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MULTIRESOLUTION ANALYSIS
FOR IRREGULAR MESHES
WITH APPEARANCE ATTRIBUTES

Michaël Roy, Sebti Foufou, and Frédéric Truchetet

LE2I, CNRS UMR 5158 - Université de Bourgogne
12 rue de la fonderie - 71200 Le Creusot - France

Abstract We present a new multiresolution analysis framework based on the lifting scheme
for irregular meshes with attributes. We introduce a surface prediction opera-
tor to compute the detail coefficients for the geometry and the attributes of the
model. Attribute analysis gives appearance information to complete the geomet-
rical analysis of the model.We present an application to adaptive visualization
and some experimental results to show the efficiency of our framework.
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1. INTRODUCTION
3D scanners usually produce huge data sets containing geometrical and ap-

pearance attributes. Geometrical attributes describe shape and dimensions of
the object and include data relative to a point set on the object surface. Ap-
pearance attributes describe object surface properties such as colors, texture
coordinates, etc.

Multiresolution analysis is an efficient framework to represent a data set at
different levels of detail, and to provide frequency information. It gives rise
to many applications such as filtering, denoising, compression, editing, etc.
Many papers present the multiresolution analysis and the wavelet transform
in computer graphics domain. Here we refer to Stollnitz et al., 1996 as an
introduction.

The goal of this work is to build a multiresolution mesh analysis manag-
ing both geometric and appearance attributes. Attribute management is very
important especially for terrain models where the attributes are linked to the
nature of the terrain. In some cases, attributes are more important than the
terrain itself. The main contributions of this work are the use of the lifting



2

scheme for the multiresolution analysis of irregular meshes with attributes, and
the application of the proposed multiresolution framework to detail coefficient
dependent visualization of meshes.

In section 2, we review multiresolution mesh analysis schemes proposed
in the literature. In section 3, we detail the proposed multiresolution analy-
sis framework. Section 4 presents some experimental results and the applica-
tion of the proposed method to detail-dependent visualization. Conclusion and
ideas for future extensions are given in section 5.

2. Related Work
Lounsbery et al., 1997 made the connection between wavelets and subdi-

vision to define different levels of resolution. This technique makes use of
the theory of multiresolution analysis and of the subdivision rules to con-
struct a multiresolution representation for surfaces with subdivision connec-
tivity. Zorin et al., 1997 proposed a combination of subdivision and smoothing
algorithms to construct a set of algorithms for interactive multiresolution edit-
ing of complex meshes with arbitrary topology. Bonneau, 1998 introduced the
concept of multiresolution analysis over non-nested spaces, which are gener-
ated by the so-called BLaC-wavelets. This concept was then used to contruct a
multiresolution analysis over irregular meshes. Kobbelt et al., 1998 proposed
a multiresolution editing tool for irregular meshes using the progressive mesh
algorithm (Hoppe, 1996) to build the coarse resolution mesh, and a smoothing
operator to estimate the high resolution mesh. Guskov et al., 1999 presented a
series of non-uniform signal processing algorithms designed for irregular tri-
angulation, a smoothing algorithm combined with existing hierarchical meth-
ods is used to build subdivision, pyramid, and wavelet algorithms for meshes
with irregular connectivity. Recently, Valette and Prost, 2004 presented a new
wavelet-based multiresolution analysis of irregular surface meshes using a new
irregular subdivision scheme. The method is a fine-to-coarse decomposition,
and use a complex simplification algorithm in order to define surface patches
suitable for their irregular subdivision scheme.

3. MULTIRESOLUTION ANALYSIS
Multiresolution analysis provides a framework that rigorously defines var-

ious approximations and fast analysis algorithms. This framework constructs
iteratively approximation and detail parts forming successive levels of resolu-
tion of the original data set. The details capture the local frequency content of
the data set, and are used to exactly reconstruct the original data set.

Classical multiresolution analysis frameworks (such as wavelet transform)
cannot be applied to irregularly sampled data sets. Sweldens, 1998 proposed
the lifting scheme that allows the multiresolution analysis of irregular samples.
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We propose a multiresolution analysis framework suitable for triangular irreg-
ular meshes with appearance attributes. This framework decomposes a mesh
in a series of levels of detail, and computes detail coefficients at each level.
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Figure 1. Multiresolution mesh analysis framework.

The multiresolution mesh analysis framework is presented in Fig. 1. The
decomposition is represented on the left part of the figure. Starting from a fine
mesh Mk, two groups of vertices (odds and evens) are defined by the split
operator. The odd vertices are designated to be removed, and the even vertices
remain to create the coarse mesh Mk−1 that approximates the inital mesh. The
odd vertices are predicted using the predict operator, and then substracted to
the original odd vertices to give the detail coefficients Dk−1. The last step is
the removal of the odd vertices from the initial mesh using a downsampling
operator. The reconstruction is shown on the right part of the figure and is sim-
ply the inverse scheme. Starting from a coarse mesh Mk−1, the odd vertices
are re-inserted using an upsampling operator. The odd vertices are predicted
using the predict operator, and then exactly reconstructed by adding the detail
coefficients Dk−1. In the following paragraphs, we detail the different steps
required to build the multiresolution mesh analysis framework.

Downsampling and Upsampling
We employ the Progressive Mesh (PM) framework (Hoppe, 1996) to build

downsampling and upsampling operators. In the PM setting an edge collapse
provides the atomic downsampling step, and a vertex split becomes the atomic
upsampling step. For the downsampling, we use the half-edge collapse oper-
ation, which does not introduce a new vertex position but rather subsamples
the original mesh. Thus, it enables the contruction of nested hierarchies on un-
structured meshes that can facilitate further applications. The downsampling
operator removes about 33% of the vertices per level.

Split and Merge
The split operator takes a given mesh and selects the even and the odd ver-

tices. The later are designated to be removed using half-edge collapse opera-
tions. In order to do global downsampling and upsampling, the odd vertices
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are defined as a set of independent vertices (not directly connected by an edge).
Different methods can be used to select the odd vertices, and thus the half-edge
collapses to perform. Our algorithm performs an incremental selection by se-
lecting one odd vertex and locking all adjacent vertices (even vertices). The
selection ends when no more vertices can be selected. By selecting an odd ver-
tex in order to remove it, we also select the even vertex it will merge with. In
other words, we directly select a half-edge collapse. The Quadric Error Met-
ric from Garland and Heckbert, 1997 is used as a criterion for the selection of
the odd vertices because it minimizes the length of the details and retains the
visual appearance of the simplified mesh. Since the upsampling is completly
done with vertex split operations, the merge operator is not required.

Predict
The predict operator estimates the odd vertices using the even vertices. We

propose a prediction operator that uses the local surface geometry. Meshes
coming from real world scenes usually contain appearance attributes such as
colors, texture coordinates, etc. Also, we consider the vertex position and the
normal vector as geometric attributes. Attributes are considered as vectors in
Euclidian space defined on each vertex of the mesh. So a vertex is represented
as an array composed of m attribute vectors (a1, . . . ,am) where each an is an
attribute vector. We define an application fn(v) = an that gives the attribute
vector an of the attribute n associated with the vertex v. Our predicition op-
erator estimates each odd vertex vk

i from the mesh Mk as a set of attributes
fn(vk

i ) given by :

fn(vk
i ) =

∑

j∈Vk

1
(i)

wk
i,j.fn(vk

j ). (1)

Vk
1 (i) represents the one-ring neighborhood of the vertex vk

i . The wi,j are
weights of the relaxation operator minimizing the curvature energy of an edge
ei,j (Meyer et al., 2002) :

wk
i,j =

cot αi,j + cot βi,j∑
l∈Vk

1
(i) cot αi,l + cot βi,l

, (2)

where αi,j and βi,j are the angles opposite to the edge ei,j . Predicted attributes
are relaxed in terms of curvature energy of the analysed surface. This relax-
ation operator guaranties smooth variation of the attributes. This method also
assumes that the attributes are linked to the surface. The wi,j coefficients are
computed during the decomposition, and need to be stored to be re-used for
the prediction step in the reconstruction.
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4. EXPERIMENTAL RESULTS
We present an application of our multiresolution framework to adaptive vi-

sualization. Our method uses the PM framework, which has proved its effi-
ciency for view-dependent visualization of meshes (Hoppe, 1997). The PM
framework selects the vertices to display using visiblity criteria. We improve
this selection using the detail coefficients of the analysis. If the detail coeffi-
cient length of a vertex is below a given threshold, the vertex is declared as
irrelevant and thus is removed from the mesh.

Figure 2 shows view-dependent visualization of the Buddha and the Earth
model. On both Figures 2(a) and 2(b), the viewport used to visualize the mod-
els is shown as the yellow pyramid. We see that invisible vertices are removed
using frustrum and backface culling. Irrelevant vertices are removed by thresh-
olding the detail coefficients.

Figure 3 shows view and detail dependent visualization of the Buddha model
using the viewport represented in Fig. 2(a). The original model, from Stanford
University, contains 543.652 vertices and 1.087.716 faces. Figure 3(a) shows
the model visualized using only frustrum and backface culling. Figures 3(b)
and 3(c) show the Buddha model visualized with our detail dependent tech-
nique. Each figure shows the result of different values of the threshold (the
higher the threshold, the coarser the resolution). We see that important geo-
metrical features of the model such as the high curvature regions are preserved.

Figure 4(a) shows a model of the earth with color attributes. Figure 4(b)
shows the same model simplified using our method. The detail coefficients of
the color attributes are thresholded to remove irrelevant vertices. Detail de-
pendent simplification insures the preservation of attribute features (e.g. the
coastlines). The advantage of our method is that it allows more advanced vi-
sualization by computing the relevance of the vertices using the detail coef-
ficients. Combinations of several attributes can be performed to improve the
result of the simplification.

5. CONCLUSION AND FUTURE WORK
We have presented a new multiresolution analysis for irregular meshes based

on the lifting scheme. Our framework manages attributes such as color, nor-
mals, etc. Our method is easy to implement and results show the efficiency of
the analysis over the attributes, which allows more complete multiresolution
analysis. The next step in this work will focus on feature detection using detail
orientation in order to build a semi-automatic denoising algorithms for scanned
models.
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(a) (b)

Figure 2. View and detail dependent visualization of the Buddha model in (a) and the Earth
model in (b). Both figures show the viewport used to visualize the models. Wireframe repre-
sentation is overlaid on each model.
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(a) Original model
102.246 vertices

204.522 faces

(b) τ=0.0001
31.848 vertices

63.684 faces

(c) τ=0.0004
9.293 vertices
18.524 faces

Figure 3. Detail dependent visualization of the Buddha model in (a). Figures (b) and (c) show
two different values of the detail threshold used to segment the geometric details.

(a) Original model (327,680 faces) (b) Simplified model (62,632 faces)

Figure 4. Adaptive visualization according to the color detail coefficients. Original model
is shown in (a), and simplified model in (b). Relevant vertices are selected by thresholding the
color detail coefficients. The model is a sphere with color representing the elevation of the earth
from the ETOPO5 data set.


