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2 rue de la Houssinière - BP 92208, 44322 Nantes Cedex 3, France
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Abstract:

This paper investigates the second order properties of a stationary continuous time process after
random sampling. While a short memory process gives always rise to a short memory one, we
prove that long-memory can disappear when the sampling law has very heavy tails. Despite the
fact that the normality of the process is not maintained by random sampling, the normalized
partial sum process converges to the fractional Brownian motion, at least when the long memory
parameter is perserved.
Keywords: Gaussian process; Long memory; Partial sum; Random sampling; Regularly varying
covariance.

1 Introduction

Long-range dependence (or long-memory) has diverse applications in many fields, including hy-
drology, economics and telecommunications (see Beran et al. (2013) ch.2). Most of the papers on
this topic consider processes with discrete-time. However, some models and estimation methods
have been extended to continuous-time processes (see Tsai and Chan (2005a); Viano et al. (1994);
Comte and Renault (1996); Comte (1996)). Tsai and Chan (2005a) introduced the continuous-
time autoregressive fractionally integrated moving average (CARFIMA(p,H,q)) model. Under
the long-range dependence condition H ∈ (1/2, 1), they calculate the auto-covariance function of
the stationary CARFIMA process and its spectral density function (see Tsai and Chan (2005b)).
Theses properties are extended to the case H ∈ (0, 1) in Tsai (2009). In Viano et al. (1994),
continuous-time fractional ARMA processes are constructed. They establish the L2 properties
(spectral density and auto covariance function ) and the dependence structure. Comte and Re-
nault (1996) study the continuous time moving average fractional process, a family of long mem-
ory model. The statistical inference for continuous-time processes is generally constructed from
the sampled process (see Tsai and Chan (2005a,b); Chambers (1996); Comte (1996)). Different
schemes of sampling can be considered. In Tsai and Chan (2005a), the estimation method is based
on the maximum likelihood estimation for irregularly spaced deterministic time series data. Under
the assumption of identifiability, Chambers (1996) considers the estimation of the long memory
parameter of a continuous time fractional ARMA process with discrete time data using the low-
frequency behaviour of the spectrum. Comte (1996) studied two methods for the estimation with
regularly spaced data: Whittle likelihood method and the semiparametric approach of Geweke
and Porter-Hudak. In the present paper we are interested in irregularly spaced data when the
sampling intervals are independent and identically distributed positive random variables. In the
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light of previous results in discrete time, there was an effect of the random sampling on the de-
pendence structure of the process. Indeed, Philippe and Viano (2010) show that the intensity of
the long memory is preserved when the law of sampling intervals has finite first moment, but they
also pointed out situations where a reduction of the long memory is observed.

We adopt the most usual definition of second order long memory process. Namely, a stationary
process U has the long memory property if its auto-covariance function σU satisfies the condition∫

R+

|σU (x)| dx =∞ in the continuous-time case,∑
h≥0

|σU (h)| =∞ in the discrete-time case.

We study the effect of random sampling on the properties of a stationary continuous time
process process. More precisely, we start with X = (Xt)t∈R+ , a second-order stationary continuous
time process. We assume that it is observed at random times (Tn)n≥0 where (Tn)n≥0 is a non-
decreasing positive random walk independent of X. We study the discrete-time process Y defined
by

Yn = XTn , n ∈ N. (1.1)

The process Y obtained by random sampling is called the sampled process.
In this paper, we study the properties of this. In particular, we show that the results obtained

by Philippe and Viano (2010) on the auto-covariance function are preserved for continuous time
process X. The large-sample statistical inference relies often on limit theorems of probability
theory for partial sums. We show that Gaussianity is lost by random sampling. However, we
prove that the asymptotic normality of the partial sum is preserved with the same standard
normalization. (see Giraitis et al. (2012), Chapter 4 for a review).

In Section 2, we study the behavior of the sampled process (1.1) for the general case. We
establish that Gaussianity of X is not transmitted to Y. Under rather weak conditions on the
covariance σX , the weak dependence is preserved. Howevr a stronger assumption on T1 : E[T:1] <
∞ is necessary to preserve the long memory property.

In Section 3, we present the more specific situation of a regularly varying covariance where
preservation or non-preservation of the memory can be quantified. In particular, we prove that
for heavy tailed sampling distribution, a long memory process X can give raise to a short memory
process Y. In Section 4, we establish a Donsker’s invariance principle when the initial process X
is Gaussian and the long memory parameter is preserved.

2 General properties.

Throughout this document we assume that the following properties hold on the initial process X
and the random sampling scheme:
Assumption H :

1. X = (Xt)t∈R+ is a stationary continuous time process.

2. the random walk (Tn)n≥0 is independent of X

3. T0 = 0

4. the increments ∆j = Tj+1 − Tj (j ∈ N ) are independent and identically distributed.

5. the distribution of T1 admits a probability density function s (with respect to the Lebesgue
measure) supported by R+.
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If X is a second-order stationary process with zero mean and auto-covariance function σX and
the assumption H holds then the discrete-time process Y defined in (1.1) is also second-order
stationary with zero mean and its auto covariance sequence is{

σY (0) = σX(0),

σY (h) = E [σX(Th)] , h ≥ 1.
(2.1)

2.1 Distribution of the sampled process

This part is devoted to the properties of the finite-dimensional distributions of the process Y.

Proposition 2.1. Let X be a strictly stationary process. Then, under Assumption H, the sampled
process Y is a strictly stationary discrete-time process.

Proof. We arbitrarily fix n ≥ 1, p ∈ N∗ and k1, . . . kn ∈ N such that 0 ≤ k1 < · · · < kn. We show
that the joint distribution of (Yk1+p, . . . , Ykn+p) does not depend on p ∈ N.

For (y1, . . . , yn) ∈ Rn, we have

P (Yk1+p ≤ y1, . . . , Ykn+p ≤ yn) = P
(
XTk1+p

≤ y1, . . . , XTkn+p
≤ yn

)
= E

[
P
(
X∆0+···+∆k1+p−1

≤ y1, . . . , X∆0+···+∆kn+p−1
≤ yn|∆0, . . . ∆kn+p−1

)]
.

By the strict stationarity of X the right-hand-side of the last equation is equal to

E
[
P
(
X∆p+···+∆k1+p−1

≤ y1, . . . , X∆p+···+∆kn+p−1
≤ yn|∆0, . . . ∆kn+p−1

)]
= P (XU0+···+Uk1−1

≤ y1, . . . , XU0+···+Ukn−1
≤ yn) = P (Yk1 ≤ y1, . . . , Ykn ≤ yn),

where Ui = ∆i+p are i.i.d with density s. This concludes the proof.

The following proposition is devoted to the particular case of a Gaussian process. We establish
that the Gaussianity is not preserved by random sampling.

Proposition 2.2. Under Assumption H, if X is a Gaussian process then the marginals of the
sampled process Y are Gaussian. Furthermore, if σX is not almost everywhere constant on the
support of s, then Y is not a Gaussian process.

Proof. Let U be a random variable, we denote ΦU its characteristic function. We have, for all
t ∈ R

ΦYk(t) = E
[
E[eitXTk |Tk]

]
.

Conditionally on Tk, the probability distribution of XTk is the Gaussian distribution with zero
mean and variance σX(0). We get

ΦYk(t) = e−σX(0)t2/2

and thus Yk is a Gaussian variable with zero mean and variance σX(0).

Now assume Y is a Gaussian process, then Y1 + Y2 is a Gaussian variable,

ΦY1+Y2(t) = e−Var(Y1+Y2)t2/2 = e−σX(0)t2e−t
2E[σX(T2−T1)]

and

ΦY1+Y2(t) = ΦXT1+XT2
(t)

= E
[
exp

{
− t

2

2
( 1

1 )
T
(

σX(0) σX(T2−T1)
σX(T2−T1) σX(0)

)
( 1

1 )

}]
= e−σX(0)t2E

[
e−t

2σX(T2−T1)
]
.
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Then, for all t ∈ R,

e−t
2E[σX(T2−T1)] = E

[
e−t

2σX(T2−T1)
]
.

According to Jensen’s inequality, this equality is achieved if and only if σX(T2 − T1) is constant
almost everywhere.

Example 1. In Figure 1, we illustrate the non-Gaussianity of the sampled process.
We take X a Gaussian process with autocovariance function σX(t) = (1 + t0.9)−1 and (Ti)i∈N is a
homogeneous Poisson counting process with rate 1. To simulate a realization from the distribution
of (Y1, Y2), we proceed as follows:

1. Generate the time interval T2−T1 according to an exponential distribution with

mean 1.

2. Generate (Y1, Y2) as a Gaussian vector with zero mean and covariance(
σX(0) σX(T2 − T1)

σX(T2 − T1) σX(0)

)
.

We simulate a sample of size p. In Figure 1 (a) we represent the kernel estimate of the joint
probability density function of (Y1, Y2). In order to compare the probability distribution of the
sampled process with the corresponding Gaussian one. We simulate a sample of centered Gaussian
vector (W1,W2) having the same variance matrix as (Y1, Y2) i.e.

ΣY1,Y2 =

(
σX(0) E[σX(T1)]

E[σX(T1)] σX(0)

)
=

(
1 Σ1,2

Σ1,2 1

)
,

where Σ1,2 =
∫∞

0
σX(t)e−t dt =

∫∞
0
e−t(1 + t.9)−1 dt can be calculated numerically. In Figure

1 (b), we represent the kernel estimate of the density of (W1,W2). We see that the form of the
distribution of sampled process differs widely from Gaussian distribution.

2.2 Dependence of the sampled process

We are interested in the dependence structure of the Y process. In the following propositions, we
provide sufficient conditions to preserve the weak (respectively long) memory after sampling.

Proposition 2.3. Assume Assumption H holds. Let p be a real greater than 1 (p ≥ 1). If there
is a positive bounded function σ∗(.), non increasing on R+, such that

1. |σX(t)| ≤ σ∗(t), ∀t ∈ R+

2.

∫
R+

σp∗(t)dt <∞

then, the sampled process Y has an auto-covariance function (2.1) in `p, i.e
∑
h≥0

|σY (h)|p <∞.

Remark 1. The proposition confirms an intuitive claim: random sampling cannot produce long
memory from short memory. The particular case p = 1 implies that if X has short memory then,
the sampled process Y has short memory too.

Proof. It is clearly enough to prove that∑
h≥1

E [σp∗(Th)] <∞. (2.2)

We use inequality

∆hσ
p
∗(Th + ∆h) = (Th+1 − Th)σp∗(Th+1) ≤

∫ Th+1

Th

σp∗(t)dt, ∀h ≥ 0. (2.3)
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Figure 1: In Figure (a) the estimated density of the centered couple (Y1, Y2) is represented for
intervals ∆j having an exponential distribution with mean 1 and Gaussian initial process with
auto-covariance function σX(t) = (1 + t0.9)−1. Figure (b) represent the estimated density of the
centered Gaussian vector (W1,W2) with the same covariance matrix ΣY1,Y2 as (Y1, Y2). Estimations
are calculated on sample of size p = 50000

Taking the expectation of the left-hand-side and noting that ∆h and Th are independent, we
obtain, for every a > 0,

E [∆hσ
p
∗(Th + ∆h)] =

∫
R+

uE [σp∗(Th + u)] dS(u)

=

∫ a

0

uE [σp∗(Th + u)] dS(u) +

∫ +∞

a

uE [σp∗(Th + u)] dS(u)

≥
∫ a

0

uE [σp∗(Th + u)] dS(u) + a

∫ +∞

a

E [σp∗(Th + u)] dS(u)

=

∫ a

0

uE [σp∗(Th + u)] dS(u) + a

(∫
R+

E [σp∗(Th + u)] dS(u)−
∫ a

0

E [σp∗(Th + u)] dS(u)

)
=

∫ a

0

(u− a)E [σp∗(Th + u)] dS(u) + aE [σp∗(Th+1)]

Since σp∗(Th + u) ≤ σp∗(Th) and u− a ≤ 0, we get

E [∆hσ
p
∗(Th + ∆h)] ≥

(∫
[0,a[

(u− a)dS(u)

)
E [σp∗(Th)] + aE [σp∗(Th+1)] . (2.4)

It is possible to choose a such that S([0, a]) < 1. For such a choice we obtain

0 ≤ −
∫

[0,a[

(u− a)dS(u) =: `(a) ≤ aS([0, a]) < a.
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After summation, the inequalities (2.4) give, for every K ≥ 0

E

[ ∞∑
h=1

∆hσ
p
∗(Th+1)

]
≥

K∑
h=1

[−`(a)E[σp∗(Th)] + aE[σp∗(Th+1)]]

= a (E[σp∗(TK+1)]− E[σp∗(T1)]) + (a− `(a))

K∑
h=1

E [σp∗(Th)]

≥ −aσp∗(0) + (a− `(a))

K∑
h=1

E [σp∗(Th)] ,

which implies

E

[ ∞∑
h=1

∆hσ
p
∗(Th+1)

]
≥ −aσp∗(0) + (a− `(a))

∑
h≥1

E [σp∗(Th)] .

Then, using (2.3)

E

∑
h≥1

∆hσ
p
∗(Th+1)

 ≤ E

∑
h≥1

∫ Th+1

Th

σp∗(t)dt

 ≤ ∫
R+

σp∗(t)dt <∞

and consequently, as a− `(a) > 0
∞∑
h=1

E [σp∗(Th)] <∞. (2.5)

We now consider the case of long memory processes. We give conditions on T1 that ensure the
preservation of the long memory property.

Proposition 2.4. Assume Assumption H holds. We suppose that σX(.) is ultimately positive and
non-increasing on R+, i.e there exists t0 ≥ 0 such that σX(.) is positive and non increasing on
the interval [t0,∞). If E[T1] < ∞, then the long memory is preserved after the subsampling, i.e.∫
R+ |σX(x)| dx =∞ implies

∑
h≥0 |σY (h)| =∞.

Remark 2. The assumptions on positivity and the decrease of the auto-covariance function are
not too restrictive. They are satisfied in most of studied models. The condition of integrability of
intervals ∆j is the most difficult to verify since the underlying process is generally not observed.

Proof. Let h0 be the (random) first index such that Th0 ≥ t0. For every h ≥ h0,∫ Th+1

Th

σX(t)dt ≤ (Th+1 − Th)σX(Th). (2.6)

Summing up gives

∑
h≥1

Ih≥h0

∫ Th+1

Th

σX(t)dt ≤
∑
h≥1

Ih≥h0
∆hσX(Th).

Now, taking expectations, and noting that, since E[T1] = E[∆1] > 0, the law of large numbers

implies that Th
a.s.−−→∞, and in particular h0 <∞ a.s., whence

E

[∫ ∞
Th0

σX(t)dt

]
≤ E

[ ∞∑
h=1

∆hσX(Th) Ih0≤h

]
.
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The left hand side is infinite. Since ∆h is independent of σX(Th) Ih0≤h, the right hand side is

E[T1]
∑
h≥1

E[σX(Th) Ih0≤h]. Consequently, since E[T1] <∞, we have

∑
h≥1

E[σX(Th) Ih0≤h] =∞. (2.7)

It remains to be noted that E[h0] <∞ (see for example Feller (1966) p.185), which implies∑
h≥1

E[|σX(Th)| Ih0>h] ≤ σX(0)
∑
h≥1

P (h0 ≥ h) ≤ σX(0)E[h0] <∞,

leading, via (2.7) to
∑
h≥1

|E[σX(Th)]| =∞.

3 Long memory processes

We consider a long memory process X and we impose a semi parametric form to auto-covariance
function. We assume that the auto-covariance σX is regularly varying function at infinity of the
form

σX(t) = t−1+2dL(t), ∀t ≥ 1 (3.1)

where 0 < d < 1/2 and L is ultimately non-increasing and slowly varying at infinity, in the sense
that L is positive on [t0,∞) for some t0 > 0 and

lim
x→+∞

L(ax)

L(x)
= 1, ∀a > 0.

This class of models contains for instance CARFIMA models.
The parameter d characterizes the intensity of the memory of X. In the following propositions,

we evaluate the long memory parameter of the sampled process Y as a function of d and the
probability distribution of T1.

3.1 Preservation of the memory when E[T1] <∞
Theorem 3.1. Under Assumption H and (3.1), if 0 < E[T1] < ∞, the discrete time process Y
has a long memory and its covariance function behaves as

σY (h) ∼ (hE[T1])−1+2dL(h), h→∞.

Remark 3. We can rewrite
σY (h) = h−1+2dL̃(h)

where L̃ is slowly varying at infinity and L̃(h) ∼ (E[T1])−1+2dL(h) as h → ∞. In particular, X
and Y have the same memory parameter d.

Proof.
• We show first that

lim inf
h→∞

σY (h)

(hE[T1])−1+2dL(h)
≥ 1.

Let 0 < c < E[T1], and h ∈ N such that ch ≥ 1,

σY (h) ≥ E [σX(Th) ITh>ch] ≥ inf
t>ch
{L(t)t2d}E

[
ITh>ch
Th

]
.
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Thanks to Hölder inequality,

(P (Th > ch))
2 ≤ E[Th]E

[
ITh>ch
Th

]
,

that is

E
[
ITh>ch
Th

]
≥ (P (Th > ch))

2

hE[T1]
.

Summarizing,

σY (h) ≥ inf
t>ch
{L(t)t2d} (P (Th > ch))

2

hE[T1]

σY (h)

(hE[T1])−1+2dL(h)
≥ inf
t>ch
{L(t)t2d} (P (Th > ch))

2

(hE[T1])2dL(h)
. (3.2)

Using Bingham et al. (1989) (Th 1.5.3, p23), we obtain, since d > 0

inf
t≥ch
{L(t)t2d} ∼ L(ch)(ch)2d as h→∞. (3.3)

The law of large numbers implies that Th/h
a.s.−−→ E[T1]. As c < E[T1], we have P (Th > ch) → 1

and the r.h.s. of (3.2) tends to (c/E[T1])
2d

as h→∞. Finally, for all c < E[T1],

lim inf
h→∞

σY (h)

(hE[T1])−1+2dL(h)
≥
(

c

E[T1]

)2d

Taking the limit as c→ E[T1], we get the lower bound.
• Let us now prove

lim sup
h→∞

σY (h)

(hE[T1])−1+2dL(h)
≤ 1.

We use a proof similar to that presented in Shi et al. (2010) (Theorem 1). We denote for h ≥ 1
and 0 < s < 1,

µh = E[Th] = hE[T1]

Th,s =

h−1∑
j=0

∆j I∆j≤µsh/
√
h

µh,s = E [Th,s] = hE
[
∆0 I∆0≤µsh/

√
h

]
Since E[T1] <∞, we have for 1

2 < s < 1, µh,s ∼ µh as h→∞.
Let 1

2 < s < τ < 1, t0 such that L(.) is non-increasing on [t0,∞) and h such that µh,s−µτh,s ≥ t0,

σY (h) = E
[
T−1+2d
h L(Th) ITh,s≥µh,s−µτh,s

]
+ E

[
T−1+2d
h L(Th) ITh,s<µh,s−µτh,s

]
= M1 +M2

M1 ≤ E
[
T−1+2d
h,s L(Th,s) ITh,s≥µh,s−µτh,s

]
≤
(
µh,s − µτh,s

)−1+2d
L(µh,s − µτh,s)

= (hE[T1])−1+2dL(h)

(
µh,s − µτh,s
hE[T1]

)−1+2d L(µh,s − µτh,s)
L(h)

(3.4)

As τ < 1 and 1/2 < s < 1,
(
µh,s−µτh,s
hE[T1]

)−1+2d

→ 1 as h→∞. Then,

L(µh,s − µτh,s)
L(h)

=
L
(
hE[T1]

µh,s−µτh,s
hE[T1]

)
L(hE[T1])

L(hE[T1])

L(h)
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As we have uniform convergence of λ 7→ L(hE[T1]λ)
L(hE[T1]) to 1 (as h → ∞) in each interval [a, b] and as

µh,s−µτh,s
hE[T1] → 1, we get

L(µh,s − µτh,s)
L(h)

→ 1,

as h→∞. We obtain

M1 ≤
(
µh,s − µτh,s

)−1+2d
L(µh,s − µτh,s) ∼ (hE[T1])−1+2dL(h). (3.5)

Since sup
t∈R+

|σX(t)| = σX(0) <∞, we have

M2 ≤ σX(0)P
(
Th,s < µh,s − µτh,s

)
= σX(0)P

(
−Th,s + E[Th,s] > µτh,s

)
.

We apply Hoeffding inequality to variables Zj = −∆j I∆j≤µsh/
√
h which are a.s in [− µsh√

h
, 0] to get,

M2 ≤ σX(0) exp

(
−2

(
µτh,s
µsh

)2
)

and

(
µτh,s
µsh

)2

∼ (hE[T1])2(τ−s). Finally

M2 = o((hE[T1])−1+2dL(h)). (3.6)

With (3.5) and (3.6), we get the upper bound.

3.2 Decrease of memory when E[T1] =∞
The phenomenon is the same as in the discrete case (see Philippe and Viano (2010)): starting from
a long memory process, a heavy tailed sampling distribution can lead to a short memory process.

Proposition 3.2. Assume that the covariance of X satisfies

|σX(t)| ≤ cmin(1, t−1+2d) ∀t ∈ R+ (3.7)

where 0 < d < 1/2. If for some β ∈ (0, 1)

lim inf
x→∞

(
xβP (T1 > x)

)
> 0 (3.8)

(implying E[T β1 ] =∞) then

|σY (h)| ≤ Ch
−1+2d
β . (3.9)

Proof. From hypothesis (3.7),

|σY (h)| ≤ E[|σX(Th)|] ≤ cE[min{1, T−1+2d
h }]

Then, denoting S∗h the distribution function of Th and integrating by parts,

E[min{1, T−1+2d
h }] =

∫ 1

0

dS∗h(x) +

∫ ∞
1

x−1+2ddS∗h(x)

= S∗h(1) + (1− 2d)

∫ ∞
1

x−2+2dS∗h(x)dx− S∗h(1)

= (1− 2d)

∫ ∞
1

x−2+2dS∗h(x)dx. (3.10)
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From hypothesis (3.8) on the tail of the sampling law, it follows that, there exists C > 0 and
x0 ≥ 1 such that

∀x ≥ x0, P (T1 > x) ≥ Cx−β .
Furthermore for x ∈ [1, x0],

xβP (T1 > x) ≥ P (T1 > x0) ≥ Cx−β0 .

We obtain: ∀x ≥ 1, P (T1 > x) ≥ C̃x−β with C̃ = Cx−β0 .

S∗h(x) = P (Th ≤ x) ≤ P
(

max
0≤l≤h−1

∆l ≤ x
)

= P (T1 ≤ x)
h

≤
(

1− C̃x−β
)h
≤ e−

C̃h

xβ . (3.11)

Gathering (3.10) and (3.11) then gives

E[min{1, T−1+2d
h }] ≤ (1− 2d)

∫ ∞
1

x−2+2de−
C̃h

xβ dx

=
1− 2d

β
h−(1−2d)/β

∫ h

0

u(1−2d)/β−1e−C̃udu

and the result follows since∫ h

0

u(1−2d)/β−1e−C̃udu
h→∞−−−−→

∫ ∞
0

u(1−2d)/β−1e−C̃udu.

Under some additional assumptions, we show that the bound obtained in Proposition 3.2 is
equal to the convergence rate (up to a multiplicative constant).

Proposition 3.3. Assume that
σX(t) = t−1+2dL(t)

where 0 < d < 1/2 and where L is slowly varying at infinity and ultimately monotone.
If

β := sup{γ : E[T γ1 ] <∞} ∈ (0, 1) (3.12)

then, for every ε > 0, there exists Cε > 0 such that

σY (h) ≥ Cεh−
1−2d
β −ε, ∀h ≥ 1. (3.13)

Proof. Let ε > 0. We have

σX(Th)

h−
1−2d
β −ε

=
T−1+2d
h

h−
1−2d
β −ε

L(Th) =
T
−1+2d− βε2
h

h−
1−2d
β −ε

T
βε
2

h L(Th) =

(
Th
hδ

)−1+2d− βε2
T
βε
2

h L(Th)

where

δ =
(1− 2d)/β + ε

1− 2d+ βε
2

=
1

β

(
1− 2d+ βε

1− 2d+ βε/2

)
.

Using Proposition 1.3.6 in Bingham et al. (1989),

T
βε
2

h L(Th)
h→∞−−−−→∞ a.s

Moreover δ > 1
β . From (3.12), this implies E[T

1/δ
1 ] < ∞. Then, the law of large numbers of

Marcinkiewicz-Zygmund (see Stout (1974) Theorem 3.2.3) yields

Th
hδ

a.s.−−→ 0 as h→∞. (3.14)
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Therefore by Fatou’s Lemma, we get

σY (h)

h−
1−2d
β −ε

h→∞−−−−→∞.

Remark 4. In this context the long memory parameter d of the initial process X is not identifiable
using the sampled process. Information on probability distribution of ∆1 is required.

4 Limit theorems in semiparametric case

We consider the process of partial sums

Sn(τ) =

[nτ ]∑
j=1

Yj , 0 ≤ τ ≤ 1. (4.1)

In Theorem 4.2, we show that if X is a Gaussian process and X and Y have the same long
memory parameter, the normalized partial sum process converges to a fractional Brownian motion.
According to Proposition 2.2, Gaussianity is lost after sampling, however we get the classical
behavior obtained by Taqqu (1975); Davydov (1970)).

4.1 Convergence of the partial sum process

To prove the convergence of the normalized partial sum process, we first need a result on the
convergence in probability of conditional variance of Sn.

Lemma 4.1. If X is a Gaussian process with regularly varying covariance function
σX(t) = L(t)t−1+2d, with 0 < d < 1/2 and L is slowly varying at infinity and ultimately non-
increasing.
Then, if E[T1] <∞, we have

L(n)−1n−1−2dVar(XT1
+ · · ·+XTn |T1 , . . . , Tn)

p−−−−→
n→∞

γd, (4.2)

where γd := E[T1]−1+2d

d(1+2d) .

Proof. See Appendix.

Theorem 4.2. Assume Assumption H holds. If X is a Gaussian process with regularly varying
covariance function σX(t) = L(t)t−1+2d, with 0 < d < 1/2 and L slowly varying at infinity and
ultimately non increasing (Hypothesis 3.1). Then, if E[T1] <∞, we get

γ
−1/2
d L(n)−1/2n−1/2−dSn(.)⇒ B 1

2 +d(.), in D[0, 1] with the uniform metric. (4.3)

where B 1
2 +d is the fractional Brownian motion with parameter 1

2 + d and γd := E[T1]−1+2d

d(1+2d) .

Proof. We first prove the weak convergence in finite-dimensional distributions of

γ
−1/2
d L(n)−1/2n−1/2−dSn(.)

to the corresponding finite-dimensional distributions of B 1
2 +d(.).

It suffices to show that for every k ≥ 1, (b1, . . . , bk) ∈ Rk, 0 ≤ t1, . . . , tk ≤ 1,

An := γ
−1/2
d L(n)−1/2n−1/2−d

k∑
i=1

biSn(ti)

11



satisfies

An
d−→

k∑
i=1

biB 1
2 +d(ti).

If t1 = · · · = tk = 0, then γ
−1/2
d L(n)−1/2n−1/2−d∑k

i=1 biSn(ti) =
∑k
i=1 biB 1

2 +d(ti) = 0. So we fix

n large enough to have [nmaxi(ti)] ≥ 1 and denote T (n) = (T1, . . . , T[nmaxi(ti)]). The characteristic
function of An is

ΦAn(t) = E[eitAn ] = E[e−
t2

2 Var(An|T (n))].

Moreover we have

Var(An|T (n))

=

k∑
i,j=1

bibjγ
−1
d L(n)−1n−1−2dE[Sn(ti)Sn(tj)|T (n)]

=

k∑
i,j=1

bibjγ
−1
d L(n)−1n−1−2d

2

[
Var(Sn(ti)|T (n)) + Var(Sn(tj)|T (n))−Var(Sn(ti)− Sn(tj)|T (n))

]
By Lemma 4.1,

L(n)−1n−1−2dVar(Y1 + · · ·+ Yn|T1 , . . . , Tn)
p−−−−→

n→∞
γd.

therefore
γ−1
d L(n)−1n−1−2dVar(Sn(ti)|T (n))

p−−−−→
n→∞

t1+2d
i

and for ti > tj

γ−1
d L(n)−1n−1−2dVar(Sn(ti)− Sn(tj)|T (n)) = γ−1

d L(n)−1n−1−2dVar(Y[nti]+1 + · · ·+ Y[ntj ]|T
(n))

p−−−−→
n→∞

(ti − tj)1+2d.

Finally, we have

Var(An|T (n))
p−−−−→

n→∞

k∑
i,j=1

bibjr 1
2 +d(ti, tj)

where r 1
2 +d is the covariance function of a fractional Brownian motion, and hence

exp

(
− t

2

2
Var(An|T (n))

)
p−−−−→

n→∞
exp

− t2
2

k∑
i,j=1

bibjr 1
2 +d(ti, tj)


Therefore, applying bounded convergence theorem, we get

ΦAn(t) −−−−→
n→∞

exp

− t2
2

k∑
i,j=1

bibjr 1
2 +d(ti, tj)

 = Φ∑k
i=1 biB 1

2
+d

(ti)
(t).

The sequence of partial-sum processes L(n)−1/2n−1/2−dSn(.) is tight with respect to the uniform
norm (see Giraitis et al. (2012) Prop 4.4.2 p78, for the proof of the tightness) and then we get the
convergence in D[0, 1] with the uniform metric.

4.2 Estimation of the long memory parameter

An immediate consequence of this limit theorem is to provide a nonparametric estimation of the
long memory parameter d using the well-known R/S statistics. It is quite obvious that this is a
heuristic method for estimating the long memory parameter. A more efficient estimate can be

12



obtained by using Whittle’s estimate or estimators based on the spectral approach (see Giraitis
et al. (2012); Beran et al. (2013)). But the sampled process does not satisfy the assumptions under
which these estimation methods are asymptotically validated.

The R/S statistic is defined as the quotient between Rn and Sn where

Rn := max
1≤k≤n

k∑
j=1

(Yj − Yn)− min
1≤k≤n

k∑
j=1

(Yj − Yn) (4.4)

and

Sn :=

 1

n

n∑
j=1

(Yj − Yn)2

1/2

. (4.5)

Proposition 4.3. Under the same assumptions as Theorem 4.2, we have

1

L(n)1/2n1/2+d

Rn
Sn

d−−−−→
n→∞

R(1) :=

√
γd

σX(0)

(
max

0≤t≤1
B0

1
2 +d(t)− min

0≤t≤1
B0

1
2 +d(t)

)
(4.6)

where B0
1
2 +d

(t) = B 1
2 +d(t)− tB 1

2 +d(1) is a fractional Brownian bridge and γd is a constant defined

in Lemma 4.1.

Proof. Using the equality

k∑
j=1

(Yj − Yn) =

k∑
j=1

Yj −
k

n

n∑
j=1

Yj = Sn

(
k

n

)
− k

n
Sn(1)

and the convergence of the partial-sum process given in Theorem 4.2, we get

Rn
L(n)1/2n1/2+d

d−−−−→
n→∞

√
γd

(
max

0≤t≤1
B0

1
2 +d(t)− min

0≤t≤1
B0

1
2 +d(t)

)
.

Then, we establish the convergence in probability of S2
n defined in (4.5). As

Var

 n∑
j=1

Yj

 ∼ Cn1+2d,

we have for ε > 0

P

∣∣∣∣∣∣ 1n
n∑
j=1

Yj

∣∣∣∣∣∣ > ε

 ≤ 1

n2ε2
Var

 n∑
j=1

Yj

 −−−−→
n→∞

0

and

P

∣∣∣∣∣∣ 1n
n∑
j=1

Y 2
j − σX(0)

∣∣∣∣∣∣ > ε

 ≤ 1

n2ε2
Var

 n∑
j=1

Y 2
j


=

1

n2ε2

n∑
j=1

n∑
k=1

Cov
(
Y 2
j , Y

2
k

)
=

1

n2ε2

n∑
j=1

n∑
k=1

(
E
[
E[X2

TjX
2
Tk
|Tj , Tk]

]
− σX(0)2

)
For (s, t) ∈ (R+)2, we decompose X2

s and X2
t in the complete orthogonal system of Hermite

polynomials (Hk)k≥0: (
Xs√
σX(0)

)2

= H0

(
Xs√
σX(0)

)
+H2

(
Xs√
σX(0)

)
,

13



thus, we get

E[X2
sX

2
t ]

σX(0)2
= E

[
H0

(
Xs√
σX(0)

)
H0

(
Xt√
σX(0)

)]
+ E

[
H2

(
Xs√
σX(0)

)
H0

(
Xt√
σX(0)

)]

+ E

[
H0

(
Xs√
σX(0)

)
H2

(
Xt√
σX(0)

)]
+ E

[
H2

(
Xs√
σX(0)

)
H2

(
Xt√
σX(0)

)]
Using the orthogonality property of Hermite polynomials for a bivariate normal density with unit
variances (see Giraitis et al. (2012), Prop 2.4.1), we obtain

E[X2
sX

2
t ] = σ2

X(0)

[
1 + 2Cov2

(
Xs√
σX(0)

,
Xt√
σX(0)

)]
= σ2

X(0) + 2σ2
X(t− s)

Finally,

P

∣∣∣∣∣∣ 1n
n∑
j=1

Y 2
j − σX(0)

∣∣∣∣∣∣ > ε

 ≤ 2

n2ε2

n∑
j=1

n∑
k=1

E
[
σ2
X(Tj − Tk)

]
=

4

n2ε2

n−1∑
j=0

(n− j)E
[
σ2
X(Tj)

]
If 0 ≤ d ≤ 1/4, we apply Proposition 2.3 with p = 1 and the function σ2

X to obtain

1

n2

n−1∑
j=0

(n− j)E
[
σ2
X(Tj)

]
≤ 1

n

∞∑
j=0

E
[
σ2
X(Tj)

]
−−−−→
n→∞

0.

If 1/4 < d < 1/2, Theorem 3.1 ensures that

1

n2

n−1∑
j=0

(n− j)E
[
σ2
X(Tj)

]
∼ Cn−2+4d.

Therefore, we get in both cases

P

∣∣∣∣∣∣ 1n
n∑
j=1

Y 2
j − σX(0)

∣∣∣∣∣∣ > ε

 −−−−→
n→∞

0.

We conclude that Sn
p−−−−→

n→∞

√
σX(0) and

1

L(n)1/2n1/2+d

Rn
Sn

d−−−−→
n→∞

R(1) :=

√
γd

σX(0)

(
max

0≤t≤1
B0

1
2 +d(t)− min

0≤t≤1
B0

1
2 +d(t)

)
.

In the case L(t) = c > 0 for all t > t0, taking logarithms of both sizes, we obtain from 4.6 a
heuristic identity

log

(
Rn
Sn

)
∼ (1/2 + d) log(n) + log(

√
cR(1))

We estimate the slope of the regression line of (log(n), log(Rn/Sn)) which provides an R/S estimate
of d. Remark that for the more general case with L slowly varying at infinity and ultimately non

increasing, we have log
(
Rn
Sn

)
∼ (1/2+d) log(n)+log(L(n))/2+log(R(1)) and log(L(n)) is negligible

compared to log(n).

14



5 Appendix

To prove Lemma 4.1, we need the following intermediate result:

Lemma 5.1. If E[T1] <∞ and X has a regularly varying covariance function

σX(t) = L(t)t−1+2d

with 0 < d < 1/2 and L slowly varying at infinity and ultimately non-increasing. Then,

Var(σX(Th)) = ◦(L(h)2h−2+4d) as h→∞ (5.1)

Proof. By theorem 3.1, we have E[σX(Th)] ∼
h→∞

L(h)(hE[T1])−1+2d. To get the result, it is enough

to prove that
E[σX(Th)2] ∼

h→∞
L(h)2(hE[T1])−2+4d.

To prove the asymptotic behavior of E[σX(Th)2], we will follow a similar proof as theorem 3.1:
• Let 0 < c < E[T1], and h ∈ N such that ch ≥ 1,

E[σX(Th)2] ≥ E
[
σX(Th)2 ITh>ch

]
≥ E

[
L(Th)2T−2+4d

h ITh>ch
]
≥ inf
t>ch
{L(t)2t4d}E

[
ITh>ch
T 2
h

]
Thanks to Jensen and Hölder inequalities,

E
[
ITh>ch
T 2
h

]
≥ E

[
ITh>ch
Th

]2

and P (Th > ch)2 ≤ E[Th]E
[
ITh>ch
Th

]
,

that is

E
[
ITh>ch
T 2
h

]
≥ P (Th > ch)4

E[Th]2
.

Summarizing,
E[σX(Th)2]

L(h)2(hE[T1])−2+4d
≥ inft>ch{L(t)2t4d}

L(h)2h4dE[T1]4d
P (Th > ch)4 (5.2)

Then, for c < E[T1], we have P (Th > ch) → 1 and inft>ch{L(t)2t4d} ∼ L(ch)2(ch)4d. Finally, for
all c < E[T1],

lim inf
h→∞

E[σX(Th)2]

L(h)2(hE[T1])−2+4d
≥
(

c

E[T1]

)4d

Taking the limit as c→ E[T1], we get

lim inf
h→∞

E[σX(Th)2]

L(h)2(hE[T1])−2+4d
≥ 1

• Let 1
2 < s < τ < 1, t0 such that L(.) is non-increasing and positive on [t0,∞) and h such

that µh,s − µτh,s ≥ t0, with the same notation as Theorem 3.1,

E[σX(Th)2] = E
[
L(Th)2T−2+4d

h ITh,s≥µh,s−µτh,s
]

+ E
[
σ(Th)2 ITh,s<µh,s−µτh,s

]
≤ L(µh,s − µτh,s)2

(
µh,s − µτh,s

)−2+4d
+ σX(0)2P

(
Th,s < µh,s − µτh,s

)
E[σX(Th)2]

L(h)2(hE[T1])−2+4d
≤
(
L(µh,s − µτh,s)

L(h)

)2(
µh,s − µτh,s
hE[T1]

)−2+4d

+ σX(0)2
P
(
Th,s < µh,s − µτh,s

)
L(h)2(hE[T1])−2+4d

Finally

lim sup
h→∞

E[σX(Th)2]

L(h)2(hE[T1])−2+4d
≤ 1
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Proof of Lemma 4.1:

Denote

Wn = L(n)−1n−1−2d
n∑
i=1

n∑
j=1

σX(Tj − Ti) = L(n)−1n−1−2dVar(XT1
+ · · ·+XTn |T1 , . . . , Tn).

We want to prove that Wn converges in probability to γd. To do this, we will show that
E[Wn] −−−−→

n→∞
γd and Var(Wn) −−−−→

n→∞
0.

• As X is a centered process E[Wn] = L(n)−1n−1−2dVar(Y1 + · · ·+ Yn). By theorem 3.1, we have

σY (h) ∼ L(h)(hE[T1])−1+2d h→∞,

then
L(n)−1n−1−2dVar(Y1 + · · ·+ Yn) −−−−→

n→∞
γd (5.3)

(see for instance Giraitis et al. (2012) Prop 3.3.1 p.43).
and we obtain

E[Wn] −−−−→
n→∞

γd.

• Furthermore,

Var(Wn) = L(n)−2n−2−4dVar

 n∑
i=1

n∑
j=1

σX(Tj − Ti)


≤ L(n)−2n−2−4d

 n∑
i=1

n∑
j=1

√
Var(σX(Tj − Ti))

2

=

(
2n−1−2dL(n)−1

n∑
h=1

(n− h)
√

Var(σX(Th))

)2

Then, by Lemma 5.1,
√

Var(σX(Th)) = ◦(L(h)h−1+2d) and 2

n∑
h=1

(n−h)L(h)h−1+2d ∼ L(n)n1+2d

d(1 + 2d)
.

We get

2

n∑
h=1

(n− h)
√

Var(σX(Th)) = ◦(L(n)n1+2d)

Finally, Var(Wn) = ◦(1) which means that Var(Wn) −−−−→
n→∞

0. We obtain

Wn
L2, p−−−−→
n→∞

γd.
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