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Abstract

Consider a continuous-state branching population constructed as a flow of nested
subordinators. Inverting the subordinators and reversing time give rise to a flow of
coalescing Markov processes with negative jumps, which correspond to the ancestral
lineages of individuals in the current generation. The process of the ancestral lineage
of a fixed individual is the Siegmund dual process of the continuous-state branching
process. We study its semi-group, its long-term behaviour and its generator. In order
to follow the coalescences in the ancestral lineages and to describe the backward
genealogy of the population, we define non-exchangeable Markovian coalescent
processes obtained by sampling individuals according to an independent Poisson point
process over the flow. These coalescent processes are called consecutive coalescents,
as only consecutive blocks can merge. They are characterized in law by finite measures
on N which can be thought as the offspring distributions of some inhomogeneous
immortal Galton-Watson processes forward in time.
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1 Introduction

Random population models can be divided in two classes, those with constant fi-
nite size and those whose size is varying randomly. It is known since the 2000s that
populations with constant finite size, evolving by resampling, have genealogies given
by exchangeable coalescents. These processes, defined by Möhle and Sagitov [MS01],
Pitman [Pit99], Sagitov [Sag99] and Schweinsberg [Sch00], are generalisations of King-
man’s coalescent, for which multiple coalescences of ancestral lineages are allowed.
They correspond to the genealogy backward in time of so-called generalized Fleming-
Viot processes. Those processes, which can be seen as scaling limits of Moran models
[Mor58], were defined and studied by Donnelly and Kurtz [DK99] (via a particle system
called lookdown construction) and by Bertoin and Le Gall [BLG03] (via flows of exchange-
able bridges). Both constructions are similar in many aspects and are summarized via the
notion of flow of partitions, see Labbé [Lab14a, Lab14b] and Foucart [Fou12]. We refer
to Bertoin’s book [Ber06] for a comprehensive account on exchangeable coalescents.

The main objective of this work is to study coalescent processes induced by branching
processes. We briefly explain how branching concepts have been developed from the
sixties to the beginning of the twenty-first century. Continuous-state branching processes
(CSBPs for short) are positive Markov processes representing the size of a continuous
population. They have been defined by Jiřina [Jiř58] and Lamperti [Lam67a] and are
known to be scaling limits of Galton-Watson Markov chains, see Grimvall [Gri74] and
Lamperti [Lam67b]. The most famous CSBP is certainly Feller’s branching diffusion

dXt = σ
√
XtdBt + βXtdt

which is the rescaled limit of binary branching processes, see Feller [Fel51] and Jiřina
[Jiř69]. Feller’s CSBP is the only CSBP with continuous paths, other ones have positive
jumps which represent macroscopic reproduction events in the population.

At about the same time as the rise of exchangeable coalescents, considerable research
was devoted to the study of the genealogy of branching processes forward in time. Galton-
Watson processes have a natural lexicographical tree’s genealogy. This representation
led Aldous [Ald93] and Duquesne and Le Gall [DLG02] to study scaling limits of discrete
trees and establish remarkable convergences towards the Brownian continuum tree in
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Coalescences in CSBPs

the Feller diffusion case and Lévy continuum trees in the case of general CSBPs. Another
natural genealogy for a branching population is provided by Bertoin and Le Gall in their
precursor article [BLG00] in terms of flows of subordinators. At any fixed times s < t,
the population between time s and t is represented by a subordinator (a Lévy process
with non-decreasing paths) (Xs,t(x), x ≥ 0). Individuals are ordered in such a way that
ancestors from time s are the jumps locations of the subordinator and each ancestor
from time s has a family at time t whose size is the size of the jump.

Both representations with trees and subordinators are future-oriented and less
attention has been paid to the description of coalescences in ancestral lineages of
continuous-state branching processes. We briefly review some methods that have been
developed recently in order to study the genealogy backwards in time of branching
processes.

When reproduction laws are stable, branching and resampling population models can
be related through renormalisation by the total size and random time-change. We refer
to Berestycki et al. [BBS07], Birkner et al. [BBC+05], Foucart and Hénard [FH13] and
Schweinsberg [Sch03]. The connection between exchangeable coalescents and CSBPs is
particular to stable offspring laws and the study of the genealogy of a general branching
process requires a different method.

One approach consists in conditioning the process to be non-extinct at a given time,
sampling two or more individuals uniformly in the population and study the time of
coalescence of their ancestral lineages. This program is at the heart of the works of
Athreya [Ath12], Duquesne and Labbé [DL14], Harris et al. [HJR17], Johnston [Joh19],
Lambert [Lam03] and Le [Le14].

Starting from a different point of view, Bi and Delmas [BD16] and Chen and Delmas
[CD12] have considered stationary subcritical branching populations obtained as pro-
cesses conditioned on the non-extinction. The genealogy is then studied via a Poisson
representation of the population. We refer also to Evans and Ralph [ER10] for a study in
the same spirit.

A third approach is to represent the backwards genealogy through point processes.
Aldous and Popovic [AP05] and Popovic [Pop04] have shown how to encode the genealogy
of a critical Feller diffusion with a Poisson point process on R+ ×R+ called Coalescent
Point Process. Atoms of the coalescent point process represent times of coalescences
between two “consecutive” individuals in the boundary of the Brownian tree. Such a
description was further developed by Lambert and Popovic [LP13] for a Lévy continuum
tree. In this general setting, multiple coalescences are possible and the authors build
a point process with multiplicities, which records both the coalescence times and the
number of involved mergers in the families of the current population. Their method
requires in particular to work with the height process introduced by Le Gall and Le Jan
in [LGLJ98].

In the present article, we choose a different route and seek a dynamical description
of the genealogy. We first observe that flows of subordinators provide a continuous
branching population whose size is infinite at any time and whose ancestors are arbi-
trarily old. We then define and study the inverse flow, denoted by (X̂s,t(x), s ≤ t, x ≥ 0),
which tracks backward in time the ancestral lineage of an individual considered at any
given time. In particular, the process (X̂t(x), t ≥ 0) := (X̂0,t(x), t ≥ 0) is the ancestral
lineage of the individual x in the population taken at time 0. This is a Markov process
and we characterize its semi-group, its long-term behaviour (recurrent or transient) as
well as its generator.

In a second time, we introduce new elementary non-exchangeable Markovian coa-
lescents as simple dual objects of immortal continuous-time Galton-Watson processes.
These processes are taking values in the set of partitions of N whose blocks are formed
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with consecutive integers. We call them consecutive coalescents as only consecutive
blocks will be allowed to merge. These coalescent processes represent the genealogy
of immortal continuous-time Galton-Watson processes when time’s arrow points to the
past.

We will use these coalescent processes to describe the genealogy of general CSBPs.
They will simplify the description given by the Coalescent Point Process as introduced in
[LP13, Section 4]. Our method follows closely that of Bertoin and Le Gall for exchange-
able coalescents [BLG03], [BLG05], [BLG06]. Heuristically, exchangeable bridges are
replaced by subordinators and uniform random variables by atoms of a Poisson pro-
cess. We shall construct random partitions by sampling individuals according to an
independent Poisson process. Namely, let (Jλi , i ≥ 0) be the sequence of atoms (i.e
jumping times) of an independent Poisson process with intensity λ and consider the
random partition Cλ(t) defined by letting integers i and j in the same equivalence class
if and only if X̂t(J

λ
i ) = X̂t(J

λ
j ). We will show that the process (Cλ(t), t ≥ 0) is a (possibly

time-inhomogeneous) consecutive coalescent. We characterize its jump rates and its
long-term behaviour.

We shall also show how to define the complete genealogy of individuals standing in
the current generation when the so-called Grey’s condition is satisfied. Loosely speaking,
we will let the intensity parameter λ to infinity and describe the genealogy through
coalescing consecutive intervals of [0,∞]. This answers an open question in [LP13,
Remark 6, page 132].

We apply then our results to the specific cases of Neveu and stable CSBPs. In the
case of Neveu’s CSBP (which does not fulfill Grey’s condition), Bertoin and Le Gall in
[BLG00] have shown that the genealogy of the CSBP, started from a fixed size (without
renormalization nor time-change) is given by a Bolthausen-Sznitman coalescent. We will
see that for this CSBP, the consecutive coalescents have simple explicit laws. This will
enable us to recover results of Möhle [Möh15] and Möhle and Kukla [KM18] about the
number of blocks in a Bolthausen-Sznitman coalescent. In the Neveu case, the process
(X̂t(x), t ≥ 0) is related to a generalized Ornstein-Uhlenbeck process with negative jumps.
We compute explicitely its Laplace exponent and recover a result due to Bertoin and
Baur [BB15]. In the stable case, the consecutive coalescent is a simple deterministic
time-change of a time-homogeneous consecutive coalescent whose jump rates take a
simple explicit form. Last, in the critical stable case, the process (X̂t(x), t ≥ 0) is a
positive self-similar process and we compute the Laplace exponent of its Lévy parent
process.

We wish to mention that Grosjean and Huillet in [GH16] have studied a recursive
balls–in–boxes model which can be seen as a consecutive coalescent in discrete time.
Moreover, Johnston and Lambert [JL19+] have independently considered Poissonization
techniques for studying the coalescent structure in branching processes.

The paper is organized as follows. In Section 2, we recall the definition of a
continuous-state branching process and how Bochner’s subordination can be used
to provide a representation of the genealogical structure associated with CSBPs. In
Section 3, we investigate the inverse flow by characterizing its semi-group and studying
its long-term behavior. In Section 4, we provide a complete study of the inverse flow in
the case of the Feller diffusion. We recover with an elementary approach the Coalescent
Point Process of Popovic [Pop04]. In Section 5, we study the coalescences in the inverse
flow of a general CSBP by defining the consecutive coalescents. We describe the geneal-
ogy of the whole population standing at the current generation under Grey’s condition
(recalled in Section 2). In Section 6, we investigate the infinitesimal dynamics of the
inverse flow. The process of the ancestral lineage of a fixed individual is characterized by
its generator. In Section 7, we focus on the stable and Neveu CSBPs for which calcula-
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tions can be made explicitly. In the Appendix, we gather some elementary properties on
right continuous inverse of càdlàg non-decreasing functions. We also establish some key
results, which are needed in Section 5, on the discretization of subordinators through
Poisson sampling.

Notation In the rest of the article,
L
= denotes equality in law between random variables.

Condition
∫

0
f(x)dx <∞ means there exists ε > 0 such that

∫ ε
0
f(x)dx <∞, and similarly∫∞

f(x)dx < ∞ means there exists A > 0 such that
∫∞
A
f(x)dx < ∞. For any n,m ∈ N

such that n ≤ m, the integer interval between n and m is denoted by [|n,m|]. The set
C([0,∞]) is the space of continuous functions f on [0,∞), with finite limit at∞ written
f(∞). The set Cc((0,∞)) is the space of continuous functions with compact support on
(0,∞). We write f(t) = O(g(t)) as t goes to∞ if for a large enough t0, g is non-negative
and supt≥t0

|f(t)|
g(t) <∞.

2 Generalities on continuous-state branching processes

This section is divided in two parts. In the first one, we introduce the continuous-state
branching processes as well as their fundamental properties. In the second one, we show
how continuous-state branching processes can be constructed as flows of subordinators.
Their main properties are also stated.

2.1 Continuous-state branching processes

We give here an overview of continuous-state branching processes and their funda-
mental properties. Most statements in this section can be found for instance in [Li11,
Chapter 3] or [Kyp14, Chapter 12].

Definition 2.1. A continuous-state branching process is a Feller process (Xt, t ≥ 0),
taking values in [0,∞], with 0 and∞ being absorbing states, whose semi-group satisfies
the so-called branching property:

∀x, y ≥ 0,∀t ≥ 0, Xt(x+ y)
L
= Xt(x) + X̃t(y), (2.1)

where (Xt(x), t ≥ 0) and (X̃t(y), t ≥ 0) are two independent processes with the same law
as (Xt, t ≥ 0), started respectively from x and y.

The branching and the Markov properties ensure the existence of a map λ ∈ (0,∞) 7→
vt(λ) for all t ≥ 0, which satisfies for all λ > 0, x ≥ 0 and t, s ≥ 0

E[e−λXt(x)] = exp(−xvt(λ)) and vs+t(λ) = vs ◦ vt(λ). (2.2)

Silverstein [Sil68] shows that t 7→ vt(λ) is the unique solution to the integral equation

∀t ∈ [0,∞),∀λ ∈ (0,∞)/{ρ},
∫ λ

vt(λ)

dz

Ψ(z)
= t (2.3)

where ρ := inf{z > 0; Ψ(z) ≥ 0} is the largest positive root of Ψ, a Lévy-Khintchine
function of the form

Ψ(q) =
σ2

2
q2 − βq +

∫ ∞
0

(
e−qx − 1 + qx1x≤1

)
π(dx), (2.4)

with σ2 ≥ 0, β ∈ R and π a measure on (0,∞) satisfying
∫

(1∧x2)π(dx) <∞. The function
Ψ is called branching mechanism and characterizes the law of the CSBP. We shall write
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later CSBP(Ψ) for a CSBP with branching mechanism Ψ. The generator of the CSBP(Ψ)

acts as follows

Lf(z) = z
σ2

2
f ′′(z) + βzf ′(z) + z

∫ ∞
0

(f(z + h)− f(z)− hf ′(z)1h≤1)π(dh) (2.5)

on the space of twice continuously differentiable functions f with compact support. The
CSBP has infinite variations if∫ 1

0

xπ(dx) =∞ or σ2 > 0. (2.6)

An important family of branching mechanisms are those of the form

Ψ(q) =
σ2

2
q2 − βq + cαq

α

with σ2 ≥ 0, cα ≥ 0 and α ∈ (0, 2) \ {1}. The Lévy measure π associated with such a
mechanism Ψ is

π(dh) = c′αh
−1−αdh, with c′α =

α(α− 1)

Γ(2− α)
cα.

The CSBP(Ψ) is said to be supercritical, critical or subcritical if respectively Ψ′(0+) <

0, Ψ′(0+) = 0 or Ψ′(0+) > 0. In the subcritical and critical cases, the largest root ρ
is 0. In the supercritical case ρ ∈ (0,∞]. The following theorem due to Grey [Gre74]
summarizes the possible behaviors at the boundaries of a CSBP(Ψ).

Theorem 2.A (Grey, [Gre74]). Consider (Xt(x), t ≥ 0) a CSBP(Ψ) started from x.

(i) For any x ≥ 0,

P( lim
t→∞

Xt(x) = 0) = 1− P( lim
t→∞

Xt(x) =∞) = e−xρ.

(ii) For any t > 0, the limit vt(∞) := lim
λ→∞

vt(λ) exists in (0,∞) if and only if Ψ(u) ≥ 0

for some u ≥ 0 and ∫ ∞ du

Ψ(u)
<∞ (condition for extinction). (2.7)

If (2.7) holds, then for any t ≥ 0, P(Xt(x) = 0) = e−xvt(∞) > 0.

(iii) Under condition (2.7), the following events coincide almost-surely{
lim
t→∞

Xt(x) = 0
}

= {∃t ≥ 0 : Xt(x) = 0}.

(iv) For any t > 0, the limit vt(0) := lim
λ→0

vt(λ) exists in (0,∞) if and only if Ψ(u) < 0 for

some u ≥ 0 and ∫
0

du

|Ψ(u)| <∞ (condition for explosion). (2.8)

If (2.8) holds, then for any t ≥ 0, P(Xt(x) =∞) = 1− e−xvt(0).

(v) Under condition (2.8), the following events coincide{
lim
t→∞

Xt(x) =∞
}

= {∃t ≥ 0 : Xt(x) =∞}.

The events {Xt(x) = 0 for some t ≥ 0} and {Xt(x) = ∞ for some t ≥ 0} are respec-
tively called extinction and explosion. We refer to the integral conditions (2.7) and (2.8)
as Grey’s condition for extinction and explosion respectively. Lambert [Lam07] and Li
[Li00] have studied the quasi-stationary distribution of subcritical CSBPs conditioned on
the non-extinction.
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Theorem 2.B (Lambert [Lam07], Li [Li00]). In the subcritical case, under Grey’s condi-
tion for extinction

∫∞ du
Ψ(u) <∞, there exists a probability measure ν over (0,∞) such

that for any Borelian set A ⊂ (0,∞)

ν(A) := lim
t→∞

P(Xt(x) ∈ A|Xt(x) > 0).

The Laplace transform of ν is given by∫ ∞
0

e−uzν(dz) = 1− e−Ψ′(0+)
∫∞
u

dx
Ψ(x) for any u ≥ 0. (2.9)

2.2 Flows of subordinators

Observe that on the one hand, by the branching property of CSBP, the random
variable Xt(x) is a positive infinitely divisible random variable, parametrized by x.
Therefore, for all t ≥ 0, the process x 7→ Xt(x) is a positive Lévy process, hence a
subordinator. In particular, the map λ 7→ vt(λ) is the Laplace exponent of this (possibly
killed) subordinator, and can be written as

vt(λ) = κt + dtλ+

∫
[0,∞)

(1− e−λu)`t(du) (2.10)

with κt ≥ 0, dt ≥ 0 and `t a Lévy measure on R+ such that
∫∞

0
(1 ∧ u)`t(du) < ∞. As

usual, κt can be thought of as a mass at∞ of `t, i.e. κt = `t({∞}).
Remark 2.2. Note that the quantities vt(∞) and vt(0) defined in Theorem 2.A can be
rewritten, with the formula in (2.10)

vt(∞) = κt + dt · ∞+ `t((0,∞)) = dt · ∞+ `t((0,∞]) and vt(0) = κt.

Therefore (2.7) holds if and only if for all t > 0, the measure `t is finite and dt = 0.
Condition (2.8) is equivalent to the positivity of κt for all t > 0.

On the other hand, the semigroup property entails that for any s, t ≥ 0,

vt+s = vt ◦ vs. (2.11)

Bochner’s subordination implies that if Y (t) is a subordinator with Laplace exponent vt
and Y (s) is a subordinator with Laplace exponent vs, then Y (t) ◦ Y (s) is a subordinator
with Laplace exponent vt ◦ vs = vt+s. Therefore, writing X̃ an independent copy of the
CSBP X, we have

∀x ≥ 0, Xt+s(x)
L
= X̃t(Xs(x)).

This last observation led Bertoin and Le Gall [BLG00] to consider representing a CSBP
as a flow of subordinators, which we now define.

Definition 2.3. A flow of subordinators is a family (Xs,t(x), s ≤ t, x ≥ 0) satisfying the
following properties:

(i) For every s ≤ t, x 7→ Xs,t(x) is a càdlàg subordinator, with same law as x 7→
X0,t−s(x).

(ii) For every t ∈ R, (Xr,s, r ≤ s ≤ t) and (Xr,s, t ≤ r ≤ s) are independent.

(iii) For every r ≤ s ≤ t, Xr,t = Xs,t ◦Xr,s.

(iv) For every s ∈ R and x ≥ 0, we have Xs,s(x) = x = limt→sXs,t(x) in probability.

Remark 2.4. The convergence in (iv) also holds uniformly on compact sets by Dini’s
second theorem.
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It was proved by Bertoin and Le Gall [BLG00] that any CSBP can be constructed as a
flow of subordinators. For the sake of completeness, we prove here that CSBP and flow
of subordinators are in one-to-one map.

Lemma 2.5. Let (Xs,t(x), s ≤ t, x ≥ 0) be a flow of subordinators as in Definition 2.3.
There exists a branching mechanism Ψ such that for all s ∈ R and x ≥ 0, (Xs,s+t(x), t ≥ 0)

is a CSBP(Ψ) starting from x. Reciprocally, for each branching mechanism Ψ, there
exists a flow of subordinators such that for all s ∈ R and x ≥ 0, (Xs,s+t(x), t ≥ 0) is a
CSBP(Ψ) starting from x.

Proof. Let (Xs,t(x), s ≤ t, x ≥ 0) be a flow of subordinators. By Definition 2.3(ii) and
(iii), we have that t 7→ Xs,s+t(x) is a Markov process for all x ≥ 0 and s ∈ R. Moreover,
Definition 2.3(iv) implies this Markov process to be continuous in probability. Since
by Definition 2.3(i), x 7→ Xs,s+t(x) is càdlàg, the semigroup of (Xs,s+t(x), t ≥ 0) maps
C([0,∞]) to C([0,∞]), it is therefore Feller. Finally, by Definition 2.3(i), we conclude that
this Markov process is homogeneous in time, and satisfies the branching property (2.1),
as

Xs,s+t(x+ y) = Xs,s+t(x) + (Xs,s+t(x+ y)−Xs,s+t(x)) ,

and Xs,s+t(x+ y)−Xs,s+t(x) is independent of Xs,s+t(x) and has same law as Xs,s+t(y).
Reciprocally, by [BLG00, Proposition 1], given a branching mechanism Ψ, there exists a
process (S(s,t)(a), s ≤ t, a ≥ 0) such that almost surely

(i) for all s ≤ t, a 7→ S(s,t)(a) is a càdlàg subordinator with Laplace exponent λ 7→
vt−s(λ), defined in (2.3),

(ii) for all t ∈ R, (S(r,s), r ≤ s ≤ t) and (S(r,s), t ≤ r ≤ s) are independent,

(iii) for all r ≤ s ≤ t, S(s,t) ◦ S(r,s) = S(r,t),

(iv) the finite dimensional distributions of t 7→ S(s,s+t)(a) are the ones of a CSBP(Ψ).

One readily observes that points (i)–(iii) imply Definition 2.3(i)–(iii). Moreover, by the
fourth point, (S(s,s+t)(a), t ≥ 0) has the law of a CSBP(Ψ) (Xt, t ≥ 0) starting from
X0 = a. As X is a Feller process, we have limt→0Xt = a in probability, thus (iv) yields
limt→0 S

(s,s+t)(a) = a in probability, completing the proof.

A noteworthy consequence of the above lemma is that if (Xs,t(x), s ≤ t, x ≥ 0) is a
flow of subordinators associated with the branching mechanism Ψ, we have that for all
s ≤ t and x ≥ 0,

∀λ ∈ (0,∞), E (exp (−λXs,t(x))) = exp(−xvt−s(λ)), (2.12)

where vt−s(λ) is the function defined in (2.3). One can think of this flow of subordinators
as a way to couple on the same probability space every Markov property and every
branching property (2.1), for all values of t, x, y simultaneously in one process.

The flow of subordinators provides a genuine continuous-space branching population
model. More precisely, the interval [0, Xs,t(x)] can be interpreted as the set of descen-
dants at time t of the population that was represented at time s as the interval [0, x]. With
this interpretation, the genealogy forward in time of the population is defined as follows.
If Xs,t(y−) < Xs,t(y), we say that for all z ∈ (Xs,t(y−), Xs,t(y)], the individual z at time
t is a descendant of the individual y living at time s. If Xs,t(y−) = Xs,t(y) (i.e. Xs,t is
continuous at y) and y = inf{x > 0 : Xs,t(x) = z}, we then say that individual z = Xs,t(y)

at time t is the descendant of the individual y living at time s. One can observe that the
cocycle property ensures that this construction indeed defines a genealogy. If z at time t
is a descendant of y at time s, which is a descendant of x at time r, we have

Xs,t(y−) < z ≤ Xs,t(y) and Xr,s(x−) < y ≤ Xr,s(x).
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By the cocycle property (Xr,t = Xs,t ◦Xr,s) and as Xs,t is non-decreasing then

Xr,t(x−) = Xs,t(Xr,s(x−)) ≤ Xs,t(y−) < z and Xr,t(x) = Xs,t(Xr,s(x)) ≥ Xs,t(y) ≥ z,

thus z at time t is a descendant of x at time r. Similar computations can be written if
Xs,t is continuous at point y and/or Xr,s is continuous at point x.

Recall Condition (2.6) for the sample paths of the CSBP(Ψ) to have infinite variations.
This condition ensures the subordinator Xs,t to be driftless, i.e. dr = 0 for all r ≥ 0

in (2.10). As a result, under (2.6), the range Xs,t([0,∞)) of the subordinator has zero
Lebesgue measure, ensuring that almost every individual x at time t belongs to one
of the infinite families of ancestors at time s. This assumption (2.6) often simplifies
the interpretation of results obtained in this article. Under this assumption, we denote
by Js,t := {x ≥ 0 : Xs,t(x) 6= Xs,t(x−)} the set of jumps of Xs,t. By definition of the
genealogy, almost surely the population at time t, indexed by R+, can be partitioned
according to their ancestor at time s by {(Xs,t(y−), Xs,t(y)], y ∈ Js,t}.

Recall that according to Theorem 2.A-(ii), Grey’s condition
∫∞ du

Ψ(u) < ∞ entails

that for any t > 0, `t((0,∞]) < ∞. Under this condition, the subordinators Xs,t are
therefore compound Poisson processes. In particular, the set Js,t is the set of atoms of a
Poisson process with intensity vt(∞). Note that the partition {(Xs,t(y−), Xs,t(y)], y ∈ Js,t}
consists in a family of consecutive intervals. This justifies the introduction of consecutive
coalescents on N in Section 5

3 The inverse flow

We start this section by a preliminary observation on the genealogy backward in time
of a CSBP. Consider the Poisson point process on R+ × (0,∞)

Et(dx,dz) =
∑
u≥0

δ(atu,∆X−t,0(u))) (3.1)

with some renormalisation constant at > 0 for all t > 0. Recall that ρ is the largest
positive root of Ψ and ν the quasi-stationary distribution (2.9) of a subcritical CSBP
conditioned on the non-extinction.

Proposition 3.1. Assume
∫∞ du

Ψ(u) < ∞ and set at = 1 if Ψ′(0+) < 0, at = vt(∞) if

Ψ′(0+) ≥ 0. Then

lim
t→∞

Et = E∞ in law, for the topology of weak convergence (3.2)

where E∞ is a Poisson point process with intensity respectively ρdx ⊗ δ∞(dz) when
Ψ′(0+) < 0, dx⊗ δ∞(dz) when Ψ′(0+) = 0, and dx⊗ ν(dz) when Ψ′(0+) > 0.

Remark 3.2. In the supercritical case, flows of CSBPs can be renormalized to converge
almost-surely. We refer to Duquesne and Labbé [DL14], Grey [Gre74], and Foucart and
Ma [FM16]. Since for any time t, X−t,0 and X0,t have the same law, we could therefore
renormalize in law the size of the descendants at time 0 of x from time −t. Typically,
∆X−t,0(x) is of order exponential in the finite mean case (|Ψ′(0+)| < ∞), and double
exponential in the infinite mean case (|Ψ′(0+)| =∞).

Proof. Under Grey’s condition, vt(∞) = `t((0,∞]) <∞, and x 7→ X−t,0(x) is a compound
Poisson process with no drift, namely dt = 0. Therefore, the point process Et is a Poisson
point process with intensity `t(dx)

at
. From (2.10) observe additionally that for any q ≥ 0,∫

[0,∞]

(1− e−qx)
`t(dx)

at
=
vt(q)

at
. (3.3)
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In the supercritical case (Ψ′(0+) < 0), we have limt→∞ vt(q) = ρ for all q > 0 (while
vt(0) = 0), at = 1 for all t > 0 and limt→∞ `t((0,∞]) = ρ. Therefore (3.3) shows that
`t(dx) converges weakly towards ρδ∞(dx). As a result, we conclude that Et converges in
law towards a Poisson point process on (0,∞)× (0,∞] with intensity ρdx⊗ δ∞(dz).

In the subcritical and critical cases, we have limt→∞ vt(∞) = 0, and we set at = vt(∞).
By (2.3) and (2.2), we have d

duvt(u) = Ψ(vt(u))
Ψ(u) . Therefore

vt(q)

vt(∞)
= exp

(
−
∫ ∞
q

d

du
log(vt(u))du

)
= exp

(
−
∫ ∞
q

Ψ(vt(u))

vt(u)

du

Ψ(u)

)
.

Since limt→∞
Ψ(vt(u))
vt(u) = Ψ′(0+), by monotone convergence we obtain that limt→∞

vt(q)
vt(∞) =

e−Ψ′(0+)
∫∞
q

du
Ψ(u) . In the critical case (Ψ′(0+) = 0), the latter limit equals 1 and we thus

from (3.3) that `t(dx)
at

converges weakly towards δ∞. In the subcritical case (Ψ′(0+) > 0),

we see that `t(dx)
at

converges weakly towards the probability measure ν with Laplace
transform (2.9). We conclude the convergence of Et to the stated limits.

Let us describe in details the meaning of the above convergence, for supercritical,
critical and subcritical CSBPs. Observe that Et encodes information on the individuals at
time −t having a large family of descendants at time 0. Thus, (3.2) gives information on
the origin of the earliest ancestors of the population at time 0. Depending on the sign of
Ψ′(0+), we have three different behaviours:

1. If Ψ′(0+) < 0, a unique ancestor from time −∞, located at an exponential random
variable with parameter ρ, which generates all individuals at time 0. This individual
is the ancestor of the process.

2. If Ψ′(0+) = 0, then at := vt(∞) −→
t→∞

0 and the whole population at time 0 has a

common ancestor, but the backward lineage of this ancestor converges in law as
t→∞ towards∞.

3. If Ψ′(0+) > 0, then the population at time 0 is split into distinct families, each of
which coming down from a different ancestor at time −∞.

In the (sub)critical case, individuals from generation −t with descendance at time 0 are
located at distance O(1/vt(∞)) from 0. Proposition 3.1 motivates a more complete study
of the ancestral lineages of individuals alive in the population at time 0. Our main aim
is to provide an almost-sure description of how (Et, t ≥ 0) evolves and to get precise
information on the sizes of the families.

We now introduce the inverse flow of the flow of subordinators (Xs,t, s ≤ t) and study
some of its properties. We first define, for s ≤ t and y ≥ 0

X−1
s,t (y) := inf{x : Xs,t(x) > y}.

The process X−1
s,t is the right-continuous inverse of the càdlàg process Xs,t. Note that

the individual X−1
s,t (y) is the ancestor alive at time s of the individual y considered at

time t ≥ s. It is therefore a natural process to introduce in order to study the genealogy
of a CSBP backwards in time. We call inverse flow the process (X̂s,t(y), s ≤ t, y ≥ 0)

defined for all s ≤ t, y ≥ 0 as follows

X̂s,t(y) = X−1
−t,−s(y). (3.4)

We first list some straightforward properties of inverse flows.

Lemma 3.3. The following properties hold:
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(i) Almost surely, for every s ≤ t and x, y > 0, we have

{Xs,t(x) > y} = {X̂−t,−s(y) < x}.

(ii) For every t ≥ 0, (X̂r,s, r ≤ s ≤ t) and (X̂r,s, t ≤ r ≤ s) are independent.

(iii) Almost surely, for every s ≤ t ≤ u, X̂s,u = X̂t,u ◦ X̂s,t.

(iv) For all x ≥ 0, X̂0,0(x) = x = limt→0 X̂0,t(x) in probability.

Remark 3.4. The convergence in (iv) also holds uniformly on compact sets.

Proof. These results are an immediate consequence of Lemma A.1, which describes well-
known properties of right-continuous inverses, and the definition of flow of subordinators.
More precisely, the first point is a consequence of Lemma A.1(ii), the third one of
Lemma A.1(iii) and the fourth one follows from Lemma A.1(iv) and Definition 2.3(iv).

Finally, the second point follows simply from the fact that for all a ≤ b ≤ t, X̂a,b is
measurable with respect to (Xr,s,−t ≤ r ≤ s). Hence, by Definition 2.3(ii), we conclude
that (ii) holds.

We shall denote (X̂t(y), y ≥ 0, t ≥ 0) the flow of inverse subordinators (X̂0,t(y), y ≥
0, t ≥ 0). As noted above, it tracks backwards in time the ancestral lineages of the
population at time 0. Since individuals are ordered, X̂t(y) can also be interpreted as
the random size of the population at time −t whose descendance at time 0 has size y.
Observe that by Lemma 3.3(i) and Definition 2.3(i), we have

∀s ≤ t, ∀x, y ≥ 0, P(Xs,t(x) > y) = P(X̂s,t(y) < x). (3.5)

The relation (3.5) is known as Siegmund duality. We refer the reader to Siegmund [Sie76]
and Clifford and Sudbury [CS85].

Theorem 3.5. Fix y > 0. The process (X̂t(y), t ≥ 0) is a Markov process in (0,∞). Its
semigroup (Qt, t ≥ 0) satisfies for any bounded measurable function f and any t ≥ 0

E[Qtf(eq)] = E[f(evt(q))] for all q > 0 (3.6)

where eq and evt(q) are exponential random variable with parameter q and vt(q).

Observe that (3.6) characterizes the semigroup Qt, by identification of the Laplace
transforms, as it can be rewritten as: for all q ≥ 0,∫ ∞

0

qe−qyQtf(y)dy =

∫ ∞
0

vt(q)e
−vt(q)yf(y)dy,

therefore Qtf is the inverse Laplace transform of q 7→ vt(q)
q

∫∞
0
e−vt(q)yf(y)dy.

Proof. The cocycle property and the independence, obtained in Proposition 3.3(ii)–(iii)
readily entail that t 7→ X̂t(y) has the Markov property. Moreover, if X̂0,t(y) = 0 then
X−t,0(0) = y > 0, which is impossible, as X−t,0(0) is the value at time t of a CSBP starting
from mass 0, and 0 is an absorbing point for a CSBP. Similarly, X̂0,t(y) =∞ yields that
limz→∞X−t,0(z) ≤ y, which is impossible as soon as X−t,0(z) is a non-null subordinator.

Finally, we now turn to the computation of the semigroup of X̂(y), which is obtained
through the Siegmund duality. Let eq be an independent exponential random variable
with parameter q, we have

P(X̂t(eq) > x) = P(X−t,0(x) < eq) = E[e−qX−t,0(x)] = e−xvt(q),

which implies that (3.6) holds.
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The above theorem shows that the semigroup of (X̂t, t ≥ 0) can be expressed in
simple terms when applied to exponential distributions. This will motivate later on the
study of the action of the flow X̂ on Poisson point processes.

We now observe that the Markov process t 7→ X̂t(y) can be straightforwardly extended
as a Markov process on [0,∞].

Proposition 3.6 (Boundaries and Feller property). Let y > 0 fixed, we denote by (X̂t, t ≥
0) the Markov process (X̂t(y), t ≥ 0).

(i) The boundary 0 is an entrance boundary of (X̂t, t ≥ 0) if and only if
∫∞ du

Ψ(u) <∞.

In that case, (Qt, t ≥ 0) is extended to [0,∞) by

Qtf(0) =

∫ ∞
0

f(u)vt(∞)e−uvt(∞)du.

Otherwise, we set Qtf(0) = f(0).

(ii) The boundary∞ is an entrance boundary of (X̂t, t ≥ 0) if and only if
∫

0
du
|Ψ(u)| <∞.

In that case, (Qt, t ≥ 0) is defined over (0,∞] with

Qtf(∞) =

∫ ∞
0

f(u)vt(0)e−uvt(0)du.

Otherwise, we set Qtf(∞) = f(∞).

(iii) The semigroup (Qt, t ≥ 0) defined over [0,∞] is Feller.

Remark 3.7. The Markov processes (X̂t(0), t ≥ 0) and (X̂t(∞), t ≥ 0) have the following
interpretations, in terms of the CSBP

1. The process (X̂t(0), t ≥ 0), starting from 0 at time 0, represents the smallest
individual at generation −t to have descendants at time 0. If

∫∞ du
|Ψ(u)| < ∞,

there is extinction in finite time for the CSBP X (i.e. with positive probability,
X−t,0(x) = 0). In that case (X̂t(0), t ≥ 0) is a non-trivial Markov process. If∫∞ du

|Ψ(u)| =∞, there is no extinction in finite time for the CSBP, thus all individuals

at time t have descendants at time 0, (X̂t(0), t ≥ 0) ≡ 0.

2. The process (X̂t(∞), t ≥ 0), starting from∞, represents the smallest individual at
generation −t with an infinite progeny at time 0. If

∫
0

du
|Ψ(u)| <∞, there is explosion

in finite time for the CSBP X (i.e. with positive probability, X−t,0(x) =∞). In that
case, (X̂0,t(∞), t ≥ 0) is a non-trivial Markov process. If

∫
0

du
|Ψ(u)| =∞, there is no

explosion in finite time and all individuals at time t have finitely many descendants
at time 0. Thus (X̂t(∞), t ≥ 0) ≡ ∞ and Qtf(∞) := f(∞).

Proof. For any fixed time t, (X̂t(x), x ∈ (0,∞)) is non-decreasing in x. Therefore
lim
x→∞

X̂t(x) = X̂t(∞) and lim
x→0

X̂t(x) = X̂t(0) exist almost-surely in [0,∞]. Recall the

duality relation (3.5)
P(X̂t(y) < x) = P(y < Xt(x)).

The first point for the boundary 0 is obtained as follows. By the duality relation, we see
that

P(X̂t(y) ≥ x) = P(y ≥ Xt(x)).

By letting y to 0, we have

P(X̂t(0) ≥ x) = P(Xt(x) = 0) = e−xvt(∞).

According to Theorem 2.A-(ii),
∫∞ du

Ψ(u) <∞ is a necessary and sufficient condition for

vt(∞) <∞. It remains to justify the formula for Qtf(0). By using Theorem 3.5 and the
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facts that in probability, limq→∞ eq = 0 and limq→∞ vt(q) = vt(∞) ∈ (0,∞], we have for
any continuous bounded function f on [0,∞),

Qtf(0) = lim
q→∞

E(Qtf(eq)) = lim
q→∞

E(f(evt(q))) = E
(
f(evt(∞))

)
by dominated convergence. We deduce the formula for Qtf(0). We now prove that the
semigroup property holds at 0. By definition of Qtf(0), we have that

Qt+sf(0) = E
(
f(evt+s(∞))

)
and Qt(Qsf)(0) = E

(
Qsf(evt(∞))

)
= E

(
f(evs◦vt(∞))

)
.

Therefore, as vt+s = vt ◦ vs, we complete the proof of (i ).
The proof of (ii ) follows very similar lines to the proof of (i ), and is based on the fact

that
∫

0
du
|Ψ(u)| <∞ is a necessary and sufficient condition for vt(0) > 0. The expression

of Qtf(∞) is found using that limq→0 eq = ∞ in probability. Finally, to prove that the
semigroup Qt extended to [0,∞] is Feller, we observe that the random map y 7→ X̂t(y)

jumps only on constant stretch of X−t,0 (being its right-continuous inverse). There is
no fixed value in (0,∞) at which X−t,0 is constant and therefore y ∈ (0,∞) 7→ X̂t(y)

has no fixed discontinuities. This entails that for any continuous function f over [0,∞],
Qtf is continuous at any point y ∈ (0,∞). By definition Qtf(x) −→

x→∞
Qtf(∞) and

Qtf(x) −→
x→0

Qtf(0). The semigroup maps C([0,∞]) in C([0,∞]) and one only needs to

show the pointwise continuity at 0 of Qtf , which follows from Proposition 3.3(iv).

We study now the long term behaviour of (X̂t, t ≥ 0) in the critical and subcritical
cases. By transience, we mean that X̂t(x) −→

t→∞
∞ a.s. for any x ∈ (0,∞).

Proposition 3.8. Let Ψ be a branching mechanism. We observe that

(i) if Ψ is supercritical, then X̂ is positive recurrent with stationary law eρ;
(ii) if Ψ is subcritical, then X̂ is transient;

(iii) if Ψ is critical, then X̂ is transient if and only if
∫

0
u

Ψ(u)du <∞, otherwise it is null
recurrent.

Remark 3.9. Intuitively, in the subcritical case, for any fixed a > 0, individuals below
level a living at arbitrarily large time in the past will have no progeny at time 0. Therefore
the ancestral lineage of an individual x living at time 0, goes above any fixed level a as
time goes to∞. This explains the transience. In the critical case, large oscillations can
occur when

∫
0

x
Ψ(x)dx =∞. This latter condition is known see Duhalde et al. [DFM14] to

entail that first entrance times of the CSBP have infinite mean, in such case the process
(X̂t, t ≥ 0) is null recurrent. Note that if Ψ(q) = cqα with 1 ≤ α ≤ 2 and c > 0 then
(X̂t, t ≥ 0) is null recurrent if α = 2 and transient if α < 2.

Proof. We first prove (i ). Let y ∈ (0,∞). By duality (3.5) and Theorem 2.A-(i)

P(X̂t(y) < x) = P(Xt(x) > y) −→
t→∞

P(non-extinction) = 1− e−ρx.

Assume now Ψ subcritical or critical. For any Borelian set B and any p > 0, set

Up(y,B) :=

∫ ∞
0

e−ptP(X̂t(y) ∈ B)dt.

Fix q > 0, recall
∫ q
vt(q)

dx
Ψ(x) = t and v∞(q) = 0. By applying Theorem 3.5, one has

E[Up(eq, B)] =

∫ ∞
0

Up(y,B)qe−qydy =

∫ ∞
0

∫ ∞
0

vt(q)e
−pte−uvt(q)1B(u)dudt

=

∫ ∞
0

1B(u)du

∫ q

0

e−p
∫ q
x

dv
Ψ(v) e−ux

x

Ψ(x)
dx.
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By monotone convergence

lim
p→0
↑
∫ ∞

0

Up(y,B)qe−qydy =

∫ ∞
0

U0(x,B)qe−qxdx =

∫ ∞
0

1B(u)du

∫ q

0

e−ux
x

Ψ(x)
dx. (3.7)

Set B = (0, a) for a > 0, then∫ ∞
0

U0(x,B)qe−qxdx =

∫ a

0

du

∫ q

0

e−ux
x

Ψ(x)
dx =

∫ q

0

1− e−ax
Ψ(x)

dx.

In the subcritical case Ψ′(0+) > 0, therefore
∫ q

0
x

Ψ(x)dx < ∞ and for almost every

x ∈ (0,∞), one has 0 < U0(x,B) <∞. Since for any x ≤ y, X̂t(x) ≤ X̂t(y),

P(X̂t(x) < a) ≥ P(X̂t(y) < a)

therefore U0(x,B) ≥ U0(y,B) and then 0 < U0(x,B) <∞ for all x. We may now invoke
Proposition 2.2-(iv’) in Getoor [Get80], by taking the increasing sequence Bn := (0, n).
This entails that the process (X̂t, t ≥ 0) is transient. In the critical case, if

∫ q
0

x
Ψ(x)dx <∞

then the process is transient. If now
∫ q

0
x

Ψ(x)dx = ∞ then by (3.7) for any set B with

positive Lebesgue measure, U0(x,B) =∞ for all x. By Proposition 2.4-(i) in [Get80], we
conclude that (X̂t, t ≥ 0) is recurrent.

4 The Feller flow

In this section, we investigate the genealogy backwards in time of Feller CSBPs.
These are continuous CSBPs with quadratic branching mechanisms of the form Ψ : q 7→
σ2

2 q
2 − βq, with β ∈ R and σ2 ≥ 0. For any fixed x, the Feller CSBP (Xt(x), t ≥ 0) with

mechanism Ψ can be constructed as the solution of the stochastic differential equation

dXt(x) = σ
√
Xt(x)dBt + βXt(x)dt, X0(x) = x

where (Bt, t ≥ 0) is a Brownian motion. We study here in detail the flow (Xs,t(x), t ≥
s, x ≥ 0) of CSBPs with branching mechanism Ψ and the inverse flow (X̂s,t(x), t ≥ s, x ≥
0). Many calculations can be made explicit in this setting, see for instance Pardoux
[Par08] for a study of the flow (Xs,t(x), t ≥ s, x ≥ 0).

Note that Ψ is subcritical if β < 0, critical if β = 0 and supercritical if β > 0. Moreover,
in the latter case we have ρ = 2β

σ2 . Observe also that the differential equation (2.3) can
be rewritten

dvt(λ)

dt
= −vt(λ)

(
σ2

2
vt(λ)− β

)
, with v0(λ) = λ,

and it is a simple exercise to solve it into

vt(λ) =


λβeβt

β+λσ2

2 (eβt−1)
if β 6= 0

λ

1+σ2λt
2

if β = 0.
(4.1)

Moreover, one can write vt(λ) =
∫∞

0
(1− e−λr)`t(dr), by setting

`t(dr) = vt(∞)2e−βte−vt(∞)e−βtrdr

where by definition, vt(∞) = 2β
σ2(1−e−βt) > 0 for β 6= 0 and vt(∞) = 2

tσ2 if β = 0. Observe

that in both cases, `t
`t((0,∞]) is an exponential law with parameter β̂t = vt(∞)e−βt, which

can be rewritten as

β̂t =

{
2β

σ2(eβt−1)
if β 6= 0

2
tσ2 if β = 0.
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Remark 4.1. We often make a distinction between β 6= 0 and β = 0, but it is worth
noticing that the functions vt and β̂t that we defined are continuous at β = 0.

We now study the law of the inverse Feller flow (X̂s,t(y), s ≤ t, y ≥ 0), in particular
characterizing its marginal distributions as a process in the variable t or y.

Theorem 4.2. The inverse flow (X̂t(x), x ≥ 0, t ≥ 0) is characterized as follows. Setting

∀t ≥ 0, λ ≥ 0, v̂t(λ) =
λβ̂t

λ+ β̂teβt
,

we have

(i) for any fixed y ≥ 0, (X̂t(y), t ≥ 0) is a Markov process with semigroup given by

E[e−λX̂t(y)] = e−yv̂t(λ)−σ2

2

∫ t
0
v̂s(λ)ds.

(ii) For any fixed t, (X̂t(y), y ≥ 0) is a subordinator with Laplace exponent v̂t started

from the positive random variable X̂t(0) whose Laplace transform is E[e−λX̂t(0)] =

e−
σ2

2

∫ t
0
v̂s(λ)ds.

Remark 4.3. The two-parameter process (X̂t(x), t ≥ 0, x ≥ 0) is a flow of continuous-

state branching processes with immigration with mechanisms Ψ̂(q) = σ2

2 q
2 + βq and

linear immigration Φ̂(q) := σ2

2 q. In particular, (X̂t(x)− X̂t(0), t ≥ 0) is a Feller CSBP with

branching mechanism Ψ̂.

Proof. As x 7→ X−t,0(x) is a subordinator with Laplace exponent

vt(λ) = β̂te
βt

∫ ∞
0

(
1− e−λr

)
β̂te
−β̂trdr,

we obtain that this is in fact a compound Poisson process, with jump rate β̂te
βt and

exponential jump distribution with parameter β̂t. Therefore, writing (N
(t)
x , x ≥ 0) an

homogeneous Poisson process with intensity β̂te
βt and (x

(t)
i , i ≥ 1) i.i.d. exponential

random variables with parameter β̂t, one can rewrite X−t,0 as

∀x ≥ 0, X−t,0(x) =

N(t)
x∑

j=1

x
(t)
j . (4.2)

We set (τ
(t)
j , j ≥ 1) the sequence of inter-arrival times of (N

(t)
x , x ≥ 0) which are i.i.d.

exponential random variables with parameter β̂teβt, and we write M (t)
y = sup{n ≥ 0 :∑n

i=1 x
(t)
i ≤ y} for all y ≥ 0. Since the inter-arrival times (x

(t)
j , j ≥ 1) are exponentially

distributed, (M
(t)
y , y ≥ 0) is a Poisson process. By (4.2), X̂0,t being the right-continuous

inverse of X−t,0, we get

X̂0,t(y) =

M(t)
y +1∑
j=1

τ
(t)
j . (4.3)

Note that we have X̂0,t(0) > 0, contrarily to X0,t(0) = 0, but that X̂0,t is also a compound
Poisson process with exponential jump rate. The construction of X−t,0 and X̂0,t are
represented on Figure 1.

Since τ (t)
1 is exponentially distributed with parameter β̂teβt, we have by (4.3)

E
(
e−λX̂t(0)

)
= E

(
e−λτ

(t)
1

)
=

β̂t

β̂t + λe−βt
,
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τ
(t)
1

x
(t)
1

τ
(t)
1 +τ

(t)
2

x
(t)
2

τ
(t)
1 +τ

(t)
2 +τ

(t)
3

x
(t)
3

X−t,0(x) =
∑N(t)

x
i=1 x

(t)
i

τ
(t)
1

τ
(t)
2

X̂t(y) = X−1
−t,0(y) =

∑Mt
y+1

j=1 τ
(t)
j

τ
(t)
3

Figure 1: Inverse of compound Poisson process

and moreover, by straightforward Poisson computations, for all y ≥ 0

E[e−λ(X̂t(y)−X̂t(0))] = exp

(
−y λβ̂t

β̂teβt + λ

)
= e−yv̂t(λ).

It remains to verify that

E[e−λX̂t(0)] = e−
σ2

2

∫ t
0
v̂s(λ)ds.

One easily checks that

v̂t(λ) =
λβe−βt

β + λ
σ2 (1− e−βt) for all t ≥ 0

and in view of (4.1), the map t 7→ v̂t(λ) is solution to the differential equation dvt(λ)
dt =

−Ψ̂(vt(λ)) with v̂0(λ) = λ and where Ψ̂(q) = σ2

2 q
2 + βq. By change of variable, one has∫ t

0

v̂s(λ)ds =

∫ λ

v̂t(λ)

u

Ψ̂(u)
du =

2

σ2
log

(
σ2

2 λ+ β
σ2

2 v̂t(λ) + β

)

and thus e−
σ2

2

∫ t
0
v̂s(λ)ds =

σ2

2 v̂t(λ)+β
σ2

2 λ+β
. Simple calculations yield that both quantities

σ2

2 v̂t(λ)+β
σ2

2 λ+β
and β̂t

β̂t+eβtλ
are equal to β

β+λσ
2

2 (1−e−βt)
. We deduce that

E[e−λX̂t(0)] =
β̂t

β̂t + eβtλ
=

σ2

2 v̂t(λ) + β
σ2

2 λ+ β
= e−

σ2

2

∫ t
0
v̂s(λ)ds,

which concludes the proof.

The inverse Feller flow being itself a flow of subordinators with explicit law, many
quantities can be computed explicitly, such as the most recent common ancestor of a
population. Picking two individuals x ≤ y at time 0, the age Tx,y of the most recent
common ancestor of x and y is the first time t such that there exists an individual z at
generation −t that gave birth to both x and y, or more precisely

Tx,y = inf{t ≥ 0 : X̂0,t(x) = X̂0,t(y)}. (4.4)

This definition of most recent common ancestor can naturally be generalized as follows:
given A a subset of R+, we set

TA = inf{t ≥ 0 : #{X̂0,t(A)} = 1}.
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However, as the partition of R+, ∪z≥0

(
X̂0,t

)−1

({z}) is a partition in intervals, we have

TA = Tinf A,supA a.s.

Therefore, obtaining the law of Tx,y will be enough to study the genealogy of the Feller
flow.

Proposition 4.4. For any 0 ≤ x ≤ y ≤ z, we have

∀t ≥ 0,P (Tx,y ≤ t) = e−β̂t(y−x),

and Tx,y and Ty,z are independent. In particular, we have

P (Tx,y =∞) =

{
1− e

2β

σ2 (y−x) if β < 0

0 if β ≥ 0.

Among other things, this proposition proves that the population comes down from a
single ancestor in critical or supercritical cases (β ≥ 0), while in the subcritical case, for
β < 0, the population at time 0 can be separated into families with different ancestors at
time −∞.

Proof. This result is a consequence of the inverse flow representation of Theorem 4.2.
Indeed, for all x ≤ y and λ ≥ 0, we have

E[e−λ(X̂t(y)−X̂t(x))] = e−(y−x)v̂t(λ),

thus, letting λ → ∞ we obtain P(Tx,y ≤ t) = e−(y−x)v̂t(∞). Moreover, we observe that
v̂t(∞) = β̂t, proving the first equation.

By (4.4), and given that (X̂0,t(y) − X̂0,t(x), t ≥ 0) and (X̂0,t(z) − X̂0,t(y), t ≥ 0) are
independent Feller CSBP with mechanism Ψ̂, starting from y − x and z − y respectively,
we conclude that Tx,y and Ty,z are independent.

To obtain P(Tx,y =∞) we compute

lim
t→∞

P(Tx,y ≤ t) = exp
(
−(y − x) lim

t→∞
β̂t

)
=

{
1 if β ≥ 0

e−(y−x)−2β

σ2 if β < 0,

concluding the proof.

Remark 4.5. A straightforward consequence of the above coalescent is that for any
choice {x1, . . . xn} of individuals at generation 0, the coalescent tree of this family
of individuals will only consist in binary merging. Indeed, for every pair (xi, xi+1)

of consecutive individuals, their time of coalescence is independent from the time of
coalescence of any other pair of consecutive individuals in the population, and has density
with respect to the Lebesgue measure. Therefore, almost surely the first coalescing time
will consist in the merging of only two neighbours.

Proposition 4.4 readily entails the representation of the genealogical tree of the
population at time 0 as a functional of a Poisson point process. The following construction
is reminiscent of the comb representation by Lambert and Uribe Bravo [LUB17].

Proposition 4.6. There exists a Poisson point process N with intensity dx ⊗ µ(dt) on
R+ × (R+ ∪ {∞}) where

µ(dt) =


2β2

σ2
eβt

(eβt−1)2 dt if β > 0
2

σ2t2 dt if β = 0,
2β2

σ2
eβt

(1−eβt)2 dt+ 2|β|
σ2 δ∞ if β < 0
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such that almost surely, for any 0 ≤ x ≤ y and t ≥ 0, we have

Tx,y < t ⇐⇒ N([x, y]× [t,∞]) = 0.

In other words, the coalescent time of x and y is given by the position of the largest
atom in the point process N([x, y] × ·). In particular, in the critical case (β = 0), this
result recovers the Brownian coalescent point process of Popovic [Pop04, Lemma 4
and Theorem 5]. In the subcritical case (β < 0) when two individuals have no common
ancestor, there are separated by an infinite atom of the point process N([x, y]× ·).

Proof. We observe from Proposition 4.4 that for all x ≤ y ≤ z, Tx,y and Ty,z are indepen-

dent and Tx,z
L
= max(Tx,y, Ty,z). Moreover, note by definition that Tx,z ≥ max(Tx,y, Ty,z)

a.s. This yields that for all x ≤ y ≤ z,

Tx,z = max(Tx,y, Ty,z) a.s. (4.5)

We consider the event of probability one for which the above equation is true simultane-
ously for all x, y, z ∈ Q+. As a result, the field Tx,y is decreasing in x and increasing in y.
Therefore, there exists a càdlàg modification of the field satisfying (4.5) simultaneously
for all x, y, z ∈ R+.

As a result, we can construct a simple point process G on R+× (R+ ∪{∞}) satisfying

Tx,y < t ⇐⇒ G([x, y]× [t,∞]) = 0,

via the construction G =
∑
z≥0 1{∃ε>0:Tz−ε,z−<Tz−ε,z}δz,Tz−ε,z . The point process G is

simple (i.e. each atom in the point process has mass one). Moreover, setting γt the
derivative of t 7→ β̂t, we have

P(G([x, y]× [t,∞] = 0) = P(Tx,y < t) = exp

(
−
∫ ∞
t

∫ y

x

γsdzds−
∫ y

x

β̂∞ds

)
= P(N([x, y]× [t,∞]) = 0),

where N is a Poisson point process with intensity dx ⊗ (γtdt + β̂∞δ∞(dt)). Hence, by
monotone classes theorem, for all measurable relatively compact set B ⊂ R+ × (R+ ∪
{∞}), we have

P(G(B) = 0) = P(N(B) = 0).

As a result, by [Kal02, Theorem 10.9(i)], we have N
L
= G, which concludes the proof.

Pitman and Yor [PY82, Sections 3 and 4], see also [DL14] for a more general setting,
have shown that any flow of Feller’s branching diffusions can be represented through a
Poisson point process on (0,∞)× C, where C denotes the space of continuous paths on
R+. In our setting, this entails that the flow (X̂t(x)− X̂t(0), t ≥ 0) can be represented as
follows: for all t > 0,

X̂t(x) = X̂t(0) +
∑
xi≤x
i∈I

X̂i
t

where N =
∑
i∈I δ(xi,X̂i) is a PPP with intensity dx⊗n(dX) and n is the so-called cluster

measure (see for instance [DL14, Section 1.2]). The atoms (X̂i, i ∈ I) can be interpreted
as the ancestral lineages of the initial individuals (xi, i ∈ I). They are independent Feller
diffusions with mechanism Ψ̂ starting from infinitesimal masses. For any i ∈ I, denote
by ζi := inf{t ≥ 0; X̂i

t = 0}. The time ζi represents a binary coalescence time between
two “consecutive” individuals. By definition of n, for any t > 0, n(ζ > t) = v̂t(∞) and
therefore

∑
i∈I δ(xi,ζi) has the same law as N .
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X̂t(0)

past 0

X̂t(x
?
1)

x?
1

x?
2

X̂t(x
?
2)

subcritical case

X̂t(0)

past 0(super)critical case

Figure 2: Symbolic representation of ancestral lineages and their binary coalescences

We represent the ancestral lineages and their coalescences in Figure 2. Recall also
from Remark 3.7 that X̂t(0) is the first individual from generation −t to have descendants
at time 0.

In the subcritical case, (β < 0), (X̂t(x)− X̂t(0), x ≥ 0, t ≥ 0) is a flow of supercritical
CSBPs. Following Bertoin et al. [BFM08] (see also Pardoux [Par08, Section 7]), one can
define the random sequence (x?n, n ≥ 1) recursively as follows:

x?1 := inf{x ≥ 0; X̂t(x)− X̂t(0) −→
t→∞

∞} and x?n+1 := inf{x ≥ x?n; X̂t(x)− X̂t(0) −→
t→∞

∞}.

The random sequence (x?n, n ≥ 1) is known as the initial prolific individuals of the flow of
supercritical CSBPs (X̂t(x)− X̂t(0), x ≥ 0, t ≥ 0) and corresponds to the jumps times of a
Poisson process with intensity − 2β

σ2 . Within the framework of inverse flow, the random
partition of R+: ([0, x?1), [x?1, x

?
2), ...) corresponds to current families with distinct common

ancestors. Note that the sequence (x?n, n ≥ 1) is also the sequence of atoms of the point
process N(· × {∞}), defined in Lemma 4.6.

We observed in this section that the law of the flow X̂ is explicit when X is a Feller
flow. When the branching mechanism Ψ is not of the quadratic form, multiple births
occur in the population. Thus, when time runs backward, coalescences of multiple
lineages should arise. The law of the inverse flow X̂ becomes then more involved. In
the next section, we construct a simple class of Markovian coalescents which will allow
us to encode easily multiple coalescences in lineages backwards in time. The law of
the lineage’s location (X̂t(x), t ≥ 0) for a fixed individual x ≥ 0 is studied further in
Section 6.

5 Consecutive coalescents

In this section we study the genealogy of branching processes both forward and
backward in time, using random partitions of consecutive integers. We shall see how to
define a coalescent process in this framework and that the associated coalescent theory
is elementary. In a second time, we apply these results to the genealogy of a population
in a continuous-state branching process sampled according to a Poisson point process
with intensity λ. In a third time, by making the parameter λ increase to∞, we obtain a
full description of the genealogical tree of individuals in a CSBP under Grey’s condition.

5.1 Consecutive coalescents in continuous-time Galton-Watson processes

In this section, we construct a class of simple Markovian coalescents arising when
studying the genealogy backward in time of continuous-time Galton-Watson processes.
We begin by introducing the classical notation for coalescent processes on the space
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of partitions. For a more precise description of that framework, in the context of
exchangeable coalescents, we refer to Bertoin’s book [Ber06, Chapter 4], from which we
borrow our definitions and notation.

Let n ∈ N ∪ {∞}, we denote by [n] = {j ∈ N : j ≤ n} the set of integers smaller
or equal to n. We call consecutive partition of [n] a collection C of disjoint subsets
{C1, C2, . . .} with consecutive integers (i.e. intervals of [n]), such that ∪i≥1Ci = [n].
Without loss of generality, we will always assume that the subsets of the collection C are
ranked in the increasing order of their elements. We denote by Cn the set of consecutive
partitions of [n]. Note that any C ∈ Cn is characterized by the ranked sequence of its
blocks sizes (#C1,#C2, . . .), as

∀j ∈ N, Cj = {k ∈ N : #C1 + · · ·+ #Cj−1 < k ≤ #C1 + · · ·+ #Cj} .

For any i, j ∈ [n], we write i
C∼ j if and only if i and j belong to the same block of C. For

any n ∈ N ∪ {∞}, we set 0[n] = {{1}, {2}, ..., {n}} and 1[n] = {[n]}. We introduce some
classical operations on Cn. For each k ≤ n and C ∈ Cn, we denote by

C|[k] = {Cj ∩ [k], j ∈ N} ,

the restriction of C to [k] and

#C|[k] := #{j ∈ N : Cj ∩ [k] 6= ∅},

the number of blocks of C|[k]. Note that for any m ≤ k, (C|[k])|[m] = C|[m] ∈ Cm.
We denote by C∞ or CN the set of consecutive partitions of N. A consecutive partition

C of N has at most one block with infinite size. In such a case, C has finitely many blocks,
i.e. #C <∞, and the block with infinite size is indexed by #C. We define a distance on
C∞ by setting

d(C,C ′) = sup{n ∈ N : C|[n] = C ′|[n]}−1.

Note that the metric space (C∞, d) is compact. We next introduce the coagulation
operation. For any C ∈ Cn and C ′ ∈ Cn′ such that #C ≤ n′, we define the partition
Coag(C,C ′) by

Coag(C,C ′)j =
⋃
i∈C′j

Ci for any j ∈ N.

As each block of Coag(C,C ′) is the union of a consecutive sequence of consecutive blocks,
one has that Coag(C,C ′) ∈ Cn. Thus, Coag defines an internal composition law on C∞.
Observe that the blocks of Coag(C,C ′) are coarser than those of C. Moreover for any C,
C ′ ∈ C∞ and n ≥ 1

Coag(C,C ′)|[n] = Coag(C|[n], C
′
|[n]) = Coag(C|[n], C

′).

The operator Coag is therefore Lipschitz continuous with respect to d from C∞ × C∞ to
C∞ and we see that it is associative. For any partition C ∈ Cn, Coag(C, 0[n]) = C and
Coag(C, 1[n]) = 1[n].

We are interested in random consecutive partitions of the following form. Let ν be
a probability distribution over N ∪ {∞} and (Z(i), i ≥ 1) be a random walk with step
distribution ν. Set N := inf{i ≥ 1;Z(i) =∞} and

C = ([|1, Z(1)|], [|Z(1) + 1, Z(2)|], · · · , [|Z(N − 1),∞[|) .

We call C a ν-random consecutive partition. One has N = #C, and conditionally on
#C = n, for some n ∈ N ∪ {∞}, the blocks sizes (#Cj , 1 ≤ j ≤ n− 1) are i.i.d. random
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variables in N. Let C and C ′ be respectively a ν-random consecutive partition and a
ν′-random consecutive partition. If C and C ′ are independent, then

#Coag(C,C ′)j =
∑
i∈C′j

#Ci
L
=
∑
i∈C′1

#Ci,

hence Coag(C,C ′) is a ν′′-random consecutive partition where ν′′ is the law of the random
variable

∑
i∈C′1 #Ci. In view of the very particular form of a consecutive partition, it

is legitimate to question whether the framework of partitions is needed. However,
the use of the operator Coag enables us to encode easily multiple coalescences and to
follow closely the theory of exchangeable coalescents and its terminology. This encoding
simplifies the main formulas we obtain when studying the genealogy of a continuous-state
branching population.

Definition 5.1. A Markov process (C(t), t ≥ 0) with values in CN is called consecutive
coalescent if its semigroup is given as follows: the conditional law of C(t + s) given
C(t) = C is the law of Coag(C,C ′) with C ′ a νs,t-random consecutive partition where
νs,t is some probability distribution over N ∪ {∞} which may depend on t and s. A
consecutive coalescent is said to be homogeneous if the law of C ′ depends only on s, and
standard if C(0) = 0[∞].

We now recall further well-known material on continuous-time Galton-Watson pro-
cesses. We refer to Athreya and Ney [AN04, Chapter III] for more details on these
processes. Consider a finite measure µ on Z+ such that µ(1) = 0. A continuous-time
Galton-Watson process (Zt(n), t ≥ 0) with reproduction measure µ, is a Markov process
counting the number of individuals in a random population with n ancestors where all
individuals behave independently, and each individual has an exponential lifetime ζ with
parameter µ(Z+) and begets at its death a random number of children with probability
distribution µ/µ(Z+). The process (Zt(n), t ≥ 0) is characterized in law by µ and thus by
the function

ψ(x) = −
∞∑
k=0

(xk − x)µ(k), x ∈ [0, 1].

The process (Zt(n), t ≥ 0) satisfies the branching property

∀n,m ≥ 0,∀t ≥ 0, Zt(n+m)
L
= Zt(n) + Z̃t(m), (5.1)

where (Z̃t(m), t ≥ 0) is a continuous-time Galton-Watson process independent of
(Zt(n), t ≥ 0), and with the same law as (Zt(m), t ≥ 0). This entails that the gener-
ating function of Zt(n) for any t ≥ 0 has the form

E[xZt(n)] = ut(x)n, x ∈ [0, 1], n ∈ Z+

where for all t ≥ 0, ut(s) is the solution of
∫ s
ut(s)

dz
ψ(z) = t for any t ≥ 0. When µ has no

mass at 0, the process is called immortal. Each individual has at least two children and
(Zt(n), t ≥ 0) is non-decreasing in time.

Following the same procedure as in Definition 2.3 but in discrete-state space, we
construct a family of continuous-time branching processes by considering a flow of
random walks (Zs,t(n), t ≥ s, n ≥ 1) satisfying the following properties:

(i) For any s ≤ t, (Zs,t(n), n ≥ 0) is a continuous-time random walk whose jump law
has support included in N and generating function ut−s.

(ii) For every t1 < t2 < ... < tp, the random walks (Zti,ti+1
, i < p) are independent and

satisfy
∀n ≥ 0, Zt1,tp(n) = Ztp−1,tp ◦ ... ◦ Zt1,t2(n).
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(iii) For any n ≥ 1 and s ∈ R, (Zs,t+s(n), t ≥ 0) is an immortal homogeneous continuous-
time Galton-Watson process started from n individuals.

We now construct a flow of partitions describing the genealogy of an immortal
continuous-time Galton-Watson process constructed via this flow of random walks. For
any s ≤ t, set

→
C(s, t) := ([|Zs,t(i− 1) + 1, Zs,t(i)|], i ≥ 1) ,

with Zs,t(0) = 0. Then by (ii), for any r < s < t,

→
C(r, t) = Coag(

→
C(s, t),

→
C(r, s))

i.e.
→
Cj(r, t) =

⋃
i∈
→
Cj(r,s)

→
Ci(s, t) and by definition #

→
Ci(s, t) = Zs,t(i)− Zs,t(i− 1) for any

s ≤ t and any i ≥ 1. We introduce the time-reversed flow of partition by defining for all
s ≤ t,

C(s, t) =
→
C(−t,−s).

We sum up the main properties of C in the following proposition.

Proposition 5.2. The stochastic flow of consecutive partitions (C(s, t),−∞ ≤ s ≤ t ≤ ∞)

satisfies:

(i) For any s ≤ u ≤ t
C(s, t) = Coag(C(s, u), C(u, t)) a.s

(ii) If s1 < s2 < ... < sn, the partitions C(s1, s2),..., C(sn−1, sn) are independent.

(iii) The random variables (#Ci(s, t), i ≥ 1) are valued in N and i.i.d.

(iv) C(0, 0) = 0[∞] and C(s, t)→ 0[∞] when t− s→ 0 and

(v) the random variable C(s, t) has the same law as C(0, t− s).
The Markov process (C(t), t ≥ 0) defined by C(t) := C(0, t) for any t ≥ 0 is an

homogeneous standard consecutive coalescent in the sense of Definition 5.1. Note that
by (i ), for any s, t ≥ 0,

C(t+ s) = Coag(C(t), C(t, t+ s))

namely for any j ≥ 1,
Cj(t+ s) =

⋃
i∈Cj(t,t+s)

Ci(t), (5.2)

so that consecutive blocks are merging as time runs.

Remark 5.3. One can readily check from (5.2) that for any i ≥ 1, s ≥ 0 and t ≥ 0

#Ci(t+ s) =

#Ci(t,t+s)∑
m=1

#Cm+
∑i−1
k=1 #Ck(t,t+s)(t). (5.3)

Processes satisfying (5.3) have been studied in discrete time by Grosjean and Huillet
[GH16].

By Proposition 5.2-(v), for any fixed t ≥ 0, C(t)
L
=
→
C(t). Therefore the coalescent

process (C(t), t ≥ 0) is characterized by the reproduction measure µ of the associ-

ated continuous-time Galton-Watson process (#
→
C1(t), t ≥ 0). Moreover, note that by

construction, for any m ≤ n

(C|[m](t), t ≥ 0) = ((C|[n](t))|[m], t ≥ 0).

This consistency property ensures that the family of jump rates of (C|[n](t), t ≥ 0) charac-
terizes the law of (C(t), t ≥ 0). In the next lemma, the coagulation rate of a consecutive
coalescent restricted to [n] is provided.
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Figure 3: Monotone labelling of an immortal Galton-Watson forest and its consecutive
coalescent

Lemma 5.4 (Law of the n-coalescent). Let n ∈ N and C ∈ Cn. Set #C = m and assume
C|[n](0) = C. For any j ∈ [m− 1], consider the consecutive partitions of [m]

– Cj,kin := ({1}, ..., {j, ..., j + k − 1}, ..., {m}) for any 2 ≤ k ≤ m− j, and attach to each
Cj,kin an independent exponential clock with parameter µ(k),

– Cjout := ({1}, ..., {j, ...,m}), and attach to each Cjout an independent exponential
clock with parameter µ(m− j + 1)

where µ(k) :=
∑∞
j=k µ(j) for any k ∈ N. Then the process jumps from the partition

C|[n](t−) to Coag(C|[n](t−), D) with D the partition in {Cj,kin , Cjout} associated with the
first random clock that rings.

Proof. For any n ≥ 1, any t ≥ 0,

Coag(C(t), C(t, t+ s))|[n] = Coag(C|[n](t), C(t, t+ s)).

Moreover, by associativity of the operator Coag, the restricted process (C|[n](t), t ≥
0) starting from C, whose number of blocks is m, has the same law as the process
(Coag(C,C|[m](t)), t ≥ 0) where (C|[m](t), t ≥ 0) is the restriction at [m] of the standard
process started from 0[∞]. Therefore, we only need to focus on the jump rates of the
standard coalescent.

For any j, the rate at which the process jumps from 0[m] to Cjout := ({1}, ..., {j, ...,m})
is therefore given by

lim
s→0+

1

s
P(#Cj(t, t+ s) ≥ m− j + 1).

Since #Cj(t, t+ s) has the same law as the random variable Zs(1) where (Zt(1), t ≥ 0) is
a continuous-time Galton-Watson process with reproduction measure µ, then the latter
limit is µ(m− j + 1).

Similarly, for any k ≤ m− j − 1, the rate at which the process jumps from 0[m] to Cj,kin

is

lim
s→0+

1

s
P(#Cj(t, t+ s) = k) = µ(k).

There are no simultaneous births forward in time and therefore no simultaneous coales-
cences.
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By letting n andm to∞ in Lemma 5.4, we see that the coalescences in the consecutive
coalescent process C valued in C∞ can be described in the following way: to each block j
of C is associated a family (ej,k, k ≥ 2) of exponential clocks, that ring at rate (µ(k), k ≥ 2).
Each time a clock ej,k rings, the consecutive blocks j, j + 1, ..., j + k − 1 coalesce into
one. Note that these clocks could also be used to construct the immortal Galton–Watson
process forward in time: each time the clock ej,k rings, the jth individual produces k
children.

We now take interest in the number of blocks of a consecutive coalescent. Similarly
to the continuous-state space, the dual process Ẑ is defined for any n ∈ N and any t ≥ 0

by
Ẑt(n) := min{k ∈ N : Z−t,0(k) ≥ n}.

The process Ẑ is a Markov process, and for all n ∈ N, Ẑt(n) is the ancestor at time −t of
the individual n considered at time 0.

Proposition 5.5. For any t ≥ 0, and any n,m ∈ N, #C|[n](t) = Ẑt(n) and

n
C(t)∼ m⇐⇒ Ẑt(n) = Ẑt(m). (5.4)

Proof. By definition

C|[n](t) = ([|1, Z−t(1)|], [|Z−t(1) + 1, Z−t(2)|], ..., [|Z−t(a− 1) + 1, n|])

with a = #C|[n](t) = min{k ∈ N : Z−t(k) ≥ n} =: Ẑt(n). Consider now an integer m ≤ n.

If Ẑt(m) = a then m ∈ [|Z−t(a− 1) + 1, n|] = Ca(t) ∩ [n] and m
C(t)∼ n. The rates of jumps

in (#C|[n](t), t ≥ 0) are readily obtained by Lemma 5.4.

Remark 5.6. Consecutive coalescents can be defined for a measure µ with a mass at 0

from the relation (5.4). However the process (C(t), t ≥ 0) in this case is inhomogeneous
in time. We mention that the process (Ẑt(n), t ≥ 0) is studied by Li et al. in [LPLG08].

5.2 Consecutive coalescents in CSBPs through Poisson sampling

We now explain how consecutive coalescents arise in the study of the backward
genealogy of CSBPs. Loosely speaking, exchangeable bridges in the theory of exchange-
able coalescents, [BLG03], are replaced by subordinators and the sequence of uniform
random variables by the atoms of a Poisson process with intensity λ. The following
typical random consecutive partitions form a particular class of ν-random consecutive
partitions and will play a similar role as paintboxes for exchangeable coalescents.

Definition 5.7. We call (λ, φ)-Poisson box a random consecutive partition C obtained by
setting

i
C∼ j ⇐⇒ X−1(Ji) = X−1(Jj),

where X is a subordinator with Laplace exponent φ and (Jj , j ≥ 1) are the ranked atoms
of an independent Poisson process with intensity λ.

The (λ, φ)-Poisson boxes will occur as typical random partitions in genealogical
trees of CSBPs. More precisely, in the coalescent process describing the genealogy
of individuals sampled according to a Poisson point process, the partitions will be
distributed as (λ, φ)-Poisson boxes. The following Lemma is proved in Appendix A.2, and
can be thought of as a revisiting of Pitman’s discretization of subordinators [Pit97].

Lemma 5.8. Consider a subordinator X with Laplace exponent

φ : µ 7→ dµ+

∫ ∞
0

(
1− e−µx

)
`(dx)
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and (Jk, k ≥ 1) the atoms of an independent Poisson process with intensity λ. Let C
be the (λ, φ)-Poisson box constructed with X and (Jk, k ≥ 1) and set for any i ≥ 1,
J ′i := X−1(Jk) for k ∈ Ci. Then

(i) C is a ν-random consecutive partition with for any k ≥ 1

ν(k) :=
1

φ(λ)

∫ ∞
0

(λx)k

k!
e−λx`(dx) + d1{k=1} = (−1)k−1λ

k

k!

φ(k)(λ)

φ(λ)
,

i.e. E(s#C1) = 1− φ(λ(1−s))
φ(λ) for all s ∈ [0, 1].

(ii) The sequence (J ′i , i ≥ 1) is the atoms of a Poisson process with intensity φ(λ).

(iii) (J ′i , i ≥ 1) and C are independent.

Remark 5.9. We shall also consider killed subordinators such that φ(0) = `({∞}) = κ >

0. The above Lemma can be extended to this case (see Corollary A.4). The associated
(λ, φ)-Poisson box has finitely many blocks and the sequence (J ′i , 1 ≤ i ≤ #C) forms the
first atoms of a Poisson process with intensity φ(λ). Formulas in (i) still hold true for any
finite k and ν has positive mass at∞, namely ν(∞) = P(#C1 =∞) = 1− φ(0)

φ(λ) .

X(x)

x
J1

J ′
1

J2

J ′
2

J3
J4

J5

J ′
3

J6

J ′
4

J7

J ′
5

Figure 4: Construction of a random Poisson-box partition C, with subordinator X and
selected individuals (Jj , j ≥ 1), satisfying C|[7] = {{1}, {2}, {3, 4, 5}, {6}, {7}}

We now construct consecutive coalescent processes related to the genealogy of the
flow of subordinators (Xs,t(x), s ≤ t, x ≥ 0). Denote by (Jλi , i ≥ 1) the sequence of atoms
of an independent Poisson process with intensity λ. For any t ≥ 0, we define Cλ(t) as

i
Cλ(t)∼ j if and only if X̂t(J

λ
i ) = X̂t(J

λ
j ). (5.5)

The next theorem describes the law of the process (Cλ(t), t ≥ 0).

Theorem 5.10. For any λ > 0, the partition-valued process (Cλ(t), t ≥ 0) is a consecutive
coalescent. Its semigroup is Feller and its one-dimensional marginal law is characterized
by

E[z#Cλ1 (t)] = 1− vt(λ(1− z))
vt(λ)

for any z ∈ [0, 1]. (5.6)

There are no simultaneous coalescences and for any k ≥ 2, the rate at time t at which k
given consecutive blocks coalesce is

µλt (k) :=
σ2

2
vt(λ)1{k=2} + vt(λ)k−1

∫
(0,∞)

xk

k!
e−vt(λ)xπ(dx). (5.7)
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In the supercritical case, by choosing for intensity λ = ρ, the process (Cρ(t), t ≥ 0)

becomes time-homogeneous. Corollary 5.11 is obtained by a direct application of
Theorem 5.10 since vt(ρ) = ρ for any t ≥ 0.

Corollary 5.11. Assume Ψ supercritical and take λ = ρ. The coalescent process
(Cρ(t), t ≥ 0) is homogeneous in time and the coagulation rate of k given consecutive
blocks is

µρ(k) :=
σ2

2
ρ1{k=2} + ρk−1

∫
(0,∞)

xk

k!
e−ρxπ(dx).

Remark 5.12. Bertoin et al. [BFM08] have shown that in any flow of supercritical
CSBPs one can embed an immortal continuous-time Galton-Watson process counting the
so-called prolific individuals, whose lines of descent are infinite. The prolific individuals
are located in R+ as the atoms of a Poisson process with intensity ρ at any time. More-
over, this continuous-time Galton-Watson process has reproduction measure µρ. The
consecutive coalescent (Cρ(t), t ≥ 0) represents its genealogy backward in time.

We prove Theorem 5.10. We stress that by definition, from (5.5), Cλ(t) is a (λ, vt)-
Poisson box and Cλ(0) = 0[∞] since X̂0 = Id. Our first lemma proves that the partition-
valued process (Cλ(t), t ≥ 0) is Markovian in its own filtration and is a consecutive
coalescent (possibly inhomogeneous in time) in the sense of Definition 5.1.

Lemma 5.13. For any s, t ≥ 0

Cλ(t+ s) = Coag(Cλ(t), Cλ(t, t+ s)) (5.8)

where Cλ(t, t+ s) is a (vt(λ), vs)-Poisson box which is independent of Cλ(t).

Proof. For any s, t ≥ 0 and all l ≥ 1, set Jλl (t) := X̂t(J
λ
i ) for all i ∈ Cλl (t). Let Cλ(t, t+ s)

the random consecutive partition defined by

l
Cλ(t,t+s)∼ k if and only if X̂t,t+s(J

λ
l (t)) = X̂t,t+s(J

λ
k (t)).

Then by the key lemma 5.8-(ii), Cλ(t, t+s) is a (vt(λ), vs)-Poisson box which is independent
of Cλ(t). Recall the cocycle property X̂t+s = X̂t,t+s ◦ X̂t (Theorem 3.5-i)). Let i, j ∈ N.
Set k and l such that i ∈ Cλk (t) and j ∈ Cλl (t). By the cocycle property, X̂t,t+s(J

λ
k (t)) =

X̂t,t+s(J
λ
l (t)) holds if and only if i

Cλ(t+s)∼ j and (5.8) holds by definition of the operator
Coag, see (5.2).

The generating function of the block’s size at time t, given in (5.6), is obtained by a
direct application of the key lemma 5.8 since Cλ(t) is a (λ, vt)-Poisson box. We now show
that the semigroup satisfies the Feller property.

Lemma 5.14. The process (Cλ(t), t ≥ 0) is Feller and for any t ≥ 0, Cλ(t, t+ s) −→
s→0

0[∞]

in probability.

Proof. The Feller property corresponds to the continuity of the map

C ∈ C∞ 7→ Pλt ϕ(C) := E[ϕ(Coag(C,Cλ(t)))]

for any continuous function ϕ from C∞ to R+. This is clear since Coag is Lipschitz
continuous. We now show the weak continuity of the semigroup. By definition Jλi (t) =

X̂t(Jk) for any k ∈ Cλ(t) and for any i 6= j, Jλi (t) 6= Jλj (t). By Lemma 3.3-(ii) and

independence between (Ji, i ≥ 1) and X̂, we see that (Jλi (t), i ≥ 1) is independent of
X̂t,t+s. By Lemma 3.3-(iv), since X̂t,t+s(x) −→

s→0
x uniformly on compact sets, in probability,

then for any n,

P
(
∀i 6= j ∈ [n], X̂t,t+s(J

λ
i (t)) 6= X̂t,t+s(J

λ
j (t))

)
−→
s→0

1.
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Therefore P
(
d(Cλ(t, t+ s), 0[∞]) ≤ 1/n

)
−→
s→0

1.

We now seek for the coagulation rate (5.7).

Lemma 5.15. For any z ∈ (0, 1),

1

s
E[z#Cλ1 (t,t+s) − z] −→

s→0
ϕλt (z) :=

Ψ(vt(λ)(1− z))− (1− z)Ψ(vt(λ))

vt(λ)
.

Proof. Let z ∈ (0, 1), since by Lemma 5.8, the random variables (Jλl (t), l ≥ 1) are the
atoms of an independent Poisson process with intensity vt(λ), then

E(z#Cλ1 (t,t+s)) = 1− vs(vt(λ)(1− z))
vs(vt(λ))

. (5.9)

Thus

1

s
E[z#Cλ1 (t,t+s) − z] =

1

s

[
(1− z)vt+s(λ)− vs(vt(λ)(1− z))

vt+s(λ)

]
=

1

s

(1− z)(vt+s(λ)− vt(λ)) + vt(λ)(1− z)− vs(vt(λ)(1− z))
vt+s(λ)

−→
s→0

Ψ(vt(λ)(1− z))− (1− z)Ψ(vt(λ))

vt(λ)
=: ϕλ(t).

The latter convergence holds since (vt(λ), t ≥ 0) solves (2.3) and vt+s = vs ◦ vt.

By letting θ = vt(λ) in the next technical lemma, we see that for any t ≥ 0, the
measures µλt on N defined in (5.7) have generating function ϕλt .

Lemma 5.16. Recall Ψ in (2.4). For any z ∈ (0, 1) and any θ ≥ 0,

Ψ(θ(1− z))− (1− z)Ψ(θ)

θ
=

∞∑
k=2

(zk − z)pθ(k)

with pθ(k) = σ2

2 θ1{k=2} +
∫∞

0
θk−1xk

k! e−θxπ(dx).

Proof. It is easy to see that Ψ(θ(1− z)) = Ψθ(−θz) + Ψ(θ), where

Ψθ(u) := Ψ(u+ θ)−Ψ(θ) = Ψ′(θ)u+
σ2

2
u2 +

∫ ∞
0

(e−ux − 1 + ux)e−θxπ(dx).

Then we have that

Ψθ(−θz) = −Ψ′(θ)θz +
σ2

2
(θz)2 +

∫ ∞
0

(eθzx − 1− θzx)e−θxπ(dx)

= −Ψ′(θ)θz +
σ2

2
(θz)2 + z

∫ ∞
0

∞∑
k=2

θkxk

k!
e−θxπ(dx)

+ θ

∫ ∞
0

∞∑
k=2

θk−1xk

k!
(zk − z)e−θxπ(dx)

= −Ψ′(θ)θz +
σ2

2
θ2z + z

∫ ∞
0

(eθx − 1− θx)e−θxπ(dx)

+ θ

∞∑
k=2

(zk − z)pθ(k)

= −zΨ(θ) + θ

∞∑
k=2

(zk − z)pθ(k).
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The last equality follows from the fact that

Ψ′(θ) = −β + σ2θ +

∫ 1

0

x(1− e−θx)π(dx)−
∫ ∞

1

xe−θxπ(dx).

Thus we have Ψ(θ(1− z)) = (1− z)Ψ(θ) + θ
∑∞
k=2(zk − z)pθ(k) for any z ∈ (0, 1).

We now explain how coalescences take place in the process (Cλ(t), t ≥ 0). By
construction, the laws of (Cλ|[n](t), t ≥ 0) for n ≥ 1 are consistent and as in Lemma 5.4

the family of jump rates of (Cλ|[n](t), t ≥ 0) characterizes the law of (Cλ(t), t ≥ 0). The
following lemma is obtained along the same lines as Lemma 5.4 but in an inhomogeneous
time setting.

Lemma 5.17. Let n ≥ 1. The n-coalescent process (Cλ|[n](t), t ≥ 0) has jump rates

characterized by µλt and the coalescence events are as follows. Fix a time t. Conditionally
given #C|[n](t−) = m, for any j ≤ m− 1, consider the consecutive partitions of [m]

– Cj,kin := ({1}, ..., {j, ..., j + k − 1}, ..., {m}) for any 2 ≤ k ≤ m− j and attach to each
Cjin a random clock ζj,kin with law

P(ζj,kin > s) = exp

(
−
∫ s

0

µλr (k)dr

)
,

– Cjout := ({1}, ..., {j, ...,m}) and attach to each Cjout a random clock ζj,kout with law

P(ζj,kout > s) = exp

(
−
∫ s

0

µλr (m− j + 1)dr

)
.

Then the process jumps from the partition C|[n](t−) to Coag(C|[n](t−), D) with D the

partition in {Cj,kin , Cjout} associated with the first random clock that rings.

Proof of Theorem 5.10. It follows directly by combination of Lemmas 5.13–5.17.

We provide now some basic properties of the consecutive coalescent (Cλ(t), t ≥ 0).

Proposition 5.18. Fix λ > 0. If Ψ is critical or supercritical then (Cλ(t), t ≥ 0) converges
almost-surely towards the partition 1N. If Ψ is subcritical, then the process (Cλ(t), t ≥ 0)

converges almost-surely towards a partition Cλ(∞), whose law is characterized by

E[z#Cλ1 (∞)] = 1− e−Ψ′(0+)
∫ λ
λ(1−z)

du
Ψ(u) for any z ∈ (0, 1).

In this case, the individuals (Jλ1 , J
λ
2 , ...) belong to different families with i.i.d sizes

distributed as #Cλ1 (∞).

Proof. By Theorem 5.10, we have

E[z#Cλ1 (t)] = 1− vt(λ(1− z))
vt(λ)

.

Recall that for any t ≥ 0, d
duvt(u) = Ψ(vt(u))

Ψ(u) . Therefore

vt(λ(1− z))
vt(λ)

= exp

(∫ λ(1−z)

λ

d

du
log(vt(u))du

)
= exp

(∫ λ(1−z)

λ

Ψ(vt(u))

vt(u)

du

Ψ(u)

)
.

If Ψ′(0+) < 0, then Ψ(vt(u))
vt(u) −→t→∞Ψ(ρ)/ρ=0 and by monotone convergence vt(λ(1−z))

vt(λ) −→
t→∞

1.

Therefore E[z#Cλ1 (t)] −→
t→∞

0. The process (#Cλ1 (t), t ≥ 0) is non-decreasing and thus
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#Cλ1 (t) −→
t→∞

∞ a.s. For any n ∈ N, one has P(C|[n](t) = 1[n]) = P(#C1(t) ≥ n) = 1

for large enough t and thus (Cλ(t), t ≥ 0) converges almost-surely towards 1N. If
Ψ′(0+) ≥ 0, then Ψ(vt(u))

vt(u) −→
t→∞

Ψ′(0+) and by monotone convergence vt(λ(1−z))
vt(λ) −→

t→∞
e−Ψ′(0+)

∫ λ
λ(1−z)

du
Ψ(u) . Therefore, we have for any i ≥ 1,

E[z#Cλi (t)] = 1− vt(λ(1− z))
vt(λ)

−→
t→∞

1− e−Ψ′(0+)
∫ λ
λ(1−z)

du
Ψ(u) .

By monotonicity, #Cλ1 (t)∞
t→

a.s. In the subcritical case, #C1(∞) <∞ and thus for large

enough time t1, for t ≥ t1, Cλ1 (t) = Cλ1 (∞). Since there is no coalescence between
blocks Cλ1 and Cλ2 after time t1, the process (#Cλ2 (t), t ≥ t1) is non-decreasing and
converges almost-surely towards #Cλ2 (∞). By induction, for any n0, there exists tn0

such that for any t ≥ tn0
, #Cλi (t) = #Cλi (∞) for all i ≤ n0. Thus, for any t ≥ tn0

,
Cλi (t) ∩ [n0] = Cλi (∞) ∩ [n0], and then d(Cλ(t), Cλ(∞)) ≤ 1

n0
.

We have seen in Theorem 2.A-(iv) and Proposition 3.6 that when
∫

0
dx
|Ψ(x)| <∞, the

CSBP explodes and∞ is an entrance boundary of (X̂t, t ≥ 0).

Proposition 5.19 (Coming down from infinity). For any t > 0, #Cλ(t) < ∞ a.s if and
only if

∫
0

dx
|Ψ(x)| <∞. Moreover

vt(0)#Cλ(t) −→
t→0

e1/λ in law

where e1/λ is an exponential random variable with parameter 1/λ.

Proof. Recall that vt(0) > 0 if and only if
∫

0
dx
|Ψ(x)| <∞. By Theorem 5.10, for any i ≥ 1,

P(#Cλi (t) = ∞) = vt(0)
vt(λ) and therefore the number of blocks #Cλ(t) is a geometric

random variable with parameter vt(0)
vt(λ) . For any fixed x > 0, one has

P(vt(0)#Cλ(t) > x) =

(
1− vt(0)

vt(λ)

)⌊
x

vt(0)

⌋
−→
t→0

e−
x
λ .

The following proposition is a direct consequence of the strong law of large numbers.

Proposition 5.20 (Singletons). Assume
∫

0
dx
|Ψ(x)| = ∞. For any t ≥ 0, and any λ > 0

there are infinitely many singleton blocks at time t and

#{i ∈ [n]; #Cλi (t) = 1}
n

−→
n→∞

Dλ
t a.s.

with Dλ
t = λ

Ψ(λ)
Ψ(vt(λ))
vt(λ) . This represents the proportion of ancestors that have not been

involved in coalescences by time t.

5.3 Backward genealogy of the whole population

In the previous section, we have defined some coalescent processes arising from
sampling initial individuals along a Poisson process with an arbitrary intensity λ. The
consecutive coalescents obtained by this procedure are only approximating the backward
genealogy. They give the genealogy of a random sample of the population. The objective
of this subsection is to observe that when the Grey’s condition holds, one can define a
consecutive coalescent matching with the complete genealogy of the population from
any positive time. In all this section, assume the Grey’s condition∫ ∞ dx

Ψ(x)
<∞.
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Heuristically, we make λ→∞ in Theorem 5.10, to study the genealogy of the whole
population. The limiting process would indeed characterize the genealogy of the CSBP
as in this case, an everywhere dense sub-population would be sampled and its genealogy
given, which is enough to deduce the genealogical relationship between any pair of
individuals. However, this method cannot work directly as one would have jump rates
that may explode.

Fix a time s > 0. The subordinator (X−s,0(x), x ≥ 0) is a compound Poisson process

with Lévy measure `s(dx) independent of (X−t,−s(x), x ≥ 0, t ≥ s). Let (J
vs(∞)
i , i ≥ 1)

be the jump times of (X−s,0(x), x ≥ 0). They are atoms of a Poisson process with
intensity vs(∞) = `s((0,∞]), independent of (X̂s,t, t ≥ s). Consider (C(s, t), t ≥ s) the
partition-valued process defined by

i
C(s,t)∼ j iff X̂s,t(J

vs(∞)
i ) = X̂s,t(J

vs(∞)
j ).

The process (C(s, t), t > s) provides a dynamical description of the genealogy of initial
individuals whose most recent common ancestors are found at time s > 0. The following
theorem is a direct application of Theorem 5.10.

Theorem 5.21. For any s > 0, the flow of random consecutive partitions (C(u, t), t ≥
u ≥ s) satisfies for any t ≥ u ≥ s,

C(s, t) = Coag(C(s, u), C(u, t)) a.s (5.10)

where C(u, t) is a Poisson box with parameters (vu(∞), vt−u) independent of C(s, u).
Moreover for any i ≥ 1, t ≥ s and z ∈ (0, 1),

E[z#Ci(s,t)] = 1− vt−s(vs(∞)(1− z))
vt(∞)

and the consecutive coalescent (C(s, t), t > s) has coagulation rates (µ∞t , t > s) with

µ∞t (k) :=
σ2

2
vt(∞)1{k=2} + vt(∞)k−1

∫
(0,∞)

xk

k!
e−vt(∞)xπ(dx) for any k ≥ 2. (5.11)

We see in the next corollary that by reversing time in any block of the consecutive
coalescent (C(s, t), 0 < s ≤ t), one obtains an inhomogeneous continuous-time Galton-
Watson process. Fix an horizon time T > 0 and consider the consecutive partitions
C(T − t, T ) for any t ∈ [0, T ).

Corollary 5.22. The processes (ZTi (t), 0 ≤ t < T ) := (#Ci(T − t, T ), 0 ≤ t < T ) are i.i.d
inhomogeneous continuous-time Galton-Watson processes. For any z ∈ [0, 1], and any
t ∈ [0, T )

E[zZ
T
i (t)] = 1− vt(vT−t(∞)(1− z))

vT (∞)
. (5.12)

Moreover, denoting by γTi , the time of its first jump, one has for any t ∈ [0, T )

P(γTi > t) =
Ψ(vT (∞))

vT (∞)

vT−t(∞)

Ψ(VT−t(∞))
.

Proof. The law of ZTi (t) for fixed t is obtained by a direct application of Theorem 5.21.
Only remains to show the branching property. By (5.10) for any s and t such that
0 ≤ t+ s < T

C(T − (t+ s), T ) = Coag(C(T − (t+ s), T − t), C(T − t, T ))

which provides Ci(T − (t+ s), T ) =
⋃
j∈Ci(T−t,T ) Cj(T − (t+ s), T − t) and the branching

property.
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Remark 5.23. The process (ZT1 (t), 0 ≤ t < T ) corresponds to the reduced Galton-Watson
process obtained by Duquesne and Le Gall [DLG02, Theorem 2.7.1] in the (sub)critical
case. We refer also to Fekete et al. [FFK17] for an approach with stochastic differential
equations. In the supercritical case, since for any t ≥ 0, vT−t(∞) −→

T→∞
ρ, we see in

(5.12) that (ZT1 (t), t ≥ 0) converges, as T goes to infinity, in the finite-dimensional sense,
towards a Markov process (Z∞(t), t ≥ 0) whose semigroup satisfies for any z ∈ (0, 1)

E[zZ
∞(t)] = 1− vt(ρ(1− z))

ρ
.

Namely, (Z∞(t), t ≥ 0) is a continuous-time Galton-Watson process, homogeneous in time,
with reproduction measure µρ. Heuristically, individuals from time −t with descendants
at time T will correspond at the limit with prolific individuals.

The coalescent process (C(s, t), t ≥ s) only describes coalescence in families from
time s > 0. We define now a coalescent process from time 0 by using the flow of
subordinators. Denote by CR+ the space of partitions of (0,∞) into consecutive half-
closed intervals. That is to say, partitions of the form C = ((0, x1], (x1, x2], ...) for some
non-decreasing sequence of positive real numbers (xi, i ≥ 1). The space of consecutive
partitions of N, (C∞,Coag), acts as follows on CR+ : for any C ∈ CR+ and C ∈ C∞, for any
i ≥ 1

Coag(C , C)i =
⋃
j∈Ci

Cj

where Cj = (xj−1, xj ] and x0 = 0. The following theorem achieves one of our goals and
has to be compared with our preliminary observation in Proposition 3.1. It describes
completely the genealogy backwards in time as well as the sizes of asymptotic families.
For any t > 0, denote by J−t the set of jumps of the subordinator (X−t,0(x), x ≥ 0).

Theorem 5.24. Define the process (C (t), t > 0) valued in CR+ as follows:

C (t) = {(X−t,0(x−), X−t,0(x)], x ∈ J−t} .

The process (C (t), t > 0) is a time-inhomogeneous Markov process such that for any
t ≥ s > 0,

C (t) = Coag(C (s), C(s, t)) a.s.

In the critical or supercritical case, C (t) −→
t→∞

1(0,∞) a.s. In the subcritical case, C (t) −→
t→∞

C (∞) a.s and the length of a typical interval at the limit has for law the quasi-stationary
distribution of the CSBP conditioned on the non-extinction:

E[e−u|C1(∞)|] = 1− exp

(
−Ψ′(0+)

∫ ∞
u

dv

Ψ(v)

)
.

Proof. Recall that X−t,0 = X−s,0 ◦X−t,−s and X̂t = X̂s,t ◦ X̂s. This entails that for any

x ∈ J−t = {Jvt(∞)
j , j ≥ 1},

(X−t,0(x−), X−t,0(x)] =
⋃

y∈(0,∞)

X̂s,t(y)=x

(X−s(y−), X−s(y)]. (5.13)

For any t > 0 and any j ≥ 1, set Cj(t) = (xj−1(t), xj(t)] = (Xt(J
vt(∞)
j −), Xt(J

vt(∞)
j )] with

x0(t) = 0. By definition of C(s, t) and (5.13), we have

Ci(t) =
⋃

j∈Ci(s,t)
Cj(s).
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Proposition 5.18 ensures that (C(s, t), t ≥ s) converges almost-surely as t goes to∞. This
entails the almost-sure convergence of (C (t), t > 0). In the supercritical or critical case,
C(s, t) −→

t→∞
1N and then C (t) −→

t→∞
1(0,∞), where 1(0,∞) denotes the partition of (0,∞)

with only one block. In the subcritical case, Proposition 3.1 entails that for all i ≥ 1 and
u ≥ 0,

E[e−u|Ci(∞)|] = 1− exp

(
−Ψ′(0+)

∫ ∞
u

dv

Ψ(v)

)
.

Note moreover that C (∞) = Coag(C (s), C(s,∞)) for any s > 0.

st

C(u, t)|[5] = ({1, 2, 3}, {4, 5})

u

C(s, u)|[6] = ({1}, {2}, {3}, {4, 5}, {6})

C(s, t)|[6] = Coag(C(s, u), C(u, t))|[6]

= ({1, 2, 3}, {4, 5, 6})

0

Intervals at time s are given by (Ci(s), i ∈ [6])

C1(s)

C2(s)

Figure 5: Symbolic representation of the genealogy

Remark 5.25. Bertoin and Le Gall in [BLG06, Proposition 3] have shown that in the
critical case the Lévy measures (`t, t > 0) solve the following Smoluchowski equation

∂

∂t
〈f, `t〉 = vt(∞)

∞∑
k=2

µ∞t (k)Ik(f) (5.14)

where f ∈ Cc((0,∞)), 〈f, `t〉 :=
∫

(0,∞)
f(x)`t(dx) and

Ik(f) =

∫
(0,∞)k

(
f(x1 + ...+ xk)− (f(x1) + ...+ f(xk))

)
`t(dx1)...`t(dxk).

The process (C (t), t > 0) sheds some light on the deterministic Equation (5.14) since
µ∞t (k) is the rate in (C (t), t > 0) at which k given consecutive intervals coagulate and by
the strong law of large numbers,

1

n

n∑
i=1

δ|Ci(t)| −→n→∞
`t(dx)

vt(∞)
a.s for any t > 0,

where |Ci(t)| denotes the length of the ith interval in C (t). We refer the reader to Iyer et
al. [ILP15], [ILP18] for recent works on Equation (5.14).

When the CSBP explodes, the individuals in the current generation have finitely many
ancestors. The following proposition is the analogue of Proposition 5.19.

Proposition 5.26. Assume
∫

0
du
|Ψ(u)| <∞, then the consecutive coalescent (C (t), t > 0)

comes down from infinity and

vt(0)

vt(∞)
#C (t) −→

t→0
e in law

where e is a standard exponential random variable.
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Proof. For any t > 0, the lengths of the intervals in C (t) are i.i.d random variables with
law `t(dx)

vt(∞) . Under the assumption,
∫

0
du
|Ψ(u)| <∞, `t({∞}) = vt(0) > 0 and therefore the

number of intervals in C (t) has a geometric law with parameter vt(0)
vt(∞) . The convergence

in law is proved by a similar calculation as in Proposition 5.19.

We saw in Proposition 5.5 that the number of blocks in (C|[n](t), t ≥ 0), the coalescent
process associated with a continuous-time Galton-Watson process, corresponds to the
inverse flow of random walks (Ẑt(n), t ≥ 0) at a fixed level n. Recall that in continuous-
state space the process (X̂t(x), t ≥ 0) can then be interpreted as the size of the ancestral
population whose descendants at time 0 form a family of size x. The study of its
infinitesimal dynamics is more involved than in the discrete setting and is the aim of the
next section.

6 A martingale problem for the inverse flow

We investigate the extended generator L̂ of (X̂t, t ≥ 0). Recall that we write L the
generator of the CSBP with mechanism Ψ. As we consider the flow of subordinators over
[0,∞], it is natural to express L, given in (2.5), as follows. For all function G in C2

b the
space of twice differentiable bounded functions with bounded derivatives, we have

LG(x) =
σ2

2
xG′′(x) + βxG′(x)

+

∫ ∞
0

π(dh)

∫ ∞
0

du
(
G(∆h,u(x))−G(x)− h1{u≤x}G′(x)1{h≤1}

)
(6.1)

with ∆h,u(x) := x+ h1{x≥u}. We denote by C2
0 the space of twice continuously differen-

tiable functions over [0,∞) which tend to 0 at infinity and whose first derivative tends to
0 at infinity.

Theorem 6.1. For any function F in C2
0 , set

L̂F (z) =
σ2

2
zF ′′(z) +

(
σ2

2
− βz

)
F ′(z)

+

∫ ∞
0

π(dh)

∫ ∞
0

du
[
F (ψh,u(z))− F (z) + h1{h≤1}F

′(z)1{z>u}
]

with
ψh,u(z) := z1[0,u](z) + u1[u,u+h](z) + (z − h)1[u+h,∞)(z).

Then for any y > 0, (X̂t(y), t ≥ 0) solves the following well-posed martingale problem

(MP)

(
F (X̂t(y))−

∫ t

0

L̂F (X̂s(y))ds, t ≥ 0

)
is a martingale for any function F in

D :=

{
F ∈ C2

0 ;F ′ ∈ L1 and βxF ′(x),
σ2

2
xF ′′(x) −→

x→∞
0

}
.

Remark 6.2. Note that ψh,u = ∆−1
h,u is the right-continuous inverse function of ∆h,u, see

Figure 6. For any y ≥ 0, if individual u has at time t a progeny of size h, then ψh,u(y) at
time t− is the infinitesimal parent of individual y at time t: if y < u, then y has no parent
but himself, if y ∈ [u, u+ h], the parent of y is ψh,u(y) = u, if y > u+ h then its parent is
ψh,u(y) = y − h. If y1 6= y2 then ψh,u(y1) = ψh,u(y2) if and only if y1, y2 ∈ [u, u+ h].
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u

u+ h

∆h,u ψh,u

u u+ hx z

uu

Figure 6: Graphs of the functions ∆h,u and ψh,u

The proof of Theorem 6.1 is divided in four lemmas.

Lemma 6.3. The operator L̂ is well-defined on C2
b .

Proof. Let F ∈ C2
b . We first study the integral in L̂ with respect to π(dh) on the interval

[1,∞). For any y > 0,∣∣∣∣∫ ∞
1

π(dh)

∫ ∞
0

du(F (ψh,u(y))− F (y))

∣∣∣∣
=

∣∣∣∣∫ ∞
1

π(dh)

∫ y

0

du(F (ψh,u(y))− F (y))

∣∣∣∣ ≤ yπ(1)2||F ||∞

where π(x) :=
∫∞
x
π(du) for any x > 0. In order to study the integral on [0, 1), note that

for any y > 0, u > 0 and h > 0, we have

ψh,u(y)− y = (u− y)1[u,u+h](y)− h1[u+h,∞)(y) = (u− y)1[y−h,y](u)− h1[0,y−h](u).

Assume h < 1. We have that∣∣F (ψh,u(y))− F (y) + hF ′(y)1{y>u}
∣∣

≤ |F (ψh,u(y))− F (y)− (ψh,u(y)− y)F ′(y)|+
∣∣(ψh,u(y)− y + h1{y>u})F

′(y)
∣∣

≤ (ψh,u(y)− y)2

2
||F ′′||∞ +

∣∣ψh,u(y)− y + h1{y>u}
∣∣ ||F ′||∞.

On the one hand,

ψh,u(y)− y + h1{y>u} = (u− y)1[y−h,y](u)− h1[0,y−h](u) + h1[0,y](u)

= (u+ h− y)1[y−h,y](u) ≥ 0

and ∫ ∞
0

(u+ h− y)1[y−h,y](u)du =

[
u2

2

]y
y−h

+ (h− y)h =
h2

2
.

On the other hand

(ψh,u(y)− y)2

2
=

1

2
((u− y)21[y−h,y](u) + h21[0,y−h](u))

and ∫ ∞
0

(ψh,u(y)− y)2

2
du =

∫ ∞
0

1

2

(
(u− y)21[y−h,y](u) + h21[0,y−h](u)

)
du

≤ h3

6
+
h2

2
y ≤ h2

2
(y + 1).
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Thus, for any 0 ≤ h < 1∫ ∞
0

|F (ψh,u(y))− F (y) + hF ′(y)1{h<1}1{y>u}|du ≤
h2

2
(y + 1)||F ′′||∞ +

h2

2
||F ′||∞. (6.2)

The integral with respect to π(dh) on (0, 1) in L̂F is therefore convergent and L̂ well-
defined.

We now follow the same method as Bertoin and Le Gall in [BLG05, Theorem 5] to

show that L̂ is an extended generator, i.e. that
(
F (X̂t(u))−

∫ t
0
L̂F (X̂s(u))ds, t ≥ 0

)
is a

martingale for all F in D . Let g be an integrable continuous function over [0,∞) and
set G(t) =

∫ t
0
g(u)du. Let F ∈ D and write F (t) =

∫∞
t
f(x)dx where f(x) := −F ′(x). By

Fubini’s theorem, note that∫ ∞
0

∫ ∞
0

g(u)f(x)1{x≥u}dudx =

∫ ∞
0

g(u)F (u)du =

∫ ∞
0

f(x)G(x)dx.

Moreover, one classically has that∫ ∞
0

f(x)P(X̂s(u) < x)dx = E[F (X̂s(u))] and

∫ ∞
0

g(u)P(Xs(x) > u)du = E[G(Xs(x))].

Recall that by (3.5), we have P(X̂s(u) < x) = P(Xs(x) > u) for all x, u ≥ 0. Then,
integrating this equality with respect to f(x)g(u)dxdu provides∫ ∞

0

dug(u)E[F (X̂s(u))− F (u)] =

∫ ∞
0

dxf(x)E[G(Xs(x))−G(x)]. (6.3)

Therefore, a first step in the search for L̂ is computing the right-hand side of (6.3). Let
L̂d and L̂c be, respectively, the discontinuous and the continuous part of the generator L̂.

Lemma 6.4. Let λ > 0 and g(x) = e−λx for any x ∈ R+ then for any F ∈ D∫ ∞
0

dxf(x)E[G(Xs(x))−G(x)] =

∫ ∞
0

g(u)du

∫ s

0

dtE
[
L̂dF (X̂t(u)) + L̂cF (X̂t(u))

]
(6.4)

where f(x) = −F ′(x) and G(x) =
∫ x

0
g(u)du.

Proof. The function x 7→ G(x) = 1−e−λx
λ is in C2

b and by applying Dynkin’s formula we
get

E[G(Xs(x))−G(x)] =

∫ s

0

dtLPtG(x) =

∫ s

0

dtLcPtG(x) +

∫ s

0

dtLdPtG(x)

where we write for all twice derivable function H,

LcH(x) =
σ2

2
xH ′′(x) + βxH ′(x)

LdH(x) =

∫ ∞
0

π(dh)

∫ ∞
0

du
(
H(∆h,u(x))−H(x)− h1{u≤x}H ′(x)1{h≤1}

)
which denote respectively the continuous and discontinuous parts of the generator L.
We start by studying the discontinuous part. For any s ≥ 0, we can rewrite∫ s

0

dtLdPtG(x)

=

∫ s

0

dt

∫ ∞
0

π(dh)

∫ ∞
0

du
[
PtG(x+ h1{u<x})− PtG(x)− h(PtG)′(x)1{h<1}1{u≤x}

]
. (6.5)
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We first compute

PtG(x+ h1{u<x})− PtG(x) = E[G(Xt(x+ h1{u<x})−G(Xt(x))]

=

∫ ∞
0

g(v)dv
(
P(v ≤ Xt(x+ h1{u<x}))− P(v ≤ Xt(x))

)
=

∫ ∞
0

g(v)dv
(
P(x+ h1{u≤x} ≥ X̂t(v))− P(x ≥ X̂t(v))

)
.

By Lemma A.1(ii) and Remark 6.2, one has ∆h,u(x) > y if and only if x > ψh,u(y),
therefore

PtG(x+ h1{u<x})− PtG(x) =

∫ ∞
0

g(v)dv
(
P(ψh,u(X̂t(v)) ≤ x)− P(X̂t(v) ≤ x)

)
.

Integrating with respect to f(x)dx we obtain

∫ ∞
0

dxf(x)
(
PtG(x+ h1{u<x}) −PtG(x))

=

∫ ∞
0

g(v)dv
(
E[F (ψh,u(X̂t(v)))]− F (X̂t(v))]

)
.

(6.6)

We now compute the compensated part of the discontinuous generator L̂d. By
integration by parts we have

∫ ∞
0

f(x)(PtG)′(x)1{u≤x}dx = −f(u)PtG(u)−
∫ ∞
u

f ′(x)PtG(x)dx, (6.7)

since f(∞) := lim
x→∞

f(x) = 0 and lim
x→∞

PtG(x) = G(∞) <∞. Moreover, we observe that

∫ ∞
u

f ′(x)PtG(x)dx

=

∫ ∞
u

f ′(x)E

[∫ ∞
0

1{Xt(x)>v}g(v)dv

]
dx =

∫ ∞
u

f ′(x)E

[∫ ∞
0

1{x>X̂t(v)}g(v)dv

]
dx

=E

[∫ ∞
0

g(v)dv

∫ ∞
u

f ′(x)1{x>X̂t(v)}dx

]
=

∫ ∞
0

g(v)dv
(
f(∞)− E[f(X̂t(v) ∨ u)]

)
=−

∫ ∞
0

E[f(X̂t(v) ∨ u)]g(v)dv.

Therefore (6.7) becomes

∫ ∞
0

f(x)(PtG)′(x)1{u≤x}dx = −f(u)PtG(u) +

∫ ∞
0

E[f(X̂t(v) ∨ u)]g(v)dv

=

∫ ∞
0

(
E[f(X̂t(v) ∨ u)− f(u)P(X̂t(v) ≤ u)

)
g(v)dv

=

∫ ∞
0

E[f(X̂t(v))1{X̂t(v)>u}]g(v)dv.
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Using the above result and (6.6), (6.5) yields

∫ ∞
0

dxf(x)

∫ s

0

dtLdPtG(x)

=

∫ ∞
0

dxf(x)

∫ s

0

dt

∫ ∞
0

π(dh)

∫ ∞
0

du
[
PtG(x+ h1{u<x})−PtG(x)−h(PtG)′(x)1{h<1}1{u≤x}

]
=

∫ s

0

dt

∫ ∞
0

π(dh)

∫ ∞
0

du

∫ ∞
0

dxf(x)
[
PtG(x+ h1{u<x})− PtG(x)− h(PtG)′(x)1{h<1}1{u≤x}

]
(6.8)

=

∫ s

0

dt

∫ ∞
0

π(dh)

∫ ∞
0

du

∫ ∞
0

g(v)dvΥ(t, h, u, v)

=

∫ ∞
0

g(v)dv

∫ s

0

dt

∫ ∞
0

π(dh)

∫ ∞
0

duΥ(t, h, u, v), (6.9)

where

Υ : (t, h, u, v) 7→
(
E[F (ψh,u(X̂t(v)))− F (X̂t(v))− hF ′(X̂t(v))1{X̂t(v)>u}1{h≤1}]

)
.

Above, (6.8) and (6.9) follow from applying Fubini’s theorem, which we now justify. For
any t and x,

PtG(x) =
1− e−xvt(λ)

λ
and (PtG)′′(x) = −vt(λ)2

λ
e−xvt(λ).

Since vt(λ)e−xvt(λ) ≤ 1
x then sup[x,x+h] |(PtG)′′(z)| ≤ vt(λ)

λx , and by Taylor’s inequality

|PtG(x+ h1{u<x})− PtG(x)− h(PtG)′(x)1{h<1}1{u≤x}| ≤
vt(λ)

λx

(h ∧ 1)2

2
1{u≤x}.

Since f is integrable, the upper bound is integrable with respect to
f(x)dx1[0,s](t)dtπ(dh)du, which justifies the application of Fubini’s theorem in (6.8).

We now explain why (6.9) holds. Recall first that f(z) = −F ′(z). By Theorem 3.5,
for any q > 0 we have E[X̂t(eq)] = 1

vt(q)
< ∞ therefore E[X̂t(x)] < ∞ for a.e. x. This,

with the bound (6.2) allows us to conclude that Υ(t, h, u, v) is integrable with respect to
g(v)dv1[0,s](t)dtπ(dh)du.

In a second time, we deal with the continuous part of the generator Lc. Applying
Fubini’s theorem, one has

∫ ∞
0

dxf(x)

∫ s

0

LcPtG(x)dt =

∫ s

0

dt

∫ ∞
0

dxf(x)LcPtG(x).

Set h(x) = PtG(x) and φ(x) = f ′(x)σ
2

2 x + f(x)
(
σ2

2 − βx
)

. Since by assumption F ∈ D ,

we have that lim
x→∞

φ(x) = φ(∞) = 0. We now compute
∫∞

0
dxf(x)LcPtG(x). By two
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integrations by parts

∫ ∞
0

dxf(x)Lch(x) =

∫ ∞
0

dxf(x)

[
σ2

2
xh′′(x) + βxh′(x)

]
=

[
f(x)

σ2

2
xh′(x)

]∞
0

−
∫ ∞

0

dx

[
f ′(x)

σ2

2
x+ f(x)

σ2

2

]
h′(x) +

∫ ∞
0

dxf(x)βxh′(x)

=

[
f(x)

σ2

2
xh′(x)

]∞
0

−
∫ ∞

0

φ(x)h′(x)dx

=

[
f(x)

σ2

2
xh′(x)

]∞
0

− φ(∞)h(∞) +

∫ ∞
0

φ′(x)h(x)dx

= −φ(∞)h(∞) +

∫ ∞
0

φ′(x)E

[∫ ∞
0

g(u)1{u≤Xt(x)}du

]
dx

=

∫ ∞
0

dug(u)

∫ ∞
0

dxφ′(x)P(X̂t(u) < x)

= −
∫ ∞

0

dug(u)E[φ(X̂t(u))] =

∫ ∞
0

dug(u)E[L̂cF (X̂t(u))].

We can now conclude as follows. One has∫ ∞
0

dug(u)E[F (X̂s(u))− F (u)] =

∫ ∞
0

dxf(x)E[G(Xs(x))−G(x)] (6.10)

=

∫ ∞
0

g(v)dv

∫ s

0

dtE
[
L̂dF (X̂t(v)) + L̂cF (X̂t(v))

]
.

Lemma 6.5. For any F ∈ D and any y ≥ 0,

(
F (X̂t(y))−

∫ t

0

L̂F (X̂s(y))ds, t ≥ 0

)
is a

martingale.

Proof. Recall that g(v) = e−λv. We will show that (6.10) entails that for any v and any s:

E[F (X̂s(v))− F (v)] =

∫ s

0

dtE
[
L̂dF (X̂t(v)) + L̂cF (X̂t(v))

]
. (6.11)

From the Feller property of (X̂t, t ≥ 0) and the continuity of L̂F for any function F in
D , the map v 7→ E[L̂F (X̂t(v))] is continuous. For any a > 0, and any v ≤ a, X̂t(v) ≤ X̂t(a)

a.s. therefore using the bound (6.2), we see that the function defined on [0, a] by

Ξ(v) =

∫ s

0

dt

∫ ∞
0

π(dh)

∫ ∞
0

du
(
E[F (ψh,u(X̂t(v)))− F (X̂t(v))

+ hF ′(X̂t(v))1{X̂t(v)>u}1{h≤1}]
)

is continuous, and since a is arbitrary, the mapping is continuous on [0,∞). This

corresponds to the continuity of v 7→
∫ s

0
dtE

[
L̂dF (X̂t(v))

]
. On the other hand, one

can check the continuity of v 7→
∫ s

0
dtE

[
L̂cF (X̂t(v))

]
and by injectivity of the Laplace

transform, (6.10) entails (6.11). This provides the martingale problem, as the following
routine calculation shows. Let t ≥ 0 and s ≥ 0. Denote by (Fs, s ≥ 0) the natural filtration
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associated with (X̂s(x), s ≥ 0, x ≥ 0),

E

[
F (X̂t+s(x))−

∫ t+s

0

L̂F (X̂u(x))du |Fs
]

= E

[
F (X̂t+s(x))−

∫ t+s

s

L̂F (X̂u(x))du |Fs
]
−
∫ s

0

L̂F (X̂u(x))du

= EX̂s(x)

[
F (X̂t)−

∫ t

0

L̂F (X̂u)du

]
−
∫ s

0

L̂F (X̂u(x))du

= F (X̂s(x))−
∫ s

0

L̂F (X̂u(x))du,

where we have used (6.11) in the last equality.

In the following Lemma, we rewrite the generator L̂ of the one-point motion in its
Courrège form. We refer to Kolokoltsov [Kol11] for a general study of generators of
stochastically monotone Markov processes.

Lemma 6.6. For any f ∈ C2
b ,

L̂f(z) =
σ2

2
zf ′′(x) +

∫ z

0

[f(z − h)− f(z) + hf ′(z)] ν(z,dh) + b(z)f ′(z)

with
ν(z,dh) := 1{h≤z} ((z − h)π(dh) + π(h)dh)

and

b(z) :=

∫ ∞
0

h(z1{h≤1}π(dh)− ν(z,dh))− βz +
σ2

2
.

Moreover, the martingale problem (MP) is well-posed.

Remark 6.7. The jump measure ν(z,dh) can be compared to the jumps rate of (Ẑt(n), t ≥
0) obtained in Proposition 5.5. Moreover, in the finite mean case,

∫∞
1
hπ(dh) <∞, the

drift b can be rewritten as follows

b(z) =

∫ ∞
0

h(zπ(dh)− ν(z,dh)) + Ψ′(0+)z +
σ2

2

= z

∫ ∞
z

π(h)dh+

∫ z

0

hπ(h)dh+ Ψ′(0+)z +
σ2

2
.

In particular, for any z > 0, b′(z) =
∫∞
z
π(dh) + Ψ′(0+), b′′(z) = −π(z) and b is concave.

Proof. The continuous part L̂c has already the wished form, we thus focus on L̂d. Recall
ψh,u(z) := z1{z≤u} + (z − h)1[u+h,∞)(z) + u1[u,u+h](z). Note that∫ ∞

0

π(dh)

∫ ∞
0

du
[
f(ψh,u(z))− f(z) + h1{h≤1}f

′(z)1{z>u}
]

=

∫ ∞
0

π(dh)

∫ z

0

du
[
(f(z−h)−f(z))1[u+h,∞)(z)+(f(u)− f(z))1[u,u+h](z) + h1{h≤1}f

′(z)
]
.

Therefore, one has

L̂df(z) =

∫ z

0

π(dh)

[
(z−h)[f(z − h)− f(z)]+

∫ z

0

du[f(u)− f(z)]1[u,u+h](z) + zhf ′(z)1h<1

]
+

∫ ∞
z

π(dh)

[∫ z

0

du [f(u)− f(z)]1[u,u+h](z) + hzf ′(z)1h<1

]
= I + II.
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For the first integral I:

I =

∫ z

0

π(dh)
[
(z − h)[f(z − h)− f(z) + hf ′(z)1h<1] + h2f ′(z)1h<1

]
+

∫ z

0

π(dh)

∫ z

0

du (f(u)− f(z))1{u>z−h},

by Tonelli’s theorem and a change of variables, one has∫ z

0

π(dh)

∫ z

0

du (f(u)− f(z))1{u>z−h} =

∫ z

0

(f(u)− f(z))(π(z − u)− π(z))du

=

∫ z

0

(f(z − h)− f(z))(π(h)− π(z))dh.

Thus

I =

∫ z

0

[f(z−h)−f(z) + hf ′(z)1{h≤1}](z − h)π(dh) +

∫ z

0

(f(z − h)− f(z))(π(h)− π(z))dh

+

∫ z

0

h21{h≤1}π(dh)f ′(z)

=

∫ z

0

[
f(z − h)− f(z) + hf ′(z)1{h≤1}

]
((z − h)π(dh) + (π(h)− π(z))dh)

+

∫ z

0

h21{h≤1}π(dh)f ′(z)−
∫ z

0

h1h<1(π(h)− π(z))dhf ′(z).

For the second integral II, the change of variables u = z − v in the first integral
provides

II =

∫ ∞
z

π(dh)

∫ z

0

du(f(u)− f(z))1[u,u+h](z) +

∫ ∞
z

π(dh)zhf ′(z)1h<1

= π(z)

∫ z

0

dv[f(z − v)− f(z)] + zf ′(z)
∫ ∞
z

π(dh)h1h<1.

Summing both expressions, I + II equals to:∫ z

0

[
f(z − h)− f(z) + hf ′(z)1{h≤1}

]
((z − h)π(dh) + (π(h)− π(z) + π(z))dh)

+

(∫ z

0

h21{h≤1}π(dh)−
∫ z

0

h1h<1(π(h)− π(z))dh

+z

∫ ∞
z

h1h≤1π(dh)− π(z)

∫ ∞
0

h1{h<1}dh

)
f ′(z).

Therefore

I + II =

∫ z

0

[
f(z − h)− f(z) + hf ′(z)1{h≤1}

]
ν(z,dh) + b1(z)f ′(z)

with

b1(z) :=

∫ z

0

(
h21h≤1π(dh)− hπ(h)1h≤1dh

)
+ z

∫ ∞
z

π(dh)h1h<1

=

∫ ∞
0

h1{h≤1}(zπ(dh)− ν(z,dh)),

and we obtain

I + II =

∫ z

0

[f(z − h)− f(z) + hf ′(z)] ν(z,dh)−
∫ z

0

1{1<h≤z}ν(z,dh)f ′(z) + b1(z)f ′(z)

=

∫ z

0

[f(z − h)− f(z) + hf ′(z)] ν(z,dh) + b(z)f ′(z).
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We now verify uniqueness of the solution to (MP) by applying Theorem 5.1 of Kolokoltsov
[Kol11]. Assumptions (i) and (ii) of the theorem can be readily checked. The third
assumption (iii) is that for any z > 1, b(z) ≤ c(1 + z) for some c > 0. Let z > 1, one has

b(z) =

∫ 1

0

h(zπ(dh)− ν(z,dh))−
∫ z

1

hν(z,dh)− βz +
σ2

2

=

∫ 1

0

(h2π(dh) + hπ(h)dh)− z
∫ z

1

hπ(dh) +

∫ z

1

h2π(dh)−
∫ z

1

hπ(h)dh− βz +
σ2

2

≤
∫ 1

0

(h2π(dh) + hπ(h)dh) +
σ2

2
− βz ≤ c(1 + z)

where for the first inequality we use the fact that −z
∫ z

1
hπ(dh) +

∫ z
1
h2π(dh) ≤ 0 and we

choose a large enough c for the second inequality. Finally, since D contains C2
c , the space

of twice continuously differentiable functions with compact support, [Kol11, Theorem
5.1] applies.

Proof of Theorem 6.1. It follows directly by combination of Lemmas 6.5 and 6.6.

Remark 6.8. Similar computations to the ones made in the proof of Lemma 6.4 can be
done for the p-point motion (X̂t(y1), ..., X̂t(yp)) from the duality relation

P(X̂t(y1) < x1, ..., X̂t(yp) < xp) = P(Xt(x1) > y1, ..., Xt(xp) > yp).

Consider for example the case σ = β = 0. For any function F in C2(Dp), where we
denote by Dp := {y := (y1, ..., yp) ∈ (0,∞)p, y1 ≤ y2... ≤ yp}, we set

L̂F (y) =

∫ ∞
0

π(dh)

∫ ∞
0

du

[
F (ψh,u(y))− F (y) + h1{h≤1}

p∑
i=1

∂

∂yi
F (y)1{yi>u}

]
with ψh,u(y) = (ψh,u(y1), ..., ψh,u(yp)). Then

F (X̂t(y))−
∫ t

0

L̂F (X̂s(y))ds

is a local martingale, where X̂t(y) = (X̂t(y1), ..., X̂t(yp)).

7 Examples

In this section, we apply the results obtained in the previous ones to the two following
important examples: the stable CSBP and the Neveu CSBP. These CSBPs arise in many
different frameworks and are known for instance to be closely related to the class of
exchangeable coalescents called Beta-coalescents.

7.1 Feller and stable CSBPs

A stable CSBP is a continuous-state branching process with branching mechanism
given by Ψ(u) = cαu

α − βu, for some α ∈ (1, 2], cα > 0 and β ∈ R. Note in particular that
Feller’s flow, whose inverse flow was studied in details in Section 4 is a stable CSBP
with α = 2 and c2 = σ2

2 . As a direct application of Theorem 5.24, we obtain that the
Markovian coalescent (C (t), t > 0) associated with the Feller flow has coagulation rates

µ∞t (k) =
2β

σ2(1− e−βt)δ2(k).

In particular, in the subcritical case (β < 0), C (t) converges almost-surely as t → ∞
towards intervals with i.i.d. exponentially distributed lengths with parameter ρ̂ =
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2β/c2. This corresponds to the partition of R+ into random intervals ((0, x?1], (x?1, x
?
2], ...)

corresponding to different ancestors at time −∞ found in Section 4.
We now assume that Ψ(u) = cαu

α − βu for some α ∈ (1, 2), with cα := Γ(2−α)
α(α−1)

(which corresponds to a simple time dilatation). By assumption α > 1, Grey’s condition∫∞ du
Ψ(u) <∞ holds. Solving the differential equation (2.3) satisfied by vt(λ), we have in

particular that

vt(∞) =

c
− 1
α−1

α

(
1−e−(α−1)βt

β

)− 1
α−1

if β 6= 0

(Γ(2− α)/α)
− 1
α−1 t−

1
α−1 if β = 0.

For the stable CSBP, a simple calculation from (5.11), shows that the coagulation rates
of its associated Markovian coalescent (C (t), t > 0) are given by

µ∞t (k) = vt(∞)α−1µα(k),

with µα(k) := Γ(k−α)
k! for k ≥ 2. The normalized associated probability measure is

µ∞t (k)

µ∞t (N)
=
α(2− α)...(k − 1− α)

k!
(7.1)

which is time-independent. This probability distribution corresponds to the reproduction
measure of prolific individuals in supercritical stable CSBP, see Example 3 in [BFM08].
It also appears in the study of reduced α-stable trees and Beta(2− α, α)-exchangeable
coalescents, see respectively Duquesne and Le Gall [DLG02, page 74] and Berestycki et
al. [BBS07, Section 5].

The inhomogeneous consecutive coalescent (C(s, t), t > s) representing the genealogy
of any stable CSBP from time s > 0 is obtained by a deterministic time-change of the
homogeneous consecutive coalescent (Č(t), t ≥ 0) with coagulation rates µα via the
transformation: for any t ≥ s,

C(s, t) = Č

(∫ t

s

vα−1
u (∞)du

)
.

Note that
∫∞
s
vα−1
u (∞)du =

∫ vs(∞)

0
zα−1

Ψ(z) dz which is finite if and only if Ψ is subcritical

(β < 0). According to Theorem 5.24, in the subcritical case (C (t), t > 0) converges
almost-surely as t → ∞ towards a partition of intervals with i.i.d. lengths with law να
such that ∫ ∞

0

e−uzνα(dz) = 1− eβ
∫∞
u

dx
cαxα−βx for any u ≥ 0. (7.2)

We now turn to the martingale problem satisfied by the inverse flow of the stable CSBP.
One easily computes the drift and the jump measure from Remark 6.7. By definition of
D, since β = σ = 0, we have D = {F ∈ C2

0 : F ′ ∈ L1}.
Proposition 7.1. The process (X̂t, t ≥ 0) is characterized by the martingale problem
associated with L̂, acting on D, given in Lemma 6.6 with

ν(z,dh) =

(
(z − h)h−1−α +

h−α

α

)
1[0,z](h)dh and b(z) =

1

α(α− 1)(2− α)
z2−α − βz.

In the critical case, one can identify the law of X̂ through some random-time change.

Proposition 7.2. If β = 0, the process (X̂t, t ≥ 0) is a positive self-similar Markov
process with index a := α− 1. Namely for any k > 0 and any y > 0,

(kX̂k−at(y), t ≥ 0)
L
= (X̂t(ky), t ≥ 0).
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Moreover,
log X̂t(x) = Lϕx(t)

where ϕx(t) := inf{s > 0;
∫ s

0
e(α−1)Ludu > t} and L is a spectrally negative Lévy process

started from log x with Laplace exponent

κ(q) = −dαq +

∫ 0

−∞
(eqz − 1 + q(1− ez)) να(dz)

with να(dz) =
(
ez(1− ez)−1−α + 1

α (1− ez)−α
)
ezdz and dα = 1

α(α−1)(2−α) .

Proof. Recall that the critical CSBP (Xt, t ≥ 0) is itself selfsimilar with index a := α− 1.

See for instance Kyprianou and Pardo [KP08]. For any k > 0 and any x > 0, kXk−at(x)
L
=

Xt(kx). Thus for any y > 0

P(kX̂k−at(y) ≤ x) = P(Xk−at(x/k) ≥ y) = P(k−1Xt(x) > y) = P(X̂t(ky) ≤ x).

By Lamperti’s representation of positive self-similar Markov process, see e.g. [Kyp14,
Chapter 13], X̂t(x) is of the form exp(Lϕx(t)) for some Lévy process L where t 7→ ϕx(t)

the time-change given in the statement. To identify the Laplace exponent κ of L, note
that by (α− 1)-self-similarity, one has κ(q) = x−q+α−1L̂pq(x) with pq(x) = xq. The result
follows from simple computations.

7.2 Neveu CSBP

We now turn in this section to the Neveu CSBP, with branching mechanism Ψ(q) =

q log(q). Recall its Lévy-Khintchine form

Ψ(q) = (γ − 1)q +

∫ ∞
0

(
e−qh − 1 + qh1{h≤1}

) dh

h2
, for any q ≥ 0

where γ =
∫∞

1
e−yy−2dy is the Euler-Mascheroni constant. Note that Grey’s condition is

not satisfied by this process. Solving the differential equation (2.3) yields vt(λ) = λe
−t

for any t ≥ 0 and λ ∈ (0,∞). For any fixed t, the subordinator (Xt(x), x ≥ 0) is stable
with parameter e−t. For Neveu CSBP, the consecutive coalescent process Cλ defined in
Section 5 happens to be homogeneous in time, and not to depend on λ.

Proposition 7.3. For any λ > 0, the consecutive process (Cλ(t), t ≥ 0) is an homoge-
neous consecutive coalescent whose coagulation rate µ is µ(k) = 1

k(k−1) for any k ≥ 2.

The block sizes at time t ≥ 0 have generating function E[z#C1(t)] = 1− (1− z)e−t and for
any k ≥ 1

P(#C1(t) = k) =
e−t(2− e−t)...(k − 1− e−t)

k!
.

Proof. By Theorem 5.10, and applying the change of variable u = vt(λ)x, we see that for
any k ≥ 2,

µλt (k) = vt(λ)k−1

∫ ∞
0

xk

k!
e−vt(λ)x dx

x2
=

1

k(k − 1)

which does not depend on λ nor on t. Since C(t) is a (λ, vt)-Poisson box with vt(q) = qe
−t

,
the other statements can be obtained by a direct application of Theorem 5.10. See also
the calculations around Lemma 7 in Pitman [Pit97].

Lemma 7.4. Consider a consecutive coalescent (C(t), t ≥ 0) with coagulation rate
µ(k) = 1

k(k−1) for any k ≥ 2 then, as n goes to∞(
#C|[nx](t)

ne−t
, t ≥ 0, x ≥ 0

)
=⇒ (X̂t(x), t ≥ 0, x ≥ 0)
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in finite-dimensional sense in time and in the Skorokhod topology in x.

Proof. We simply prove the convergence in law of
(

#C|[nx](t)

ne−t
, x ≥ 0

)
toward X̂t for a

fixed value of t, with the Skorokhod topology. Then, the finite-dimensional convergence
is deduce from the cocycle property of X̂ (Proposition 3.3) and C (Proposition 5.2). For
any t > 0 and n ∈ N, set Z−t,0(n) =

∑n
j=1 #Cj(t). The process (Z−t,0(n), n ≥ 0) is a

random walk and from Proposition 7.3 we see that

P(#C1(t) = k) =
e−t(2− e−t)...(k − 1− e−t)

k!

= e−t
Γ(k − e−t)

Γ(2− e−t)Γ(k + 1)
∼k→∞

e−t

Γ(2− e−t)k
−1−e−t

Therefore, the law of #C1 is in the domain of attraction of a stable random variable with
parameter e−t. Using an extension of Donsker’s theorem to stable distributions, due to
Prokhorov [Pro56], we obtain thatZ−t,0

(⌊
ne
−t
x
⌋)

n
, x ≥ 0

 =⇒
n→∞

(X̃t(x), x ≥ 0),

where X̃t is a stable subordinator with Laplace exponent λ 7→ λe
−t

.
To conclude, we observe that (X̂t(x), x ≥ 0) has the same law as X̃−1

t the right-
continuous inverse of Xt and that (#C|[n](t), n ≥ 0) is the right continuous inverse of
(Z−t,0(n), n ≥ 0). Hence, as the map f 7→ f−1 is continuous for the Skorokhod topology
at any non-decreasing càdlàg function f , see e.g. [Whit80, Theorem 7.2], we have

convergence in law of
(

#C|[nx](t)

ne−t
, x ≥ 0

)
toward (X̂t(x), x ≥ 0).

Lemma 7.5 (Möhle [Möh15], Mittag-Leffler process). The process (X̂t, t ≥ 0) has for
generator

L̂f(z) = z

∫ z

0

(f(z − h)− f(z) + hf ′(z))
dh

h2
+ ((1− γ)z − z log(z))f ′(z).

Proof. By applying Lemma 6.6, we see that ν(z,dh) = 1{h≤z} ((z − h)π(dh) + π(h)dh) =

1{h≤z}
z
h2 . For any z ≥ 0,

b(z) = (1− γ)z +

∫ ∞
0

z

h

(
1{h≤1} − 1{h≤z}

)
dh

= z

∫
1

h

(
1{h≤1} − 1{h≤z}

)
1{z≤1}dh− z

∫
1

h

(
1{h≤z} − 1{h≤1}

)
1{z>1}dh

= (1− γ)z + z

∫ 1

z

dh

h
1{z≤1} − z

∫ z

1

dh

h
1{z>1} = (1− γ)z − z log(z).

Proposition 7.6 (Bertoin and Baur [BB15]). The process (log X̂t, t ≥ 0) is a generalized
Ornstein-Uhlenbeck process:

log X̂t = log(x) + Lt −
∫ t

0

log X̂sds (7.3)

where (Lt, t ≥ 0) is a spectrally negative Lévy process with Laplace exponent

κ(q) = −γq +

∫ 0

−∞
(equ − 1− qu)

eu

(1− eu)2
du.
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Proof. By injectivity of g : x 7→ log(x), the generator of (Yt, t ≥ 0) := (log X̂t, t ≥ 0) is
given by Af(y) = L̂(f ◦ g)(g−1(y)) and a computation provides

Af(y) =

∫ 0

−∞
(f(y + u)− f(y)− uf ′(y)) ν(du)− γf ′(y),

with ν(du) = eu

(1−eu)2 du. It is well-known that the process with generator A is a weak
solution to the equation (7.3). See for instance, Sato and Yamazato [SY84, Theorem
3.1].

The two last statements already appear in the study of the Bolthausen-Sznitman
coalescent. We explain now some connections between the Neveu consecutive coalescent
and the Bolthausen-Sznitman exchangeable coalescent. The following is a rephrasing of
an observation made by Hénard [Hén15] and Möhle [Möh15]. Denote by (N

(n)
t , t ≥ 0) the

number of blocks in a Bolthausen-Sznitman coalescent started from n blocks. Recall that
(N

(n)
t , t ≥ 0) jumps from n to n− k + 1 at rate n

k(k+1) for any k ∈ [|2, n|]. By Proposition

5.5, one can check that (#C|[n](t), t ≥ 0) loses k blocks at the same rate as (N
(n)
t , t ≥ 0).

Therefore (N
(n)
t , t ≥ 0) and (#C|[n](t), t ≥ 0) have the same law and by Lemma 7.4, as n

goes to∞ (
N

(n)
t

ne−t
, t ≥ 0

)
=⇒ (X̂t(1), t ≥ 0)

in the finite-dimensional sense. Such a convergence was shown, in the Skorohod topology,
by Möhle in [Möh15, Theorem 1.1], Kukla and Möhle in [KM18, Theorem 2.1-(a)] with
different techniques. We refer also to Bertoin and Baur [BB15, Theorem 3.1-(i)] for an
almost-sure convergence. The connections between Neveu’s consecutive coalescent and
Bolthausen-Sznitman exchangeable one are not surprising since it is known that for any
initial size x, the genealogy of i.i.d random variables sampled in [0, x] is described by a
Bolthausen-Sznitman coalescent, see Bertoin and Le Gall [BLG00, Theorem 4].

Several natural questions on the inverse flow and its consecutive coalescent have
not been addressed here and are left for possible future works. It might be interesting
for instance to look for a complete description of the two-parameter flow (X̂t(x), t ≥
0, x ≥ 0) in the general case, as given for the Feller flow in Section 4. Moreover, the
genealogy of the total population has only been characterized under the Grey’s condition.
When this condition is not fulfilled the process (C (t), t ≥ 0) cannot be described by a
single consecutive coalescent on N. We recall that Duquesne and Winkel [DW07] have
described the genealogy forward in time of a CSBP (including those without Grey’s
condition) through a collection of continuous-time Galton-Watson processes. A natural
question is thus to see if in a dual way, one can represent the backward genealogy of the
total population with a collection of consecutive coalescents on N.

A Intermediary results

A.1 Right-continuous inverse

In this section, we recall and compile some elementary properties on right contin-
uous inverse of càdlàg non-decreasing functions. As multiple competing definitions
of generalized inverse coexist, it can be challenging to find a single reference for the
results we need. Therefore we give a short proof of these well-known facts, in order to
be self-contained. Let f be a càdlàg non-decreasing function on R+, we denote by

f−1 : y ∈ [0,∞) 7→ inf{x ≥ 0 : f(x) > y} (A.1)

its right continuous inverse.
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Lemma A.1. Let f, (fn, n ≥ 1), g be càdlàg non-decreasing functions on R+.

(i) The function f−1 is non-decreasing and càdlàg.

(ii) For every x, y ≥ 0, we have f(x) > y ⇐⇒ f−1(y) < x.

(iii) We have (f ◦ g)−1 = g−1 ◦ f−1.

(iv) If limn→∞ fn = Id pointwise, then limn→∞ f−1
n = Id pointwise, with Id being the

identity function on [0,∞).

Remark A.2. Dini’s theorems imply that both convergences in (iv) hold uniformly on
compact sets.

Proof. Let f be a càdlàg non-decreasing function, note that for all y < z, we have

{x ≥ 0 : f(x) > z} ⊂ {x ≥ 0 : f(x) > y}.

Therefore f−1(y) ≤ f−1(z), which proves that f−1 is increasing. In particular, it has left
limits at each point. We now observe that for all y ≥ 0, as f is non-decreasing,

inf
z>y

f−1(z) = inf{inf{x ≥ 0 : f(x) > z}, z > y} = inf{x ≥ 0 : f(x) > y} = f−1(y),

proving that f−1 is right continuous at point y, which proves (i).
Let x, y ≥ 0, we first assume that f−1(y) < x. Then by definition of f−1, there

exists u ∈ [f−1(y), x) such that f(u) > y. As f is non-decreasing, we deduce that
f(x) ≥ f(u) > y.

We now assume that f−1(y) ≤ x. As f is non-decreasing, we observe that f(x) ≥
f(f−1(y)). Therefore, the only thing left to prove is that

∀y ≥ 0, f(f−1(y)) ≥ y (A.2)

We write z = f−1(y). By definition of f−1(y), for all ε > 0, there exists u < z+ ε such that
f(u) > y. Then, as f is right-continuous, we have f(z) = infu>z f(u), thus for all η > 0,
there exists ε > 0 such that if u < z + ε, then f(u) < f(z) + η. As a result, for all η > 0,
there exists u < z + ε such that y < f(u) < f(z) + η. This inequality being true for all
η > 0, we therefore conclude that f(z) ≥ y, completing the proof (A.2). We thus deduce
that f(x) ≥ y, completing the proof of (ii).

In a third time, we note that given f and g two càdlàg non-decreasing functions on
R+, we have for all y ≥ 0,

(f ◦ g)−1(y) = inf{z ≥ 0 : (f ◦ g)(z) > y} = inf{z ≥ 0 : f(g(z)) > y}.

By point (ii), this can therefore be rewritten as

(f ◦ g)−1(y) = inf{z ≥ 0 : g(z) > f−1(y)} = g−1 ◦ f−1(y),

proving point (iii).
We finally prove the last point. Let (fn) be a sequence of non-decreasing càdlàg func-

tions such that limn→∞ fn = Id pointwise. We prove that for all y ≥ 0, limn→∞ f−1
n (y) = y.

Let ε > 0, by point (ii), we have that

f−1
n (y) < y + ε ⇐⇒ fn(y + ε) > y.

As limn→∞ fn(y + ε) = y + ε, we conclude that for all n large enough, f−1
n (y) < y + ε.

Similarly, we also have
f−1
n (y) ≥ y − ε ⇐⇒ fn(y − ε) ≤ y

therefore f−1
n (y) ≥ y − ε for all n large enough by pointwise convergence of fn at point

y − ε. This concludes the proof of (iv).

EJP 24 (2019), paper 103.
Page 46/52

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP358
http://www.imstat.org/ejp/


Coalescences in CSBPs

A.2 Discretization of subordinators

In this section, we introduce the key lemma allowing us to study the genealogical
structure of CSBPs. Namely, we prove that the pullback measure of a Poisson process by
a subordinator is a Poisson process decorated by i.i.d. integer-valued random variables.

Lemma A.3. Let λ ≥ 0 and (X(x), x ≥ 0) be a subordinator with Laplace exponent

φ : µ 7→ dµ+

∫ (
1− e−µx

)
`(dx).

We denote by N an independent Poisson point process with intensity λ, and we write
(Jj , j ≥ 1) the positions of the atoms of N , ranked in the decreasing order. Then, setting
M =

∑∞
j=1 δX−1(Jj) the image measure of N by X−1, we have

M =

∞∑
j=1

ZjδJ′j ,

where (J ′j , j ≥ 1) are the atoms of a Poisson point process with intensity φ(λ) and
(Zj , j ≥ 1) are i.i.d. random variables, independent of (J ′j , j ≥ 1), such that

P(Z1 = k) =
1

φ(λ)

∫ ∞
0

(λx)k

k!
e−λx`(dx) + d1{k=1} = (−1)k−1λ

k

k!

φ(k)(λ)

φ(λ)
,

i.e. E(zZ1) = 1− φ(λ(1−z))
φ(λ) for all z ∈ [0, 1].

Proof. The proof is based on a joint construction by the same “master” Poisson point
process of the subordinator X and the Poisson point process N , in such a way that M
becomes a simple functional of that master point process. To see why such a construction
is possible, we write

φ(λ) = dλ+

∫
(1− e−λx)`(dx),

with d ≥ 0 the drift and ` the Lévy measure of X on R+. By the Lévy-Itô décomposition,
one can write

∀t ≥ 0, Xt = dt+
∑

0≤s≤t
xt,

with (t, xt)t≥0 being the atoms of a Poisson point process with intensity dt⊗ `(dx). The
proof being slightly simpler for d = 0, we focus here on the case d > 0.

Recalling that D denotes the set of càdlàg non-decreasing functions on R+, we
introduce the point process R =

∑
i∈I δ(ti,xi,N(i)) on R+ × R+ × D with intensity dt ⊗

dx⊗ Pλ(dN), with Pλ being the law of a Poisson point process with intensity λ on R+.
We also set N (0) an independent Poisson point process with intensity λ. We then define

Xt = dt+
∑
i∈I

xi1{ti≤t},

which is a subordinator with Laplace exponent φ. Then, denoting (J
(i)
j , j ≥ 1) the atoms

of the Poisson point process N (i), we set

N =

∞∑
j=1

δX
J

(0)
j

/d

+
∑
i∈I

∞∑
j=1

δ
Xti−+J

(i)
j
1{

J
(i)
j <xi

}.

Heuristically, the point process N can be thought of as follows: R+ is divided in intervals
∪i∈I [Xti−, Xti ] corresponding to jumps in the subordinator X and the remaining space
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B corresponding to points with an antecedent by X. Atoms are added to the interval
[Xti−, Xti ] according to the point process N (i), and to the set B with the point process
N (0). It should then be heuristically clear that N is a Poisson point process with intensity
λ independent of X. To verify it, we compute its conditional Laplace transform against
a smooth locally compact test function f . By construction, (N (i), i ∈ I ∪ {0}) are i.i.d.
Poisson point process with intensity λ, which are further independent from X, thus

E
(
exp

(
−
〈
N, f

〉)∣∣X)
=E

exp

−∑
j≥0

f(X
J

(0)
j
/d)

∣∣∣∣∣∣X
∏

i∈I
E

exp

−∑
j≥0

f(J
(i)
j +Xti−)1{

J
(i)
j <xi

}
∣∣∣∣∣∣X


= exp

(
−λ
∫ ∞

0

(
1− e−f(Xs/d)

)
ds− λ

∑
i∈I

∫ Xti

Xti−

(
1− e−f(Xs)

)
ds

)
a.s.

= exp

(
λ

∫ (
1− e−f(x)

)
dx

)
,

by change of variable, using that X
′
t = d at all continuity points t of X.

As a result, the couple (X,N) has same law as (X,N) given in the lemma. Moreover,
we have immediately by construction that

M := X
−1 ∗N =

∞∑
j=1

δ
J

(0)
j /d

+
∑
i∈I

N (i)([0, xi])δti ,

and computing the law of that point process is straightforward by the definition of R.
Indeed, by independence, for any continuous function f with compact support, we have

E
(
exp

(
−
〈
M,f

〉))
= E

exp

−∑
j≥1

f(J
(0)
j /d)

E(exp

(
−
∑
i∈I

N (i)([0, xi])f(ti)

))
.

Then, using Campbell’s formula, we have both

E

exp

−∑
j≥1

f(J
(0)
j /d)

 = exp

(
λd

∫ (
1− e−f(x)

)
dx

)

E

(
exp

(
−
∑
i∈I

N (i)([0, xi])f(ti)

))
= exp

(∫ (
1− e−N([0,x])f(t)

)
dt`(dx)Pλ(dN)

)
.

But as under law Pλ, N([0, x]) is a Poisson random variable with parameter λx, the last
inequality can be written, by Fubini theorem

E

(
exp

(
−
∑
i∈I

N (i)([0, xi])f(ti)

))
= exp

(∫
1− exp

(
λx(e−f(t) − 1)

)
dt`(dx)

)

= exp

(
−
∫
φ
(
λ(1− e−f(t))

)
φ(λ)

dt

)
.

We deduce that the Laplace transform of M is the same as the one of M given in the
lemma, which concludes the proof.

This result can be straightforwardly extended to killed subordinators, by constructing
it as a limit of non-killed subordinators. For the sake of completeness, we add a proof of
the following result.
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Corollary A.4. Let λ ≥ 0 and (X(x), x ≥ 0) be a subordinator with Laplace exponent

φ : µ 7→ κ+ dµ+

∫ (
1− e−µx

)
`(dx).

With the same notation as in the previous lemma, we have M =
∑∞
j=1 Z

′
jδJ′j , where

(J ′j , j ≥ 1) are the atoms of a Poisson point process with intensity φ(λ), (Zj , j ≥ 1) are
i.i.d. random variables, independent of (J ′j , j ≥ 1), such that

P(Z1 = k) =
1

φ(λ)

∫ ∞
0

(λx)k

k!
e−λx`(dx) + d1{k=1} = (−1)k−1λ

k

k!

φ(k)(λ)

φ(λ)
,

and Z ′j =

{
Zj if supi<j Zi <∞,
0 otherwise.

Proof. Let Y be a subordinator with Laplace exponent λ 7→ dλ+
∫ (

1− e−λx
)
`(dx), and

R an independent Poisson process with intensity κ. Observe that for all r > 0, the
process defined by

Y rt = Yt + rRt, t ≥ 0,

is a Lévy process, and that X = limr→∞ Y r is a Lévy process with Laplace exponent φ.
We set (J ′rj , j ≥ 1) and (Zrj , j ≥ 1) the quantities obtained by applying Lemma A.3, and
T = inf{t > 0 : Rt = 1}. Observe that for all j such that J ′rj < T , the quantities J ′rj and
Zrj do not depend on r. On the contrary, past time T , as r →∞, all values J ′rj converge
toward T , and the associated value of Zr converges toward∞.

Explicit formulas for the law of Z∞ are straightforward Poisson computations.
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