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1 Introduction

The long-range dependent time series have diverse applications in many fields, including hydrol-
ogy, economics and telecommunications (see [I] ch.2). Most of the papers on this topic consider
processes with discrete-time. However some models and estimation methods have been extended
to continuous-time processes (see [11, 16} 5, [4]). In [II], Tsai and Chan introduced the continuous-
time autoregressive fractionally integrated moving average (CARFIMA (p,H,q)) model. Under the
long-range dependence condition H € (1/2,1), they exhibit the autocovariance function of the
stationay CARFIMA process and its spectral density function (see [12]). Theses properties are
extended to the case H € (0,1) in [I4]. In [I6], continuous-time fractional ARMA processes are
constructed. Under some conditions, these processes are zero mean stationary Gaussian and they



give results on their spectral density and covariance function. Moreover, Viano et al. specify the
asymptotic dependence of these processes. In [5], Comte and Renault presents a family of long
memory models: the continuous time moving average fractional process. The statistical inference
for continuous-time processes is generally constructed from the sampled process (see [1T], 12 [3, 4].
Different scheme of sampling can be considered. In [I1], the estimation method is based on the
maximum likelihood estimation for irregularly spaced deterministic time series data. Under the
assumption of identifiability, Chambers [3] considers the estimation of the long memory parameter
of a continuous time fractional ARMA process with discrete time data using the low-frequency be-
haviour of the spectrum. Comte [4] studied two methods for the estimation with regularly spaced
data : Whittle likelihood method and the semiparametric approach of Geweke and Porte-Hudak.
We are interested in irregularly spaced data when the sampling intervals are independent and
identically distributed positive random variables. In the light of previous results in discrete time,
we there was an effect of the random sampling on the dependence structure of the process. Indeed
[8] show that the intensity of the long memory is preserved when the law of sampling intervals is
L', but they also show situations leading to a reduction of the long memory.

We start from X = (X;)¢er+, a second-order stationary continuous time process with auto-
covariance function ox (.) and from a random walk (7},),>0 independent of X. The i.i.d. sampling
intervals T 11 —T; = A; have a common probability density function s supported by R*. Moreover,
To = 0. In the remainder of this paper, without loss of generality, we suppose that X is a zero-mean
process.

We adopt the most usual definition of long memory. Namely, for a stationary process U having
a covariance function oy

/ oy (x)| dz = 0o in the continuous-time case, Z o (h)] = 0o in the discrete-time case.
R+
h>0

Two sampling methods, both based on the random walk (T,),>0, are investigated hereafter.
Sections and [4] are devoted to sampled processes at random instants. More precisely, we
consider the discrete-time process Y defined by

Y,=Xr, n=01.... (1.1)

In section [2, we study the behaviour of the sampled process in general case. We prove that in the
case of a gaussian initial process, the sampled Y is not gaussian, that under rather weak conditions
on the covariance ox, sampling a short memory X process always produces a short memory Y,
and that when the sampling law satisfies E(T7) < oo the sampled process Y has long memory if
it is the case for X.

In section [3] we present the more specific situation of a regularly varying covariance where
preservation or non-preservation of the memory can be quantified. In particular we prove that for
heavy tailed sampling law, a long memory X can give raise to a short memory Y.

Section [4] presents some cases of preservation of the existence of a spectral density when the
spectrum of X is absolutely continuous.

Section [f] turns to a temporal aggregation scheme. The discrete-time sampled process Z is
obtained by aggregating the process X over the intervals defined by the random walk

Th+1
Iy = / X; dt.

Th

We show that from the point of view of transmission of the memory, the results are similar to
those obtained in the previous sections.

2 General results in time domain.

Let Y be the stationary discrete-time second order process defined by

Y,=Xp, n=01... (2.1)



with covariance sequence

2.1 Distribution of the sampled process

Proposition 2.1. Let X be a strictly stationary process. Then, the sampled process Y is a strictly
stationary discrete-time process, ie the joint distribution of (Y, 4p, ..., Yk, +p) does not depend on
p for any ki,...k, € Nandn > 1.

Proof. Let n >1,peNand 0 < ky <--- < k. For (y1,...,yn) € R"

P(Yiivp <yis-- Yiotp < Un)
=P X1, ., <y1, oo 5 X7 S Un)
=E(P(Xagt 484, 4p1 SYL oo s XAgtd gy ppor < UnlBos oo Agyip-1))
by the strict stationarity of X, we get
= ]E(P(XAP+"~+Ak1+p71 <Y, ... 7XAp+"‘+Akn+p—1 < yn|A0, Akn+p—1))
= P(Xvgtt Ui, S YL - 5 XUgtot Ui, o1 < Yn)
where U; = A, are i.i.d with density s
=PYr, <y1, - Yi, <¥n)
O

This proposition gives a first result on the distribution of the sampled process: the normality
of the process is not preserved by random sampling.

Proposition 2.2. If X is a Gaussian process then the marginals of the sampled process Y are
Gaussian. Furthermore, for ox not an almost everywhere constant function on the support of s,
Y is a Gaussian process if and only if the sampling is deterministic.

Proof. Let ®;; denote the characteristic function of the random variable U.
We have _
Dy, (1) = E(E(e" ™ [T})).

Given T}, the conditional probability distribution of X, is the centered normal distribution with
variance ox (0). Then

Dy, (1) = e—ox(0%/2
and Vi, ~ N (0,0x(0)).

It is clear that if A; = h for all i then Y is Gaussian.
Suppose Y is a Gaussian process, then Y7 + Y5 is a Gaussian variable,

Dy, 1y, (t) = e~ Var(Vi+Y2)t*/2 _ =0 (0)t? ,—t*E(ox (Ta—T1))
and
Py, 1y, (1) = Pxp 4+ X7, (1)
=& (o0 [ (7 (%, ) )]
_ efa(o)ﬁE(eft%x(TrTl))_

Then, for all t, eE(-t’ox(Ta=T1)) — E(e—tz‘TX(T?_Tl)). It is the equality case in the Jensen
inequality, then ox (T — T7) is constant almost surely. O



In Figure[] we illustrate the lack of normality for the sampled process. For X Gaussian process
with autocovariance function ox (t) = (1+t%9)~1, we simulated in Figure (a) the joint probability
density function of the centered couple (Y7, Y3) for intervals A; having an exponential distribution
with mean 1. To do that, we simulate first the time interval T — T according to an exponential
distribution with mean 1. Then, for each simulated value of T2—T'1, the couple (Y7, Y2) is Gaussian
and is simulated using Cholesky decomposition of the variance matrix (see [9]). We simulate by
this method p = 200000 realizations of (Y7, Ys) and find the bivariate density of (Y7,Y2) by kernel
method. In (b), we represent the density of a centered Gaussian couple (Wi, Ws) with the same
variance matrix as (Y1,Y2): E(W}) = E(W3) = ox(0) and E(W;W2) = E(ox(A1)) in order to
compare the behaviour of the sampled process with the corresponding gaussian one. In this case,
the bivariate density has an explicit form

-1
Fowy way (w1, ws) = <27n/det(21,2)> exp (—%(wl ﬂ&)zi;(wl wg)T)

where X 2 is the common variance matrix. The form of the distribution of sampled process differs
widely from Gaussian distribution.

N N
— -
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- —
| |
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Figure 1: In Figure (a), the density of the centered couple (Y7, Y>3) is represented for intervals A;
having an exponential distribution with mean 1 and gaussian initial process with autocovariance
function ox (t) = (1 + t°9)~1. In (b), we represent the bivariate density of a centered Gaussian
vector (W7, Ws) with the same variance matrix as (Y7,Y2): E(WE) = E(W2) = ox(0) and
E(W1W2) = E(Ox(Al)).

2.2 Memory of the sampled process

Proposition 2.3. Let p > 1. If there is a positive bounded function o.(.), non increasing on
R*, such that

1. |UX(t)| SJ*(t)a VtGRJr

2/ o?(t)dt < 0o
R+



then, the sampled process Y has a covariance function in £, i.e Z loy (h)|P < oo.
h>0

Remark 1. The proposition confirms an intuitive claim: random sampling cannot produce long-
memory from short memory. The particular case p = 1 implies that if X has short memory then,
the sampled process Y has short memory too.

Proof. Tt is clearly enough to prove that
SOE(of(Th) < o (2.3)
h>1

We use inequality

Tht1
Ahaf(Th + Ah) == (Tthl - Th)af(Th+1) S / O’f(t)dt, Vh Z 0. (24)
Th
Taking expectation of the left member and noticing that A, and T}, are independent gives, for
every a > 0,

E (Ano?(Th + Ap)) = /R B (02(Ty + ) dS(u)
+oo

uE (o7 (T, + 1)) dS(u) + / WE (o7 (Th +u)) dS(u)

a

Y

+oo
ulE (6P (T, + u)) dS(u) + a/ E (o?(Th 4 u)) dS(u)

/Oa WE (7 (Ty + ) dS(u) + a (/R E (07(Th + u)) dS(u) — /OQE(UE(T;L +u))dS(u))

(u—a)E (o2(Th + u)) dS(u) + aE (07 (Th11))

+

Il
S

Now, of(Th, + u) < o¥(T),) and u — a < 0 for u € [0, a], leading to

E (Ano?(Th + Ay)) > ( /[ (u — a>ds<u>> E (0?(T})) + aE (02 (Th1)) (2.5)

.al

It is possible to choose a such that S([0,a]) < 1. For such a choice we obtain
0< —/ (u—a)dS(u) =:£(a) < aS([0,a]) < a.
[0,a]

Summing up inequalities ([2.5)) gives, for every K >0

0o K
E|Y Awo?(Thia)| = Y [~U@)E(}(Th)) + aB (0} (Thia))]
h=1 h=1
= a[E(ol(Tx+1)) = E(0L(Th)] + (a — £(a) D E(o}(Th))
B h=1
> —ao?(0)+ (a—(a)) Y E(o¥(Th)),
h=1
which implies
E | An0?(Thi)| = —ac?(0) + (a—£(a)) Y E(o2(T))
h=1 h>1




Now, using ([2.4))

E (Y Anol(Thia) | <E Z/

R>1 r>17Th

Th+1

aP(t)dt S/ o?(t)dt < oo
R+

and consequently, as a — £(a) > 0
> E(02(Th)) < oc. (2.6)
h=1
O

Proposition 2.4. When ox(.) is ultimately positive and non-increasing on RT, i.e there exists
to > 0 such that ox(.) is positive and non increasing on the interval [ty,c0), and E(Ty) < oo,
then, if X has long-memory, so has the sampled process Y .

Proof. Let hy be the (random) first index such that Ty, > to. For every h > ho,

Thi1
/ ox(t)dt < (Thy1 — Th)ox (Th). (2.7)
Th
Summing up gives
Thi1
> ]Ihzho/ ox(t)dt < Y TnzngAnox(Th).
h>1 Th h>1

Now, taking expectations, and noticing that, since E(T7) = E(A1) > 0, the law of large numbers
implies that T}, =23 0o, and in particular hy < oo a.s., whence

E(/OO aX(t)dt> < E
Th

0

Z Apox(Th) Hhogh] .

h=1

In this inequality, the left hand side is +o00, and, Ay, being independent of o x (T},) Iy, <p, the right

hand side is E(T}) Z E(ox (Th) Iny<n). Consequently, since E(T7) < oo,
h>1

ZE(O’X(Th) thgh) = 0. (28)

h>1

It remains to notice that E(hg) < oo (see for example [6] p.185), which implies

> E(lox (Tn)|Tng>n) < 0x(0) D P(ho > h) < ox(0)E(ho) < oo,
h>1 h>1

leading, via D to Z |E(ox (Th))| = oo.

h>1

3 Long memory processes

In this section, we consider long memory processes with specific form of covariance function. The
assumption is satisified, for example by CARFIMA models.

Definition 3.1. e A function L on [0,00) is said to be slowly varying at infinity if L is positive
on [tg, 00) for some tyg > 0 and

=1, VYa >0



o A function f on [0,00) is said to be regularly varying at infinity with index 6 € R, if f is
positive on [tg,00) for some tog > 0 and

flaz)

gc_1>r_|rr10o f(x):a’ Ya >0

Now, the auto-covariance oy is regularly varying function at infinity of the form
ox(t) =t 1T2L@),  vt>1 (3.1)

where L is slowly varying at infinity and ultimately non-increasing. This means that the parameter
0 < d < 1/2 summarizes the memory of X and in order to be more specific about results of Section
we describe what can happen to d after sampling.

3.1 Preservation of the memory parameter when E(77) < oo

Theorem 3.2. Under hypothesis , if 0 < E(T1) < oo, the discrete time process Y has a long
memory and its covariance behaves as

oy (h) ~ (hE(T}))"**2IL(hR)  h— o0
Remark 2. We can write
oy (h) = (RE(Ty)) " **4L(h)
where L is slowly varying at infinity and L(h) ~ L(h) as h — oco.
Proof. e We show first that

. oy (h)
lim inf >1
hsee (RE(Ty))~1+24L(h) =

Let 0 < ¢ < E(T1), and h € N such that ch > 1,

]I cn
ov(h) > E(ox(Th)Inse) > inf {L(1)P)E <T>’)
t>ch Ty,

Thanks to Holder inequality,

(P(T), > ch))?* < E(T,)E (HT}ZC}L) ’

that is

Insen\ - (P(Ty > ch))?
E( T, )Z BE(TY)

Summarizing,

oy (h) . (P(Th > ch))®
TR 2 o O T (32)
Using [2] (Th 1.5.3, p23), we obtain, since d > 0
ti>nfh{L(t)t2d} ~ L(ch)(ch)** as h— oo. (3.3)

The law of large numbers implies that T, /h <25 B(Ty). As ¢ < E(T}), we have P(T}, > ch) — 1
and the r.h.s. of (3.2) tends to (¢/E(T}))** as h — oo. Finally, for all ¢ < E(TY),

lim inf ov (h) >( ¢ )>2d

hsee (hE(Ty))-*24L(h) = \E(Ty



Taking the limit as ¢ — E(T}), we get the lower bound.
e Let us now prove
lim sup ov ()
WP (R (Ty)) 2L (h)

We use a similar proof to that presented in [I0] (Thm 1). We denote for h > 1 and 0 < s < 1,

<1

Hn = E(Th) = hE(Tl)
h—1
Th,s = ZAJ ]IA]‘SHZ/\/E
7=0

pns = E(Ths)=hE (AO HAoguzNﬁ)

Since E(T1) < oo, we have that for 1/2 < s < 1, s ~ fp, as h — oo.
Let % < s <71 <1, tg such that L(.) is nonincreasing on [tg,00) and h such that pp s — Hh.s = tos

UY(h) = E [Ti:l+2dL(Th) HTh,sZMh,s*M;,J +E [T};1+2dL(Th) ]ITh,s<Mh,s*M;T,,J
= M+ M,
_ r \—1+2d .
My < BT L) T g, | < (s = 07,0 ™ Llans = 117,0)
T —142d T
_ fth,s = W s L(pn,s — pp 5)
= (RE(T1)) *L(h) [ e — 3.4
oo\ —142d
Asr<1and1/2<s<1,(%) — 1 as h — oo. Then,
Bh,s—Hh s
L(pns —pj,) L (hE(Tl)i;LE(TJ; ) L(RE(TY))
L(h) L(hE(T1)) L(h)
As we have uniform convergence of % to 1 in each interval [a,b] and as %ﬁ%s — 1, we
get
Lpth,s — 1, o)
s ,S 1
Lw
as h — oo. We obtain
s \—1+2d . _
My < (pns = Hh.s) L(pn,s — phs) ~ (RE(T1)) " 2L(h) (3.5)

Since sup |ox(t)] = 0x(0) < oo, we have
teR+

My < ox(0)P (Ths < pns — pihs) = 0x(0)P (=Ths + E(Ths) > pf, )

We apply Hoeffding inequality to variables Z; = —A; HAKHZ/\/E which are a.s in [—\’;—%, 0] to get,

M‘r 2
My < ox(0)exp | —2 (h)
Hp

2
and <'uhs’s> ~ (hE(T1))*"~%). Finally
Hh

My = o (HE(Ty))~+2L(h) (3.6)
With (3.5) and (3.6), we get the upper bound.



Lemma 3.3. If X is a Gaussian process with regularly varying covariance function

ox(t) = L)t~ 1124 with 0 < d < 1/2 and L is slowly varying at infinity and ultimately non-
increasing.

Then, if E(T1) < oo

L(n) "0 72 Var (X, + -4+ X1, [Th 5., Tn) —2— 74 (3.7)
n—oo
—1+2d
where vq 1= %
Proof. See Appendix [6.1} O
[nT]
Theorem 3.4. Let S, ( Z 0 <7 <1, be the partial-sum process. If X is a Gaussian

process with reqularly varymg covariance function ox(t) = L(t)t~'+24, with 0 < d < 1/2 and L
slowly varying at infinity and ultimately non increasing. Then, if E(T1) < co, we get

'y;1/2L(n)_1/2n_1/2_d5n(.) = Bij244(.),  in D[0,1] with the uniform metric. (3.8)
where Bya44 is a fractional Brownian motion with parameter 1/2 +d and ~q : %

Proof. We first prove the weak convergence in finite-dimensional distributions of
-1/2 - 1/
v / L(n) 1/2,,~1/2 dSn(')

to the corresponding finite-dimensional distributions of By /244(.).
It suffices to show that for every k> 1, by, ... ;b € R, 0 <tqy,...,t; <1,

A =7, PL) P 2 by S (1) + - + S (t))

satisfies A, 4, b1 By joyq(ty) + -+ bpByjora(te).
Denote T = (T3, ..., T max (t,)])> let calculate the characteristic function of A,

Dy ()= ]E(eitAn) _ ]E(e—é\/ar(An\T‘”)))
and

Var(A |7y

Z bibjyg ' L(n) "t T HE(S, (1) S (1) T™)

i,j=1
k -1 —-1,,—1-2d
bibjv, L(n)"'n " ! :

=y 2 Var (S, (£:)|T™) + Var(S,, (t;)|T™) — Var(S, (t:) — S (t;)|T" ))]

i,j=1
By Lemma 3.3

L(n) ™ (Vi YTy T)
then
L) Va8, (1)) 2 1152
n—oo

for t; > t;

7 L) 2 N ar (S () — S (t)|T) = 77 Lin) ™ 0 "2 Var (Vigg 1 + -+ + Yiar, [T0)

— s (t; — ;)2

n—roo



Finally,

Var(A,[T™) m Z bibjr1/2+a(tis t;)
4,j=1

where 71 /54 is the covariance function of a fractional Brownian motion.

By continuous mapping theorem, for ¢t € R fixed, e~ 5 Var(An[T() — P e 7 > 8 o bibi1 /2 a(tonts)
n—oo

and ;
p (|e,‘7Var(An‘T(n))|) < ].) =1,

then by dominated convergence theorem,

2 n 1 2
— Var(A,|T™) _L =t X bibriasaltity)

e e

n—oo

In particular,
4 (t) S e % f,jzl bibjr1/2+d(tivtj).
n—oo
The sequence of partial-sum processes 7, 2y L(n)~Y?n=1/2-48, () is tight with respect to the
uniform norm (for the proof of the tightness, see [7] Prop 4.4.2 p78) and then we get the convergence

in D[0, 1] with the uniform metric. O

As a consequence of this limit theorem, we valide the nonparametric estimation method based
on the re-scaled range ( R/S) statistics to estimate d from the sampled process Y. The R/S
statistic is defined as follows

and

Proposition 3.5. Under the same assumptions as Theorem [3.4), we have

1 Rn d L Yd
L(n)1/2n1/2+d57n n—oo R(1) = ax(0) (org?qu/Hd( ) - 0r<nt1£11 Bl/2+d(t))
where BY) a(t) = Bijaya(t) — tByijaya(1) is a fractional Brownian bridge and v is defined in
Lemmaﬁéﬂ

Proof. Using the equality

k o k k& k k
S0 T =¥ 2 Yo v =5 (1) - h5a0)
j=1 j=1 J=1

and the convergence of the partial-sum process in Theorem we get that

Rn d
L(n)1/2n1/2+d noo” v ¥ (Orgta<X1 Bl/%d( )= Ogltlgl B1/2+d(t))

Then, we study the convergence in probability of
IR 1
= ; Vi =D

10



n
Since Var Z Y| ~ Cn'*24, we have for ¢ > 0
Jj=1

Var ZY — 0

n—oo

1 n
Pl |- Y
nz 1 IS
Jj=1
and
n

Y2

J
j=1

zn: Cov (Y}, Y}2)

IR 1
P EZ)/J —O'X(O) > ¢ STEQVEH‘

/\

M:

1
n2e2

I
—
E
I
-

J
1

n2e

M=
NE

_ (B [E1X3, X3, 175, T4]| - 0x(0)?)

I
-
=~
Il
-

J

For (s,t) € (R*)?, we decompose X2 and X? in the complete orthogonal system of Hermite

2
polynomials (Hy)k>0, (J%) = Hy, (%) + Hs (f;(o)) then
E[XZX?) g X Vg [ X g (X Vg (X
o (0)2 "\Vox© ) "\ Vox \Vox @) P \Vex©)
(o) (o) = (o) ()|
ox(0) ax(0) ox(0) ax(0)

Using the orthogonality property of Hermite polynomials for a bivariate normal density with unit
variances (see for instance Prop 2.4.1 of [7]), we obtain

=E +E

+E +E

E[X2X?] = 0%(0)

o ()
Ux(O)’ Ux(O)

03%(0) 4 20% (t — 5)

Finally,

3
3

E [o%(T; — Ti)]

4 n—1
=53 > (n—J)E [0X(T))]
=0

RN
P EZIYJ. —ox(0)] >¢
iz

n—1 e’}
1
< < _ . < - 2 X x o). . .
Ifo<d< 1/4 E n—jE ])] < g E [O'X(TJ)] m 0 using PrOpOSlthIlWlth

7=0
p =1 and the functlon 0%. If 1/4 < d < 1/2, we use Theorem to have

m Z n—J)E [0 (T;)] ~ Cn= 2+

and we get in both cases that

11



We conclude that S, —— /ox(0) and
n—oo

1 R, 4 . Yd 0 : 0
L(n)/2n1/2+d 5, oo R(1) == 7 (0) (0@?2(1 By otalt) — ol By 54alt)

O

In the case L(t) = ¢ > 0 for all ¢t > t, taking logarithms of both sizes, we obtain a heuristic
identity

Sn
We estimate the slope of the regression line of (log(n),log(R, /Sy, )) which provides an R/S estimate
of d. Remark that for the more general case with L slowly varying at infinity and ultimately non
increasing, we have log (%:) ~ (1/24d)log(n)+log(L(n))/2+log(R(1)) and log(L(n)) is negligible
compared to log(n).

log (Rn> ~ (1/2 4 d)log(n) + log(v/cR(1))

3.2 Decrease of memory when E(T}) = oo

The phenomenon is the same as in the discrete case (see [8]) : starting from a long memory process,
an heavy tailed sampling law can lead to a short memory process.

Proposition 3.6. Assume that the covariance of X satisfies
lox(t)] < cmin(1,¢71+24) vt e RT (3.9)
where 0 < d < 1/2. If for some 8 € (0,1)

lim inf (2°P(Ty > 2)) >0 (3.10)
(implying B(T) = 0o) then
oy (h)| < Ch 7. (3.11)

Proof. From hypothesis (3.9),
oy ()] < E(jox (Th)]) < cE(min{1, T, 2}
Then, denoting S*" the distribution function of T} and integrating by parts,
1 o)
E(min{1,7, '*?}) = / ds*(z) + / D o €
0 1

S*h(1) + (1 — 2d) /DO x 2248 (1)dx — S (1)

(1—2d) /Oo g 22 g (1) d. (3.12)

From hypothesis (3.10)) on the tail of the sampling law, it follows that, there exists C' > 0 and
xo > 1 such that
Vo > xz9, P(Th>z)> Cz= P,

Furthermore for z € [1, z¢],
P P(Ty > z) > P(T} > ) > Cxy .

We obtain that Vo > 1, P(T} > x) > Cz=P with C = C’x&’g.

S*h(x) = P(Th < .’IJ) < P (O<I}l<a;(_1 Al < x) =P (Tl < l‘)h
~ h Sh
< (1 - C:ﬂ?) <e iR, (3.13)

12



Gathering (3.12)) and (3.13|) then gives
E(min{1,7, '*2}) < (1 - 2d)/ 222" 5B dy
1

h .
_ 1 _B2dh7(172d)/ﬂ/ y(1—-24)/6—1,~Cu g,
0

and the result follows since

h _ 00 N
/ u(1—2d)/B=1,=Cu 4., h—o0 u(1=2d)/B=1,~Cu g,
0 0

O

Next proposition states that the bound in Proposition [3.6] is sharp under some additional
hypotheses.

Proposition 3.7. Assume that
ox(t) =t 1L (1)

where 0 < d < 1/2 and where L is slowly varying at infinity and ultimately monotone.
If
B =:sup{y:E(T}) < oo} €]0,1] (3.14)

then, for every e > 0, there exists Cc > 0 such that

1-2d

oy(h) > C.h™ 7 ~¢, Vh > 1. (3.15)
Proof. Let ¢ > 0. We have
_ —1+42d— 8¢ —142d—-52
ox(Th T2 T, T pe T, T pe
h_1—;d_)‘S = h_hl—B2d_s L(Th) = ;_1—/32(1_6 Th2 L(Th) = e Th2 L(Th)

where
5 (1—2d)/6+a_1( 1—2d+ Be )
1-2d+8  p\1-2d+pe/2)

Using Proposition 1.3.6 in [2],

Be
T, L(Th) Ao too as
1 . . 1/8
Moreover 6 > 5 From |b this implies E(7,’") < oo. Then, the law of large numbers of
Marcinkiewicz-Zygmund (see |[15] Theorem 3.2.3) yields
Th a.s.

W 0 as h— oo (3.16)

Therefore by applying Fatou’s Lemma

oy(h) &
1—2d _ i>oo

h=—7 —¢
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4 Results in frequency domain

Many estimates for long memory processes are based on the behavior of the spectral density (see
[7] for a review). In this section we study the existence of the spectral density of sampled process
Y. In the next proposition we establish the relation between the spectral densities of X and Y.

Proposition 4.1. Under hypothesis of Proposition with p € [1,2], both processes X and Y
have spectral densities and we have the relations

oy (k) = /R§(;c)kfx(x)dx, keN (4.1)
=3 [ (e98@) fxwin,  vel-mr] (12)
kez R
where R ‘ ‘
S(x) = B(e™T1) = p,e'™ (4.3)

is the characteristic function of S. The functions p and T are defined as the absolute value and the
arqgument of the characteristic function.

Proof. We have in this case

/IR+ lox (t)]2dt < aX(o)zfp/ oP(t)dt < oo

R+

and by Proposition Z loy (h)|P < oo. Similarly,

h>0
Z|O’y )12 < ox(0) QPZ\GY )P < oo.
h>0 h>0

X and Y have spectral densities fx € L2(R) and fy € L?([—m, ). For X € [-, ],

fr(\) = § e R E(ox (Tk))
27r
keZ

1 —ikA ( iaTy, )
QWZe E /Re fx(x)dx

kEZ

As E ([p e fx (x)|dz) = [ fx(z)dz = E[X3] < co, we deduce by Fubini’s theorem

Y 27TZ/ 7zk)\E mTk)fX( )

keZ

= 5r 3 [ S (o

keZ

where the series converges in L?([—m, 7]). When p # 1, the covariance is square summable without
being summable. O

Lemma 4.2. Assume that X has a spectral density denoted by fx. Then, for all k >0

s

oy (k) = lim e g(r, x)d, (4.4)
r—1- J_,
where
/ fX ( + Prm( JJ) + Prm (T,\ + JS)) dA (4.5)

and where Py(t) is the Poisson kernel (see Appendiz|6.2 , and where §(x\) = prei™

14



Proof. See Appendix [6.3] O

Proposition 4.3. Assume that X has a spectral density denoted by fx which has the form
Fx () = A7) (4.6)

where ¢ is non negative, integrable and bounded in a neighbourhood of zero, and where 0 < d < 1/2
If one of these conditions holds

e (C1)d=0, i.e fx is bounded in a neighbourhood of zero
e (C2)E(T)) < 0
e (C3) the density of Ty satisfies
s(xz) ~ cx™7 when x — 0o (4.7
where 1 <y <2 and ¢ > 0 (in particular E(Th) = o0),

then the sampled process has a spectral density fy defined on [—m,w| (except eventually at the point
x=0) by
fY(x) = lilgli g(,r’ ‘T)v (48)

where g is defined in .

Remark 3. It the process X has a short memory in the sense that X has a continuous bounded
spectral density fx, then the result of Proposition [4.3]is still valid .

Proof. See Appendix for the proofs. O

5 Comparison between subsampling and temporal aggrega-
tion

We start from X = (X¢);er+, @ zero-mean second-order stationary continuous time second order
process with auto-covariance function ox(.) and from a random walk (T},), >0 independent of X.
The i.i.d. sampling intervals T+ — T; = A, have a common distribution S supported by R,
with P(Ap = 0) = 0. Moreover, Ty = 0. We define the aggregated process as

Th+1
Z, :/ X, dt, heN (5.1)
T

In [I3], the process is aggregated on the interval of the form [hA, (h+1)A] where A is a determinis-

A
under the assumption that the rth derivative process of L is a CARFIMA (p, H, ¢) model. In par-
ticular, they give results on the behaviour of the correlation structure when A — oo.

In this part we compare the auto covariance functions of aggregated and sampled processes.

(h+1)A
tic step. They study the correlation structure of the r-differenced series {vr < / L(u)du) }
h
heN

Lemma 5.1. The aggregated process defined in (5.1)) is a stationary zero mean process and its
auto covariance function is given by

0 2 [fycserox(t —s)P(t < T1) dt ds if h =0,
o = <
z ff0<s<tax(t—5)P(0§s<T1, Ty <t <Thy1) dt ds, forh>1.
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Proof. We have

Th

Thy1
E(Z,)=E / Xy dt | = /E(Xt HThSt<Th+1) dt

N /E(Xt)E(HTh§t<Th+1) dt =0

since X and T are independent.
Let pe Nand h > 1,

]E(Zh+pr) (5.2)
Tp+1 Thip+1
=E / X dS/ X, dt
Tp Thip
= // E(Xth ]ITpSS<Tp+17 Th+pSt<Th+p+1) dt ds
:// Ux(tfs)P(Tp§S<Tp+1, Th+p§t<Th+p+1) dt ds
s<t
=E (E (// ox(t —8)locs—Ty<Ap, ApttBpsn 1 <t—Tp<Apt-tApy AU dU|Tp>)
s<t
=K (E <// ox(v—u) HOSU<AP, ApttDppn_1 <O<ApttAp i dt dS|Tp>)
u<v
:// ox(v—u)PO<u<Apy Ap+-+Aph 1 Sv<Ap+--+Apyp) dudv
u<v

:// ox(v—uw)PO<u<Ty, Th <v<Thyr)dudo (5.3)
u<v

Tpi1 Tpt1
E(Z)) =E /T X ds/T X, dt
= 2// E(Xth HTp§s<t<Th+p+1) dt ds
s<t
= 2// ox(v—u)P(v < Tht1) du dv (5.4)
0<u<w

As (5.3)) and (5.4)) do not depend on p the stationarity of the process is proved.

Ezxample 1. Poisson sampling.
In the case of Poisson sampling, the i.i.d. sampling intervals Tj4; — 7 = A; have a common
exponential distribution. Let N be the counting process associated with the random walk T :

Nt = Tr<

Jj=1

The process N has stationary and independent increments and, for every fixed ¢, N (¢) has Poisson
distribution with parameter ¢/ where ¢ = E(T1)~!. We denote p(t,k) = P(N(t) = k).
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For h > 1,
o (h) = / /0 __ oxt=)P(V(s) = 0. N(t) = N(s) = h) dt ds
= //0<‘ tax(t —8)p(s,0)p(t — s, h) dt ds
~[[ oxmlomtan ds dy
Ry xRy

-/ ox(@pteh) de / pla0) dy
Moreover

/ py,0)dy= [ P(Ty>y)dy=E(Ty) ="

R, R,

Thus we have

1
oz(h) = Eil/R UX(x)e%zﬁh:vhﬁ dz
N !

Since the distribution of Tj14 is the gamma distribution with parameter (h + 1, \) we have
oz(h) = L*E(ox (Th+1))

leading to an explicit form of the autocovariance function for the aggregated process with a Poisson
sampling

oz(h) = E(TV)*E(ox(Thi1)) = E(Th) %oy (h+1),  for h>1 (5.5)
and with the same calculation
0’2(0) = 2E(T1>2E(Ux(T1)) == 2E(T1>20’y(1) (56)

Lemma 5.2. If ox is non-increasing on R*, then for h > 1
oz(h) <E(T1)? oy(h—1) (5.7)
Proof. In the r.h.s. of the relation oz (h) = E( .

st 0x (t = 8) o<scr <m, <t<m,;, dt ds),

Th—Th <t—5<Th11
from which follows
oz(h) <E(Ty(Thi1 — Tn)ox(Th — T1)) -
Now, T}+1— T}, is independent of (T4, T) and Ty, — T is independent of T;. The result follows. O

Thanks to Lemma some properties of the sampled process can be directly transposed to
the aggregation scheme. The following proposition brings them together.

Proposition 5.3. 1. If ox is dominated by some positive bounded integrable and non increas-
ing function and if E(T}) < oo then Z loz(h)] < oco.
h>0

2. If E(T}) < 0o and ox(t) =t~ 21 (t) where L is non-increasing slowing varying at infinity
and 0 < d < 1/2 then,

oz(h) < o1(h) ~E(T)T2p=1424Lh)  h— oo
3. Suppose lin_1>inf [P P(Ty > z)] > 0 for some B € (0,1) (implying E(T7) = o0).
T—r0o0
If ox is non-increasing on RY and |ox ()| < cmin(1,¢~1+29) with 0 < d < 1/2 , then
oz (h)| < Ch= (72078,

Proof. These results are immediat consequences of Lemma [5.2] and respectively Proposition [2.3
with p = 1, Theorem and Proposition [3.2 O
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6 Appendix
6.1 Proof of Lemma [3.3

For the proof of Lemma we need the following intermediate result:
Lemma 6.1. If E(T}) < oo and X has a regularly varying covariance function
ox(t) = L(t)t~ 12
with 0 < d < 1/2 and L slowly varying at infinity and ultimately nonincreasing. Then,
Var(ox (T1,)) = o(L(h)2h~2+44) as h = oo (6.1)
Proof. By theorem we have E(ox(Ty)) s L(R)(hE(Ty))~'+24. To get the result, it is

enough to prove that , ) i
E(ox(Th)?)  ~ L(h(HE(Ty)) 2+,

To prove the asymptotic behaviour of E(ox (T3)?), we will follow a similar proof as theorem
e Let 0 < ¢ < E(Th), and h € N such that ch > 1,

_ . I
E(ox(Th)?) > E(ox(Th)*Ir,sen) > E (L(Th)* T, > 1, en) > tglcfh{L(t)th}E (T%;Ch)
- 3

Thanks to Jensen and Holder inequalities,

I7,>cn Ir,>en )’ 2 I7,>cn
E|—=2==)>E( 2= d P(T; h)* < E(Ty)E [ —==
() 28 (22) ana p(1 > eh? < BB (2222,

that is

B Iz, >ch > P(Ty, > ch)4
T}% - E(Ty)?

Summarizing,
E(ox(T1)?) S infys n {L(2)%t44}
L(R)2(RE(Ty))~2+4d = L(h)2h*E(T})*

Then, for ¢ < E(T}), we have P(T}, > ch) — 1 and inf; ., { L(t)*t*?} ~ L(ch)?(ch)*?. Finally, for

all ¢ < E(Ty),
it E@x(T)?) ><c>“
hsoe L(h)2(RE(T})) -2+ = \ E(Ty)

Taking the limit as ¢ — E(T7), we get

P(T), > ch)* (6.2)

2
lim inf E(ox(T3)°)

i L2 (RE(T,)) 24 = !

o Let % < s < T <1, tg such that L(.) is nonincreasing and positive on [tg, c0) and h such that
fh,s — 1, ¢ > to, with the same notation as Theorem @

E(ox(Th)?) = E[LT)* T Iy, 2y, | + B [0(T0) T, <im i, |

) —2+4+4d

< Llpn,s — i 6)° (tths — B +0x(0)*P (Th,s < pth,s — i 5)

E(ox (T1)?) L(pins = O\ [ bns — ih.0\ ~2H
zmw£mnﬂﬁf< L(h) >(fﬂﬂ))

QP (Th,s < Hh,s — /’L;-L,s>
L(h)?(hE(Ty))2H4d

+ Ux(O)
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Finally

. E(ox(Th)?)
P TR (Ty ) 2 <

Let return to the proof of Lemma [3.3]
Denote

W, = L(n)"'n= 723 "N "ox (T = Th) = L(n) ‘o' NVar(Xp, + -+ + X1, [Ty ..., Tn)
i=1 j=1

we want to prove that W,, converges in probability to 4. For that, we will show that
E(W,,) —— 74 and Var(W,,) —— 0.
n—oo n—oo

e As X is a centered process E(W,,) = L(n)"*n~1724Var(Y; +--- +Y,). By theorem we have
oy (h) ~ L(h)(RE(Ty)) 2% h— o,

then
L) 'n ' 2War(Y, +---+Y,) —— v (6.3)

n—oo
(see for instance [7] Prop 3.3.1 p.43).
and we obtain
EW,) —— 7a.

n—roo

e Furthermore,

Var(W,) = L(n)~"*n=2"%Var Z Z ox(T; —T;)
i=1j=1
2

< L) 2024 (33 Var(ox (75 — )

= (271_1_2‘1L(n)_1 Z(n —h) Var(aX(Th))>
h=1

—1+2d L(n)n'+>¢

Then, by Lemma Var(ox (Tr)) = o(L(h)h~'*2%) and 2 Z(n_h’)L(h)h d(1+2d)

h=1
We get

2 zn:(n — h)y/Var(ox(Tr)) = o(L(n)n1+2d)
h=1

Finally, Var(W,,) = o(1) which means that Var(W,,) —— 0. We obtain

n— oo
L% p
Wn e Yd-
n—oo

6.2 Poisson kernel

We recall some properties of the Poisson kernel used in the proof of Appendix.

1 1—s2
Ps(t) = —
5() 27 <1 —2scos(t)+s2>
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for s € [0,1), and some of its properties (see for instance [8] for the proofs) :

eV0<s<l—-n<l,tekR, 0 <2nwPs(t) <2/n (6.4)
1 (" /1
oV e (—mm), rel0,1), 1/ (W + Popy (T — ) + Prp, (T + J:)) dr=1 (6.5)
eif 0 <0 < |t| <m, then Ps(t) < Ps(d) (6.6)
1/|sin(¢ ifte (—m/2,m/2
2 sup Puft) /Isin(?)] ift € (=n/2,7/2) (6.7)
0<s<1 1 ift e (—m,—7/2]U[r/2,7)
where py and 7y are defined by S(\) = E(eT1) = pyei™.
6.3 Proof of Lemma [4.2]
Let us consider the two z-transforms of the bounded sequence (oy (7)),
oy (2) =Y Hov(i), |z <1 (6.8)
§=0
oy () =) 2 ov(j), | >1 (6.9)
j=0

On the first hand, as E ([; e fx (z)|dz) = [; fx(z)dz = E[X§] < oo, we deduce by Fubini’s
theorem that

oy(j)  =E(ox(T}))
=E ATi (A d>\>
([
_ / () fx (A)dA (6.10)
R
Gathering with and (6.9), we have as

2/{{{&@&)1‘&@)@ < §|z|j4fx(x)dA <oo, forle <1

JZ_:O/R|zj§(,\)ij()\)d>\ < ;) |Z|7j/RfX(>\)d>\ < 00, for [z| > 1

that,

o 1 .
Uy(Z)-/Rl_Zg(A)fx(A)d% o<1

G5 (2) = _ z
$0 = [ g e R

On the second hand, let C, be the circle [z| =r. If0 <r < 1, for all j >0

1 L[
% . oy (2)z "tz = %lﬂ(re’m)*ko;(r(z”)dz}
1 o TG
= ijko'y(j)/ eU=Re gy
2m 4 o
7=0
= oy (k)
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and, similarly, if » > 1

1
A% C,

s

1 , .
ﬁ;r(z)zk_ldz = %/ (re”)k?f}t(re“’)dx

—T

_ 1 s k—i . g ‘(k_ )
—%Zr ]Uy(j)/_ﬂ—ez DTy
=0
= oy (k)
We finally have

I R el Nd | d ; 1
o ) ¢ (T /ere”g()\)fx( JaA e ifr <1,
oy (k) = (6.11)

1T k/ 1 ,
L R L e S— Y P P TS |
2r ), ( Rl—e*“"S(A)/er( ) ) f

—k " iky i ; .
r [ﬂ e (271_ /R I re-w8(n) fX(/\)d/\> dy if <1,
= (6.12)

—k " ikx i 1 _ T 7 r
[ e <2W / Y Rl p)dp>d f <1,

As f is an even function and changing r for 1/r when r > 1 leads to

oy (k) = rik/ e*g(r, x)dz, Vr e [0,1)

—T

where

N 1 1 1
g(r,x) = i /fo(A) (1 p—T + = re—im§(—A)> d\ (6.13)

As the first member does not depend on r, we have

e g(r, x)de, vr e [0,1)

s

ov(k) = lim

To conclude the proof we show that the last integrand can be expressed from the Poisson
Kernel. Firstly,

1 1
Im — + —
(1 —reS(\)  1-— re‘”S(—A))
1 1 . 1 - 1 - 1
2 \1—re-85(\) 1—re-®5(—=A) 1—re=S(—=A) 1—reiS())

is an odd function of A. Hence the imaginary part of the integrand in (4.4) disappears after
integration. Secondly, let 2 =1 —re~®S(\) and 2’ =1 — re " S(=)\)

R 1+1 1 1+1+1+1 1 z—|—§+z’+?
e\l — - - = - — h— = = = e
z 2 2\z 2z 2\ |z|? |2’]2

24z=1—71e"S(\) +1—rei®S(—N)
=14 (1—=re ™S\ (1 —re*S(=N)) — r2|S(\)?
=1+ 21" = (rps)?

and
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2 = [1 — rem SN2
= (1 —rpycos(ta — x))? + (rpysin(ty — z))?
=1 —2rpycos(ty — ) + (rpa)”

Finally

— 2 _ 2
Re LI L _1 ! (fpi) R (_rp)) +2
1—re~=S(\) 1—re ®S(=N\) 2\ |1 —re"@S(N\)[2 |1 —re-i@S(=\)|?

(6.14)

and the proof is over.

6.4 Proof of Proposition 4.3
Firstly, if z # 0, g(r,z) has a limit as » — 17. Hence, we have in (4.4]) that

s
ezkx

oy (k) = lim g(r,x)dz,

r—1- J_ .

the proof of the proposition simply consists in exchanging the limit and integration in order to
show that

oy (k) :/ e lim g(r, x)dz.

—r r—1-
implying that
fy(z) = lim g(r,x).

r—1-

Now we prove that conditions of Lebesgue’s theorem hold for (4.4).

6.4.1 TUnder the condition (C1)

We have R R
[SA)| <1, ¥YA>0 and [S(A)|— 0 as |\ — o0

(see [6] p.501 and p.514). Hence, thanks to the continuity of |S(\)],

sup [S(A)| <1, Ve>0.
[A|>e

The integral (6.13]) is split in two parts: choosing € € [0, 7] such that fx is bounded on [—¢, €] and
using the fact that the real part of the integrand in (6.13)) is positive (see ([6.14])).

. 1 1
. fx(M)Re (1 _ re_mg(A) + 1— re‘”g(—)\)> “

€ 1 1
< su Re A + A dA
- ye[_g,g] ()] /_E <1 —re”S(\)  1-— re‘”S(—A))

which leads, thanks to the property (6.5) and the equation (6.14) between the integrand and the
Poisson kernel, to

€ 1 1
—e Fx () Re (1 —re=iwS(N) M 1- re‘”g(—)\)> A
1 (™ /1
<4m sup [fx(y)] 1 / ( + Py, (Ta — ) + Prp, (Ta + a?)> dA
yE[—e,e] —x \T
=4r sup [fx(y)]- (6.15)
yE[—e.e]
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Now,

1 1
AN Re ~ + = d\
fR\[_E’E] Fx) (1 —re”®S(\)  1-— re—i”S(—/\)>
1
:7‘-/ fX(/\) (+P7'p>\(7—)\_$)+P7-p>\(7>\+l‘)> d.
R\[—¢,¢] ™

Applying the property (6.4) of the Poisson kernel with

s=rpy<pr t=7aEfx, and 7. =1— sup |S\)|
[A|>e

yields,

1 1 9
/R\[g’a] P (1 “re Sy 1- re"é(—M) "= <1 i ?7) /R\[E,E] Jelix

< <1+7726)/fo()\)d)\. (6.16)

Gathering (6.15]) and ( - ) leads to
) 2
leRCg(r,z)| < 4m sup [fx(y)] + <1 + 77) / Fx(N)dA, Vr € [0,1), Vo € (—m, )
=/ Jr

y€[—e.e]
and the proof is complete via Lebesgue’s theorem.
6.4.2 TUnder the condition (C2)
The proof consists in finding an integrable function g(x) such that
lg(r,z)| < g(x) Vre|0,1),z € (—m ). (6.17)

For that purpose, we need the following estimation of S (M) near zero.

5 ; 1 — et itz—1) sin (xA/2)
. _ i _ o z)\
11— S| ’(1 e )/R ————dS(x) | ’/m Sin(A/2) — 5y d5(2)

_ ptA
+ 1—e

IN

1_eM/R+(1+x)dS(x)

= ’2@ sin()\/Q)e”\/Ql (1+E(T1)) =2 |sin(A/2)] (1 +E(T1)) < N1 +E(T1))
= O\ (6.18)

Now we use the fact that for |u| < up < 1, we have
[1—wu|>1—wug, |sin(arg(l—uw))|<wup and |arg(l—u)| < mug/2.

From this and inequality (6.18)) we obtain

wC|\|
== (6.19)

1
A< &= Inl<
Recall equation (4.5)):
1 [ 5500 (24 Poprn =) 4 Porn40) ) an
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Let Ao be such that ¢ is bounded on [—\g, Ag]. For a fixed = € (0, 7), denoting

2@-@}7

1z 2(r—z)
"rC’ wC

b(x) = min {)\0, ol

we separate R into four intervals:
(_007 _b(x))’ [—b(l‘), 0)» (Oa b(aj)L ]b(x), —I—OO).

Let us treat the two last intervals (the proof for the other ones is similar) and concerning the
integrand in (4.5) we only treat the part P, (Ta — z):

—+oo

b(x)
I(z) = /0 fx(N)Prp,(Ta —x)dX and  Ir(z) = /b( : Fx(N)Prp, (Ta — z)dA.

e Bounding I;:
From 1’ since |A| < & for A in (0,b(x)], we have |7,| < ”Czp‘l < ”Cg(x) < /2 which implies

C < |
—<|m—z
5 =™
and |1y — x| < || + 2 < TCYE) | <
Via properties and (6.7)), this leads to

PTP)\(T)\ - x) < Prp, (x/Q) <

Consequently

< Clm72d

L) < SUPJ,b(a)] P(-) /b(w) \—2dgy — SMP0.b@)] ¢(-) bx)— 2!
() < 2 20b(@)] TR =
0

2z 2z —2d+1
since b(z) < z/(wC) and —2d + 1 > 0.

e Bounding I5:
When A > b(x), we have A~2¢ < Cy max{z~2¢ 1} for some constant Cy. Hence

I(z) < Co max{z~2,1} /R GNPy, (12 — )dA. (6.20)

Since ¢ is bounded in a neighbourhood of zero, the arguments used to prove Proposition [4.3] with
condition (C1) show that the integral in (6.20) is bounded by a constant.
Finally I; + I5 is bounded by an integrable function g(z) and the proposition is proved.
6.4.3 Under the condition (C3)
o We first give the local behaviour of S(\) under assumption (4.7)).
1-8(\) = / (1 — cos(A\x))s(z)dx + i / sin(\z)s(x)dz
R+ R+

From the assumption on s,

/ (1 = cos(Aa))s(x)dz ~ ¢ / (1 cos(Aa))a—"da
R+ Rt

A—=0
= APt / (1 - cos(y))y~"dy
R+

=:c|]\" e,
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and
/ sin(Az)s(x)dx ~ c/ sin(Az)x " Vdx
R+ R+

A—0
:c|/\|7*1/ sin(y)y~"dy
R+

=:c|]\|""1d,.
It is clear that ¢y > 0, and dy > 0. Then,
IA7Y(1 = S(A) — Z, where Re(Z) > 0 and Im(Z) > 0. (6.21)
—

e In the sequel we take A > 0. If X is small enough (say 0 < A < \g),
NS o <G where c3 and ¢ are negative constants (6.22)
and
L—eN™P< py <1-dN ! where ¢4 and ¢ are positive constants.  (6.23)

Let A1 such that ¢ is bounded on [0, A1] and for a fixed z € (0, 7), define

NG 1/(-1)
c(yc)—min{)\o,Al,<7T x) ( x,> }
—C3 —C3

we deduce from (6.22) for A € (0, ¢(x))

0<x— ch\wfl <z-m<z—c N <7 (6.24)

Then we split R into four intervals

(700, 76(17))7 [76(1')70)’ (O,C($)], (C(I),+OO)

We only consider the integral on the two last domains and the part P,,, (7x —x) of the integrand
in (L3).
e When A € (0, ¢(z)], inequality (6.24)) and properties and ([6.7)) of the Poisson kernel lead

to
P7"P>\ (TA - .Z‘) S PrpA (37 - Cé/\ﬂyil)
P (33 _ C/ )\771) < 27rsin(zic/3)ﬂ*1) < 4(17%)\771) if x — Cé)\’y_l S [0,7’(’/2] (625)
" i ~ o < =g if 2 — A7 € [m/2, 7]
@ = [ 5P - o) o[
Li(z) = / Ix(A\)Pr TA*:Cd)\ﬁsupgﬁ./ L A—
1 0 PX [0’)\1] o xr — cé)\’y—l
e(x) \—2d
< Cpa! ————d)
> C1$ /0 1_ ch_1)\7—1
—2d+41
< Cpt /1 o
B 2 0 1 + U )
Since % — 1> —1, the last integral is finite, implying

Li(z) < Ciz = -1

which is an integrable function of x.
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e Finally,
+o0o
hx) = [ X OP (73 =)A< o) [ 6P (7 = )i

which has already been treated in Proposition with condition (C1) since ¢ is bounded near
Zero:

/R (N Py (1 — 7)) < C

and z — ¢(z)~2¢ is an integrable function since =24 > —1.

Gathering the above results on I3 and Iy completes the proof.
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