if m >5); or f = a,, and R is {a1} or
{Oém_l}.

K is of type Eg. Then B = ag and R = {a1}; or B = as and R is a subset of
{a1, 00} or {a1,06}; or f=as and R is subset of {aa, v, a;} withi=1 or 3
and j =5 or 6 modulo symmetries.

K is of type E7. Then B = ag and R = {aq} or {az}; or f = a3 and R is a
subset of {a1, a0} or {on,ar}; or B = as and R is subset of {ag, a;, a5} with
i=1or3andj=5o0r7 orf =asand R is a subset of {a;, o} with i =1
or 2and j =6 or 7; or f = ag and R = {ar}.

K is of type Es. Then B = ag and R = {1} or {ag}; or f = a3 and R is a
subset of {a1, 0} or {on,ag}; or B = ay and R is subset of {ao, a;, o} with
i=1or3andj=>5o0r8 orf =as and R is a subset of {a;,;} with i =1
or 2.and j =6 or 8 or 8 =ag and R is a7 or ag; or B = a7 and R = {ag}.

o K is of type Fy. Then 8 = aq and R = {au}; B = as and R is a subset of

{a1,a3} or {aj,a4}; B =as and R is a subset of {1, a4} or {ag,as}.

o K is of type Go. Then B = a3 and R = {as}; or f =as and R = {a1}
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