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ABSTRACT
The concept of multiresolution analysis applied to irregular meshes has become more and more important. Previous
contributions proposed a variety of methods using simplification and/or subdivision algorithms to build a mesh pyramid.
In this paper, we propose a multiresolution analysis framework for irregular meshes with attributes. Our framework is
based on simplification and subdivision algorithms to build a mesh pyramid. We introduce a surface relaxation operator
that allows to build a non-uniform subdivision for a low computational cost. Furthermore, we generalize the relaxation
operator to attributes such as color, texture, temperature, etc. The attribute analysis gives more information on the analysed
models allowing more complete processing. We show the efficiency of our framework through a number of applications
including filtering, denoising and adaptive simplification.
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1. INTRODUCTION
3D scanners usually produce large amount of raw data containing geometrical data and attributes. Geometrical data de-
scribe shape and dimensions of the object and include data relative to a point set on the object surface. Attributes describe
object surface properties such as colors, texture coordinates, temperature, etc. The goal of this work is to build a mesh
multiresolution analysis that is capable of managing geometrical data and attributes. The attribute management is very
important especially for terrain models where the attributes are linked to the nature of the terrain. In some cases, attributes
are more important than the terrain itself. For example, weather data sets contain several attributes (e.g. temperature, pres-
sure, humidity, precipitation, etc.) in addition to the terrain (i.e. latitude, longitude and elevation of the weather stations
recording the data). User-friendly visualization of these kinds of data sets requires management of the attributes.1

Multiresolution analysis2 is an efficient framework to represent a data set at different levels of resolution. The analysis
decomposes an initial data set into a sequence of approximations and details. The approximations represent the initial data
at different levels of resolution. The details encode the data lost by the approximations and can be seen as a frequency
spectrum. The main advantage of the multiresolution analysis is its representational and computational efficicency. Mul-
tiresolution analysis is a versatile tool to represent general functions and data sets, and gives rise to many applications such
as filtering, denoising, compression, editing, etc.

We propose a multiresolution analysis framework for irregular meshes containing multiple attributes (such as colors,
texture, curvature, etc.). This framework is based on a popular simplification method called progressive mesh. We use
a global downsampling method in order to create disjoint levels of resolution. A fast, local surface relaxation operator
is introduced to build a non-uniform subdivision. We show different applications of the multiresolution analysis such as
filtering, denoising and simplification of complex models.

In section 1.1, we review mesh multiresolution analysis schemes proposed in the literature. In section 2, we present a
new surface relaxation operator and its extension to attribute relaxation. In section 3, we detail the multiresolution analysis
scheme. Section 4 presents some experimental results. Conclusion and ideas for future works are given in section 5.
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1.1. Related Work
Multiresolution analyses based on wavelet theory have started a new research domain on hierarchical methods for computer
graphics.3 Lounsbery4 made the connection between wavelets and subdivision to define different levels of resolution.
This technique called Subdivision Wavelet Transform makes use of the theory of the multiresolution analysis and of the
subdivision rules to construct a multiresolution surface representation for surface with subdivision connectivity. Zorin
et al.5 proposed a combination of subdivision and smoothing algorithms to construct a set of algorithms for interactive
multiresolution editing of complex meshes with arbitrary topology. The authors used Loop subdivision for the estimation
of the high resolution mesh from the coarse representation.

Those methods assume that the mesh is semi-regular and use traditional subdivision schemes. More recently, different
approaches have been presented in order to deal with irregular meshes. Bonneau6 introduced the concept of multiresolution
analysis over non-nested spaces, which are generated by the so-called BLaC-wavelets, a combination of the Haar function
with the linear B-Spline function. This concept was then used to contruct a multiresolution analysis over irregular meshes.
Kobbelt et al.7 proposed a multiresolution editing tool for irregular meshes using the discrete fairing method. The authors
use the progressive mesh algorithm8 to build the coarse resolution mesh. A smoothing operator is used to estimate the
high resolution mesh. Guskov et al.9 presented a series of non-uniform signal processing algorithms designed for irregular
triangulation. They used a smoothing algorithm combined with existing hierarchical methods to build subdivision, pyramid,
and wavelet algorithms for irregular connectivity meshes. The authors proposed a non-uniform subdivision to build a
geometrically smooth mesh with the same connectivity as the original mesh. This subdivision is part of the multiresolution
decomposition and its central ingredient is a non-uniform relaxation operator.

1.2. Contributions
In this paper, we present a multiresolution analysis framework for irregular meshes containing attributes. Our framework
build a mesh pyramid using a simplification and a non-uniform subdivision algorithm. We make the following contribu-
tions:

• We present a new surface relaxation operator used for geometric smoothing of triangle meshes. Our scheme is fast,
local, and straigtforward to implement.

• We generalize this relaxation operator to surface attributes to build a complete multiresolution analysis.

• We show how to use the multiresolution analysis for irregular meshes in applications such as filtering, smoothing,
and adaptive simplification.

2. SURFACE RELAXATION
Surface relaxation moves the vertices of a mesh in order to minimize an energy function. Surface relaxation has been
heavily applied for surface smoothing using a diffusion process.10–12 The relaxation operator minimizes the curvature of
the mesh and generates a smooth mesh. We use a relaxation operator to build a non-uniform subdivision scheme and create
smooth estimation of a fine mesh.

2.1. Geometric Relaxation
Guskov et al.9 proposed a non-uniform relaxation operator which minimizes second order differences D2

e defined at every
edge e in the mesh.13 Later we refer to this method as the SOD relaxation. Considering the position pi = {x, y, z} of
a vertex vi, the relaxed position Rpi of vi is chosen to minimize the sum of the squares of the second order differences
within the support of the vertex vi:

Rpi =
∑

j∈V2(i)

λi,j .pj with λi,j = −

∑
e,j ce,i.ce,j∑

e c2
e,i

, (1)

where V2(i) represents the 1-ring neighborhood with flaps of the vertex vi (see Fig. 1). The λi,j are weights of the
relaxation operator minimizing the second order differences D2

e for an edge e. The ce,i are a set of coefficients depending
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Figure 1. Relaxation of a vertex pi. SOD relaxation requires an extended neighborhood and a local parametrization for every edge of the
1-ring neighborhood (the bold edges). Curvature relaxation is computed according to the angles opposite to the edge ei,j in the 1-ring
neighborhood.

buddha bunny dragon horse
Vertices 543,652 35,947 437,645 48,485
Faces 1,087,716 69,451 871,414 96,966

SOD relaxation 21.70s 1.49s 17.14s 1.91s
Curvature relaxation 5.02s 0.40s 3.95s 0.41s

Table 1. Computation time for SOD relaxation and curvature relaxation operators applied to different models from Stanford University.

on the geometric position of the mesh vertices.9 The computation of the coefficients ce,i requires a local parametrization,
known as a hinge map, for every edge in the local neighborhood.

Meyer et al.14 proposed local and accurate discrete differential-geometry operators. One of these operators was previ-
ously used for surface denoising.12,15 It has been shown16 that this operator gives similar smoothing results to the SOD
relaxation operator presented before. The advantage of these two methods is that they smooth the geometry and do not
affect the triangle shapes much. We propose a relaxation operator based on surface curvature minimization. We build our
non-uniform relaxation operator using the Meyer differential operator. We refer to the following method as the curvature
relaxation. The relaxed position Rpi of a vertex vi is given by:

Rpi =
∑

j∈V1(i)

λi,j .pj with λi,j =
cot αi,j + cot βi,j∑

l∈V1(i)
cot αi,l + cot βi,l

, (2)

where V1(i) represents the 1-ring neighborhood. The λi,j are weights of the relaxation operator minimizing the curvature
energy of an edge ei,j where αi,j and βi,j are the angles opposite to the edge ei,j (see Fig. 1).

SOD relaxation operator requires to compute one function for every vertex in the 2-ring neighborhood, and to parame-
trize every edge in the 1-ring neighborhood. It can be shown that the complexity of the SOD relaxation operator is O(4n)
where n is the number of vertices in the 1-ring neighborhood. Curvature relaxation operator requires to compute only one
function for every vertex in the 1-ring neighborhood. Therefore, it can be shown that the complexity of the curvature relax-
ation operator is O(n). Table 1 shows the computation time for the SOD relaxation and the curvature relaxation operators
applied to different models. This experiment was performed on a PC with a Pentium 4 at 2.4GHz and with 512MB of
memory. The SOD relaxation operator works at about 25,000 vertices per second, while the curvature relaxation opera-
tor works at about 100,000 vertices per second. SOD relaxation operator is slowed down by the extended neighborhood
requirement and the local parametrization computed for each edge in the local neighborhood.



(a) Initial mesh (b) Laplacian relaxation (c) SOD relaxation (d) Curvature relaxation

Figure 2. Smoothing of the eye of the mannequin (a) using different relaxation operators. The semi-uniform scheme (b) smoothes the
surface but distorts the geometry. Non-uniform schemes (c)-(d) only smooth the geometry and preserve triangle shapes.

(a) Initial mesh (b) 1 iteration (c) 20 iterations

Figure 3. Color relaxation of the swirl model. This model is part of a regular sphere. The relaxed colors are nicely smoothed along the
surface.

Figure 2 shows the effect of surface relaxation on a non-planar triangulation such as the eye of the mannequin head
(Fig. 2(a)). Semi-uniform schemes like the discrete Laplacian (Fig. 2(b)) relaxe a vertex by replacing the vertex with
the average of its 1-ring neighbors. The semi-uniform scheme tries to make edge lengths as uniform as possible, which
leads to undesired tangential drifts, generating triangles of similar sizes. Non-uniform shemes (Figs. 2(c)-2(d)) smooth the
geometry without affecting the triangle shapes much. We see that the two methods shown gives similar visual results.

2.2. Attribute Relaxation
Meshes coming from real world scenes usually contain attributes such as colors, texture coordinates, temperature, radiation,
etc. We assume that the attributes are intrisincally linked to the surface. We want to extend the previous relaxation operator
to include the attributes. The basic idea is to relax the attributes according the surface geometry.

A vertex v is now represented as a set (a1, . . . , aN) of N attributes an. We define an application fn(v) = an that
gives the nth attribute an associated with the vertex v. The geometrical position of the vertex is then simply defined as an
attribute of that vertex. We generalize the previous relaxation operator to an attribute an as follows:

Rfn(vi) =
∑

j∈V1(i)

λi,j .fn(vj), (3)



where the λi,j are defined as in Equation 2, and only depends on the geometry of the surface. Predicted attributes are
relaxed in terms of curvature energy of the analysed surface. Thus, this relaxation operator guaranties smooth attribute
variation.

Figure 3 shows the relaxation of color attributes on the swirl model∗ (Fig. 3(a)). This model is a part of a regular
sphere, so the curvature is constant and so are the λi,j coefficients of the relaxation formula. Figure 3(b) shows the result
after 1 iteration of the relaxation operator, and Fig. 3(c) shows the result after 20 iterations. We see that the color values
are uniformly smoothed following the surface curvature.

3. MULTIRESOLUTION ANALYSIS
Multiresolution analysis provides a framework that rigorously defines various approximations and fast analysis algorithms.
This framework decomposes an original data set into a sequence of levels of resolution. We use a decomposition scheme
based on the Burt-Adelson pyramid17 and allows the creation of mesh pyramid.9 We start from the finest mesh M0 and
compute a sequence of meshes Mk (1 ≤ k ≤ K) as well as oversampled differences Dk between meshes. A level of
resolution is defined by a couple (Mk,Dk), except for the finest level which is M0. To go from Mk to Mk+1, we follow
the diagram in Fig. 4.

SubdivisionSimplification

Mk

Mk+1

Dk+1

Sk

Figure 4. Mesh multiresolution analysis scheme using Burt-Adelson like pyramid.

The decomposition of one level of resolution is decomposed in three steps:

• Simplification. The simplification downsamples the initial mesh Mk by removing some vertices, giving the coarse
mesh Mk+1. The coarse mesh Mk+1 is an approximation of the initial fine mesh Mk.

• Subdivision. The subdivision upsamples the coarse mesh Mk+1 by inserting the previously removed vertices, and
relaxes all the vertices, giving an estimation Sk of the fine mesh.

• Detail computation. The difference between the fine mesh Mk and the subdivided mesh Sk gives the detail coeffi-
cients Dk+1 associated with the mesh Mk+1. The details are computed for every vertex of the fine mesh Mk.

To construct the mesh pyramid, we need downsampling, upsampling, and relaxation operators. The reconstruction
scheme is simply obtained by inverting the decomposition scheme. We start with a coarse mesh Mk+1, subdivide it and
add the details Dk+1 in order to recover the fine mesh Mk.

In this section, we explain the global downsampling and upsampling methods used respectively in the simplification and
in the subdivision. Then we detail the decomposition algorithm that creates the levels of resolution, and the reconstruction
algorithm used to recover the initial fine data set.

3.1. Global Downsampling and Upsampling
The decomposition is based on an incremental mesh decimation, where the basic step consists of removing one vertex
and of re-triangulating the remaining hole. Since our decomposition should be invertible, however, we have to choose
a decimation method that is also invertible. An invertible mesh decimation method was introduced in the Progressive
Mesh (PM) framework.8 In the PM setting, a sequence of edge collapses simplifies the mesh, while a sequence of vertex
splits recovers the initial mesh. In our framework, an half-edge collapse provides the atomic downsampling step, and a

∗http://graphics.cs.uiuc.edu/∼garland/research/quadrics.html



vertex split becomes the atomic upsampling step. We prefer half-edge collapse operation because it does not introduce
new vertex positions but rather sub-samples the original mesh.18 Thus, it enables the construction of nested hierarchies on
unstructured meshes that can facilitate further applications.19

The central ingredient of our framework is the global downsampling that removes an independent set of vertices (i.e.
vertices which are not connected by an edge) per level of detail. This technique was presented by Kobbelt7 in order
to achieve optimal performance with his multi-level smoothing algorithm. Our global downsampling method selects an
independent set of vertices, labled odd vertices, to be removed by a sequence of half-edge collapses. The inverse operation
(i.e. global upsampling) required for the recontruction operation re-inserts the previously removed vertices to create a
mesh topologically identical to the initial one. The original PM framework always reconstructs the original mesh. In
order to generate a smooth approximation of the original mesh, we split each step of the PM refinement into a topological
operation (vertex insertion) and a geometric operation which places the re-inserted vertices at their original position. In
our subdivision scheme, the geometric operation is performed by the relaxation operator presented in section 2 to create a
smooth approximation of the fine mesh.

Different methods can be used to select the odd vertices, and thus the half-edge collapses to perform. Our algorithm
performs an incremental selection by selecting one odd vertex and locking all adjacent vertices, labled even vertices. The
selection ends when no more vertices can be selected. By selecting an odd vertex in order to remove it, we also select the
even vertex it will merge with. In other words, we directly select an half-edge collapse. The selection of the odd vertices
can be done with different methods. We choose the Quadric Error Metric from Garland et al.20 because it minimizes the
length of the details and retains the visual appearance of the simplified mesh.

3.2. Decomposition
The decomposition creates a sequence of levels of resolution, where each of them is composed by an approximation mesh
and a set of details associated to the vertices. The creation of one level of resolution requires two major steps: simplification
and subdivision. The simplification creates the coarse mesh according to the initial mesh. The subdivision approximates
the fine mesh according to the coarse mesh. The details are given as the difference between the initial and the approximated
fine mesh. The creation of a level of resolution for a mesh can be broken down into four steps:

• Select odd vertices. Starting from a fine mesh Mk, a set vertices, odd vertices, is selected to be removed. The
remaining vertices composing the coarse mesh are the even vertices. The selection of the odd vertices is done using
a global downsampling method discribed before.

• Relax vertices. The vertices of the mesh are relaxed to create a smooth approximation of the fine mesh. All the
attributes an of every vertices are relaxed:

∀vk
i ∈ Mk, Rfn(vk

i ) =
∑

j∈V1(i)

λk
i,j .fn(vk

j ) with n ∈ [1, N ], (4)

where the λi,j are defined in Equation 2, and are stored for the reconstruction. The attributes of every vertex vk
i are

relaxed according the surface geometry represented by the λi,j coefficients.

• Compute details. We compute the details needed for the reconstruction. The details are given by the difference
between the relaxed and the original vertices:

∀vk
i ∈ Mk, dk+1

n (vk
i ) = fn(vk

i ) − Rfn(vk
i ) with n ∈ [1, N ], (5)

where dk+1
n (vk

i ) represents the detail of the attribute an of the vertex vk
i . The details are computed for the N

attributes of every vertex vk
i . We note dk+1(vk

i ) the set {dk+1
n (vk

i )} of details of the attributes of the vertex vk
i , with

n ∈ [1, N ]. And we note Dk+1 the set {dk+1(vk
i )} of details for every vertex.

• Remove odd vertices. Finally, the odd vertices are removed by a sequence of half-edge collapses to create a coarse
approximation Mk of the initial mesh Mk.

Note that the details are computed for the odd and the even vertices. This leads to an overrepresentation of the fine
mesh (i.e. an optimal representation would compute the details only for the removed vertices). Starting from a fine mesh
Mk, the coarse level of resolution is given by the couple (Mk+1,Dk+1).



3.3. Reconstruction
The reconstruction is simply the reverse operation of the decomposition. A fine mesh is created using a coarse mesh and
the details attached to it. Attributes of one vertex vk

i of the fine mesh Mk are reconstructed by relaxing the attributes using
the λi,j coefficients computed during the decomposition, and by adding the details of the coarse level. The reconstruction
of a fine level of resolution can be broken down into three steps:

• Insert odd vertices. First the odd vertices are re-inserted using vertex splits into the coarse mesh Mk+1 so that the
new mesh M̃k has exactly the same topology as the initial fine mesh Mk.

• Reconstruct odd vertices. The newly re-inserted vertices are reconstructed using the following reconstuction for-
mula for the odd vertices:

fn(ṽi
k) =

∑

j∈V1(i)

λk
i,j .fn(vk+1

j ) + dk+1
n (vk

i ) with n ∈ [1, N ]. (6)

The reconstruction of the odd vertices creates an intermediate mesh M̃k where the even vertices are the vertices of
the coarser mesh Mk+1 and the odd vertices have been recontructed according to the even vertices.

• Reconstruct even vertices. Finally the even vertices are reconstructed from the vertices ṽj
k of the intermediate

mesh M̃k using the following reconstruction formula:

fn(vk
i ) =

∑

j∈V1(i)

λk
i,j .fn(ṽj

k) + dk+1
n (vk

i ) with n ∈ [1, N ]. (7)

The even vertices of the fine mesh Mk are recontructed according to the vertices of the approximate fine mesh M̃k.

4. APPLICATIONS
In this section, we present different applications of the multiresolution analysis of irregular meshes. Geometric applications
are presented, such as filtering and denoising. Applications involving attribute management are shown, such as adaptive
simplification.

4.1. Filtering
We can apply some signal processing filters to a multiresolution model. Figure 5 shows three different filters applied on
the Venus model† (Fig. 5(a)). Low pass filtering (Fig. 5(b)) is performed by setting to zero all the details of the 6 finest
levels. We see that the low pass filter achieves a smooth result, as expected. Stopband filtering (Fig. 5(c)) is performed by
setting to zero all the details from level 6 to level 9. We see that intermediate details are removed, while fine details are
preserved. Enhancement filtering (Fig. 5(d)) is performed by multiplying by two all the details from level 6 to level 9. We
see that mid-level details are emphazised. These results are similar to those presented in Daubechies’ work.21

4.2. Denoising by Soft Thresholding
In this section we extend the concept of soft-thresholding to 3D meshes. Wavelet shrinkage is a popular method used to
denoise data. The idea is to transform the data into the wavelet basis, where the large coefficients are mainly the signal,
and smaller ones represent the noise. By suitably modifying these coefficients, the noise can be removed from the data.
It is important to understand the wavelet shrinkage methods as a denoising algorithm and not as a smoothing algorithm.
Denoising attempts to remove whatever noise is present and to retain whatever signal is present regardless of the frequency
content, while smoothing removes high frequencies and retains low frequencies.22 The soft thresholding method23, 24 has
proved its efficiency and its robustness for denoising appplications. Given a threshold λ for monodimensional data d, the
rule δλ(d) = sgn(d) max(0, |d| − λ) defines soft thresholding, the operator δλ nulls all values of d for which |d| ≤ λ and
shrinks toward the origin by an amount of λ all values for which |d| > λ.

†http://www.cyberware.com/samples



(a) Initial model. (b) Low pass filter. (c) Stopband filter. (d) Enhancement filter.

Figure 5. Filtering of the Venus head.

In the setting of multiresolution analysis of irregular meshes, geometric details d are represented by a vector in 3D.
Therefore, the soft thresholding rule has to be adapted to 3D vectors, but the principle remains the same. The operator
nulls all values of d for which ‖d‖ ≤ λ and shrinks the vector d toward the origin by an amount of λ if ‖d‖ > λ. Given
threshold λ for data d in 3D space, the soft thresholding is defined by:

δλ(d) =

{
0, ‖d‖ ≤ λ

d− d

‖d‖ .λ, ‖d‖ > λ
. (8)

Figure 6 shows results of denoising the Jared model 6(a). This model was acquired with a RIEGL LMS-Z210 time-
of-flight laser range scanner mounted on a van. The noise comes from the vibrations of the van and the limited accuracy
of the scanner. This model was denoised using the soft thresholding on the five finest levels of details (Fig. 6(b)). Notice
that the model is nicely smoothed, while keeping important geometrical features such as sharp edges. Soft thresholding is
a fast, efficient denoising method and gives good results. Moreover, our methods requires only one pass over the model.

4.3. Adaptive simplication
Our decomposition method creates a mesh pyramid, and so a hierarchy of meshes at different levels of resolution. Bon-
neau6 discussed the advantages of threshold reconstruction against level reconstruction. Level reconstruction results from
applying the reconstruction algorithm (section 3.3) up to a certain level. Threshold reconstruction inserts vertices in the
mesh according to the length of their details. Only vertices with a detail length superior to a given threshold will be
inserted into the reconstructed mesh. Moreover our method used the PM framework which has proved its efficiency for
view-dependent and adaptive visualization of irregular meshes.25 An adaptative reconstruction (and thus simplification)
of a multiresolution mesh can be done as follows:

• Sort the list of removed vertices according to the length of their details for each type of detail.

• Reconstruct a new mesh by inserting vertices with detail length superior to a given threshold.



To avoid the construction of a degenerate mesh, for each vertex inserted we have to also insert the vertices to which
the newly inserted vertex depends on in the coarser levels. The reconstruction can be guided by the user in case of the
presence of several attributes. The user can specify only one type of attribute to be taken in account for the reconstruction
(geometrical attributes should always be considered).

Figure 6(c) shows the simplified version of the model in Fig. 6(b), where the color attributes have been considered
for the reconstruction. The threshold can be fixed manually or it can be fixed interactively in case of visualization. The
threshold changed according to given criteria (such as framerate, visibility).

5. CONCLUSION AND FUTURE WORK
We have presented a new multiresolution analysis for irregular meshes with multiple attributes. We have presented a fast,
local surface relaxation operator, and shown how to extend this operator to the attributes. A complete multiresolution
analysis framework has been detailed. We introduced denoising through soft thresholding for irregular meshes. This
method requires only one pass over the model, and keeps important features such as sharp edges. Results show the
efficiency of our framework through a number of applications including filtering, denoising, and adaptive simplification.
Future works will address feature detection and adaptive visualization of complex models.
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(a) Initial noisy model with colors (184,429 faces).

(b) Denoising using soft thresholding (184,429 faces).

(c) Adaptive simplification of the denoised model (71,717 faces).

(d) Magnification of the model in (c).

Figure 6. Denoising and simplification of the Jared model.


