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A B S T R A C T

Conditioned-based maintenance and prognostics and health management enable to optimize maintenance by

scheduling the necessary repairs and replacements of technical system components according to their present

and future health states. The assessment of future health states is the prognostics and health management

keystone. Many technical production systems are made of numerous components implementing their functions.

A method to assess the ability of multicomponent systems to carry out future production tasks is proposed to

provide decision supports for production and maintenance planning for a better compromise between their

objectives. It is based on components prognoses. To handle inherent uncertainties of these prognoses, the

method is based on the Dempster Shafer theory and Bayesian networks inferences. Local prognoses are cate-

gorized and transformed to be compliant to Dempster Shafer theory. Patterns of systems are identified for which

inferences are defined. The patterns are then used to model systems and to assess their abilities to achieve future

tasks. An identification of components that should first undergo maintenance is proposed. An example im-

plementing a fictitious complex systems is presented to show how the provided decision supports can be used for

production and maintenance planning purposes.

1. Introduction

Facing to always more competitive markets, companies invest in or
develop complex technical resources for production of goods or services

to improve their flexibility and their responsiveness. Therefore, the
production resources become more costly. In such a context, the costly

technical resources must comply the highest standards of dependability
not only to satisfy return over invest criteria but also to reduce the risk

of accidents causing damages to goods, people and environment.
Reliability studies of such technical resources or systems are of course a

major issue as well as maintaining them in operational condition with
the highest level of availability for the lowest cost.

Nevertheless, the complexity of systems is always increasing.
Indeed, to be more flexible and responsive, the technical systems im-

plement more functionalities many components bring into operation.
Because of the variety of functions, components and their technologies,

the number of failures that must be considered is increasing too. The
reliability assessment of multicomponent systems is to be considered

not only at exploitation stage but also at design stage.
During the exploitation stage, high standards of availability and

dependability of the technical production systems can be reached

thanks to the implementation of Condition-Based Maintenance (CBM)
and, more recently, of Prognostics and Health Management (PHM) re-

commendations while reducing maintenance costs [1–3]. CBM consists
in scheduling the necessary repairs and maintenance of technical pro-

duction resources from the assessment of their current conditions be-
fore their failures. If PHM also consists in scheduling maintenance ac-

tion before the failure of the systems, it aims at assessing the future
conditions (future health) of the systems often leading to the assess-

ments of their durations of use before their failures. This estimated time
to failure is commonly called Remaining Useful Life (RUL) [4,5].

To make the prognoses of technical systems possible, it is necessary
to predict failures of their components. In the domain of PHM, many

works deal with techniques for component prognosis. They contribute
to assess RULs of components, to improve the RUL assessment accuracy

or to predict how degradations will evolve with time [6–10]. For this
purpose, three approaches can be considered: experience-based prog-

nostics, model-based prognostics and data-driven prognostics [11].
Those studies consider different kinds of components such as ball-

bearings [4,12], gear trains [10,13], braking systems [14], batteries
[7,8,15], gas turbines [16], etc., but also structural parts to predict

crack growth [17,18]. Some studies aim at more generic approaches
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However, the distributions of RULs or of the degradations after
given periods of use are not always identified but works dealing with

prognostics of components often provide identifications of intervals for
the assessed RULs or degradations [4,14,32]. These intervals introduce

uncertainty between two possibilities: the degradation is under the
failure threshold, the degradation is over the failure threshold. This

uncertainty is probabilistic, if a distribution is identified; but it can
contain a part of epistemic uncertainty if an envelope of probability

distribution is determined [22]. That is why, the improvement of pre-
cision of RUL predictions and the characterization of uncertainty about

these predictions are still major stakes in the field of PHM. Therefore,
there is a need to manage such uncertainties about local prognoses to

implement prognostic functions for multicomponent systems. There-
fore, both aleatory and epistemic uncertainties have to be handled to

assess multicomponent systems future ability to achieve productive
tasks from the local prognoses.

Nevertheless, the interests of the technical systems prognoses do not
only consist in providing decision supports for maintenance manage-

ment as it is often presented in studies dealing either with systems
prognoses or with system reliability [20,25–27,29,30]. Considering that

production and maintenance should be planned jointly in order to
improve more global performance indicators than the ones only dedi-

cated to maintenance management [33–35], the technical systems
prognoses should also provide decision supports for production plan-

ning. Therefore, technical systems should not only be considered as
arrangements of components but also as providers of functions solicited

by production tasks [31]. Thus, decision support indicators dealing
with the abilities of system functions to carry out productive tasks are

useful for production management in the decision making process
leading to the production tasks scheduling. Production management

can so planned tasks under an acceptable threshold of occurrence of
failures during their achievements. Production and maintenance man-

agement must define this threshold. When this threshold is exceeded, it

is interesting for maintenance management to know the components to
maintain in order to prepare the repairs and to determine downtimes.

The developed approach consists in providing decision support in-
dicators for production and maintenance management in order to en-

able the scheduling of productive tasks and maintenance actions on a
multicomponent system according to its future health status assessed

from the prognoses of its components. Since the local prognoses may
provide data with indications about both aleatory and epistemic un-

certainties, the proposed method to assess the future abilities of mul-
ticomponent systems to carry out productive tasks implements the

Dempster Shafer theory by the means of BN inferences. After this in-
troduction, the paper begins with the presentation of theoretical ele-

ments. Then, a classification of the local prognoses is defined from the
data they provide and associated uncertainties. It is based on the lit-

erature review partially done in this introduction. For each kind of local
prognoses, pre-processes are defined to be used as inputs by the as-

sessment method. To assess the future ability of a given multi-
component system to carry out productive tasks, its modeling is ne-

cessary. For this modeling, patterns are identified that can then be used
to model systems. For each identified pattern, inferences are defined

from which the decision support indicators are computed. The assess-
ment method enable at each level of the system (subsystems, functions,

components) to provide indicators, more dedicated to production
management than to maintenance management, about the ability of the

subsystems, functions or components to achieve the planned productive
tasks. A method to identify the component that should first undergo

maintenance to improve the ability of every subsystem, function or
component to carry out the productive tasks is also proposed by the

means of an example. The identified components provide decision
supports for maintenance management to prepare repairs and to define

downtimes. Finally, the proposal is applied to a fictitious multi-
component system and different scenarios are proposed to show the

results it provides and how these indicators can be used by maintenance

such as the one proposed by Prakash et al. in [19] which is also among 
the few approaches applied to electrical systems. However, the failure 
prognosis of a component is a prediction and the provided estimates are 
not just a scalar number. More often this prediction provides sets of 
data dealing either with reaching failure thresholds during a given time 
of use or with remaining times before reaching failure thresholds. For 
such predictions uncertainty indicators are needed like the character-
istics of distributions for probabilistic prognoses [8,10,16,20–22]. The 
review, made by Liao and Köttig in [15], of RUL predictions of en-
gineered systems shows that the characterization of uncertainties about 
the prediction of RUL is at least as important their precision.

Therefore, the prognosis of a multicomponent system consists in 
combining or inferring the data provided by the prognostic functions of 
components, then called “local prognoses”. Formalisms like Markov 
chains and Bayesian Networks (BNs) and their derivatives enable to 
model the relationships between probabilities and to compute combi-
nations of conditional probabilities. In these formalisms, the degrada-
tion levels are more often represented by different states defined by a 
physical reality whereas the transitions between states occur stochas-
tically [23]. Those discrete formalisms were successfully implemented 
in the domain of prognostics for RUL assessment of components 
[4,8,12,14,16,24]. The modeling of complex systems for reliability 
analyses by the means of BNs or their derivatives have been developed 
for the optimization of predictive maintenance or to assess maintenance 
strategies [25–27]. Certa et al. in [28] propose an approach for the risk 
assessment in Failure Mode, Effects and Criticality Analysis (FMECA) of 
systems based on expert knowledge that takes into account vagueness, 
conflict, and epistemic uncertainty of experts’ opinions. However, the 
notion of prognosis is not required at the design stage when FMECA are 
led. Muller et al. in [29] propose the deployment of a prognostic process 
within a tele-maintenance platform. This integration into the platform 
is done component by component and provides a decision support for 
maintenance planning from the health conditions of the components 
but it does not assess the dependability of the system while performing 
the planned tasks. Voisin et al. in [30] define a generic prognostic 
business process but they do not describe the process that combines the 
RULs and their imprecisions in order to provide the system prognosis 
although they mention its interests.

As far as we know, very few research works deal with the prognostic 
of complex systems from the prognostics of their components and/or 
their structures. Among these works there is the one proposed by 
Zaidan et al. in [16]. They propose a prognostic method based on 
Bayesian hierarchical model for a gas turbine engine considered as a 
complex system. However, it consists in determining the RUL and its 
distribution of the engine that can be considered as a component at the 
aircraft scale and there is not any consideration about the different 
functions implemented by the engine. Feng et al. in [20] consider local 
prognostics to assess fulfilment probabilities of the future planned tasks 
(flights) assigned to systems (aircrafts). But, the systems are considered 
as sets of line replaceable modules (components) for which RULs are 
known. An aircraft is considered as failed as soon as one of its line 
replaceable modules fails. If these considerations are convenient to test 
an optimization method for CBM, they are not relevant in terms of 
health assessment of the complex system that an aircraft is. A multi-
component system modeling based on object-oriented Bayesian net-
works is proposed in [31]. It computes decision supports for main-
tenance management and production planning from the components 
prognoses. These decision supports consist of the failure probabilities of 
the system functions while performing the planned tasks and of the 
components to maintain. The works presented in [20,31] assume that 
the local prognoses provide known probabilistic distribution of RULs or 
of the degradations after given periods of use making possible the 
computation of conditional probabilities. The proposal presented in 
[31] is a method to assess the ability of systems to fulfil future planned 
tasks and to provide indicators to optimize or to improve not only the 
CBM like in [20] but production planning too.



and production planning.

2. Theoretical elements

Prognosing a technical system consists in assessing its ability to
carry out future productive tasks. This assessment corresponds to the

study of the system future reliability. Formalisms enable the reliability
study of multicomponent systems such as Markov chains, BNs and their

derivatives. Using Markov chains requires the identification of all the
states of the system: its nominal state and all its degraded states too. In

the case of components, this only leads to identify few states but, when
the system is made of several components, each state of each compo-

nent are combined with states of other components to determine the
state of the system. Therefore, when systems are made of numerous

components, the number of states becomes too high to be manageable
because the transitions between states and their rates have to be

identified too [36]. BNs and their derivatives are more implemented for
studying the reliability of complex systems (e.g. to optimize predictive

maintenance or to assess maintenance strategies) [25–27]. BNs consist
of directed acyclic graphs leading to the computation of conditional

probabilities according to the arcs, the types of vertices for which the
inferences are defined [37]. In BNs states that are equivalent can be

fused [36]. The inferences are used to compute the conditional prob-
abilities of being in given states form the probabilities of being in states

from which the given states are reachable [37].
Markov chains and BNs only handle probabilistic uncertainty

whereas the study of works dealing with the prognoses of components
also shows that these prognoses can also provide data containing

epistemic uncertainty about the predictions of RULs or failures
[4,14,22,32]. The Dempster Shafer Theory (DST), also known as theory

of evidence, is a mathematical framework for the representation of the
epistemic uncertainty [28]. It enables the handling of aleatory (prob-

abilistic) uncertainty and epistemic uncertainty that is generally due to

a lack of knowledge about the system or process [28,38,39]. According
to Denœux and Ben Yaghlane in [40], “the DST is now widely accepted

as a rich and flexible framework for representing and reasoning with
imperfect information”. Indeed, it combines logical and probabilistic

approaches to uncertainty. It encompasses the set-membership and
probabilistic frameworks as special cases. It also enables the re-

presentation of weak knowledge and ignorance [41]. This is particu-
larly interesting while processing from local prognoses. Thus, the DST

offers a suitable frame to assess the ability of system ability to carry out
future productive tasks from local prognoses.

Let us consider an uncertain variable Ω as a set containing a finite
number n of distinct states called frame of discernment
= …ω ω ωΩ { , , }n1 2, where ωi denotes one particular state Ω can be. Let us

also consider the power set of Ω noted 2Ω the set of all the subsets made

from Ω such as = ∅ … …ω ω ω ω ω ω ω2 { , { }, { }, , { }, { , }, { , }, ,Ω}n
Ω

1 2 1 2 1 3 where
∅ denotes the empty set. The DST defines three quantities that are the

basic belief assignment (bba), also known as basic probability assignment
or mass of belief, the belief (Bel) and the plausibility (Pl). The bba is the

amount of knowledge associated with every subset ɛi∈ 2Ω and it is
denoted by bba(ɛi) [28,42]. It measures the belief exactly assigned to ɛi

and represents how strongly the evidence supports ɛi. Each element
ɛi∈ 2Ω having a bba(ɛi)> 0 is called focal element of 2Ω. On bbas, the

following assumptions hold:

• bba(ɛi): 2
Ω
→ [0, 1],

• ∅ =bba ( ) 0,

• ∑ =∈ bba (ɛ ) 1.iɛ 2i
Ω ∅ =bba ( ) 0 means there is no possibility for an

uncertain variable to be in a state that is not in the frame of discern-

ment. If ∑ =∈ = bba (ɛ ) 1iɛ 2 , ɛ 1i i
Ω , the distribution is said dogmatic and

corresponds to a probabilistic distribution. If bba(ɛi)≠ 0 and |ɛi|> 1,

this denotes the epistemic uncertainty, i.e. the part of complete ignor-
ance, for Ω of being in one the states ωj∈ ɛi.

The belief is the sum of all the bbas of the subsets ɛk of the set of
interest ɛi; thus:

∑=
⊆

Bel bba(ɛ ) (ɛ )i k

ɛ ɛk i (1)

The plausibility is the sum of all the sets ɛk that intersect with the set of

interest ɛi; thus:

∑=
∩ ≠

Pl bba(ɛ ) (ɛ )i k

ɛ ɛ Øk i (2)

Let us ɛi denotes the complement of ɛi, the plausibility and the belief are

related by = −Pl Bel(ɛ ) 1 (ɛ )i i .
Bel(ɛi) is the exact support to ɛi, i.e. the belief of the hypothesis ɛi is

true and Pl(ɛi) is the possible support to ɛi, i.e. the total amount of belief
that could be potentially placed in ɛi [28]. [Bel(ɛi), Pl(ɛi)] is the interval

of support of ɛi. The difference −Pl Bel(ɛ ) (ɛ )i i is the ignorance asso-
ciated to ɛi. Bel(ɛi) and Pl(ɛi) can respectively be considered as the lower

limit and the upper limit of the exact probability at which ɛi is sup-
ported [28].

The DST is particularly used to fuse data coming from different
sources observing the same situation or experts’ opinions like in [28].

Proposals to combine or to aggregate those data have been presented by
different contributors among them: Dempster, Smets, Dubois and Prade

[43].
However, in the case of the assessment of the future health of

multicomponent systems, the sources are the local prognoses. They are
implemented, in the better cases, for predicting the occurrence of one

failure mode of a component and more often for predicting the failure
of a component when they are implemented. Otherwise, the results of

reliability studies aiming at determining the Mean Time To Failure
(MTTF) or the Mean Time Between Failure (MTBF) of components

should be used [31]. Therefore, the local prognoses observe different
situations and every local prognosis is considered as the unique source

of observation of one particular situation. Therefore their combinations

should be done differently.
The generalized Bayes theorem, developed in [43], generalizes the

transferable belief model which is a development of the DST [44]. It
makes the handling of epistemic uncertainty possible in belief networks

binding hypotheses featured by bbas [45]. Using this ability, Simon
et al. in [46,47] propose an interesting approach enabling to implement

the DST by the use of BN inferences for reliability analysis of complex
systems. They apply their approach to fault trees and reliability dia-

grams and they identify three patterns: serial structures or “AND” gates,
parallel structures or “OR” gates and “k/n” gates that are also parallel

structures failing if less than k entities upon n entities are operational.
In this approach, the bbas are considered as probabilities on which BN

inferences can be applied. They propose inferences for each pattern.
Those inferences can be represented by the means of grids from the

elements of the power sets of two frames of discernment Ωx and Ωy, to
the elements of a third frame of discernment Ωz. The generalized in-

ference grid is shown in Table 1 where Iij is one of the sets ∈ɛ 2zk
Ωz that

may be present several times in the grid.

The bba of each ∈ɛ 2zk
Ωz, considered as a conditional bba, is com-

puted from the relation (3).

Table 1

Generalized inference grid.

2 xΩ 2 yΩ

ɛy1 ɛy2
… ɛyn

ɛx1 I11 I12 … I1n
ɛx2 I21 I22 … I2n
⋮ ⋮ ⋮ ⋱ ⋮

ɛxm Im1 Im2
… Imn



∑ ∑= ⎧
⎨⎩

=
≠=

=

=

=
bba

bba bba I

I
(ɛ )

(ɛ ). (ɛ ), ɛ

0, ɛ
zk

i

i m

j

j n
xi yj ij zk

ij zk1 1 (3)

Then the belief and the plausibility of each ∈ɛ 2zk
Ωz can respectively be

computed from (1) and (2).

However Simon et al. in [46,47] only consider frames of discern-
ment made of two states “Up” and “Down”. This may be insufficient

regarding the aim to provide decision support indicators for production
and maintenance planning. Indeed, more states are considered for the

entities presented in the modeling based on object oriented BN in [31].
The proposal exposed in this paper consists of the development of the

inferences proposed in [46,47] and of their implementations in the
modellng proposed in [31]. The computations have the local prognoses

as inputs and the outputs are decision supports computed from the bbas

of each element of the power set of the frame of discernment of each

entity of the modeled multicomponent system. The local prognoses
must be pre-processed to be handled by the proposed computations.

3. Local prognoses

In the domain of PHM, the prognostic activity consists of the ac-

curate assessment of the RULs of components of a system [3,9]. This

mainly consists in assessing, with a given probability, the duration of
use of a component before it fails as this is illustrated in Fig. 1 where t0
is the current duration of use of the component [5]. In this case, the
local prognosis ideally provides a Probability Density Function (PDF) or

a Cumulative Probability Distribution Function (CPDF) like in [6–8,10].
If, for different possible reasons (place, weight, cost…), there is not any

local prognosis, PDF or CPDF of component failure depending on its
uses (duration or number of cycles) can be exploited. These PDFs and

CPDFs can be obtained thanks to statistical studies led by the compo-
nent suppliers in order to define the probabilities of elementary failures

[48], the MTTF and the MTBF of the components. These two situations
are illustrated for PDFs in Fig. 2 where t0 is the current duration of use,

and also the date at which the local prognosis is computed, and −t t1 0 is
the duration of the planned tasks.

In these two situations, the probability of failure before t1, noted
pF(t1), can be determined knowing that the probability of reaching the

failure threshold is considered as a failure. Therefore, considering the
frame of discernment of a local prognosis =P F F{ , } made of the two

states: F that stands for failed and F that stands for not failed, the
distribution of bbas on the elements of = ∅ F F F F2 { , { }, { }, { , }}P is

dogmatic. Let us note that, when bba(ɛ) is time dependent, it is noted
bba

ɛ
(t) where t is the time at which this bba is considered. But the no-

tation bba(ɛ) is also be used when all the bbas are considered at the
same time. Therefore, the dogmatic distribution is: =bba t p t( ) ( )F F{ } 1 1 ,= −bba t p t( ) 1 ( )F F{ } 1 1 , =bba t( ) 0F F{ , } 1 .

However, the probability of failure cannot always be computed for a
given duration of use from the data the local prognosis provides.

Indeed, the local prognosis can provide data with epistemic un-
certainty. The local prognoses can provide two kinds of data containing

epistemic uncertainty. The first kind of data consists of an interval
varying with the duration of use in which the probability of failure is

with a trust α such as the results presented in [22]. This interval can be
defined by an upper CPDF and a lower CPDF as shown in Fig. 3 where

plowF(t1) denotes the lower probability of failure before t1 with an error
probability α

2
computed by the local prognosis at t0 and pupF(t1) denotes

the upper probability of failure before t1 with an error probability α

2
computed by the local prognosis at t0 too. Therefore, the distribution of

bbas on the elements of 2P is: = − −
bba t p t( ) ( )F lowF

α
{ } 1 1

1

2
,

= −+
bba t p t( ) ( )F

α
upF{ } 1

1

2 1 , = − + −bba t p t p t α( ) ( ) ( ) 1F F upF lowF{ , } 1 1 1 .
The second kind of data consists of an interval the local prognosis

assesses at t0 noted [RULmin, RULmax ] in which the real RUL is with the

given probability α [4,12,14,32]. Without any other indication about
the distribution of the RUL, three situations are considered.

• The first situation is when − <t t RULmin1 0 for which the proposed

distribution of the bbas on the elements of 2P is =bba t( ) 0F{ } 1 ,
=bba t α( )F{ } 1 , = −bba t α( ) 1F F{ , } 1 . Indeed, as the probability of oc-

currence of the failure between RULmin and RULmax is α, thus the

maximum probability of failure before RULmin is − α1 but it may be
less because of the lack of information about the distribution of the

RUL (this is translated by the bba assigned to F F{ , }) and so the
minimum probability of the non–occurrence of failure before

RULmin is α.

• The second situation is when − >t t RULmax1 0 for which the pro-

posed distribution of the bbas on the elements of 2P is =bba t α( )F{ } 1 ,
=bba t( ) 0F{ } 1 , = −bba t α( ) 1F F{ , } 1 . Indeed, as the probability of oc-

currence of the failure between RULmin and RULmax is α, thus the

minimum probability failure will occur before > +t RUL tmax1 0 is α
but it may be more because of the lack of information about the

distribution of the RUL (this is translated by the bba assigned to
F F{ , }) and so the minimum probability of the non–occurrence of

failure before RULmin is α.

• The third situation is when ≤ − ≤RUL t t RULmin max1 0 for which the

proposed distribution of the bbas on the elements of 2P is
=bba t( ) 0,F{ } 1 =bba t( ) 0,F{ } 1 =bba t( ) 1F F{ , } 1 . Indeed, the probability

of occurrence of the failure between RULmin and RULmax is α. This

explains the bba assigned to F F{ , } is at least α. Nevertheless, the
probability the failure occurs outside the interval [RULmin, RULmax ]

is − α1 but, because of the lack knowledge about the distribution of
the RUL, it is not possible to have an idea of how to distribute this

remaining bba between the states F and F . This also corresponds to
an epistemic uncertainty between the states F and F . That is why the

Fig. 1. Probability densities associated to RUL [5].



remaining belief mass − α1 is also assigned to F F{ , }.

Table 2 summarizes the distributions of the bbas on the frame of
discernment 2P of a local prognosis according to the identified types of

data provided by the local prognostics.
Local prognoses with epistemic uncertainty seem to be very pena-

lizing for the assessment of the future reliability. Nevertheless, the as-
sessments of intervals with very high trust α improve the belief in F

state although they increase the widths of the intervals. Many works
show that these widths are decreasing when t0, the date at which the

local prognoses are computed, is getting close to the date at which

failures occur [4,12,14,22,32].
To assess at t0 the multicomponent system ability to carry out the

planned productive tasks that will end at te the local prognostics must
be computed from the duration the planned tasks will solicit the com-

ponents in order to define the values of t1. for the local prognoses.
Nevertheless, the duration of use is not always the best indicator for

RULs. Indeed, in some cases the number of cycles is more relevant
[7,14,32]. In these cases, the duration of use must be converted into

number of cycles. The local prognoses may also require the severity
with which the planned tasks will solicit the components that may be

introduced thanks to parameters [14]. The durations of uses and the
severities can be anticipated by production planning that assigns tasks

to systems. Once the local prognoses are determined, the data they
provide are used to define their distributions of bbas at te on 2P ac-

cording to Table 2. Therefore, a local prognosis:

• that is of probability type contains the value of pF(te),

• that is of interval of probability type contains the values pupF(te),

plowF(te), and α,

• that is of trust interval type contains the values RULmin, RULmax and

The next stage consists in computing the decision supports for

production and maintenance planning from the bbas of each set of the
power set of the frame of discernment of each entity of the modeled

multicomponent system. This computation requires the modeling of the
multicomponent system and the definition of inferences. Then in order

to simplify the notations, the terms t1 and te are not used any more.
Indeed, all the quantities are computed for the date te at which the

Fig. 2. PDFs of the predictions of degradations and of the time to failure.

Fig. 3. Distribution of bbas defined from upper CPDF and a lower CPDF of

failure.

Table 2

Distributions of the bbas according to data provided by the local prognosis.

Distribution at t1 of bbas on 2P Probability Interval of probability Trust interval

− <t t RULmin1 0 ≤ − ≤RUL t t RULmin max1 0 − >t t RULmax1 0

=bba t( )F{ } 1 pF(t1) − −
p t( )lowF

α
1

1

2
0 0 α

=bba t( )F{ } 1 − p t1 ( )F 1 −+
p t( )

α
upF

1

2 1
α 0 0

=bba t( )F F{ , } 1 0 − + −p t p t α( ) ( ) 1upF lowF1 1 − α1 1 − α1



planned productive tasks will end.

4. Multicomponent system modeling and inferences

Systems engineering aims at designing technical systems that im-

plement specified services and satisfy constraints and desired perfor-
mances at lower costs [49]. That is why, the design of a prognostic

function for a multicomponent system should be considered at the de-
sign stage [33]. Model Based Systems Engineering (MBSE) provides

modeling supports for systems engineering such as SysML (System
Modeling Language) [50]. The different diagrams enable the identifi-

cation of relationships between components, functions and data, energy
and material flows. Diagrams, like parametric, sequence, and state-

machine diagrams in SysML, model dynamic behaviors of the systems.

These models gather structural, functional and behavioral knowledge
necessary to implement a prognostic function for a system [30]. The

functional knowledge can be extracted from the hierarchical view
which breaks down a system into subsystems, then into functions, then

into multiple levels of sub-functions till components implementing one
or more sub-functions [49]. The structural knowledge is obtained from

the direct interactions between entities (components or functions) and
their failure modes mainly in order to propagate their effects [51]. For

this purpose, MBSE diagrams can be used like, with SysML, the internal
blocks diagrams, activity diagrams that represent material, energy and

data flows that are used, produced, transformed and exchanged by
functions and components. In the present context, the behavioral

knowledge can be used to detect degradations of components and to
analyse their trends to provide the local prognoses. Data acquisition

and data processing techniques implemented for the local prognoses of
the components or of their failure modes are numerous and often de-

pend on the components or on the failure to prognose [3]. That is why
we here consider that the suppliers provide the prognostic systems of

their components for their different failure modes. Indeed, they know
the behavioral models and they can so implement the most relevant

techniques [31]. Therefore, a supplier can provide either one prognosis
for each failure mode of the component or one prognosis for all its

failure modes. In this last case, the component is assumed having only
one failure mode [16].

The modeling proposed in [31] is based on object oriented BN and
can be defined from MBSE diagrams. Nevertheless, the obtained graph

modeling the multicomponent system must be checked and trans-
formed. The first transformations lead to suppress graph cycles, because

BNs are acyclic graphs. The second transformations deal with the fact
that several paths may exist from a given vertex to another vertex.

Those paths can be the consequence of a modeling based on MBSE
diagrams such as activity diagrams. The existence of several paths from

a vertex E1 to a vertex E2 introduces several times the occurrence

probability of one state SE1 of E1 into the computation of the occurrence
probabilities of the states of E2 whereas it is a unique occurrence that

must so be considered once. The proposed transformations lead to es-
tablish several graphs to assess the future reliability of the entities of the

system (components, functions, subsystems) whatever their hier-
archical levels are. In the resulting modeling graphs, three kinds of

vertices corresponding to patterns appear: components, simple func-

tions and redundancy functions for which Bayesian inferences are
proposed. These Bayesian inferences only handle aleatory uncertainty.

In order to handle epistemic uncertainty too, the proposal consists in
adapting, to this modeling, the implementation of the DST by the use of

BN inferences for reliability analysis of complex systems proposed in
[46,47] and in developing the inferences to take the additional states

into account. The main objective is more to define the entities, what-
ever their level in the system breakdown structure (from components to

subsystems), that will or will not be able to carry out the planned tasks
than to identify the operating mode (degraded or not) at the end of

these tasks. The handling of epistemic uncertainty of local prognoses
leads to a generalization of the method proposed in [31].

4.1. Component pattern

Assuming components do not have self-healing ability: once they

become failed they cannot recover from their failures without main-
tenance. According to CBM and PHM policies, maintenance of compo-

nents is done before their failures, the case for which the consequence
of a component failure could impact the physical integrity of other

components, like a leak of a liquid on electrical devices or mechanical
structure failure ejecting debris to other components, is therefore not

considered. Nevertheless, a component becomes inoperative if another
entity, on which it structurally depends, becomes inoperative or fails.

That is why the distinction between the inability to operate because of
an internal failure and because of another inoperative entity supports

the decision making about the components that must undergo main-
tenance.

As shown in Fig. 4, the pattern of a component is made of a vertex to
which one local prognostic at least is connected and that may structu-

rally depends on one or several entities. Four distinct states are con-

sidered. They define the frame of discernment for a component
=C OK F OO FOO{ , , , }:

• OK: The component will be able to carry out the planned tasks even

if its performances are not the best ones because of incipient de-
gradations or of more important degradations.

• F: The component will not be able to operate within its minimum
performances required to carry out the planned tasks because at

least one internal failure has occurred or will occur. The component
will have to undergo maintenance to operate within its minimum

performances again.

• OO: The component will not able to operate within the minimum

performances required to carry out the planned tasks because at
least one entity it structurally depends on is inoperative or will

become inoperative. The maintenance of the component is not ne-
cessary.

• FOO: The component will not be able to operate within its minimum
performances required to carry out the planned tasks because at

least one internal failure has occurred or will occur and because at
least one entity on which it structurally depends on is inoperative or

will become inoperative.

Fig. 4. Pattern and state-machine diagram of a component.
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The distribution of bbas on the elements of 2C is computed step by

step by the means of inference grids and of the relation (3) by succes-
sively considering, on one hand, the local prognostics and, on the other

hand, the entities the component depends on. The inference grids are
defined from the transitions described in the state-machine diagram of

Fig. 4.
The first step consists of a projection of the power set of the frame of

discernment = ∅ F F F F2 { , { } , { } , { , } }P
1 1 11 of the first local prognostic

onto the power set of the frame of discernment 2C of the component by

setting =bba OK bba F({ }) ({ } )2 2
1

C P1 , =bba F bba F({ }) ({ } )2 2
1

C P1 and

=bba OK F bba F F({ , }) ({ , } )2 2
1

C P1 ; the other bbas of elements of 2C are
set to zero. If the component has more than one local prognostic, the

second step consists in considering the impact of the other local prog-
nostics one by one thanks to the inference grid of Table 3 and the re-

lation (3). In Table 3, the index i denotes the ith considered local
prognostic, the index −i 1 is for the elements of 2C whose values of bbas

do not take into account the bbas of the ith local prognostic yet and the
index i is also for the elements of 2C whose values of bbas are modified

once the inference is processed for the ith considered local prognostic.
The bbas values of the elements of 2C not listed in the Table 3 are not

modified.
If the component has entities it depends on, the third step consists in

considering the impact of those entities one by one thanks to the in-
ference grid of Table 4 and the relation (3). For the jth entity on which

the component depends, the power set of the frame of discernment is

= ∅ OK KO OK KO2 { , { } , { } , { , } }E
j j jj . The state KO means the entity will

not be able to operate within its minimum performances required to
achieve the planned tasks whatever the causes are. In Table 4, the index
−j 1 is for the elements of 2C whose values of bbas do not take into

account the bbas of 2Ej yet and the index j is also for the elements of 2C

whose values of bbas are modified once the inference is processed for

the jth considered entity.

According to the inferences presented in Tables 3 and 4,

=bba OK FOO({ , }) 02C because it is not a result of any inference. This is
consistent because the state FOO cannot be reached without passing

through the state F or the state OO.
Once the bbas of the elements of 2C are computed, the measures of

belief and plausibility of each element of C are computed from (1) and
(2). Then C is reduced to Cr by the using (4) for propagation purpose in

the modeling graphs.

4.2. Redundancy pattern

Redundancies are entities that bring into operation the same service
or function to match reliability or safety requirements [48]. In many

cases, the service is carried out while one entity at least is able to
provide it. These cases correspond to parallel structures in reliability

diagrams. Particular systems also exist in which the service of re-
dundant entities is down if the number of entities that bring it into

operation goes under a number p over the n entities that are potentially

able to carry it out [46,53]. Nevertheless, it is interesting to distinguish
one more state than the one for which the service is operational and the

one for which the service is down. This additive state is the one for
which the service is operational with the minimum number of re-

dundant entities. In such a situation, the system must not begin a new
task mainly because of safety reasons [54]. Indeed, the loss of another

entity will lead to the loss of the service. Thus maintenance is led before
this “loss of redundancy” if the safety criterion is not satisfied.

As shown in Fig. 5, the redundancy pattern is made of a vertex to
which n entities belong. The n entities carry out the same service that is

operative if at least p entities are operative (p< n).
Three distinct states are considered among which one is dedicated

to the “loss of redundancy”. They define the frame of discernment for a
redundancy =R OK LR KO{ , , }p .

• OK: Thanks to +p 1 entities, at least, the service will be operative

within the minimum required performances to carry out the planned
tasks.

• LR: Only p entities will be operative within the minimum required
performances to carry out the planned tasks. Maintenance can be

required for safety reasons.

• KO: Less than p entities will be able to operate. This is not sufficient

to ensure the minimum performances required to carry out the
planned tasks. Maintenance is required to restore the service.

Table 3

Inference grid for considering more than one local prognostic.

2C 2Pi

{F}i F{ }i F F{ , }i

−F{ }i 1 {F}i {F}i {F}i

−OK{ }i 1 {F}i {OK}i {OK, F}i

−OK F{ , }i 1 {F}i {OK, F}i {OK, F}i

Table 4

Inference grid for considering the entity the component depends on.

2C 2Ej

{OK}j {KO}j {OK, KO}j

−OK{ } j 1 {OK}j {OO}j {OK, OO}j

−F{ } j 1 {F}j {FOO}j {F, FOO}j

−OO{ } j 1 {OO}j {OO}j {OO}j

−FOO{ } j 1 {FOO}j {FOO}j {FOO}j.

−OK F{ , } j 1 {OK, F}j {OO, FOO}j {OK, F, OO, FOO}j

−OK OO{ , } j 1 {OK, OO}j {OO}j {OK, OO}j

−OK FOO{ , } j 1 {OK, FOO}j {OO, FOO}j {OK, OO, FOO}j

−F OO{ , } j 1 {F, OO}j {OO, FOO}j {OO, FOO}j

−F FOO{ , } j 1 {F, FOO}j {FOO}j {F, FOO}j

−OO FOO{ , } j 1 {OO, FOO}j {OO, FOO}j {OO, FOO}j

−OK F OO{ , , } j 1 {OK, F, OO}j {OO, FOO}j {OK, F, OO, FOO}j

−OK F FOO{ , , } j 1 {OK, F, FOO}j {OO, FOO}j {OK, F, OO, FOO}j

−OK OO FOO{ , , } j 1 {OK, OO, FOO}j {OO, FOO}j {OK, OO, FOO}j

−F OO FOO{ , , } j 1 {F, OO, FOO}j {OO, FOO}j {F, OO, FOO}j

−OK F OO FOO{ , , , } j 1 {OK, F, OO, FOO}j {OO, FOO}j {OK, F, OO, FOO}j

As shown in Fig. 4, there is no direct transition between the state OK 
and FOO meaning that a failure of the component occurs and an entity 
Ej becomes KO simultaneously. This transition is neglected because only 
the computed quantities, mainly the bbas of the four states, at the end of 
the planned task te are of interest whatever the order of transitions is. 

A fifth state KOr is considered. KOr is the union of the states F, OO 
and FOO such as KOr {F, OO, FOO}. KOr means that the component 
will not be able to operate within its minimum performances required 
to achieve the planned tasks whatever the causes are. This state is used 
to assess the impact of the inability of the component to carry out the 
planned tasks into the system by propagation in the modeling graphs. 
For this purpose, it is necessary to reduce the frame of discernment C to



LR can be seen as a degraded OK state. A state OKr is so considered.
OKr is the union of the states OK, and LR such as =OK OK LR{ , }r . This

state is used to propagate, in the modeling graphs, the redundant
structure ability to operate within the minimum required performances

to carry out the planned tasks. For this purpose, it is necessary to reduce
the frame of discernment Rp to the frame of discernment

=R OK KO{ , { }}r
p

r . The distribution of bbas on the elements
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r
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r
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The distribution of bbas on the elements of 2R
p
is computed step by

step by the means of inference grids and the relation (3) by successively

considering the entities that belongs to the redundancy. The inference
grids are defined from the transitions described in the state-machine

diagram of Fig. 5.
For 1/n redundancies, the first step consists of a projection of the

power set of the reduced frame of discernment

= ∅ OK KO OK KO2 { , { } , { } , { , } }E
1 1 11 of the first entity onto the power set

of the frame of discernment 2R
1

of the redundancy by setting

=bba OK bba OK({ }) ({ } )2 2
1

R E1
1 , =bba KO bba KO({ }) ({ } )2 2

1
R E1

1 and

=bba OK KO bba OK KO({ , }) ({ , } )2 2
1

R E1
1 ; the bbas of the other elements

of 2R
p
are set to zero. The second step consists in considering the impact

of the states of the other entities one by one thanks to the inference

grids of Tables 5 and 6 and the relation (3). In Tables 5 and 6, the index
k denotes the kth considered entity, the index −k 1 is for the elements

of 2R
1
whose values of bbas do not take into account the bbas of the kth

considered entity yet and the index k is also for the elements of 2R
1

whose values of bbas are modified once the inference is processed for
the kth considered entity. The inference of Table 5 is used for the

second entity of the redundancy. Then, the inference of Table 6 is used
for all the other entities of the redundancy. The values of the bbas of the

elements of 2R
1
not listed in the Table 5 are not modified.

For redundancies that need more than one element to be operative
(p>1), a table is built that gives the conditional bbas of the elements of
the power set of the frame of discernment 2R

p
is defined according to

the state-machine diagram of Fig. 5 and to the example proposed in
[46] for a 2/3 redundancy. Table 7 is an excerpt from the complete

table defined for a 2/4 redundancy.
Once the bbas of the elements of 2R

p
are computed, the measures of

belief and plausibility of each element of Rp are computed from (1) and
(2). Then Rp is reduced to Rr

p by the using (5) for propagation purpose

in the modeling graphs.
In the case of passive redundancies, the proposed inferences are

Fig. 5. Pattern and state-machine diagram of a redundancy.

Table 5

Inference grid for considering the second entity of a redundancy if =p 1.

2R
1 2E2

{OK}2 {KO}2 {OK, KO}2

{OK}1 {OK}2 {LR}2 {OK, LR}2
{KO}1 {LR}2 {KO}2 {LR, KO}2
{OK, KO}1 {OK, LR}2 {LR, KO}2 {OK, LR, KO}2

Table 6

Inference grid for considering the entities of a redundancy from the 3rd one to

nth one if =p 1.

2R
1 2Ek

{OK}k {KO}k {OK, KO}k

−OK{ }k 1 {OK}k {OK}k {OK}k

−LR{ }k 1 {OK}k {LR}k {OK, LR}k

−KO{ }k 1 {LR}k {KO}k {LR, KO}k

−OK LR{ , }k 1 {OK}k {OK, LR}k {OK, LR}k

−OK KO{ , }k 1 {OK, LR}k {OK, KO}k {OK, LR, KO}k

−LR KO{ , }k 1 {OK, LR}k {LR, KO}k {OK, LR, KO}k

−OK LR KO{ , , }k 1 {OK, LR}k {OK, LR, KO}k {OK, LR, KO}k{OK, KO}new

Table 7

Excerpt of the table used to compute the conditional bbas for a 2/4 redundancy.

2E1 2E2 2E3 2E4 2R
2

{OK} {OK} {OK} {OK} {OK}

{OK} {OK}

{OK, KO} {OK}

{KO} {OK} {OK}

{KO} {LR}

{OK, KO} {OK, LR}

{OK, KO} {OK} {OK}

{KO} {OK, LR}

{OK, KO} {OK, LR}

{KO} {OK} {OK} {OK}

{KO} {LR}

{OK, KO} {OK, LR}

{KO} {OK} {LR}

{KO} {KO}

{OK, KO} {LR, KO}

{OK, KO} {OK} {OK, LR}

{KO} {LR, KO}

{OK, KO} {OK, LR, KO}

{OK, KO} {OK} {OK} {OK}

{KO} {OK, LR}

{OK, KO} {OK, LR}

{KO} {OK} {OK, LR}

{KO} {LR, KO}

{OK, KO} {OK, LR, KO}

{OK, KO} {OK} {OK, LR}

{KO} {OK, LR, KO}

{OK, KO} {OK, LR, KO}

{KO} {OK} {OK} {OK} {OK}

⋮ ⋮ ⋮ ⋮ ⋮



Two distinct states are considered for a function. They define the

frame of discernment for a function =F OK KO{ , }ct .

• OK: The function will be able to carry out the planned tasks within
the minimum required performances.

• KO: The function will not be able to carry out the planned tasks
within the minimum required performances because one of its en-

tities, at least, is KO or will become KO during the achievement of
the tasks.

The distribution of bbas on the elements of 2F
ct
is computed step by

step by the means of an inference grid and the relation (3) by succes-

sively considering the entities that belongs to the redundancy. The in-
ference grid is defined from the transition described in the state-ma-

chine diagram of Fig. 6.
The first step consists of a projection of the power set of the reduced

frame of discernment = ∅ OK KO OK KO2 { , { } , { } , { , } }E
1 1 11 of the first en-

tity onto the power set of the frame of discernment 2F
ct
of the function by

setting =bba OK bba OK({ }) ({ } )2 2
1

Fct E1 , bba2
Fct =KO bba KO({ }) ({ } )2

1
E1

and b =ba OK KO bba OK KO({ , }) ({ , } )2 2
1

Fct E1 . If more than one entity

contributes to the function, the second step consists in considering the
impact of the states of the other entities one by one thanks to the in-

ference grid of Table 8 and the relation (3). The index i denotes the ith

considered entity, the index −i 1 is for the elements of 2F
ct
whose values

of bbas do not take into account the bbas of the ith considered entity yet

and the index i is also for the elements of 2F
ct
whose values of bbas are

modified once the inference is processed for the ith considered entity.

Once the bbas of the elements of 2F
ct
are computed, the measures of

belief and plausibility of each element of Fct are computed from (1) and

(2).

4.4. Computation of the decision support indicators

Once the system is modelled, the obtained graph has to be trans-
formed to suppress graph cycles and then this transformed graph is

processed in order to avoid that the bbas of a power set of a unique
frame of discernment could be considered several times according to

the method described in [31]. This processing may lead to a system
modeling made of several graphs for different hierarchical levels of

entities. The computation of the decision support indicators can begin
when all the local prognoses are obtained for te, the date at which the

planned productive tasks will end.
However, the bbas, Bels and Pls are measures at the credal level.

Even if they are relevant to propagate local prognoses epistemic un-
certainties in the system ability analysis to carry out production tasks,

they can be difficult to handle for decision-makers. The pignistic

transformation defines a measure that can be considered as a prob-
ability distribution [44]. For each vertex, the pignistic probabilities

(BetP) of the elements of its frame of discernment and of its reduced
frame of discernment are computed according to (6).

∑= ∩
∈

BetP ω bba
ω

( ) (ɛ)
ɛ

ɛ
i

i

ɛ 2Ω (6)

Considering the computed values of BetP for relevant vertices for te
(those vertices may correspond to solicited system essential entities,
mainly functions or sub-systems, for a given sequence of tasks), the

decision-makers can valid the sequence of planned productive tasks,
reduce the number of tasks, replace or suppress tasks that will solicit

too weak functions and, so, plan the needed maintenance operations.
To identify the needed maintenance operations and to plan them in

terms of time and resources, the identification of components that
should undergo maintenance must be done. Thus two more fields are

computed for each vertex. The first one is the identifier of the compo-
nent whose maintenance will best improve the ability of the vertex to

achieve the planned tasks. If the vertex is a component, it can be its own
identifier. The second field contains a value computed from the bbas of

the power sets of the frames of discernment of entities belonging to the
vertex or which the vertex structurally depends on. This field avoids

back traversals in graphs. The proposed computation of these two fields
is derived from the one presented in [31]. The probability of failure is

replaced by the pignistic probability of failure. Thus the computation of
these fields, respectively idEx and BetP F( )max

Ex for an entity Ex, becomes,

with Ei and Ek other vertices, BetPEx(ωi) the pignistic probability of the
state ωi of an entity Ex, − ExΓ ( )1 the set of predecessors of Ex and R the

set of vertices that are redundancies in the processed modeling graph:Fig. 6. Pattern and state-machine diagram of a function.

Table 8

Inference grid for considering more than one entity in a function.

2F
ct 2Ei

{OK}i {KO}i {OK, KO}i

−OK{ }i 1 {OK}i {KO}i {OK, KO}i

−KO{ }i 1 {KO}i {KO}i {KO}i

−OK KO{ , }i 1 {OK, KO}i {KO}i {OK, KO}i

pessimistic. Indeed, they consider that all the entities ensuring the 
service will operate together during the planned tasks whereas only one 
(or the minimum necessary group) will be solicited with the optimistic 
hypothesis. However, entities ensuring passive redundancies are mainly 
solicited when all the other entities ensuring the service are failed. In
this situation the redundancy is in LR state. Such a situation is often 
critical in terms of safety and requires urgent maintenance that leads to 
stop the productive task as soon as possible. This is the case when the 
ram air turbine must be used in an aircraft, it provides the sufficient 
energy for control surfaces and some instruments to land urgently [48]. 
Of course, the programed flight is uncompleted. That is why the values 
of Bel(LR) and Pl(LR) for a redundancy are, at least; as important as the 
values of Bel(KO) and Pl(KO) for making decision about production or 
maintenance.

4.3. Function pattern

Functions can be identified from the hierarchical view. They are 
implemented by several entities, which can be sub-functions, compo-
nents or services brought into operation by redundant entities; but it 
can also be implemented by a unique entity. A function will fail at 
achieving the planned tasks as soon as one of the entities implementing 
it will become inoperative. This is modeled by the means of a serial 
structure in reliability diagram. Therefore, the function pattern is made 
of a vertex to which n entities contribute to its implementation as 
shown in Fig. 6.



• for a vertex Ex that is a component, the computation of BetP F( )max
Ek

and idEk is:
If >BetP F BetP F( ) ( )max

Ek Ex where Ek is such as
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• for a vertex Ex that is a redundancy or a function, the computation
of BetP F( )max

Ek and idEk is:
idEx← idEk

←BetP F BetP F( ) ( )max
Ex

max
Ek

(8)

• where Ek is such as =BetP F( )max
Ek

∈ ∉ ∈− BetP F BetP KOmax {max ( ( )), max ( ( ))}Ei Ex Ei R max
Ei

Ei R
Ei

Γ ( )1

This first approach is justified by the fact that, if the pignistic
probabilities of failure were computed for all the local prognoses, the

computations based on object-oriented BN proposed in [31] could be
exploited but with the loss of the information about epistemic un-

certainties. Other criteria can be used to define components to maintain

such as maintenance costs [27]. If failures might lead to casualties or to
serious damage to the environment, the plausibility measures of KO and

F states could be more relevant indicators to define the ability of the
main functions to complete the planned tasks as well as to identify the

needed maintenance. Thus the process to identify the components to
maintain must be adapted to the company's policy declined in terms of

reliability, safety, costs, productivity…

5. Experimental results

The proposed method to assess the ability of a multicomponent

system to achieve the planned productive tasks has been implement by
the means of the discrete event systems simulation Arena software in

which the patterns have been defined as blocks. To validate the patterns
and the associated computations, the models of a bridge system, of a

small system made of 3 components associated in a 2/3 redundancy and

of the Kamat–Riley system proposed in [46] have been implemented.
For those implementations, the components have had only one local

prognosis whose bbas have been initialized with the bbas values of the
corresponding components of these models, the function patterns cor-

respond to AND gates and the 1/n redundancy patterns to OR gates. The
results obtained for the reduced frames of discernment by the proposed

Fig. 7. Fictitious system from a systems engineering point of view and its modeling graph.

Fig. 8. Graphs used to compute the decision support indicators of the fictitious multicomponent system.



assessment method have been the same as the ones presented in [46].
The implementation of the system proposed in [31] by its three mod-

eling graphs has also been done to validate the identification of com-
ponents to maintain. For this validation, all the local prognoses have

been initialized with dogmatic distributions of bbas corresponding to
the scenarios proposed in [31] for the different scenarios. Therefore,

there has been no epistemic uncertainty and so, for all the vertices
whose frames of discernment were Ω with ɛi∈ 2Ω, ≠ =bba (ɛ ɛ 1) 0i i .

The bbas, obtained for the models and the scenarios have been the same
as the probabilities of the corresponding states as well as the suggested

components to maintain.
The fictitious multicomponent system is also the one proposed in

[31]. This system is presented on Fig. 7. Fig. 7(a) shows the system from
a systems engineering point of view and Fig. 7(b) shows the modeling

graph directly obtained from Fig. 7(a). On Fig. 7(b), the local prognoses
of components are shown. This modeling graph is not acyclic and

several paths exist between some vertices and requires transformations
for the reasons presented in Section 4.4.

Once the transformations described in [31] are done, the three
modeling graphs shown on Fig. 8 are obtained and used for the com-
putation of the decision support indicators. In these graphs, the Fn

cti

stand for functions that are introduced to solve the graph cycles, the Fp
cts

stands for functions that are considered as subsystems from a systems
engineering point of view and FctS stands for the whole fictitious system.

The graph of Fig. 8(a) is used to compute the decision support in-
dicators for all the entities of the graph. The graph of Fig. 8(b) is then

used to compute the decision support indicators of subsystems F cts2 and
F cts3 . Eventually, the graph of Fig. 8(c) is used to compute the decision

support indicators of the whole system. Four scenarios have been
computed from the graphs of Fig. 8. Their results are presented in

Table 9 where the pignistic probabilities of the frames of discernment
are given as well as the identifiers of the suggested components to

maintain for each entity. Indeed, we here assume that the decision
making process is based, for each entity, on the pignistic probabilities

(BetP) of the elements of its frame of discernment that are easier to
handle by decision-makers than credal level measures.

The scenario 1 consists of one task lasting −t t( )e 0 4.000 time units
at the end of which all the local prognoses are the same. According to

the notations of Section 3, the local prognoses are supposed pre-pro-
cessed and are simulated from the following relationships:

= −bba t e( )F
k t t

{ }
( )F{ } 0 (9)

Ex Scenario 1 Scenario 2 Scenario 3 Scenario 4

BetPEx(LR) BetPEx(KO) idEx BetPEx(LR) BetPEx(KO) idEx BetPEx(LR) BetPEx(KO) idEx BetPEx(LR) BetPEx(KO) idEx

FctS 6.28E-03 C23 1.18E-02 C21 6.48E-03 C21 8.82E-03 C34

F cts3 2.70E-03 C32 5.49E-03 C34 3.00E-03 C34 5.49E-03 C34

F cts2 3.59E-03 C23 6.38E-03 C21 3.50E-03 C21 3.35E-03 C25

F cts1 7.55E-10 C13 3.60E-09 C11 7.06E-10 C11 3.60E-09 C11

F ct5 1.35E-03 C36 1.55E-03 C37 9.50E-04 C37 1.55E-03 C37

F ct4 1.35E-03 C36 1.55E-03 C37 9.50E-04 C37 1.55E-03 C37

F ct3 1.35E-03 C32 3.95E-03 C34 2.05E-03 C34 3.95E-03 C34

F ct2 2.25E-03 C21 5.04E-03 C21 2.75E-03 C21 2.00E-03 C25

F ct1 2.25E-03 C23 4.84E-03 C21 2.55E-03 C21 1.80E-03 C23

F cti2 1.35E-03 C36 1.55E-03 C37 9.50E-04 C37 1.55E-03 C37

F cti1 9.00E-04 C21 3.50E-03 C21 1.80E-03 C21 4.50E-04 C22

R2
1 9.00E-04 2.03E-07 C33 3.50E-03 1.37E-06 C34 1.80E-03 3.89E-07 C34 3.50E-03 1.37E-06 C34

R1
1 2.46E-06 7.38E-10 C13 8.04E-06 3.51E-09 C11 2.58E-06 6.57E-10 C11 8.04E-06 3.51E-09 C11

Ex BetPEx(F) BetPEx(KO) idEx BetPEx(F) BetPEx(KO) idEx BetPEx(F) BetPEx(KO) idEx BetPEx(F) BetPEx(KO) idEx

C37 4.50E-04 4.50E-04 C37 6.50E-04 6.50E-04 C37 4.50E-04 4.50E-04 C37 6.50E-04 6.50E-04 C37

C36 4.50E-04 4.50E-04 C36 4.50E-04 4.51E-04 C36 2.50E-04 2.50E-04 C36 4.50E-04 4.51E-04 C36

C35 4.50E-04 4.50E-04 C35 4.50E-04 4.50E-04 C35 2.50E-04 2.50E-04 C35 4.50E-04 4.50E-04 C35

C34 4.50E-04 4.50E-04 C34 3.05E-03 3.05E-03 C34 1.55E-03 1.55E-03 C34 3.05E-03 3.05E-03 C34

C33 4.50E-04 4.50E-04 C33 4.50E-04 4.50E-04 C33 2.50E-04 2.50E-04 C33 4.50E-04 4.50E-04 C33

C32 4.50E-04 9.00E-04 C32 4.49E-04 3.50E-03 C34 2.50E-04 1.80E-03 C34 4.49E-04 3.50E-03 C34

C31 4.50E-04 4.50E-04 C31 4.50E-04 4.50E-04 C31 2.50E-04 2.50E-04 C31 4.50E-04 4.50E-04 C31

C25 9.00E-04 9.00E-04 C25 1.10E-03 1.10E-03 C25 7.00E-04 7.00E-04 C25 1.10E-03 1.10E-03 C25

C24 4.50E-04 1.35E-03 C21 4.48E-04 3.95E-03 C21 2.50E-04 2.05E-03 C21 4.50E-04 9.00E-04 C22

C23 1.35E-03 1.35E-03 C23 1.35E-03 1.35E-03 C23 7.50E-04 7.50E-04 C23 1.35E-03 1.35E-03 C23

C22 4.50E-04 4.50E-04 C22 4.50E-04 4.50E-04 C22 2.50E-04 2.50E-04 C22 4.50E-04 4.50E-04 C22

C21 4.50E-04 4.50E-04 C21 3.05E-03 3.05E-03 C21 1.55E-03 1.55E-03 C21 1.00E-07 1.04E-07 C21

C13 9.00E-04 9.00E-04 C13 9.00E-04 9.00E-04 C13 5.00E-04 5.00E-04 C13 9.00E-04 9.00E-04 C13

C12 9.00E-04 9.00E-04 C12 1.10E-03 1.10E-03 C12 7.00E-04 7.00E-04 C12 1.10E-03 1.10E-03 C12

C11 9.00E-04 9.00E-04 C11 3.50E-03 3.50E-03 C11 1.80E-03 1.80E-03 C11 3.50E-03 3.50E-03 C11

Table 10

Computed and usable quantities to support decision for redundancy R2
1 in scenario 1.

2R2
1

bba (.)
R2 2
1

Bel (.)
R2 2
1

BetP (.)R2
1

Pl (.)
R2 2
1

2R r2
1

Bel (.)
R r2 2
1

BetP (.)R r2
1

Pl (.)
R r2 2
1

{OK} 9.990E-01 9.990E-01 9.991E-01 9.992E-01 {OKr} 9.999E-01 9.999E-01 9.999E-01

{LR} 7.996E-04 7.996E-04 8.996E-04 9.996E-04

{OK, LR} 1.999E-04 9.999E-01 9.999E-01

{KO} 1.600E-07 1.600E-07 2.033E-07 2.500E-07 {KO} 1.600E-07 2.050E-07 2.500E-07

{LR, KO} 8.000E-08 7.998E-04 9.997E-04

{OK, LR, KO} 1.000E-08 1.000E+00 1.000E+00 {OKr, {KO}} 1.000E+00 1.000E+00

Table 9
Results of the simulated scenarios.



= −bba t e( )F F
k t t

{ , }
( )F F{ , } 0 (10)

= − −bba t bba t bba t( ) 1 ( ) ( )F F F F{ } { } { , } (11)

with =t 00 . After the simulations the local prognoses are, according to
the notations used to assess the future reliability of the entities of the

system: = −bba F E({ }) 4.0 42P , =bba F({ }) 0.99952P and

= −bba F F E({ , }) 1.0 42P . The results presented in Table 9 shows that

the pignistic probability that at least one the subsystems of the system
will become inoperative before the end of the task is

= −BetP KO E( ) 6.28 3FctS . If this value is too high, the task must not be

planned and the component that should first undergo maintenance is
C23 according to the computation based on (7) and (8). However, the

proposed method provides various indicators for each entity such as the
ones presented in Table 10 for redundancy R2

1 with this first scenario.

Thus, a decision-maker can consider the most appropriate indicators for
the entities of interest according to the productive tasks to do. Indeed

some productive tasks may not solicit given functions while other
functions are essential for their achievement. In this case, FS

ct could be

adapted by gathering only the functions (or subsystems) the productive
tasks will solicit.

The scenario 2 is based on scenario 1 for the same 4.000 time unit
task at the end of which all the local prognoses are the same excepting
the local prognoses P1

11, P1
21, P1

34, P2
12, P2

25 and P1
37, for which the values of

k{F} and k F F{ , } have been modified in such a way that the bbas of P1
11, P1

21

and P1
34 become = −bba F E({ }) 3.0 32P , =bba F({ }) 0.99692P and

= −bba F F E({ , }) 1.0 42P , and the bbas of P2
12, P2

25 and P1
37 become

= −bba F E({ }) 4.0 42P , =bba F({ }) 0.99912P and bb

= −a F F E({ , }) 5.0 42P . Assuming the task will solicit the whole system

and that the decision maker states the maximum value of BetP KO( )FctS

to valid a task is −E1.0 2, the system will not be able be to fulfill the

4.000 time unit task with a sufficient dependability. Indeed, for this

scenario BetP KO( )FctS is about −E1.18 2 as shown in Table 9. In this
case, two decisions can be made: either maintenance of, at least,

component C21 is undergone before the 4.000 time unit task is un-
dertaken or a task that will less solicit the system is planned like a

shorter task. Let us note that, if the 4.000 time unit task will only solicit
the subsystems F cts1 and F cts2 or the subsystems F cts1 and F cts3 , the prior

maintenance of C21 will not be needed. This may correspond to a de-
graded but acceptable functioning of the system.

The scenario 3 is based on the same local prognoses as the ones of
the scenario 2; but the productive task will only last 2.000 time units.

The local prognoses are processed for this new task. The results pre-

sented in Table 9 show that the BetP KO( )FctS remains below the
threshold of −E1.0 2. Thus, the 2.000 time unit productive task can be

undertaken before maintenance of, at least, the component C21 is un-
dergone. This can give time for maintenance logistics and so to reduce

the downtime duration.
The scenario 4 is also based on the same local prognoses as the ones

of the scenario 2; but assuming the component C21 will be maintained
before the 4.000 time unit productive task. To simulate this, the values
k{F} and k F F{ , } of its local prognosis P1

21 have considerably been reduced
because all the components are supposed to have the same duration of

use in the proposed scenarios. To take the maintenance of a component
into account its duration of use can be set to zero before the planning of

new productive tasks. According to the results shown in Table 9, the

4.000 time unit task can be undertaken. Indeed, BetP KO( )FctS remains

below the threshold of −E1.0 2. However, its value is quite close to this
threshold, about −E8.82 3. This may lead to another downtime for

maintenance of the component C34 after the achievement of this pro-
ductive task. To avoid that a maintenance task almost always follows a

productive task, the maintenance of all the components that lead to

restore a much higher level of reliability than the acceptable one for the
entities of interest should be undergone when a downtime is scheduled.

Applying this policy would also lead to maintain, at least, the compo-
nent C34.

6. Conclusion

An assessment method of the future ability of multicomponent
systems to carry out a future sequence of productive tasks based on

local prognoses was proposed in this paper. The method provides de-
cision supports for production planning by assessing the risk of failure

while a tasks sequence is carried out leading to stop the tasks for cor-
rective maintenance. It also provides decision supports for maintenance

by enabling in advance the identification of components that should
undergo maintenance in order to prepare the maintenance logistics

while achieving productive tasks. Thus the method is compliant to CBM
and PHM policies. Since the method is based on local prognoses, it

handles their uncertainties. That is why, it is based on the DST. To be
handled, local prognoses were categorized and the transformations of

the data they provide to be compliant to DST were given. Then the
method consists of the implementation of the DST by the use of BN

inferences. Patterns encountered in systems engineering were identified
and inferences were given for each of them where the reductions of

frames of discernment avoid the combinatory explosions of number of
states to consider. The proposed identification of components is based

on their pignistic probabilities of internal failures but it could be based
on other criteria like their plausibility measures of internal failures or

their maintenance costs. The method has been implemented and tested
thanks to Arena software. A fictitious system has been simulated for

different situations aiming at presenting how the decision supports can
be used for production and maintenance purposes aiming at a better

compromise between the satisfactions of the respective objectives of the
CBM and of the production planning. Although the method provides

lots of decisions supports, the decision-makers can only consider the
entities of interests, mainly functions, solicited by the production tasks

to be planned. For these entities, the decision-makers have indicators
such as the belief, the plausibility and pignistic probability of a state.

They can thus choose the most relevant one according to the applica-

tion or the enterprise policy. The method also provide to the decision-
makers the identifiers of the components to maintain to improve the

ability of the system or of its entities of interest to carry out the planned
tasks.

Further developments deal with the definition of a less pessimistic
pattern for passive redundancies. They can also deal with joint pro-

duction and maintenance planning techniques based on technical re-
sources implementing this assessment. Developments can also be made

for the reliability analyses of systems since their design stages from
prior knowledge or experts opinions as it is the case for FMECA [28].

The consideration of consistency based diagnosis [55] can be developed
too by introducing fault detections and their uncertainties in the model

of the system and to propagate them in order to confirm or not can-
didates according to the propagation of failures.

Supplementary materials

Supplementary material associated with this article can be found, in

the online version, at doi:10.1016/j.ress.2018.08.005.
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