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Under monochromatic excitation of frequency ω smaller than the buoyancy frequency N ,
each direction of a stratified fluid, inclined at angle θ = arccos(ω/N) to the vertical, acts
as an independent oscillator along which fluid motion and energy propagation take place.
For an actual wave field to emerge some additional coupling mechanism is required, which
transmits phase information to the neighbouring fluid directions. Relevant mechanisms
are the boundary conditions at the surface of the source of the waves on the one hand, and
viscosity on the other hand. The present paper applies the Green’s function formalism
to this problem, taking both possibilities into account. In this way a spatial picture of
how monochromatic internal wave fields build up is obtained, complementing the spectral
picture proposed in [1].

Proceeding from the Green’s function of the inviscid internal wave equation [2], a
superposition procedure leads to the expression of the waves generated by any source
of finite spatial extent. Lighthill’s result [1] is recovered, with the same interpretation:
waves are confined to a conical shell of the same thickness as the source and angle
θ to the vertical; there, they exhibit a longitudinal decrease inversely proportional to
the square root of the distance from the source, and transverse phase variations. Two
particular cases are considered: a Gaussian mass source, and a pulsating sphere. Waves
are not quasi-plane, in that the variations of their amplitude are not slow compared
with the variations of their phase, and not even a complete wavelength is observed.
For the pulsating sphere, moreover, singularities arise along the edges of the shell, the
total radiated energy remaining finite and of the same order as for the Gaussian source.
Such singularities, consistent with direct calculations [2–5], are an artifact of the inviscid
world and characterize any source with well-defined boundaries. Upon incorporation of
viscosity into the theory, the singularities are replaced by “boundary layers”, which grow
up in size with increasing distance from the source and eventually fill the whole of the
shell, resulting in a faster decrease of the amplitude and a progressive widening of the
shell. Then the viscous self-similar region investigated in two dimensions e.g. in [6–8] is
reached.
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