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Université de Lille 1, Villeneuve d’Ascq, 59655 Cedex, France

December 4, 2018

Contents

1 Introduction 1

2 General results in time domain. 2
2.1 Distribution of the sampled process . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Memory of the sampled process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Long memory processes 6
3.1 Preservation of the memory parameter when E(T1) <∞ . . . . . . . . . . . . . . 7
3.2 Decrease of memory when E(T1) =∞ . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Results in frequency domain 14

5 Comparison between subsampling and temporal aggregation 15

6 Appendix 18
6.1 Proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Poisson kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Proof of Lemma 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4 Proof of Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.4.1 Under the condition (C1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.4.2 Under the condition (C2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.4.3 Under the condition (C3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1 Introduction

The long-range dependent time series have diverse applications in many fields, including hydrol-
ogy, economics and telecommunications (see [1] ch.2). Most of the papers on this topic consider
processes with discrete-time. However some models and estimation methods have been extended
to continuous-time processes (see [11, 16, 5, 4]). In [11], Tsai and Chan introduced the continuous-
time autoregressive fractionally integrated moving average (CARFIMA(p,H,q)) model. Under the
long-range dependence condition H ∈ (1/2, 1), they exhibit the autocovariance function of the
stationay CARFIMA process and its spectral density function (see [12]). Theses properties are
extended to the case H ∈ (0, 1) in [14]. In [16], continuous-time fractional ARMA processes are
constructed. Under some conditions, these processes are zero mean stationary Gaussian and they
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give results on their spectral density and covariance function. Moreover, Viano et al. specify the
asymptotic dependence of these processes. In [5], Comte and Renault presents a family of long
memory models: the continuous time moving average fractional process. The statistical inference
for continuous-time processes is generally constructed from the sampled process (see [11, 12, 3, 4].
Different scheme of sampling can be considered. In [11], the estimation method is based on the
maximum likelihood estimation for irregularly spaced deterministic time series data. Under the
assumption of identifiability, Chambers [3] considers the estimation of the long memory parameter
of a continuous time fractional ARMA process with discrete time data using the low-frequency be-
haviour of the spectrum. Comte [4] studied two methods for the estimation with regularly spaced
data : Whittle likelihood method and the semiparametric approach of Geweke and Porte-Hudak.
We are interested in irregularly spaced data when the sampling intervals are independent and
identically distributed positive random variables. In the light of previous results in discrete time,
we there was an effect of the random sampling on the dependence structure of the process. Indeed
[8] show that the intensity of the long memory is preserved when the law of sampling intervals is
L1, but they also show situations leading to a reduction of the long memory.

We start from X = (Xt)t∈R+ , a second-order stationary continuous time process with auto-
covariance function σX(.) and from a random walk (Tn)n≥0 independent of X. The i.i.d. sampling
intervals Tj+1−Tj = ∆j have a common probability density function s supported by R+. Moreover,
T0 = 0. In the remainder of this paper, without loss of generality, we suppose that X is a zero-mean
process.

We adopt the most usual definition of long memory. Namely, for a stationary process U having
a covariance function σU∫
R+

|σU (x)| dx =∞ in the continuous-time case,
∑
h≥0

|σU (h)| =∞ in the discrete-time case.

Two sampling methods, both based on the random walk (Tn)n≥0, are investigated hereafter.
Sections 2, 3 and 4 are devoted to sampled processes at random instants. More precisely, we

consider the discrete-time process Y defined by

Yn = XTn n = 0, 1 . . . . (1.1)

In section 2, we study the behaviour of the sampled process in general case. We prove that in the
case of a gaussian initial process, the sampled Y is not gaussian, that under rather weak conditions
on the covariance σX , sampling a short memory X process always produces a short memory Y,
and that when the sampling law satisfies E(T1) < ∞ the sampled process Y has long memory if
it is the case for X.

In section 3 we present the more specific situation of a regularly varying covariance where
preservation or non-preservation of the memory can be quantified. In particular we prove that for
heavy tailed sampling law, a long memory X can give raise to a short memory Y.

Section 4 presents some cases of preservation of the existence of a spectral density when the
spectrum of X is absolutely continuous.

Section 5 turns to a temporal aggregation scheme. The discrete-time sampled process Z is
obtained by aggregating the process X over the intervals defined by the random walk

Zh =

∫ Th+1

Th

Xt dt.

We show that from the point of view of transmission of the memory, the results are similar to
those obtained in the previous sections.

2 General results in time domain.

Let Y be the stationary discrete-time second order process defined by

Yn = XTn n = 0, 1 . . . (2.1)
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with covariance sequence {
σY (0) = σX(0)

σY (h) = E (σX(Th)) h ≥ 1
(2.2)

2.1 Distribution of the sampled process

Proposition 2.1. Let X be a strictly stationary process. Then, the sampled process Y is a strictly
stationary discrete-time process, ie the joint distribution of (Yk1+p, . . . , Ykn+p) does not depend on
p for any k1, . . . kn ∈ N and n ≥ 1.

Proof. Let n ≥ 1, p ∈ N and 0 ≤ k1 < · · · < kn. For (y1, . . . , yn) ∈ Rn

P (Yk1+p ≤ y1, . . . , Ykn+p ≤ yn)

= P (XTk1+p
≤ y1, . . . , XTkn+p

≤ yn)

= E(P (X∆0+···+∆k1+p−1
≤ y1, . . . , X∆0+···+∆kn+p−1

≤ yn|∆0, . . . ∆kn+p−1))

by the strict stationarity of X, we get

= E(P (X∆p+···+∆k1+p−1
≤ y1, . . . , X∆p+···+∆kn+p−1

≤ yn|∆0, . . . ∆kn+p−1))

= P (XU0+···+Uk1−1
≤ y1, . . . , XU0+···+Ukn−1

≤ yn)

where Ui = ∆i+p are i.i.d with density s

= P (Yk1 ≤ y1, . . . , Ykn ≤ yn)

This proposition gives a first result on the distribution of the sampled process: the normality
of the process is not preserved by random sampling.

Proposition 2.2. If X is a Gaussian process then the marginals of the sampled process Y are
Gaussian. Furthermore, for σX not an almost everywhere constant function on the support of s,
Y is a Gaussian process if and only if the sampling is deterministic.

Proof. Let ΦU denote the characteristic function of the random variable U .
We have

ΦYk(t) = E(E(eitXTk |Tk)).

Given Tk, the conditional probability distribution of XTk is the centered normal distribution with
variance σX(0). Then

ΦYk(t) = e−σX(0)t2/2

and Yk ∼ N (0, σX(0)).

It is clear that if ∆i = h for all i then Y is Gaussian.
Suppose Y is a Gaussian process, then Y1 + Y2 is a Gaussian variable,

ΦY1+Y2(t) = e−Var(Y1+Y2)t2/2 = e−σ(0)t2e−t
2E(σX(T2−T1))

and

ΦY1+Y2
(t) = ΦXT1+XT2

(t)

= E
(

exp

[
− t

2

2
( 1

1 )
T
(

σX(0) σX(T2−T1)
σX(T2−T1) σX(0)

)
( 1

1 )

])
= e−σ(0)t2E(e−t

2σX(T2−T1)).

Then, for all t, eE(−t2σX(T2−T1)) = E(e−t
2σX(T2−T1)). It is the equality case in the Jensen

inequality, then σX(T2 − T1) is constant almost surely.

3



In Figure 1, we illustrate the lack of normality for the sampled process. For X Gaussian process
with autocovariance function σX(t) = (1+ t0.9)−1, we simulated in Figure (a) the joint probability
density function of the centered couple (Y1, Y2) for intervals ∆j having an exponential distribution
with mean 1. To do that, we simulate first the time interval T2 − T1 according to an exponential
distribution with mean 1. Then, for each simulated value of T2−T1, the couple (Y1, Y2) is Gaussian
and is simulated using Cholesky decomposition of the variance matrix (see [9]). We simulate by
this method p = 200000 realizations of (Y1, Y2) and find the bivariate density of (Y1, Y2) by kernel
method. In (b), we represent the density of a centered Gaussian couple (W1,W2) with the same
variance matrix as (Y1, Y2): E(W 2

1 ) = E(W 2
2 ) = σX(0) and E(W1W2) = E(σX(∆1)) in order to

compare the behaviour of the sampled process with the corresponding gaussian one. In this case,
the bivariate density has an explicit form

f(W1,W2)(w1, w2) =

(
2π
√

det(Σ1,2)

)−1

exp

(
−1

2
(w1 w2)Σ−1

1,2(w1 w2)T
)

where Σ1,2 is the common variance matrix. The form of the distribution of sampled process differs
widely from Gaussian distribution.
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−
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Figure 1: In Figure (a), the density of the centered couple (Y1, Y2) is represented for intervals ∆j

having an exponential distribution with mean 1 and gaussian initial process with autocovariance
function σX(t) = (1 + t0.9)−1. In (b), we represent the bivariate density of a centered Gaussian
vector (W1,W2) with the same variance matrix as (Y1, Y2): E(W 2

1 ) = E(W 2
2 ) = σX(0) and

E(W1W2) = E(σX(∆1)).

2.2 Memory of the sampled process

Proposition 2.3. Let p ≥ 1. If there is a positive bounded function σ∗(.), non increasing on
R+, such that

1. |σX(t)| ≤ σ∗(t), ∀t ∈ R+

2.

∫
R+

σp∗(t)dt <∞
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then, the sampled process Y has a covariance function in `p, i.e
∑
h≥0

|σY (h)|p <∞.

Remark 1. The proposition confirms an intuitive claim: random sampling cannot produce long-
memory from short memory. The particular case p = 1 implies that if X has short memory then,
the sampled process Y has short memory too.

Proof. It is clearly enough to prove that∑
h≥1

E (σp∗(Th)) <∞ (2.3)

We use inequality

∆hσ
p
∗(Th + ∆h) = (Th+1 − Th)σp∗(Th+1) ≤

∫ Th+1

Th

σp∗(t)dt, ∀h ≥ 0. (2.4)

Taking expectation of the left member and noticing that ∆h and Th are independent gives, for
every a > 0,

E (∆hσ
p
∗(Th + ∆h)) =

∫
R+

uE (σp∗(Th + u)) dS(u)

=

∫ a

0

uE (σp∗(Th + u)) dS(u) +

∫ +∞

a

uE (σp∗(Th + u)) dS(u)

≥
∫ a

0

uE (σp∗(Th + u)) dS(u) + a

∫ +∞

a

E (σp∗(Th + u)) dS(u)

=

∫ a

0

uE (σp∗(Th + u)) dS(u) + a

(∫
R+

E (σp∗(Th + u)) dS(u)−
∫ a

0

E (σp∗(Th + u)) dS(u)

)
=

∫ a

0

(u− a)E (σp∗(Th + u)) dS(u) + aE (σp∗(Th+1))

Now, σp∗(Th + u) ≤ σp∗(Th) and u− a ≤ 0 for u ∈ [0, a], leading to

E (∆hσ
p
∗(Th + ∆h)) ≥

(∫
[0,a[

(u− a)dS(u)

)
E (σp∗(Th)) + aE (σp∗(Th+1)) . (2.5)

It is possible to choose a such that S([0, a]) < 1. For such a choice we obtain

0 ≤ −
∫

[0,a[

(u− a)dS(u) =: `(a) ≤ aS([0, a]) < a.

Summing up inequalities (2.5) gives, for every K ≥ 0

E

[ ∞∑
h=1

∆hσ
p
∗(Th+1)

]
≥

K∑
h=1

[−`(a)E(σp∗(Th)) + aE(σp∗(Th+1))]

= a [E(σp∗(TK+1))− E(σp∗(T1))] + (a− `(a))

K∑
h=1

E (σp∗(Th))

≥ −aσp∗(0) + (a− `(a))

K∑
h=1

E (σp∗(Th)) ,

which implies

E

[ ∞∑
h=1

∆hσ
p
∗(Th+1)

]
≥ −aσp∗(0) + (a− `(a))

∑
h≥1

E (σp∗(Th))
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Now, using (2.4)

E

∑
h≥1

∆hσ
p
∗(Th+1)

 ≤ E

∑
h≥1

∫ Th+1

Th

σp∗(t)dt

 ≤ ∫
R+

σp∗(t)dt <∞

and consequently, as a− `(a) > 0
∞∑
h=1

E (σp∗(Th)) <∞. (2.6)

Proposition 2.4. When σX(.) is ultimately positive and non-increasing on R+, i.e there exists
t0 ≥ 0 such that σX(.) is positive and non increasing on the interval [t0,∞), and E(T1) < ∞,
then, if X has long-memory, so has the sampled process Y.

Proof. Let h0 be the (random) first index such that Th0 ≥ t0. For every h ≥ h0,∫ Th+1

Th

σX(t)dt ≤ (Th+1 − Th)σX(Th). (2.7)

Summing up gives ∑
h≥1

Ih≥h0

∫ Th+1

Th

σX(t)dt ≤
∑
h≥1

Ih≥h0
∆hσX(Th).

Now, taking expectations, and noticing that, since E(T1) = E(∆1) > 0, the law of large numbers

implies that Th
a.s.−−→∞, and in particular h0 <∞ a.s., whence

E

(∫ ∞
Th0

σX(t)dt

)
≤ E

[ ∞∑
h=1

∆hσX(Th) Ih0≤h

]
.

In this inequality, the left hand side is +∞, and, ∆h being independent of σX(Th) Ih0≤h, the right

hand side is E(T1)
∑
h≥1

E(σX(Th) Ih0≤h). Consequently, since E(T1) <∞,

∑
h≥1

E(σX(Th) Ih0≤h) =∞. (2.8)

It remains to notice that E(h0) <∞ (see for example [6] p.185), which implies∑
h≥1

E(|σX(Th)| Ih0>h) ≤ σX(0)
∑
h≥1

P (h0 ≥ h) ≤ σX(0)E(h0) <∞,

leading, via (2.8) to
∑
h≥1

|E(σX(Th))| =∞.

3 Long memory processes

In this section, we consider long memory processes with specific form of covariance function. The
assumption is satisified, for example by CARFIMA models.

Definition 3.1. • A function L on [0,∞) is said to be slowly varying at infinity if L is positive
on [t0,∞) for some t0 > 0 and

lim
x→+∞

L(ax)

L(x)
= 1, ∀a > 0
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• A function f on [0,∞) is said to be regularly varying at infinity with index δ ∈ R, if f is
positive on [t0,∞) for some t0 > 0 and

lim
x→+∞

f(ax)

f(x)
= aδ, ∀a > 0

Now, the auto-covariance σX is regularly varying function at infinity of the form

σX(t) = t−1+2dL(t), ∀t ≥ 1 (3.1)

where L is slowly varying at infinity and ultimately non-increasing. This means that the parameter
0 < d < 1/2 summarizes the memory of X and in order to be more specific about results of Section
2, we describe what can happen to d after sampling.

3.1 Preservation of the memory parameter when E(T1) <∞
Theorem 3.2. Under hypothesis (3.1), if 0 < E(T1) <∞, the discrete time process Y has a long
memory and its covariance behaves as

σY (h) ∼ (hE(T1))−1+2dL(h) h→∞

Remark 2. We can write
σY (h) = (hE(T1))−1+2dL̃(h)

where L̃ is slowly varying at infinity and L̃(h) ∼ L(h) as h→∞.

Proof. • We show first that

lim inf
h→∞

σY (h)

(hE(T1))−1+2dL(h)
≥ 1

Let 0 < c < E(T1), and h ∈ N such that ch ≥ 1,

σY (h) ≥ E (σX(Th) ITh>ch) ≥ inf
t>ch
{L(t)t2d}E

(
ITh>ch
Th

)
Thanks to Hölder inequality,

(P (Th > ch))
2 ≤ E(Th)E

(
ITh>ch
Th

)
,

that is

E
(

ITh>ch
Th

)
≥ (P (Th > ch))

2

hE(T1)
.

Summarizing,

σY (h) ≥ inf
t>ch
{L(t)t2d} (P (Th > ch))

2

hE(T1)

σY (h)

(hE(T1))−1+2dL(h)
≥ inf
t>ch
{L(t)t2d} (P (Th > ch))

2

(hE(T1))2dL(h)
(3.2)

Using [2] (Th 1.5.3, p23), we obtain, since d > 0

inf
t≥ch
{L(t)t2d} ∼ L(ch)(ch)2d as h→∞. (3.3)

The law of large numbers implies that Th/h
a.s.−−→ E(T1). As c < E(T1), we have P (Th > ch) → 1

and the r.h.s. of (3.2) tends to (c/E(T1))
2d

as h→∞. Finally, for all c < E(T1),

lim inf
h→∞

σY (h)

(hE(T1))−1+2dL(h)
≥
(

c

E(T1)

)2d
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Taking the limit as c→ E(T1), we get the lower bound.
• Let us now prove

lim sup
h→∞

σY (h)

(hE(T1))−1+2dL(h)
≤ 1

We use a similar proof to that presented in [10] (Thm 1). We denote for h ≥ 1 and 0 < s < 1,

µh = E(Th) = hE(T1)

Th,s =

h−1∑
j=0

∆j I∆j≤µsh/
√
h

µh,s = E (Th,s) = hE
(

∆0 I∆0≤µsh/
√
h

)
Since E(T1) <∞, we have that for 1/2 < s < 1, µh,s ∼ µh as h→∞.
Let 1

2 < s < τ < 1, t0 such that L(.) is nonincreasing on [t0,∞) and h such that µh,s − µτh,s ≥ t0,

σY (h) = E
[
T−1+2d
h L(Th) ITh,s≥µh,s−µτh,s

]
+ E

[
T−1+2d
h L(Th) ITh,s<µh,s−µτh,s

]
= M1 +M2

M1 ≤ E
[
T−1+2d
h,s L(Th,s) ITh,s≥µh,s−µτh,s

]
≤
(
µh,s − µτh,s

)−1+2d
L(µh,s − µτh,s)

= (hE(T1))−1+2dL(h)

(
µh,s − µτh,s
hE(T1)

)−1+2d L(µh,s − µτh,s)
L(h)

(3.4)

As τ < 1 and 1/2 < s < 1,
(
µh,s−µτh,s
hE(T1)

)−1+2d

→ 1 as h→∞. Then,

L(µh,s − µτh,s)
L(h)

=
L
(
hE(T1)

µh,s−µτh,s
hE(T1)

)
L(hE(T1))

L(hE(T1))

L(h)

As we have uniform convergence of L(hE(T1).)
L(hE(T1)) to 1 in each interval [a, b] and as

µh,s−µτh,s
hE(T1) → 1, we

get
L(µh,s − µτh,s)

L(h)
→ 1

as h→∞. We obtain

M1 ≤
(
µh,s − µτh,s

)−1+2d
L(µh,s − µτh,s) ∼ (hE(T1))−1+2dL(h) (3.5)

Since sup
t∈R+

|σX(t)| = σX(0) <∞, we have

M2 ≤ σX(0)P
(
Th,s < µh,s − µτh,s

)
= σX(0)P

(
−Th,s + E(Th,s) > µτh,s

)
We apply Hoeffding inequality to variables Zj = −∆j I∆j≤µsh/

√
h which are a.s in [− µsh√

h
, 0] to get,

M2 ≤ σX(0) exp

(
−2

(
µτh,s
µsh

)2
)

and

(
µτh,s
µsh

)2

∼ (hE(T1))2(τ−s). Finally

M2 = o((hE(T1))−1+2dL(h)) (3.6)

With (3.5) and (3.6), we get the upper bound.
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Lemma 3.3. If X is a Gaussian process with regularly varying covariance function
σX(t) = L(t)t−1+2d, with 0 < d < 1/2 and L is slowly varying at infinity and ultimately non-
increasing.
Then, if E(T1) <∞,

L(n)−1n−1−2dVar(XT1
+ · · ·+XTn |T1 , . . . , Tn)

p−−−−→
n→∞

γd (3.7)

where γd := E(T1)−1+2d

d(1+2d)

Proof. See Appendix 6.1.

Theorem 3.4. Let Sn(τ) =

[nτ ]∑
j=1

Yj, 0 ≤ τ ≤ 1, be the partial-sum process. If X is a Gaussian

process with regularly varying covariance function σX(t) = L(t)t−1+2d, with 0 < d < 1/2 and L
slowly varying at infinity and ultimately non increasing. Then, if E(T1) <∞, we get

γ
−1/2
d L(n)−1/2n−1/2−dSn(.)⇒ B1/2+d(.), in D[0, 1] with the uniform metric. (3.8)

where B1/2+d is a fractional Brownian motion with parameter 1/2 + d and γd := E(T1)−1+2d

d(1+2d) .

Proof. We first prove the weak convergence in finite-dimensional distributions of

γ
−1/2
d L(n)−1/2n−1/2−dSn(.)

to the corresponding finite-dimensional distributions of B1/2+d(.).
It suffices to show that for every k ≥ 1, b1, . . . , bk ∈ R, 0 ≤ t1, . . . , tk ≤ 1,

An := γ
−1/2
d L(n)−1/2n−1/2−d(b1Sn(t1) + · · ·+ bkSn(tk))

satisfies An
d−→ b1B1/2+d(t1) + · · ·+ bkB1/2+d(tk).

Denote T (n) = (T1, . . . , T[nmaxi(ti)]), let calculate the characteristic function of An

ΦAn(t) = E(eitAn) = E(e−
t2

2 Var(An|T (n)))

and

Var(An|T (n))

=

k∑
i,j=1

bibjγ
−1
d L(n)−1n−1−2dE(Sn(ti)Sn(tj)|T (n))

=

k∑
i,j=1

bibjγ
−1
d L(n)−1n−1−2d

2

[
Var(Sn(ti)|T (n)) + Var(Sn(tj)|T (n))−Var(Sn(ti)− Sn(tj)|T (n))

]
By Lemma 3.3,

L(n)−1n−1−2dVar(Y1 + · · ·+ Yn|T1 , . . . , Tn)
p−−−−→

n→∞
γd.

then
γ−1
d L(n)−1n−1−2dVar(Sn(ti)|T (n))

p−−−−→
n→∞

t1+2d
i

for ti > tj

γ−1
d L(n)−1n−1−2dVar(Sn(ti)− Sn(tj)|T (n)) = γ−1

d L(n)−1n−1−2dVar(Y[nti]+1 + · · ·+ Y[ntj ]|T
(n))

p−−−−→
n→∞

(ti − tj)1+2d.
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Finally,

Var(An|T (n))
p−−−−→

n→∞

k∑
i,j=1

bibjr1/2+d(ti, tj)

where r1/2+d is the covariance function of a fractional Brownian motion.

By continuous mapping theorem, for t ∈ R fixed, e−
t2

2 Var(An|T (n)) p−−−−→
n→∞

e−
t2

2

∑k
i,j=1 bibjr1/2+d(ti,tj)

and

P
(
|e− t

2

2 Var(An|T (n))|
)
≤ 1) = 1,

then by dominated convergence theorem,

e−
t2

2 Var(An|T (n)) L1

−−−−→
n→∞

e−
t2

2

∑k
i,j=1 bibjr1/2+d(ti,tj).

In particular,

ΦAn(t) −−−−→
n→∞

e−
t2

2

∑k
i,j=1 bibjr1/2+d(ti,tj).

The sequence of partial-sum processes γ
−1/2
d L(n)−1/2n−1/2−dSn(.) is tight with respect to the

uniform norm (for the proof of the tightness, see [7] Prop 4.4.2 p78) and then we get the convergence
in D[0, 1] with the uniform metric.

As a consequence of this limit theorem, we valide the nonparametric estimation method based
on the re-scaled range ( R/S) statistics to estimate d from the sampled process Y . The R/S
statistic is defined as follows

Rn := max
1≤k≤n

k∑
j=1

(Yj − Yn)− min
1≤k≤n

k∑
j=1

(Yj − Yn)

and

Sn :=

 1

n

n∑
j=1

(Yj − Yn)2

1/2

.

Proposition 3.5. Under the same assumptions as Theorem 3.4, we have

1

L(n)1/2n1/2+d

Rn
Sn

d−−−−→
n→∞

R(1) :=

√
γd

σX(0)

(
max

0≤t≤1
B0

1/2+d(t)− min
0≤t≤1

B0
1/2+d(t)

)
where B0

1/2+d(t) = B1/2+d(t) − tB1/2+d(1) is a fractional Brownian bridge and γd is defined in
Lemma 3.3.

Proof. Using the equality

k∑
j=1

(Yj − Yn) =

k∑
j=1

Yj −
k

n

n∑
j=1

Yj = Sn

(
k

n

)
− k

n
Sn(1)

and the convergence of the partial-sum process in Theorem 3.4, we get that

Rn
L(n)1/2n1/2+d

d−−−−→
n→∞

√
γd

(
max

0≤t≤1
B0

1/2+d(t)− min
0≤t≤1

B0
1/2+d(t)

)
.

Then, we study the convergence in probability of

S2
n =

1

n

n∑
j=1

Y 2
j −

 1

n

n∑
j=1

Yj

2

.
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Since Var

 n∑
j=1

Yj

 ∼ Cn1+2d, we have for ε > 0

P

∣∣∣∣∣∣ 1n
n∑
j=1

Yj

∣∣∣∣∣∣ > ε

 ≤ 1

n2ε2
Var

 n∑
j=1

Yj

 −−−−→
n→∞

0

and

P

∣∣∣∣∣∣ 1n
n∑
j=1

Y 2
j − σX(0)

∣∣∣∣∣∣ > ε

 ≤ 1

n2ε2
Var

 n∑
j=1

Y 2
j


=

1

n2ε2

n∑
j=1

n∑
k=1

Cov
(
Y 2
j , Y

2
k

)
=

1

n2ε2

n∑
j=1

n∑
k=1

(
E
[
E[X2

TjX
2
Tk
|Tj , Tk]

]
− σX(0)2

)
For (s, t) ∈ (R+)2, we decompose X2

s and X2
t in the complete orthogonal system of Hermite

polynomials (Hk)k≥0,

(
Xs√
σX(0)

)2

= H0

(
Xs√
σX(0)

)
+H2

(
Xs√
σX(0)

)
, then

E[X2
sX

2
t ]

σX(0)2
= E

[
H0

(
Xs√
σX(0)

)
H0

(
Xt√
σX(0)

)]
+ E

[
H2

(
Xs√
σX(0)

)
H0

(
Xt√
σX(0)

)]

+ E

[
H0

(
Xs√
σX(0)

)
H2

(
Xt√
σX(0)

)]
+ E

[
H2

(
Xs√
σX(0)

)
H2

(
Xt√
σX(0)

)]
Using the orthogonality property of Hermite polynomials for a bivariate normal density with unit
variances (see for instance Prop 2.4.1 of [7]), we obtain

E[X2
sX

2
t ] = σ2

X(0)

[
1 + 2Cov2

(
Xs√
σX(0)

,
Xt√
σX(0)

)]
= σ2

X(0) + 2σ2
X(t− s)

Finally,

P

∣∣∣∣∣∣ 1n
n∑
j=1

Y 2
j − σX(0)

∣∣∣∣∣∣ > ε

 ≤ 2

n2ε2

n∑
j=1

n∑
k=1

E
[
σ2
X(Tj − Tk)

]
=

4

n2ε2

n−1∑
j=0

(n− j)E
[
σ2
X(Tj)

]

If 0 ≤ d ≤ 1/4,
1

n2

n−1∑
j=0

(n − j)E
[
σ2
X(Tj)

]
≤ 1

n

∞∑
j=0

E
[
σ2
X(Tj)

]
−−−−→
n→∞

0 using Proposition 2.3 with

p = 1 and the function σ2
X . If 1/4 < d < 1/2, we use Theorem 3.2 to have

1

n2

n−1∑
j=0

(n− j)E
[
σ2
X(Tj)

]
∼ Cn−2+4d

and we get in both cases that

P

∣∣∣∣∣∣ 1n
n∑
j=1

Y 2
j − σX(0)

∣∣∣∣∣∣ > ε

 −−−−→
n→∞

0
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We conclude that Sn
p−−−−→

n→∞

√
σX(0) and

1

L(n)1/2n1/2+d

Rn
Sn

d−−−−→
n→∞

R(1) :=

√
γd

σX(0)

(
max

0≤t≤1
B0

1/2+d(t)− min
0≤t≤1

B0
1/2+d(t)

)

In the case L(t) = c > 0 for all t > t0, taking logarithms of both sizes, we obtain a heuristic
identity

log

(
Rn
Sn

)
∼ (1/2 + d) log(n) + log(

√
cR(1))

We estimate the slope of the regression line of (log(n), log(Rn/Sn)) which provides an R/S estimate
of d. Remark that for the more general case with L slowly varying at infinity and ultimately non

increasing, we have log
(
Rn
Sn

)
∼ (1/2+d) log(n)+log(L(n))/2+log(R(1)) and log(L(n)) is negligible

compared to log(n).

3.2 Decrease of memory when E(T1) =∞
The phenomenon is the same as in the discrete case (see [8]) : starting from a long memory process,
an heavy tailed sampling law can lead to a short memory process.

Proposition 3.6. Assume that the covariance of X satisfies

|σX(t)| ≤ cmin(1, t−1+2d) ∀t ∈ R+ (3.9)

where 0 < d < 1/2. If for some β ∈ (0, 1)

lim inf
x→∞

(
xβP (T1 > x)

)
> 0 (3.10)

(implying E(T β1 ) =∞) then

|σY (h)| ≤ Ch
−1+2d
β . (3.11)

Proof. From hypothesis (3.9),

|σY (h)| ≤ E(|σX(Th)|) ≤ cE(min{1, T−1+2d
h })

Then, denoting S∗h the distribution function of Th and integrating by parts,

E(min{1, T−1+2d
h }) =

∫ 1

0

dS∗h(x) +

∫ ∞
1

x−1+2ddS∗h(x)

= S∗h(1) + (1− 2d)

∫ ∞
1

x−2+2dS∗h(x)dx− S∗h(1)

= (1− 2d)

∫ ∞
1

x−2+2dS∗h(x)dx. (3.12)

From hypothesis (3.10) on the tail of the sampling law, it follows that, there exists C > 0 and
x0 ≥ 1 such that

∀x ≥ x0, P (T1 > x) ≥ Cx−β .
Furthermore for x ∈ [1, x0],

xβP (T1 > x) ≥ P (T1 > x0) ≥ Cx−β0 .

We obtain that ∀x ≥ 1, P (T1 > x) ≥ C̃x−β with C̃ = Cx−β0 .

S∗h(x) = P (Th ≤ x) ≤ P
(

max
0≤l≤h−1

∆l ≤ x
)

= P (T1 ≤ x)
h

≤
(

1− C̃x−β
)h
≤ e−

C̃h

xβ . (3.13)
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Gathering (3.12) and (3.13) then gives

E(min{1, T−1+2d
h }) ≤ (1− 2d)

∫ ∞
1

x−2+2de−
C̃h

xβ dx

=
1− 2d

β
h−(1−2d)/β

∫ h

0

u(1−2d)/β−1e−C̃udu

and the result follows since∫ h

0

u(1−2d)/β−1e−C̃udu
h→∞−−−−→

∫ ∞
0

u(1−2d)/β−1e−C̃udu.

Next proposition states that the bound in Proposition 3.6 is sharp under some additional
hypotheses.

Proposition 3.7. Assume that
σX(t) = t−1+2dL(t)

where 0 < d < 1/2 and where L is slowly varying at infinity and ultimately monotone.
If

β =: sup {γ : E(T γ1 ) <∞} ∈]0, 1[ (3.14)

then, for every ε > 0, there exists Cε > 0 such that

σY (h) ≥ Cεh−
1−2d
β −ε, ∀h ≥ 1. (3.15)

Proof. Let ε > 0. We have

σX(Th)

h−
1−2d
β −ε

=
T−1+2d
h

h−
1−2d
β −ε

L(Th) =
T
−1+2d− βε2
h

h−
1−2d
β −ε

T
βε
2

h L(Th) =

(
Th
hδ

)−1+2d− βε2
T
βε
2

h L(Th)

where

δ =
(1− 2d)/β + ε

1− 2d+ βε
2

=
1

β

(
1− 2d+ βε

1− 2d+ βε/2

)
.

Using Proposition 1.3.6 in [2],

T
βε
2

h L(Th)
h→∞−−−−→ +∞ a.s

Moreover δ > 1
β . From (3.14), this implies E(T

1/δ
1 ) < ∞. Then, the law of large numbers of

Marcinkiewicz-Zygmund (see [15] Theorem 3.2.3) yields

Th
hδ

a.s.−−→ 0 as h→∞. (3.16)

Therefore by applying Fatou’s Lemma

σY (h)

h−
1−2d
β −ε

h→∞−−−−→∞.
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4 Results in frequency domain

Many estimates for long memory processes are based on the behavior of the spectral density (see
[7] for a review). In this section we study the existence of the spectral density of sampled process
Y . In the next proposition we establish the relation between the spectral densities of X and Y .

Proposition 4.1. Under hypothesis of Proposition 2.3 with p ∈ [1, 2], both processes X and Y
have spectral densities and we have the relations

σY (k) =

∫
R
Ŝ(x)kfX(x)dx, k ∈ N (4.1)

fY (λ) =
1

2π

∑
k∈Z

∫
R

(
e−iλŜ(x)

)k
fX(x)dx, λ ∈ [−π, π] (4.2)

where
Ŝ(x) = E(eixT1) = ρxe

iτx (4.3)

is the characteristic function of S. The functions ρ and τ are defined as the absolute value and the
argument of the characteristic function.

Proof. We have in this case∫
R+

|σX(t)|2dt ≤ σX(0)2−p
∫
R+

σp∗(t)dt <∞

and by Proposition 2.3,
∑
h≥0

|σY (h)|p <∞. Similarly,

∑
h≥0

|σY (h)|2 ≤ σX(0)2−p
∑
h≥0

|σY (h)|p <∞.

X and Y have spectral densities fX ∈ L2(R) and fY ∈ L2([−π, π]). For λ ∈ [−π, π],

fY (λ) =
1

2π

∑
k∈Z

e−ikλE(σX(Tk))

=
1

2π

∑
k∈Z

e−ikλE
(∫

R
eixTkfX(x)dx

)
As E

(∫
R |e

ixTkfX(x)|dx
)

=
∫
R fX(x)dx = E[X2

0 ] <∞, we deduce by Fubini’s theorem

fY (λ) =
1

2π

∑
k∈Z

∫
R
e−ikλE

(
eixTk

)
fX(x)dx

=
1

2π

∑
k∈Z

∫
R
e−ikλŜ(x)kfX(x)dx

where the series converges in L2([−π, π]). When p 6= 1, the covariance is square summable without
being summable.

Lemma 4.2. Assume that X has a spectral density denoted by fX . Then, for all k ≥ 0

σY (k) = lim
r→1−

∫ π

−π
eikxg(r, x)dx, (4.4)

where

g(r, x) =
1

4

∫
R
fX(λ)

(
1

π
+ Prρλ(τλ − x) + Prρλ(τλ + x)

)
dλ (4.5)

and where Ps(t) is the Poisson kernel (see Appendix 6.2), and where Ŝ(λ) = ρλe
iτλ .
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Proof. See Appendix 6.3.

Proposition 4.3. Assume that X has a spectral density denoted by fX which has the form

fX(λ) = |λ|−2dφ(λ) (4.6)

where φ is non negative, integrable and bounded in a neighbourhood of zero, and where 0 ≤ d < 1/2
If one of these conditions holds

• (C1) d = 0, i.e fX is bounded in a neighbourhood of zero

• (C2) E(T1) <∞

• (C3) the density of T1 satisfies

s(x) ∼ cx−γ when x→∞ (4.7)

where 1 < γ < 2 and c > 0 (in particular E(T1) =∞),

then the sampled process has a spectral density fY defined on [−π, π] (except eventually at the point
x = 0) by

fY (x) = lim
r→1−

g(r, x), (4.8)

where g is defined in (4.5).

Remark 3. It the process X has a short memory in the sense that X has a continuous bounded
spectral density fX , then the result of Proposition 4.3 is still valid .

Proof. See Appendix 6.4 for the proofs.

5 Comparison between subsampling and temporal aggrega-
tion

We start from X = (Xt)t∈R+ , a zero-mean second-order stationary continuous time second order
process with auto-covariance function σX(.) and from a random walk (Tn)n≥0 independent of X.
The i.i.d. sampling intervals Tj+1 − Tj = ∆j have a common distribution S supported by R+,
with P (∆0 = 0) = 0. Moreover, T0 = 0. We define the aggregated process as

Zh =

∫ Th+1

Th

Xt dt , h ∈ N (5.1)

In [13], the process is aggregated on the interval of the form [h∆, (h+1)∆] where ∆ is a determinis-

tic step. They study the correlation structure of the r-differenced series

{
5r
(∫ (h+1)∆

h∆

L(u)du

)}
h∈N

under the assumption that the rth derivative process of L is a CARFIMA(p,H, q) model. In par-
ticular, they give results on the behaviour of the correlation structure when ∆→∞.

In this part we compare the auto covariance functions of aggregated and sampled processes.

Lemma 5.1. The aggregated process defined in (5.1) is a stationary zero mean process and its
auto covariance function is given by

σZ(h) =

{
2
∫∫

0≤s<t σX(t− s)P (t < T1) dt ds if h = 0,∫∫
0≤s<t σX(t− s)P (0 ≤ s < T1, Th ≤ t < Th+1) dt ds, for h ≥ 1 .
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Proof. We have

E(Zh) = E

(∫ Th+1

Th

Xt dt

)
=

∫
E(Xt ITh≤t<Th+1

) dt

=

∫
E(Xt)E( ITh≤t<Th+1

) dt = 0

since X and T are independent.
Let p ∈ N and h ≥ 1,

E(Zh+pZp) (5.2)

= E

(∫ Tp+1

Tp

Xs ds

∫ Th+p+1

Th+p

Xt dt

)

=

∫∫
E(XsXt ITp≤s<Tp+1, Th+p≤t<Th+p+1

) dt ds

=

∫∫
s<t

σX(t− s)P (Tp ≤ s < Tp+1, Th+p ≤ t < Th+p+1) dt ds

= E
(
E
(∫∫

s<t

σX(t− s) I0≤s−Tp<∆p, ∆p+···+∆p+h−1≤t−Tp<∆p+···+∆p+h
du dv|Tp

))
= E

(
E
(∫∫

u<v

σX(v − u) I0≤u<∆p, ∆p+···+∆p+h−1≤v<∆p+···+∆p+h
dt ds|Tp

))
=

∫∫
u<v

σX(v − u)P (0 ≤ u < ∆p, ∆p + · · ·+ ∆p+h−1 ≤ v < ∆p + · · ·+ ∆p+h) du dv

=

∫∫
u<v

σX(v − u)P (0 ≤ u < T1, Th ≤ v < Th+1) du dv (5.3)

E(Z2
p) = E

(∫ Tp+1

Tp

Xs ds

∫ Tp+1

Tp

Xt dt

)

= 2

∫∫
s<t

E(XsXt ITp≤s<t<Th+p+1
) dt ds

= 2

∫∫
0≤u<v

σX(v − u)P (v < Th+1) du dv (5.4)

As (5.3) and (5.4) do not depend on p the stationarity of the process is proved.

Example 1. Poisson sampling.
In the case of Poisson sampling, the i.i.d. sampling intervals Tj+1 − Tj = ∆j have a common
exponential distribution. Let N be the counting process associated with the random walk T :

N(t) =
∑
j≥1

ITj≤t.

The process N has stationary and independent increments and, for every fixed t, N(t) has Poisson
distribution with parameter t` where ` = E(T1)−1. We denote p(t, k) = P (N(t) = k).

16



For h ≥ 1,

σZ(h) =

∫∫
0≤s<t

σX(t− s)P (N(s) = 0, N(t)−N(s) = h) dt ds

=

∫∫
0≤s<t

σX(t− s)p(s, 0)p(t− s, h) dt ds

=

∫∫
R+×R+

σX(x)p(y, 0)p(x, h) dx dy

=

∫
R+

σX(x)p(x, h) dx

∫
R+

p(y, 0) dy

Moreover ∫
R+

p(y, 0) dy =

∫
R+

P (T1 > y) dy = E(T1) = `−1

Thus we have

σZ(h) = `−1

∫
R+

σX(x)e−`x`hxh
1

h!
dx

Since the distribution of Th+1 is the gamma distribution with parameter (h+ 1, λ) we have

σZ(h) = `−2E(σX(Th+1))

leading to an explicit form of the autocovariance function for the aggregated process with a Poisson
sampling

σZ(h) = E(T1)2E(σX(Th+1)) = E(T1)2σY (h+ 1), for h ≥ 1 (5.5)

and with the same calculation

σZ(0) = 2E(T1)2E(σX(T1)) = 2E(T1)2σY (1) (5.6)

Lemma 5.2. If σX is non-increasing on R+, then for h ≥ 1

σZ(h) ≤ E(T1)2 σY (h− 1) (5.7)

Proof. In the r.h.s. of the relation σZ(h) = E(
∫
s<t

σX(t− s) I0≤s<T1≤Th≤t<Th+1
dt ds),

Th − T1 ≤ t− s ≤ Th+1

from which follows
σZ(h) ≤ E (T1(Th+1 − Th)σX(Th − T1)) .

Now, Th+1−Th is independent of (T1, Th) and Th−T1 is independent of T1. The result follows.

Thanks to Lemma 5.2, some properties of the sampled process can be directly transposed to
the aggregation scheme. The following proposition brings them together.

Proposition 5.3. 1. If σX is dominated by some positive bounded integrable and non increas-

ing function and if E(T1) <∞ then
∑
h≥0

|σZ(h)| <∞.

2. If E(T1) <∞ and σX(t) = t−1+2dL(t) where L is non-increasing slowing varying at infinity
and 0 < d < 1/2 then,

σZ(h) ≤ σ1(h) ∼ E(T1)1+2dh−1+2dL(h) h→∞

3. Suppose lim inf
x→∞

[
xβP (T1 > x)

]
> 0 for some β ∈ (0, 1) (implying E(T β1 ) =∞).

If σX is non-increasing on R+ and |σX(t)| ≤ cmin(1, t−1+2d) with 0 < d < 1/2 , then

|σZ(h)| ≤ Ch−(1−2d)/β .

Proof. These results are immediat consequences of Lemma 5.2 and respectively Proposition 2.3
with p = 1, Theorem 3.2 and Proposition 3.2.
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6 Appendix

6.1 Proof of Lemma 3.3

For the proof of Lemma 3.3, we need the following intermediate result:

Lemma 6.1. If E(T1) <∞ and X has a regularly varying covariance function

σX(t) = L(t)t−1+2d

with 0 < d < 1/2 and L slowly varying at infinity and ultimately nonincreasing. Then,

Var(σX(Th)) = ◦(L(h)2h−2+4d) as h→∞ (6.1)

Proof. By theorem 3.2, we have E(σX(Th)) ∼
h→∞

L(h)(hE(T1))−1+2d. To get the result, it is

enough to prove that
E(σX(Th)2) ∼

h→∞
L(h)2(hE(T1))−2+4d.

To prove the asymptotic behaviour of E(σX(Th)2), we will follow a similar proof as theorem 3.2:
• Let 0 < c < E(T1), and h ∈ N such that ch ≥ 1,

E(σX(Th)2) ≥ E
(
σX(Th)2 ITh>ch

)
≥ E

(
L(Th)2T−2+4d

h ITh>ch
)
≥ inf
t>ch
{L(t)2t4d}E

(
ITh>ch
T 2
h

)
Thanks to Jensen and Hölder inequalities,

E
(

ITh>ch
T 2
h

)
≥ E

(
ITh>ch
Th

)2

and P (Th > ch)2 ≤ E(Th)E
(

ITh>ch
Th

)
,

that is

E
(

ITh>ch
T 2
h

)
≥ P (Th > ch)4

E(Th)2
.

Summarizing,
E(σX(Th)2)

L(h)2(hE(T1))−2+4d
≥ inft>ch{L(t)2t4d}
L(h)2h4dE(T1)4d

P (Th > ch)4 (6.2)

Then, for c < E(T1), we have P (Th > ch)→ 1 and inft>ch{L(t)2t4d} ∼ L(ch)2(ch)4d. Finally, for
all c < E(T1),

lim inf
h→∞

E(σX(Th)2)

L(h)2(hE(T1))−2+4d
≥
(

c

E(T1)

)4d

Taking the limit as c→ E(T1), we get

lim inf
h→∞

E(σX(Th)2)

L(h)2(hE(T1))−2+4d
≥ 1

• Let 1
2 < s < τ < 1, t0 such that L(.) is nonincreasing and positive on [t0,∞) and h such that

µh,s − µτh,s ≥ t0, with the same notation as Theorem 3.2,

E(σX(Th)2) = E
[
L(Th)2T−2+4d

h ITh,s≥µh,s−µτh,s
]

+ E
[
σ(Th)2 ITh,s<µh,s−µτh,s

]
≤ L(µh,s − µτh,s)2

(
µh,s − µτh,s

)−2+4d
+ σX(0)2P

(
Th,s < µh,s − µτh,s

)
E(σX(Th)2)

L(h)2(hE(T1))−2+4d
≤
(
L(µh,s − µτh,s)

L(h)

)2(
µh,s − µτh,s
hE(T1)

)−2+4d

+ σX(0)2
P
(
Th,s < µh,s − µτh,s

)
L(h)2(hE(T1))−2+4d
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Finally

lim sup
h→∞

E(σX(Th)2)

L(h)2(hE(T1))−2+4d
≤ 1

Let return to the proof of Lemma 3.3:
Denote

Wn = L(n)−1n−1−2d
n∑
i=1

n∑
j=1

σX(Tj − Ti) = L(n)−1n−1−2dVar(XT1
+ · · ·+XTn |T1 , . . . , Tn)

we want to prove that Wn converges in probability to γd. For that, we will show that
E(Wn) −−−−→

n→∞
γd and Var(Wn) −−−−→

n→∞
0.

• As X is a centered process E(Wn) = L(n)−1n−1−2dVar(Y1 + · · ·+Yn). By theorem 3.2, we have

σY (h) ∼ L(h)(hE(T1))−1+2d h→∞,

then
L(n)−1n−1−2dVar(Y1 + · · ·+ Yn) −−−−→

n→∞
γd (6.3)

(see for instance [7] Prop 3.3.1 p.43).
and we obtain

E(Wn) −−−−→
n→∞

γd.

• Furthermore,

Var(Wn) = L(n)−2n−2−4dVar

 n∑
i=1

n∑
j=1

σX(Tj − Ti)


≤ L(n)−2n−2−4d

 n∑
i=1

n∑
j=1

√
Var(σX(Tj − Ti))

2

=

(
2n−1−2dL(n)−1

n∑
h=1

(n− h)
√

Var(σX(Th))

)2

Then, by Lemma 6.1,
√

Var(σX(Th)) = ◦(L(h)h−1+2d) and 2

n∑
h=1

(n−h)L(h)h−1+2d ∼ L(n)n1+2d

d(1 + 2d)
.

We get

2

n∑
h=1

(n− h)
√

Var(σX(Th)) = ◦(L(n)n1+2d)

Finally, Var(Wn) = ◦(1) which means that Var(Wn) −−−−→
n→∞

0. We obtain

Wn
L2, p−−−−→
n→∞

γd.

6.2 Poisson kernel

We recall some properties of the Poisson kernel used in the proof of Appendix.

Ps(t) =
1

2π

(
1− s2

1− 2s cos(t) + s2

)
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for s ∈ [0, 1), and some of its properties (see for instance [8] for the proofs) :

• ∀0 ≤ s < 1− η < 1, t ∈ R, 0 ≤ 2πPs(t) ≤ 2/η (6.4)

• ∀x ∈ (−π, π), r ∈ [0, 1),
1

4

∫ π

−π

(
1

π
+ Prρλ(τλ − x) + Prρλ(τλ + x)

)
dλ = 1 (6.5)

• if 0 < δ < |t| ≤ π, then Ps(t) < Ps(δ) (6.6)

• 2π sup
0<s<1

Ps(t) =

{
1/| sin(t)| if t ∈ (−π/2, π/2)

1 if t ∈ (−π,−π/2] ∪ [π/2, π)
(6.7)

where ρλ and τλ are defined by Ŝ(λ) = E(eiλT1) = ρλe
iτλ .

6.3 Proof of Lemma 4.2

Let us consider the two z-transforms of the bounded sequence (σY (j))j :

σ−Y (z) =

∞∑
j=0

zjσY (j), |z| < 1 (6.8)

σ̂+
Y (z) =

∞∑
j=0

z−jσY (j), |z| > 1 (6.9)

On the first hand, as E
(∫

R |e
ixTjfX(x)|dx

)
=
∫
R fX(x)dx = E[X2

0 ] < ∞, we deduce by Fubini’s
theorem that

σY (j) = E(σX(Tj))

= E
(∫

R
eiλTjfX(λ)dλ

)
=

∫
R
Ŝ(x)jfX(λ)dλ (6.10)

Gathering (6.10) with (6.8) and (6.9), we have as

∞∑
j=0

∫
R
|zjŜ(λ)jfX(λ)|dλ ≤

∞∑
j=0

|z|j
∫
R
fX(λ)dλ <∞, for |z| < 1

∞∑
j=0

∫
R
|z−jŜ(λ)jfX(λ)|dλ ≤

∞∑
j=0

|z|−j
∫
R
fX(λ)dλ <∞, for |z| > 1

that,

σ̂−Y (z) =

∫
R

1

1− zŜ(λ)
fX(λ)dλ, |z| < 1

σ̂+
Y (z) =

∫
R

1

1− Ŝ(λ)/z
fX(λ)dλ, |z| > 1

On the second hand, let Cr be the circle |z| = r. If 0 < r < 1, for all j ≥ 0

1

2iπ

∫
Cr

σ̂−Y (z)z−k−1dz =
1

2π

∫ π

−π
(reix)−kσ̂−Y (reix)dx

=
1

2π

∞∑
j=0

rj−kσY (j)

∫ π

−π
ei(j−k)xdx

= σY (k)
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and, similarly, if r > 1

1

2iπ

∫
Cr

σ̂+
Y (z)zk−1dz =

1

2π

∫ π

−π
(reix)kσ̂+

Y (reix)dx

=
1

2π

∞∑
j=0

rk−jσY (j)

∫ π

−π
ei(k−j)xdx

= σY (k)

We finally have

σY (k) =


1

2π

∫ π

−π
e−ikx

(
r−k

∫
R

1

1− reixŜ(λ)
fX(λ)dλ

)
dx if r < 1,

1

2π

∫ π

−π
eikx

(
rk
∫
R

1

1− e−ixŜ(λ)/r
fX(λ)dλ

)
dx if r > 1,

(6.11)

σY (k) =


r−k

∫ π

−π
eiky

(
1

2π

∫
R

1

1− re−iyŜ(λ)
fX(λ)dλ

)
dy if r < 1,

(1/r)−k
∫ π

−π
eikx

(
1

2π

∫
R

1

1− (1/r)e−ixŜ(−ρ)
fX(−ρ)dρ

)
dx if 1/r < 1,

(6.12)

As f is an even function and changing r for 1/r when r > 1 leads to

σY (k) = r−k
∫ π

−π
eikxg̃(r, x)dx, ∀r ∈ [0, 1)

where

g̃(r, x) =
1

4π

∫
R
fX(λ)

(
1

1− re−ixŜ(λ)
+

1

1− re−ixŜ(−λ)

)
dλ (6.13)

As the first member does not depend on r, we have

σY (k) = lim
r→1−

∫ π

−π
eikxg̃(r, x)dx, ∀r ∈ [0, 1)

To conclude the proof we show that the last integrand can be expressed from the Poisson
Kernel. Firstly,

Im

(
1

1− re−ixŜ(λ)
+

1

1− re−ixŜ(−λ)

)

=
1

2i

(
1

1− re−ixŜ(λ)
+

1

1− re−ixŜ(−λ)
− 1

1− reixŜ(−λ)
− 1

1− reixŜ(λ)

)
is an odd function of λ. Hence the imaginary part of the integrand in (4.4) disappears after

integration. Secondly, let z = 1− re−ixŜ(λ) and z′ = 1− re−ixŜ(−λ)

Re

(
1

z
+

1

z′

)
=

1

2

(
1

z
+

1

z′
+

1

z
+

1

z′

)
=

1

2

(
z + z

|z|2
+
z′ + z′

|z′|2

)
and

z + z = 1− re−ixŜ(λ) + 1− reixŜ(−λ)

= 1 + (1− re−ixŜ(λ))(1− reixŜ(−λ))− r2|Ŝ(λ)|2

= 1 + |z|2 − (rρλ)2
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|z|2 = |1− re−ixŜ(λ)|2

= (1− rρλ cos(τλ − x))2 + (rρλ sin(τλ − x))2

= 1− 2rρλ cos(τλ − x) + (rρλ)2

Finally

Re

(
1

1− re−ixŜ(λ)
+

1

1− re−ixŜ(−λ)

)
=

1

2

(
1− (rρλ)2

|1− re−ixŜ(λ)|2
+

1− (rρλ)2

|1− re−ixŜ(−λ)|2
+ 2

)
(6.14)

and the proof is over.

6.4 Proof of Proposition 4.3

Firstly, if x 6= 0, g(r, x) has a limit as r → 1−. Hence, we have in (4.4) that

σY (k) = lim
r→1−

∫ π

−π
eikxg(r, x)dx,

the proof of the proposition simply consists in exchanging the limit and integration in order to
show that

σY (k) =

∫ π

−π
eikx lim

r→1−
g(r, x)dx.

implying that
fY (x) = lim

r→1−
g(r, x).

Now we prove that conditions of Lebesgue’s theorem hold for (4.4).

6.4.1 Under the condition (C1)

We have
|Ŝ(λ)| < 1, ∀λ > 0 and |Ŝ(λ)| → 0 as |λ| → ∞

(see [6] p.501 and p.514). Hence, thanks to the continuity of |Ŝ(λ)|,

sup
|λ|>ε

|Ŝ(λ)| < 1, ∀ε > 0.

The integral (6.13) is split in two parts: choosing ε ∈ [0, π] such that fX is bounded on [−ε, ε] and
using the fact that the real part of the integrand in (6.13) is positive (see (6.14)).

∫ ε

−ε
fX(λ)Re

(
1

1− re−ixŜ(λ)
+

1

1− re−ixŜ(−λ)

)
dλ

≤ sup
y∈[−ε,ε]

[fX(y)]

∫ ε

−ε
Re

(
1

1− re−ixŜ(λ)
+

1

1− re−ixŜ(−λ)

)
dλ

which leads, thanks to the property (6.5) and the equation (6.14) between the integrand and the
Poisson kernel, to∫ ε

−ε
fX(λ)Re

(
1

1− re−ixŜ(λ)
+

1

1− re−ixŜ(−λ)

)
dλ

≤ 4π sup
y∈[−ε,ε]

[fX(y)]
1

4

∫ π

−π

(
1

π
+ Prρλ(τλ − x) + Prρλ(τλ + x)

)
dλ

= 4π sup
y∈[−ε,ε]

[fX(y)] . (6.15)
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Now,

∫
R\[−ε,ε] fX(λ)Re

(
1

1− re−ixŜ(λ)
+

1

1− re−ixŜ(−λ)

)
dλ

= π

∫
R\[−ε,ε]

fX(λ)

(
1

π
+ Prρλ(τλ − x) + Prρλ(τλ + x)

)
dλ.

Applying the property (6.4) of the Poisson kernel with

s = rρλ < ρλ, t = τλ ± x, and ηε = 1− sup
|λ|>ε

|Ŝ(λ)|

yields,∫
R\[−ε,ε]

fX(λ)Re

(
1

1− re−ixŜ(λ)
+

1

1− re−ixŜ(−λ)

)
dλ ≤

(
1 +

2

ηε

)∫
R\[−ε,ε]

fX(λ)dλ

≤
(

1 +
2

ηε

)∫
R
fX(λ)dλ. (6.16)

Gathering (6.15) and (6.16) leads to

|eikxg(r, x)| ≤ 4π sup
y∈[−ε,ε]

[fX(y)] +

(
1 +

2

ηε

)∫
R
fX(λ)dλ, ∀r ∈ [0, 1), ∀x ∈ (−π, π)

and the proof is complete via Lebesgue’s theorem.

6.4.2 Under the condition (C2)

The proof consists in finding an integrable function g(x) such that

|g(r, x)| ≤ g(x) ∀r ∈ [0, 1), x ∈ (−π, π). (6.17)

For that purpose, we need the following estimation of Ŝ(λ) near zero.

|1− Ŝ(λ)| =
∣∣∣(1− eiλ)

∫
R+

1− eixλ

1− eiλ
dS(x)

∣∣∣ = |1− eiλ|
∣∣∣ ∫

R+

e
i(x−1)λ

2
sin(xλ/2)

sin(λ/2)
dS(x)

∣∣∣
≤ |1− eiλ|

∫
R+

(1 + x)dS(x)

=
∣∣∣2i sin(λ/2)eiλ/2

∣∣∣ (1 + E(T1)) = 2 | sin(λ/2)| (1 + E(T1)) ≤ |λ|(1 + E(T1))

= C|λ|. (6.18)

Now we use the fact that for |u| ≤ u0 ≤ 1, we have

|1− u| ≥ 1− u0, | sin(arg(1− u))| ≤ u0 and | arg(1− u)| ≤ πu0/2.

From this and inequality (6.18) we obtain

|λ| ≤ 1

C
=⇒ |τλ| ≤

πC|λ|
2

(6.19)

Recall equation (4.5):

g(r, x) =
1

4

∫
R
fX(λ)

(
1

π
+ Prρλ(τλ − x) + Prρλ(τλ + x)

)
dλ
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Let λ0 be such that φ is bounded on [−λ0, λ0]. For a fixed x ∈ (0, π), denoting

b(x) = min

{
λ0,

1

C
,
x

πC
,

2(π − x)

πC

}
,

we separate R into four intervals:

(−∞,−b(x)), [−b(x), 0), (0, b(x)], ]b(x),+∞).

Let us treat the two last intervals (the proof for the other ones is similar) and concerning the
integrand in (4.5) we only treat the part Prρλ(τλ − x):

I1(x) =

∫ b(x)

0

fX(λ)Prρλ(τλ − x)dλ and I2(x) =

∫ +∞

b(x)

fX(λ)Prρλ(τλ − x)dλ.

• Bounding I1:

From (6.19), since |λ| ≤ 1
C for λ in (0, b(x)], we have |τλ| ≤ πC|λ|

2 ≤ πCb(x)
2 ≤ x/2 which implies

x

2
≤ |τλ − x|

and |τλ − x| ≤ |τλ|+ x ≤ πCb(x)
2 + x ≤ π.

Via properties (6.6) and (6.7), this leads to

Prρλ(τλ − x) ≤ Prρλ(x/2) ≤ 1

2π

1

sin(x/2)
≤ 1

2x
.

Consequently

I1(x) ≤
sup[0,b(x)] φ(.)

2x

∫ b(x)

0

λ−2ddλ =
sup[0,b(x)] φ(.)

2x

b(x)−2d+1

−2d+ 1
≤ C1x

−2d

since b(x) ≤ x/(πC) and −2d+ 1 > 0.

• Bounding I2:
When λ > b(x), we have λ−2d ≤ C2 max{x−2d, 1} for some constant C2. Hence

I2(x) ≤ C2 max{x−2d, 1}
∫
R
φ(λ)Prρλ(τλ − x)dλ. (6.20)

Since φ is bounded in a neighbourhood of zero, the arguments used to prove Proposition 4.3 with
condition (C1) show that the integral in (6.20) is bounded by a constant.

Finally I1 + I2 is bounded by an integrable function g(x) and the proposition is proved.

6.4.3 Under the condition (C3)

• We first give the local behaviour of Ŝ(λ) under assumption (4.7).

1− Ŝ(λ) =

∫
R+

(1− cos(λx))s(x)dx+ i

∫
R+

sin(λx)s(x)dx

From the assumption on s,∫
R+

(1− cos(λx))s(x)dx ∼
λ→0

c

∫
R+

(1− cos(λx))x−γdx

= c|λ|γ−1

∫
R+

(1− cos(y))y−γdy

=: c|λ|γ−1cγ

24



and ∫
R+

sin(λx)s(x)dx ∼
λ→0

c

∫
R+

sin(λx)x−γdx

= c|λ|γ−1

∫
R+

sin(y)y−γdy

=: c|λ|γ−1dγ .

It is clear that cγ > 0, and dγ > 0. Then,

|λ|1−γ(1− Ŝ(λ)) −→
λ→0

Z, where Re(Z) > 0 and Im(Z) > 0. (6.21)

• In the sequel we take λ > 0. If λ is small enough (say 0 ≤ λ ≤ λ0),

c3λ
γ−1 ≤ τλ ≤ c′3λγ−1 where c3 and c′3 are negative constants (6.22)

and

1− c4λγ−1 ≤ ρλ ≤ 1− c′4λγ−1 where c4 and c′4 are positive constants. (6.23)

Let λ1 such that φ is bounded on [0, λ1] and for a fixed x ∈ (0, π), define

c(x) = min

{
λ0, λ1,

(
π − x
−c3

)1/(γ−1)

,

(
x

−c′3

)1/(γ−1)
}
.

we deduce from (6.22) for λ ∈ (0, c(x))

0 < x− c′3λγ−1 ≤ x− τλ ≤ x− c3λγ−1 ≤ π (6.24)

Then we split R into four intervals

(−∞,−c(x)), [−c(x), 0), (0, c(x)], (c(x),+∞).

We only consider the integral on the two last domains and the part Prρλ(τλ−x) of the integrand
in (4.5).
•When λ ∈ (0, c(x)], inequality (6.24) and properties (6.6) and (6.7) of the Poisson kernel lead

to
Prρλ(τλ − x) ≤ Prρλ(x− c′3λγ−1)

Prρλ(x− c′3λγ−1) ≤

{
1

2π sin(x−c′3λγ−1) ≤
1

4(x−c′3λγ−1) if x− c′3λγ−1 ∈ [0, π/2]
1

2π ≤
1

2(x−c′3λγ−1) if x− c′3λγ−1 ∈ [π/2, π]
(6.25)

I1(x) =

∫ c(x)

0

fX(λ)Prρλ(τλ − x)dλ ≤ sup
[0,λ1]

φ(.)

∫ c(x)

0

C1λ
−2d

x− c′3λγ−1
dλ

≤ C ′1x
−1

∫ c(x)

0

λ−2d

1− c′3x−1λγ−1
dλ

≤ C ′2x
−2d+1
γ−1 −1

∫ 1

0

u
−2d+1
γ−1 −1

1 + u
du.

Since −2d+1
γ−1 − 1 > −1, the last integral is finite, implying

I1(x) ≤ C ′3x
−2d+1
γ−1 −1,

which is an integrable function of x.
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• Finally,

I2(x) =

∫ +∞

c(x)

fX(λ)Prρλ(τλ − x)dλ ≤ c(x)−2d

∫
R
φ(λ)Prρλ(τλ − x)dλ

which has already been treated in Proposition 4.3 with condition (C1) since φ is bounded near
zero: ∫

R
φ(λ)Prρλ(τλ − x)dλ ≤ C4

and x→ c(x)−2d is an integrable function since −2d
γ−1 > −1.

Gathering the above results on I1 and I2 completes the proof.
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