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A major difficulty of internal wave theory is, on the Boussinesq approximation, the absence
of any length scale. Shorter waves accumulate at particular places and times, leading to
a divergence of the amplitude and indefinite phase variations. For example, for a point
monochromatic source, waves are confined on a characteristic cone of vertical axis and
apex at the source; there, however, their amplitude diverges and their phase jumps, while
no indication is obtained on their variations inside the cone.

Three mechanisms, at least, are responsible for eliminating the contribution of the
smaller wavelengths: the finite time elapsed since the beginning of the motion, the finite
size of any real source, and viscous attenuation. Similarly, each direction of a stratified
fluid, inclined at an angle θ to the vertical, is an independent oscillator resonating at
its natural frequency ω = N cos θ, with N the buoyancy frequency; for an actual wave
field to emerge some additional coupling mechanism is required, which transmits phase
information to the neighbouring directions. And three such mechanisms are, as before,
the dispersion of the initial impulse, the boundary condition at the surface of the wave
generator, and viscous momentum transfer.

In this paper we examine how internal wave fields build up, taking all three possibilities
into account (figure 1). Specifically, using results of [1,2], we apply the Green’s function
formalism to a monochromatic source of finite size switched on at some instant of time in
a fluid of low viscosity. A transient is first observed. Soon it begins to decrease except in
a narrowing vicinity of the characteristic cone [3], and there it becomes a monochromatic
oscillation of increasing amplitude [4]. Then the size of the source and the viscosity of
the fluid come into play [5]. Near the source, the size effect is dominant and the waves
are confined inside a conical shell defined by the two characteristic cones tangent to the
source above and below [6]. On these cones the velocity field is singular [7], inducing the
development of boundary layers as energy propagates away from the source (figure 2).
Ultimately the layers fill the whole of the shell [8], and the viscous self-similar region of
[9] is reached.
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Figure 1. Velocity profile across the characteristic
cone, for (a) a point source beginning to pulsate at
time t = 0, (b) a pulsating sphere of radius a, (c) a
point source pulsating in a fluid of kinematic viscos-
ity ν. Velocity is represented in arbitrary units at
successive times separated by one eighth of a period,
as a function of (a) (N2

− ω2)1/2t(θ − θ0), (b) x/a,
(c) x/(βz)1/3; the dashed line is the velocity enve-
lope. The direction θ = θ0 ≡ arccos(ω/N) or x = 0
corresponds to the characteristic cone with apex at
the centre of the source, with ω the frequency, θ
the angle to the vertical and z and x the distances
along and perpendicular to the cone, respectively;
β = ν/[2(N2

− ω2)1/2].
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Figure 2. Transition, for a sphere pulsating in a
viscous fluid, from the inviscid régime of figure 1b to
the viscous régime of figure 1c. The velocity profiles
are drawn at several dimensionless distances βz/a3,
as functions of x/a. (a) βz/a3 = 0, (b) βz/a3 =
10−3, (c) βz/a3 = 10−2, (d) βz/a3 = 10−1.


