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This paper investigates the second order properties of a stationary continuous time process after random sampling. While a short memory process gives always rise to a short memory one, we prove that long-memory can disappear when the sampling law has very heavy tails. Despite the fact that the normality of the process is not maintained by random sampling, the normalized partial sum process converges to the fractional Brownian motion, at least when the long memory parameter is perserved.

Introduction

Long-range dependence (or long-memory) has diverse applications in many fields, including hydrology, economics and telecommunications (see [START_REF] Beran | Long-memory processes[END_REF] ch.2). Most of the papers on this topic consider processes with discrete-time. However, some models and estimation methods have been extended to continuous-time processes (see Tsai and Chan (2005a); [START_REF] Viano | Continuous-time fractional ARMA processes[END_REF]; [START_REF] Comte | Long memory continuous time models[END_REF]; [START_REF] Comte | Simulation and estimation of long memory continuous time models[END_REF]). Tsai and Chan (2005a) introduced the continuoustime autoregressive fractionally integrated moving average (CARFIMA(p,H,q)) model. Under the long-range dependence condition H ∈ (1/2, 1), they calculate the auto-covariance function of the stationary CARFIMA process and its spectral density function (see [START_REF] Tsai | Quasi-maximum likelihood estimation for a class of continuoustime long-memory processes[END_REF]). Theses properties are extended to the case H ∈ (0, 1) in [START_REF] Tsai | On continuous-time autoregressive fractionally integrated moving average processes[END_REF]. In [START_REF] Viano | Continuous-time fractional ARMA processes[END_REF], continuous-time fractional ARMA processes are constructed. They establish the L 2 properties (spectral density and auto covariance function ) and the dependence structure. [START_REF] Comte | Long memory continuous time models[END_REF] study the continuous time moving average fractional process, a family of long memory model. The statistical inference for continuous-time processes is generally constructed from the sampled process (see Tsai and Chan (2005a,b); [START_REF] Chambers | The estimation of continuous parameter long-memory time series models[END_REF]; [START_REF] Comte | Simulation and estimation of long memory continuous time models[END_REF]). Different schemes of sampling can be considered. In Tsai and Chan (2005a), the estimation method is based on the maximum likelihood estimation for irregularly spaced deterministic time series data. Under the assumption of identifiability, [START_REF] Chambers | The estimation of continuous parameter long-memory time series models[END_REF] considers the estimation of the long memory parameter of a continuous time fractional ARMA process with discrete time data using the lowfrequency behaviour of the spectrum. [START_REF] Comte | Simulation and estimation of long memory continuous time models[END_REF] studied two methods for the estimation with regularly spaced data: Whittle likelihood method and the semiparametric approach of Geweke and Porter-Hudak. In the present paper we are interested in irregularly spaced data when the sampling intervals are independent and identically distributed positive random variables. In the light of previous results in discrete time, there was an effect of the random sampling on the dependence structure of the process. Indeed, Philippe and [START_REF] Viano | Random sampling of long-memory stationary processes[END_REF] show that the intensity of the long memory is preserved when the law of sampling intervals has finite first moment, but they also pointed out situations where a reduction of the long memory is observed.

We adopt the most usual definition of second order long memory process. Namely, a stationary process U has the long memory property if its auto-covariance function σ U satisfies the condition

R + |σ U (x)| dx = ∞ in the continuous-time case, h≥0 |σ U (h)| = ∞ in the discrete-time case.
We study the effect of random sampling on the properties of a stationary continuous time process process. More precisely, we start with X = (X t ) t∈R + , a second-order stationary continuous time process. We assume that it is observed at random times (T n ) n≥0 where (T n ) n≥0 is a nondecreasing positive random walk independent of X. We study the discrete-time process Y defined by

Y n = X Tn , n ∈ N. (1.1)
The process Y obtained by random sampling is called the sampled process.

In this paper, we study the properties of this. In particular, we show that the results obtained by Philippe and [START_REF] Viano | Random sampling of long-memory stationary processes[END_REF] on the auto-covariance function are preserved for continuous time process X. The large-sample statistical inference relies often on limit theorems of probability theory for partial sums. We show that Gaussianity is lost by random sampling. However, we prove that the asymptotic normality of the partial sum is preserved with the same standard normalization. (see [START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF], Chapter 4 for a review).

In Section 2, we study the behavior of the sampled process (1.1) for the general case. We establish that Gaussianity of X is not transmitted to Y. Under rather weak conditions on the covariance σ X , the weak dependence is preserved. Howevr a stronger assumption on T 1 : E[T :1 ] < ∞ is necessary to preserve the long memory property.

In Section 3, we present the more specific situation of a regularly varying covariance where preservation or non-preservation of the memory can be quantified. In particular, we prove that for heavy tailed sampling distribution, a long memory process X can give raise to a short memory process Y. In Section 4, we establish a Donsker's invariance principle when the initial process X is Gaussian and the long memory parameter is preserved.

General properties.

Throughout this document we assume that the following properties hold on the initial process X and the random sampling scheme: Assumption H : 1. X = (X t ) t∈R + is a stationary continuous time process.

2. the random walk (T n ) n≥0 is independent of X 3. T 0 = 0 4. the increments ∆ j = T j+1 -T j (j ∈ N ) are independent and identically distributed.

5. the distribution of T 1 admits a probability density function s (with respect to the Lebesgue measure) supported by R + .

If X is a second-order stationary process with zero mean and auto-covariance function σ X and the assumption H holds then the discrete-time process Y defined in (1.1) is also second-order stationary with zero mean and its auto covariance sequence is

σ Y (0) = σ X (0), σ Y (h) = E [σ X (T h )] , h ≥ 1.
(2.1)

Distribution of the sampled process

This part is devoted to the properties of the finite-dimensional distributions of the process Y.

Proposition 2.1. Let X be a strictly stationary process. Then, under Assumption H, the sampled process Y is a strictly stationary discrete-time process.

Proof. We arbitrarily fix n ≥ 1, p ∈ N * and k 1 , . . .

k n ∈ N such that 0 ≤ k 1 < • • • < k n .
We show that the joint distribution of (Y k1+p , . . . , Y kn+p ) does not depend on p ∈ N.

For (y 1 , . . . , y n ) ∈ R n , we have

P (Y k1+p ≤ y 1 , . . . , Y kn+p ≤ y n ) = P X T k 1 +p ≤ y 1 , . . . , X T kn+p ≤ y n = E P X ∆0+•••+∆ k 1 +p-1 ≤ y 1 , . . . , X ∆0+•••+∆ kn+p-1 ≤ y n |∆ 0 , . . . ∆ kn+p-1 .
By the strict stationarity of X the right-hand-side of the last equation is equal to

E P X ∆p+•••+∆ k 1 +p-1 ≤ y 1 , . . . , X ∆p+•••+∆ kn +p-1 ≤ y n |∆ 0 , . . . ∆ kn+p-1 = P (X U0+•••+U k 1 -1 ≤ y 1 , . . . , X U0+•••+U kn -1 ≤ y n ) = P (Y k1 ≤ y 1 , . . . , Y kn ≤ y n ),
where U i = ∆ i+p are i.i.d with density s. This concludes the proof.

The following proposition is devoted to the particular case of a Gaussian process. We establish that the Gaussianity is not preserved by random sampling.

Proposition 2.2. Under Assumption H, if X is a Gaussian process then the marginals of the sampled process Y are Gaussian. Furthermore, if σ X is not almost everywhere constant on the support of s, then Y is not a Gaussian process.

Proof. Let U be a random variable, we denote Φ U its characteristic function. We have, for all

t ∈ R Φ Y k (t) = E E[e itX T k |T k ] .
Conditionally on T k , the probability distribution of X T k is the Gaussian distribution with zero mean and variance σ X (0). We get

Φ Y k (t) = e -σ X (0)t 2 /2
and thus Y k is a Gaussian variable with zero mean and variance σ X (0).

Now assume Y is a Gaussian process, then Y 1 + Y 2 is a Gaussian variable, Φ Y1+Y2 (t) = e -Var(Y1+Y2)t 2 /2 = e -σ X (0)t 2 e -t 2 E[σ X (T2-T1)]
and

Φ Y1+Y2 (t) = Φ X T 1 +X T 2 (t) = E exp - t 2 2 ( 1 1 ) T σ X (0) σ X (T2-T1) σ X (T2-T1) σ X (0) ( 1 1 ) = e -σ X (0)t 2 E e -t 2 σ X (T2-T1) .
Then, for all t ∈ R, -T1) .

e -t 2 E[σ X (T2-T1)] = E e -t 2 σ X (T2
According to Jensen's inequality, this equality is achieved if and only if σ X (T 2 -T 1 ) is constant almost everywhere.

Example 1. In Figure 1, we illustrate the non-Gaussianity of the sampled process.

We take X a Gaussian process with autocovariance function σ X (t) = (1 + t 0.9 ) -1 and (T i ) i∈N is a homogeneous Poisson counting process with rate 1. To simulate a realization from the distribution of (Y 1 , Y 2 ), we proceed as follows:

1. Generate the time interval T 2 -T 1 according to an exponential distribution with mean 1.

2. Generate (Y 1 , Y 2 ) as a Gaussian vector with zero mean and covariance

σ X (0) σ X (T 2 -T 1 ) σ X (T 2 -T 1 ) σ X (0) .
We simulate a sample of size p. In Figure 1 (a) we represent the kernel estimate of the joint probability density function of (Y 1 , Y 2 ). In order to compare the probability distribution of the sampled process with the corresponding Gaussian one. We simulate a sample of centered Gaussian vector (W 1 , W 2 ) having the same variance matrix as

(Y 1 , Y 2 ) i.e. Σ Y1,Y2 = σ X (0) E[σ X (T 1 )] E[σ X (T 1 )] σ X (0) = 1 Σ 1,2 Σ 1,2 1 , where Σ 1,2 = ∞ 0 σ X (t)e -t dt =
∞ 0 e -t (1 + t .9 ) -1 dt can be calculated numerically. In Figure 1 (b), we represent the kernel estimate of the density of (W 1 , W 2 ). We see that the form of the distribution of sampled process differs widely from Gaussian distribution.

Dependence of the sampled process

We are interested in the dependence structure of the Y process. In the following propositions, we provide sufficient conditions to preserve the weak (respectively long) memory after sampling.

Proposition 2.3. Assume Assumption H holds. Let p be a real greater than 1 (p ≥ 1). If there is a positive bounded function σ * (.), non increasing on R + , such that

1. |σ X (t)| ≤ σ * (t), ∀t ∈ R + 2. R + σ p * (t)dt < ∞ then, the sampled process Y has an auto-covariance function (2.1) in p , i.e h≥0 |σ Y (h)| p < ∞.
Remark 1. The proposition confirms an intuitive claim: random sampling cannot produce long memory from short memory. The particular case p = 1 implies that if X has short memory then, the sampled process Y has short memory too.

Proof. It is clearly enough to prove that h≥1 E [σ p * (T h )] < ∞. (2.2)
We use inequality Taking the expectation of the left-hand-side and noting that ∆ h and T h are independent, we obtain, for every a > 0,

∆ h σ p * (T h + ∆ h ) = (T h+1 -T h )σ p * (T h+1 ) ≤ T h+1 T h σ p * (t)dt, ∀h ≥ 0. (2.3) -2 -1 0 1 2 -2 -1 0 1 2 (a) -2 -1 0 1 2 -2 -1 0 1 2 (b)
E [∆ h σ p * (T h + ∆ h )] = R + uE [σ p * (T h + u)] dS(u) = a 0 uE [σ p * (T h + u)] dS(u) + +∞ a uE [σ p * (T h + u)] dS(u) ≥ a 0 uE [σ p * (T h + u)] dS(u) + a +∞ a E [σ p * (T h + u)] dS(u) = a 0 uE [σ p * (T h + u)] dS(u) + a R + E [σ p * (T h + u)] dS(u) - a 0 E [σ p * (T h + u)] dS(u) = a 0 (u -a)E [σ p * (T h + u)] dS(u) + aE [σ p * (T h+1 )] Since σ p * (T h + u) ≤ σ p * (T h ) and u -a ≤ 0, we get E [∆ h σ p * (T h + ∆ h )] ≥ [0,a[ (u -a)dS(u) E [σ p * (T h )] + aE [σ p * (T h+1 )] . (2.4)
It is possible to choose a such that S([0, a]) < 1. For such a choice we obtain

0 ≤ - [0,a[ (u -a)dS(u) =: (a) ≤ aS([0, a]) < a.
After summation, the inequalities (2.4) give, for every K ≥ 0

E ∞ h=1 ∆ h σ p * (T h+1 ) ≥ K h=1 [-(a)E[σ p * (T h )] + aE[σ p * (T h+1 )]] = a (E[σ p * (T K+1 )] -E[σ p * (T 1 )]) + (a -(a)) K h=1 E [σ p * (T h )] ≥ -aσ p * (0) + (a -(a)) K h=1 E [σ p * (T h )] ,
which implies

E ∞ h=1 ∆ h σ p * (T h+1 ) ≥ -aσ p * (0) + (a -(a)) h≥1 E [σ p * (T h )] .
Then, using (2.3)

E   h≥1 ∆ h σ p * (T h+1 )   ≤ E   h≥1 T h+1 T h σ p * (t)dt   ≤ R + σ p * (t)dt < ∞ and consequently, as a -(a) > 0 ∞ h=1 E [σ p * (T h )] < ∞.
(2.5)

We now consider the case of long memory processes. We give conditions on T 1 that ensure the preservation of the long memory property.

Proposition 2.4. Assume Assumption H holds. We suppose that σ X (.) is ultimately positive and non-increasing on R + , i.e there exists t 0 ≥ 0 such that σ X (.) is positive and non increasing on the interval [t 0 , ∞). If E[T 1 ] < ∞, then the long memory is preserved after the subsampling, i.e.

R + |σ X (x)| dx = ∞ implies h≥0 |σ Y (h)| = ∞.
Remark 2. The assumptions on positivity and the decrease of the auto-covariance function are not too restrictive. They are satisfied in most of studied models. The condition of integrability of intervals ∆ j is the most difficult to verify since the underlying process is generally not observed.

Proof. Let h 0 be the (random) first index such that T h0 ≥ t 0 . For every h ≥ h 0 ,

T h+1 T h σ X (t)dt ≤ (T h+1 -T h )σ X (T h ).
(2.6) Summing up gives

h≥1 I h≥h0 T h+1 T h σ X (t)dt ≤ h≥1 I h≥h0 ∆ h σ X (T h ).
Now, taking expectations, and noting that, since

E[T 1 ] = E[∆ 1 ] > 0, the law of large numbers implies that T h a.s.
--→ ∞, and in particular h 0 < ∞ a.s., whence

E ∞ T h 0 σ X (t)dt ≤ E ∞ h=1 ∆ h σ X (T h ) I h0≤h .
The left hand side is infinite. Since ∆ h is independent of σ X (T h ) I h0≤h , the right hand side is

E[T 1 ] h≥1 E[σ X (T h ) I h0≤h ]. Consequently, since E[T 1 ] < ∞, we have h≥1 E[σ X (T h ) I h0≤h ] = ∞.
(2.7)

It remains to be noted that E[h 0 ] < ∞ (see for example [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF] p.185), which implies

h≥1 E[|σ X (T h )| I h0>h ] ≤ σ X (0) h≥1 P (h 0 ≥ h) ≤ σ X (0)E[h 0 ] < ∞, leading, via (2.7) to h≥1 |E[σ X (T h )]| = ∞.

Long memory processes

We consider a long memory process X and we impose a semi parametric form to auto-covariance function. We assume that the auto-covariance σ X is regularly varying function at infinity of the form σ

X (t) = t -1+2d L(t), ∀t ≥ 1 (3.1)
where 0 < d < 1/2 and L is ultimately non-increasing and slowly varying at infinity, in the sense that L is positive on [t 0 , ∞) for some t 0 > 0 and

lim x→+∞ L(ax) L(x) = 1, ∀a > 0.
This class of models contains for instance CARFIMA models.

The parameter d characterizes the intensity of the memory of X. In the following propositions, we evaluate the long memory parameter of the sampled process Y as a function of d and the probability distribution of T 1 .

Preservation of the memory when

E[T 1 ] < ∞ Theorem 3.1. Under Assumption H and (3.1), if 0 < E[T 1 ] < ∞,
the discrete time process Y has a long memory and its covariance function behaves as

σ Y (h) ∼ (hE[T 1 ]) -1+2d L(h), h → ∞. Remark 3. We can rewrite σ Y (h) = h -1+2d L(h)
where L is slowly varying at infinity and L(h)

∼ (E[T 1 ]) -1+2d L(h) as h → ∞.
In particular, X and Y have the same memory parameter d.

Proof.

• We show first that

lim inf h→∞ σ Y (h) (hE[T 1 ]) -1+2d L(h) ≥ 1. Let 0 < c < E[T 1 ], and h ∈ N such that ch ≥ 1, σ Y (h) ≥ E [σ X (T h ) I T h >ch ] ≥ inf t>ch {L(t)t 2d }E I T h >ch T h .
Thanks to Hölder inequality, -

(P (T h > ch)) 2 ≤ E[T h ]E I T h >ch T h , that is E I T h >ch T h ≥ (P (T h > ch)) 2 hE[T 1 ] . Summarizing, σ Y (h) ≥ inf t>ch {L(t)t 2d } (P (T h > ch)) 2 hE[T 1 ] σ Y (h) (hE[T 1 ]) -1+2d L(h) ≥ inf t>ch {L(t)t 2d } (P (T h > ch)) 2 (hE[T 1 ]) 2d L(h) . ( 3 
-→ E[T 1 ]. As c < E[T 1 ], we have P (T h > ch) → 1 and the r.h.s. of (3.2) tends to (c/E[T 1 ]) 2d as h → ∞. Finally, for all c < E[T 1 ], lim inf h→∞ σ Y (h) (hE[T 1 ]) -1+2d L(h) ≥ c E[T 1 ] 2d
Taking the limit as c → E[T 1 ], we get the lower bound.

• Let us now prove lim sup

h→∞ σ Y (h) (hE[T 1 ]) -1+2d L(h) ≤ 1.
We use a proof similar to that presented in [START_REF] Shi | A note on asymptotic approximations of inverse moments of nonnegative random variables[END_REF] (Theorem 1). We denote for h ≥ 1 and 0 < s < 1,

µ h = E[T h ] = hE[T 1 ] T h,s = h-1 j=0 ∆ j I ∆j ≤µ s h / √ h µ h,s = E [T h,s ] = hE ∆ 0 I ∆0≤µ s h / √ h Since E[T 1 ] < ∞, we have for 1 2 < s < 1, µ h,s ∼ µ h as h → ∞. Let 1 2 < s < τ < 1, t 0 such that L(.) is non-increasing on [t 0 , ∞) and h such that µ h,s -µ τ h,s ≥ t 0 , σ Y (h) = E T -1+2d h L(T h ) I T h,s ≥µ h,s -µ τ h,s + E T -1+2d h L(T h ) I T h,s <µ h,s -µ τ h,s = M 1 + M 2 M 1 ≤ E T -1+2d h,s L(T h,s ) I T h,s ≥µ h,s -µ τ h,s ≤ µ h,s -µ τ h,s -1+2d L(µ h,s -µ τ h,s ) = (hE[T 1 ]) -1+2d L(h) µ h,s -µ τ h,s hE[T 1 ] -1+2d L(µ h,s -µ τ h,s ) L(h) (3.4)
As τ < 1 and 1/2 < s < 1,

µ h,s -µ τ h,s hE[T1] -1+2d → 1 as h → ∞. Then, L(µ h,s -µ τ h,s ) L(h) = L hE[T 1 ] µ h,s -µ τ h,s hE[T1] L(hE[T 1 ]) L(hE[T 1 ]) L(h)
As we have uniform convergence of λ → L(hE[T1]λ) L(hE[T1]) to 1 (as h → ∞) in each interval [a, b] and as

µ h,s -µ τ h,s hE[T1] → 1, we get L(µ h,s -µ τ h,s ) L(h) → 1,
as h → ∞. We obtain

M 1 ≤ µ h,s -µ τ h,s -1+2d L(µ h,s -µ τ h,s ) ∼ (hE[T 1 ]) -1+2d L(h). (3.5) Since sup t∈R + |σ X (t)| = σ X (0) < ∞, we have M 2 ≤ σ X (0)P T h,s < µ h,s -µ τ h,s = σ X (0)P -T h,s + E[T h,s ] > µ τ h,s .
We apply Hoeffding inequality to variables

Z j = -∆ j I ∆j ≤µ s h / √ h which are a.s in [- µ s h √ h , 0] to get, M 2 ≤ σ X (0) exp -2 µ τ h,s µ s h 2 and µ τ h,s µ s h 2 ∼ (hE[T 1 ]) 2(τ -s) . Finally M 2 = o((hE[T 1 ]) -1+2d L(h)). (3.6)
With (3.5) and (3.6), we get the upper bound.

Decrease of memory when E[T 1 ] = ∞

The phenomenon is the same as in the discrete case (see Philippe and Viano ( 2010)): starting from a long memory process, a heavy tailed sampling distribution can lead to a short memory process.

Proposition 3.2. Assume that the covariance of X satisfies

|σ X (t)| ≤ c min(1, t -1+2d ) ∀t ∈ R + (3.7)
where 0 < d < 1/2. If for some β ∈ (0, 1)

lim inf x→∞ x β P (T 1 > x) > 0 (3.8) (implying E[T β 1 ] = ∞) then |σ Y (h)| ≤ Ch -1+2d β . (3.9) Proof. From hypothesis (3.7), |σ Y (h)| ≤ E[|σ X (T h )|] ≤ cE[min{1, T -1+2d h }]
Then, denoting S * h the distribution function of T h and integrating by parts,

E[min{1, T -1+2d h }] = 1 0 dS * h (x) + ∞ 1 x -1+2d dS * h (x) = S * h (1) + (1 -2d) ∞ 1 x -2+2d S * h (x)dx -S * h (1) = (1 -2d) ∞ 1 x -2+2d S * h (x)dx. (3.10)
From hypothesis (3.8) on the tail of the sampling law, it follows that, there exists C > 0 and

x 0 ≥ 1 such that ∀x ≥ x 0 , P (T 1 > x) ≥ Cx -β .
Furthermore for x ∈ [1, x 0 ],

x β P (T 1 > x) ≥ P (T 1 > x 0 ) ≥ Cx -β 0 .
We obtain: ∀x ≥ 1,

P (T 1 > x) ≥ Cx -β with C = Cx -β 0 . S * h (x) = P (T h ≤ x) ≤ P max 0≤l≤h-1 ∆ l ≤ x = P (T 1 ≤ x) h ≤ 1 -Cx -β h ≤ e -Ch x β . (3.11)
Gathering (3.10) and (3.11) then gives

E[min{1, T -1+2d h }] ≤ (1 -2d) ∞ 1 x -2+2d e -Ch x β dx = 1 -2d β h -(1-2d)/β h 0 u (1-2d)/β-1 e -Cu du
and the result follows since

h 0 u (1-2d)/β-1 e -Cu du h→∞ ----→ ∞ 0 u (1-2d)/β-1 e -Cu du.
Under some additional assumptions, we show that the bound obtained in Proposition 3.2 is equal to the convergence rate (up to a multiplicative constant).

Proposition 3.3. Assume that σ X (t) = t -1+2d L(t)
where 0 < d < 1/2 and where L is slowly varying at infinity and ultimately monotone.

If β := sup{γ : E[T γ 1 ] < ∞} ∈ (0, 1) (3.12)
then, for every ε > 0, there exists

C ε > 0 such that σ Y (h) ≥ C ε h -1-2d β -ε , ∀h ≥ 1. (3.13) Proof. Let ε > 0. We have σ X (T h ) h -1-2d β -ε = T -1+2d h h -1-2d β -ε L(T h ) = T -1+2d-βε 2 h h -1-2d β -ε T βε 2 h L(T h ) = T h h δ -1+2d-βε 2 T βε 2 h L(T h ) where δ = (1 -2d)/β + ε 1 -2d + βε 2 = 1 β 1 -2d + βε 1 -2d + βε/2 .
Using Proposition 1.3.6 in [START_REF] Bingham | Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications[END_REF],

T βε 2 h L(T h ) h→∞ ----→ ∞ a.s Moreover δ > 1 β . From (3.12), this implies E[T 1/δ 1 ] < ∞.
Then, the law of large numbers of Marcinkiewicz-Zygmund (see [START_REF] Stout | Almost sure convergence[END_REF] Theorem 3.2.3) yields

T h h δ a.s.
--→ 0 as h → ∞.

(3.14)

Therefore by Fatou's Lemma, we get

σ Y (h) h -1-2d β -ε h→∞ ----→ ∞.
Remark 4. In this context the long memory parameter d of the initial process X is not identifiable using the sampled process. Information on probability distribution of ∆ 1 is required.

Limit theorems in semiparametric case

We consider the process of partial sums

S n (τ ) = [nτ ] j=1 Y j , 0 ≤ τ ≤ 1. (4.1)
In Theorem 4.2, we show that if X is a Gaussian process and X and Y have the same long memory parameter, the normalized partial sum process converges to a fractional Brownian motion.

According to Proposition 2.2, Gaussianity is lost after sampling, however we get the classical behavior obtained by [START_REF] Taqqu | Weak convergence to fractional Brownian motion and to the Rosenblatt process[END_REF]; [START_REF] Davydov | The invariance principle for stationary processes[END_REF]).

Convergence of the partial sum process

To prove the convergence of the normalized partial sum process, we first need a result on the convergence in probability of conditional variance of S n .

Lemma 4.1. If X is a Gaussian process with regularly varying covariance function σ X (t) = L(t)t -1+2d , with 0 < d < 1/2 and L is slowly varying at infinity and ultimately nonincreasing.

Then, if E[T 1 ] < ∞, we have L(n) -1 n -1-2d Var(X T1 + • • • + X Tn |T 1 , . . . , T n ) p ----→ n→∞ γ d , (4.2) 
where

γ d := E[T1] -1+2d d(1+2d) .
Proof. See Appendix.

Theorem 4.2. Assume Assumption H holds. If X is a Gaussian process with regularly varying covariance function σ X (t) = L(t)t -1+2d , with 0 < d < 1/2 and L slowly varying at infinity and ultimately non increasing (Hypothesis 3.1). Then, if

E[T 1 ] < ∞, we get γ -1/2 d L(n) -1/2 n -1/2-d S n (.) ⇒ B 1 2 +d (.), in D[0, 1] with the uniform metric. (4.3)
where B 1 2 +d is the fractional Brownian motion with parameter 1 2 + d and

γ d := E[T1] -1+2d d(1+2d) .
Proof. We first prove the weak convergence in finite-dimensional distributions of

γ -1/2 d L(n) -1/2 n -1/2-d S n (.)
to the corresponding finite-dimensional distributions of B 1 2 +d (.).

It suffices to show that for every

k ≥ 1, (b 1 , . . . , b k ) ∈ R k , 0 ≤ t 1 , . . . , t k ≤ 1, A n := γ -1/2 d L(n) -1/2 n -1/2-d k i=1 b i S n (t i ) satisfies A n d -→ k i=1 b i B 1 2 +d (t i ). If t 1 = • • • = t k = 0, then γ -1/2 d L(n) -1/2 n -1/2-d k i=1 b i S n (t i ) = k i=1 b i B 1 2 +d (t i ) = 0. So we fix n large enough to have [n max i (t i )] ≥ 1 and denote T (n) = (T 1 , . . . , T [n maxi(ti)] ). The characteristic function of A n is Φ An (t) = E[e itAn ] = E[e -t 2 2 Var(An|T (n) ) ].
Moreover we have

Var(A n |T (n) ) = k i,j=1 b i b j γ -1 d L(n) -1 n -1-2d E[S n (t i )S n (t j )|T (n) ] = k i,j=1 b i b j γ -1 d L(n) -1 n -1-2d 2 Var(S n (t i )|T (n) ) + Var(S n (t j )|T (n) ) -Var(S n (t i ) -S n (t j )|T (n) ) By Lemma 4.1, L(n) -1 n -1-2d Var(Y 1 + • • • + Y n |T 1 , . . . , T n ) p ----→ n→∞ γ d . therefore γ -1 d L(n) -1 n -1-2d Var(S n (t i )|T (n) ) p ----→ n→∞ t 1+2d i and for t i > t j γ -1 d L(n) -1 n -1-2d Var(S n (t i ) -S n (t j )|T (n) ) = γ -1 d L(n) -1 n -1-2d Var(Y [nti]+1 + • • • + Y [ntj ] |T (n) ) p ----→ n→∞ (t i -t j ) 1+2d .
Finally, we have

Var(A n |T (n) ) p ----→ n→∞ k i,j=1 b i b j r 1 2 +d (t i , t j )
where r 1 2 +d is the covariance function of a fractional Brownian motion, and hence exp -

t 2 2 Var(A n |T (n) ) p ----→ n→∞ exp   - t 2 2 k i,j=1 b i b j r 1 2 +d (t i , t j )  
Therefore, applying bounded convergence theorem, we get

Φ An (t) ----→ n→∞ exp   - t 2 2 k i,j=1 b i b j r 1 2 +d (t i , t j )   = Φ k i=1 biB 1 2 +d (ti) (t).
The sequence of partial-sum processes L(n) -1/2 n -1/2-d S n (.) is tight with respect to the uniform norm (see [START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF] Prop 4.4.2 p78, for the proof of the tightness) and then we get the convergence in D[0, 1] with the uniform metric.

Estimation of the long memory parameter

An immediate consequence of this limit theorem is to provide a nonparametric estimation of the long memory parameter d using the well-known R/S statistics. It is quite obvious that this is a heuristic method for estimating the long memory parameter. A more efficient estimate can be obtained by using Whittle's estimate or estimators based on the spectral approach (see [START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF]; [START_REF] Beran | Long-memory processes[END_REF]). But the sampled process does not satisfy the assumptions under which these estimation methods are asymptotically validated. The R/S statistic is defined as the quotient between R n and S n where

R n := max 1≤k≤n k j=1 (Y j -Y n ) -min 1≤k≤n k j=1 (Y j -Y n ) (4.4)
and

S n :=   1 n n j=1 (Y j -Y n ) 2   1/2 . (4.5)
Proposition 4.3. Under the same assumptions as Theorem 4.2, we have

1 L(n) 1/2 n 1/2+d R n S n d ----→ n→∞ R(1) := γ d σ X (0) max 0≤t≤1 B 0 1 2 +d (t) -min 0≤t≤1 B 0 1 2 +d (t) (4.6) where B 0 1 2 +d (t) = B 1 2 +d (t) -tB 1 2 +d (1) is a fractional Brownian bridge and γ d is a constant defined in Lemma 4.1. Proof. Using the equality k j=1 (Y j -Y n ) = k j=1 Y j - k n n j=1 Y j = S n k n - k n S n (1)
and the convergence of the partial-sum process given in Theorem 4.2, we get

R n L(n) 1/2 n 1/2+d d ----→ n→∞ √ γ d max 0≤t≤1 B 0 1 2 +d (t) -min 0≤t≤1 B 0 1 2 +d (t) .
Then, we establish the convergence in probability of S 2 n defined in (4.5). As

Var   n j=1 Y j   ∼ Cn 1+2d , we have for ε > 0 P   1 n n j=1 Y j > ε   ≤ 1 n 2 ε 2 Var   n j=1 Y j   ----→ n→∞ 0 and P   1 n n j=1 Y 2 j -σ X (0) > ε   ≤ 1 n 2 ε 2 Var   n j=1 Y 2 j   = 1 n 2 ε 2 n j=1 n k=1 Cov Y 2 j , Y 2 k = 1 n 2 ε 2 n j=1 n k=1 E E[X 2 Tj X 2 T k |T j , T k ] -σ X (0) 2
For (s, t) ∈ (R + ) 2 , we decompose X 2 s and X 2 t in the complete orthogonal system of Hermite polynomials (H k ) k≥0 :

X s σ X (0) 2 = H 0 X s σ X (0) + H 2 X s σ X (0) , thus, we get E[X 2 s X 2 t ] σ X (0) 2 = E H 0 X s σ X (0) H 0 X t σ X (0) + E H 2 X s σ X (0) H 0 X t σ X (0) + E H 0 X s σ X (0) H 2 X t σ X (0) + E H 2 X s σ X (0) H 2 X t σ X (0)
Using the orthogonality property of Hermite polynomials for a bivariate normal density with unit variances (see [START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF], Prop 2.4.1), we obtain

E[X 2 s X 2 t ] = σ 2 X (0) 1 + 2Cov 2 X s σ X (0) , X t σ X (0) = σ 2 X (0) + 2σ 2 X (t -s) Finally, P   1 n n j=1 Y 2 j -σ X (0) > ε   ≤ 2 n 2 ε 2 n j=1 n k=1 E σ 2 X (T j -T k ) = 4 n 2 ε 2 n-1 j=0 (n -j)E σ 2 X (T j ) If 0 ≤ d ≤ 1/4
, we apply Proposition 2.3 with p = 1 and the function σ 2 X to obtain

1 n 2 n-1 j=0 (n -j)E σ 2 X (T j ) ≤ 1 n ∞ j=0 E σ 2 X (T j ) ----→ n→∞ 0. If 1/4 < d < 1/2, Theorem 3.1 ensures that 1 n 2 n-1 j=0 (n -j)E σ 2 X (T j ) ∼ Cn -2+4d .
Therefore, we get in both cases

P   1 n n j=1 Y 2 j -σ X (0) > ε   ----→ n→∞ 0. We conclude that S n p ----→ n→∞ σ X (0) and 1 L(n) 1/2 n 1/2+d R n S n d ----→ n→∞ R(1) := γ d σ X (0) max 0≤t≤1 B 0 1 2 +d (t) -min 0≤t≤1 B 0 1 2 +d (t)
.

In the case L(t) = c > 0 for all t > t 0 , taking logarithms of both sizes, we obtain from 4.6 a heuristic identity log R n S n ∼ (1/2 + d) log(n) + log( √ cR(1))

We estimate the slope of the regression line of (log(n), log(R n /S n )) which provides an R/S estimate of d. Remark that for the more general case with L slowly varying at infinity and ultimately non increasing, we have log Rn Sn ∼ (1/2+d) log(n)+log(L(n))/2+log(R(1)) and log(L(n)) is negligible compared to log(n).

Appendix

To prove Lemma 4.1, we need the following intermediate result: To prove the asymptotic behavior of E[σ X (T h ) 2 ], we will follow a similar proof as theorem 3.1:

• Let 0 < c < E[T 1 ], and h ∈ N such that ch ≥ 1, E[σ X (T h ) 2 ] ≥ E σ X (T h ) 2 I T h >ch ≥ E L(T h ) 2 T -2+4d h I T h >ch ≥ inf t>ch {L(t) 2 t 4d }E I T h >ch T 2 h
Thanks to Jensen and Hölder inequalities,

E I T h >ch T 2 h ≥ E I T h >ch T h 2 and P (T h > ch) 2 ≤ E[T h ]E I T h >ch T h ,
that is

E I T h >ch T 2 h ≥ P (T h > ch) 4 E[T h ] 2 .
Summarizing, E[σ X (T h ) 2 ] L(h) 2 (hE[T 1 ]) -2+4d ≥ inf t>ch {L(t) 2 t 4d } L(h) 2 h 4d E[T 1 ] 4d P (T h > ch) 4 (5.2)

Then, for c < E[T 1 ], we have P (T h > ch) → 1 and inf t>ch {L(t) 2 t 4d } ∼ L(ch) 2 (ch) 4d . Finally, for all c < E[T 1 ],

lim inf h→∞ E[σ X (T h ) 2 ] L(h) 2 (hE[T 1 ]) -2+4d ≥ c E[T 1 ] 4d
Taking the limit as c → E[T 1 ], we get

lim inf h→∞ E[σ X (T h ) 2 ] L(h) 2 (hE[T 1 ]) -2+4d ≥ 1
• Let 1 2 < s < τ < 1, t 0 such that L(.) is non-increasing and positive on [t 0 , ∞) and h such that µ h,s -µ τ h,s ≥ t 0 , with the same notation as Theorem 3.1,

E[σ X (T h ) 2 ] = E L(T h ) 2 T -2+4d h I T h,s ≥µ h,s -µ τ h,s + E σ(T h ) 2 I T h,s <µ h,s -µ τ h,s ≤ L(µ h,s -µ τ h,s ) 2 µ h,s -µ τ h,s -2+4d + σ X (0) 2 P T h,s < µ h,s -µ τ h,s E[σ X (T h ) 2 ] L(h) 2 (hE[T 1 ]) -2+4d ≤ L(µ h,s -µ τ h,s ) L(h) 2 µ h,s -µ τ h,s hE[T 1 ] -2+4d + σ X (0) 2 P T h,s < µ h,s -µ τ h,s L(h) 2 (hE[T 1 ]) -2+4d Finally lim sup h→∞ E[σ X (T h ) 2 ] L(h) 2 (hE[T 1 ]) -2+4d ≤ 1

Figure 1 :

 1 Figure 1: In Figure (a) the estimated density of the centered couple (Y 1 , Y 2) is represented for intervals ∆ j having an exponential distribution with mean 1 and Gaussian initial process with auto-covariance function σ X (t) = (1 + t 0.9 ) -1 . Figure (b) represent the estimated density of the centered Gaussian vector (W 1 , W 2 ) with the same covariance matrix Σ Y1,Y2 as (Y 1 , Y 2 ). Estimations are calculated on sample of size p = 50000

Lemma 5. 1 .

 1 If E[T 1 ] < ∞ and X has a regularly varying covariance functionσ X (t) = L(t)t -1+2dwith 0 < d < 1/2 and L slowly varying at infinity and ultimately non-increasing. Then,Var(σ X (T h )) = •(L(h) 2 h -2+4d ) as h → ∞ (5.1) Proof. By theorem 3.1, we have E[σ X (T h )] ∼ h→∞ L(h)(hE[T 1 ]) -1+2d . To get the result, it is enough to prove that E[σ X (T h ) 2 ] ∼ h→∞ L(h) 2 (hE[T 1 ]) -2+4d .

Proof of Lemma 4.1:

We want to prove that W n converges in probability to γ d . To do this, we will show that 

Then, by Lemma 5.1, Var(σ

We get

Finally, Var(W n ) = •(1) which means that Var(W n ) ----→ n→∞ 0. We obtain