
HAL Id: hal-01943964
https://hal.science/hal-01943964v1

Submitted on 4 Dec 2018 (v1), last revised 6 Dec 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lower Bounds for the Duration of Decommission
Operations with Relaxed Fault Tolerance in

Replication-based Distributed Storage Systems
Nathanaël Cheriere, Matthieu Dorier, Gabriel Antoniu

To cite this version:
Nathanaël Cheriere, Matthieu Dorier, Gabriel Antoniu. Lower Bounds for the Duration of Decom-
mission Operations with Relaxed Fault Tolerance in Replication-based Distributed Storage Systems.
[Research Report] RR-9229, Inria Rennes - Bretagne Atlantique. 2018. �hal-01943964v1�

https://hal.science/hal-01943964v1
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
92

29
--

FR
+E

N
G

RESEARCH
REPORT
N° 9229
Décembre 2018

Project-Teams Kerdata

Lower Bounds for the Duration of

Decommission Operations with

Relaxed Fault Tolerance in

Replication-based Distributed

Storage Systems

Nathanaël Cheriere, Matthieu Dorier, Gabriel Antoniu

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Lower Bounds for the
Duration of Decommission

Operations with Relaxed Fault
Tolerance in Replication-based

Distributed Storage Systems

Nathanaël Cheriere*, Matthieu Dorier†, Gabriel Antoniu*

Project-Teams Kerdata

Research Report n° 9229 — Décembre 2018 — 28 pages

* Univ. Rennes, Inria, CNRS, IRISA, Rennes, France, nathanael.cheriere@irisa.fr,
gabriel.antoniu@inria.fr

† Argonne National Laboratory, Lemont, IL, USA, mdorier@anl.gov

Abstract:
Efficient resource utilization is a major concern for large-scale computer platforms. One method used to
lower energy consumption and operational cost is to reduce the amount of idle resources. This can be
achieved by using malleability, namely, the possibility for resource managers to dynamically increase or
decrease the amount of resources of jobs while they are running.
Decommissioning (removing from the cluster) the idle nodes as soon as possible allows the resource man-
ager to quickly reallocate the nodes to other jobs. Challenges appear when such nodes host part of a dis-
tributed storage system. Indeed, distributed storage systems need to transfer large amounts of data during
decommission in order to ensure data availability and a constant level of fault tolerance.
In this paper, we explore the possibility of relaxing the level of fault tolerance during the decommission
in order to reduce the amount of data transfers needed before nodes are released, and thus return nodes to
the resource manager faster. We quantify theoretically how much time and resources are saved by such a
a fast decommission strategy compared with a standard decommission. We establish lower bounds for the
duration of the different phases of a fast decommission. We use the lower bounds to estimate when the fast
decommission would be useful to reduce the usage of core-hours.
We implement a prototype of fast decommission mechanism. Using the prototype, we validate the lower
bounds on the duration of the operation and confirm the findings about the core-hour usage.

Key-words: Elastic Storage, Malleable Storage, Distributed Storage Systems, Decommission, Fault
Tolerance

Bornes Inférieures pour les Temps de Décommission
dans les Systèmes de Stockage Distribués basés sur la

Réplication lorsque la Tolérance aux Pannes est Relache
Résumé : Dans ce rapport, nous modélisons la durée de la décommission de
noeuds d’un système de stockage distribué basé sur la réplication lorsque la contrainte
de tolérance aux pannes est relachée. Une borne inférieure pour chaque phase de
l’opération est obtenue. Une implémentation du mécanisme dans Pufferbench permet
de valider les résultats théoriques.

Cette méthode de décommission est par nature peu sure, et nous montrons que des
gains ne sont obtenus que dans le cas d’un système limité par la bande passante du
réseau.

Mots-clés : Stockage élastique, Stockage malléable, Système de stockage distribué,
Décommission, Tolérance aux pannes

4 Cheriere & Dorier & Antoniu

1 Introduction
Improving the resource utilization of a platform is a challenge for its administrators.
It directly links to better cost effectiveness and higher productivity. One approach
used to improve resource utilization is to reduce the number of idle nodes. This can
be achieved by multiple ways, such as careful scheduling, precise prediction of the
required resources, or job malleability.

Job malleability is the possibility for jobs to have their resources resized at run time
by the resource manager. Thus, unused resources can be returned to the resource man-
ager and either shut down or reassigned to other jobs. Applications also benefit from
malleability; unused resources are released, thus reducing the energy consumption and
costs attributed to that application at the same time as the core-hour usage is decreased.
Moreover, the capability to dynamically adjust the number of resources available to a
job allows the job to match the workloads in order to have constant quality of service,
even if the workload is highly volatile. Many solutions have been proposed to add mal-
leability to platforms and applications. Resource managers such as KOALA-F [1] and
Morpheus [2], are able to manage malleable jobs, and various frameworks [3], [4], [5]
enable the design of malleable applications.

Previous works focused on the malleability of computing resources, however; and
no distributed storage systems have been designed to be malleable, even though many
of them include both commission (adding nodes) and decommission (removing nodes)
operations for maintenance purposes. Indeed, adding nodes to a distributed storage
system or removing nodes from it involves many data transfers in order to balance the
load. These data transfers are assumed to be too slow for practical use. The imple-
mented rescaling operations (commission and decommission) are thus rightfully de-
signed to limit their impact on application performance as much as possible and are
not optimized for speed.

Having a truly malleable distributed storage system with fast rescaling operations
would enable many features for applications that need to deploy a distributed storage
system colocated with computation resources. In particular, applications could benefit
from fast data accesses to a co-deployed distributed storage system and benefit from
malleability.

• Reduction of the core-hours cost: When a storage node is not needed by the
application anymore, it can be given back to the resource manager instead of
being idle.

• Ideal scalability: The distributed storage system can expand and contract with
the malleable application using it, ensuring consistent storage system perfor-
mance.

• Data isolation: The data manipulated by an application can be located solely on
the computing nodes used by the application and does not need to be stored on a
shared storage cluster. This is consistent with the recent trends in HPC systems,
which increasingly include local storage on computing resources.

• Better auto-tuning: An autotuner can test various storage configurations without
having to restart and repopulate the distributed storage system each time.

Inria

Lower bounds for the commission time 5

With a fast decommission, the platform can claim resources back from applications
quickly. This action allows the resource managers to mitigate unpredictable events,
such as the submission of high-priority jobs or a sudden increase in the workload of
some jobs, by quickly allocating new resources to the task.

In our previous work [6], we modeled node decommission in replication-based
distributed storage systems and provided a theoretical lower bound for the duration of
this operation. Having a lower bound for this operation has multiple uses.

• The lower bound can be used to evaluate the performance of decommission
mechanisms when designing a distributed storage system.

• They can also help the resource scheduler make scheduling decisions. With it,
the resource scheduler can anticipate the duration of the decommission of nodes
in order to have nodes available when they are needed.

• With the lower bound, a user can quickly estimate whether to use malleability on
a given platform.

• The study of this operation highlights inherent bottlenecks that need to be miti-
gated for efficient implementations.

In our previous work, we assumed that the level of fault tolerance of the storage
system should not be weakened during the decommission; if the system is configured
to keep k replicas of an object at all times, the number of replicas of that object during
the decommission should never be strictly less than k. It also means that the decom-
missioned nodes can be given back to the resource manager only at the end of the
decommission operation, since all objects need to be sufficiently replicated on the re-
maining nodes.

This is an opportunity for optimization. As long as no data is lost, decommissioned
nodes can be returned to the resource manager sooner. We denote this strategy as fast
decommission. It is composed of three phases. During the data-safekeeping phase,
the system ensures that at least one replica of each object is present on the remaining
nodes, transferring objects if needed. Then, during the node release phase, the decom-
missioned nodes are given back to the resource manager. Missing replicas are recreated
during the system stabilization phase.

With this strategy, the decommissioned nodes are effectively made available for
other jobs faster than they are with standard decommission. However, fast decom-
mission comes at the cost of weakened fault tolerance during the system stabilization
phase: not all objects have their required number of replicas until the stabilization fin-
ishes.

The idea of trading fault tolerance for performance is not new. Our contribution
in this paper is to make a step forward in understanding better this trade-off. To this
purpose, we provide theoretical lower bounds for the two main phases of fast decom-
mission: the data-safekeeping and the system stabilization (the node release is assumed
to be instantaneous) phases. We also implement fast decommission in Pufferbench [7]

RR n° 9229

6 Cheriere & Dorier & Antoniu

[8], a benchmark designed to study the commission and decommission mechanisms of
distributed storage systems in practice.

The lower bounds highlight interesting results. As expected, the nodes decommis-
sioned with the fast decommission mechanism are released in a fraction of the time
needed by the standard decommission. For distributed storage systems, however, the
phase of system stabilization that comes after the release of the decommissioned nodes
lengthen the duration of the whole operation. When the bottleneck of the operation is
the network, the whole operation lasts as long as the standard decommission. In the
case of a storage bottleneck, the duration of the operation is longer than that with the
standard decommission: fewer resources are available for the stabilization phase, and
thus the operation is longer.

The experimental results obtained with Pufferbench confirm the highlights obtained
from the lower bounds. In particular, the decommission times obtained are on average
within 10% of the lower bounds when the storage is the bottleneck and are on average
within 40% of the lower bounds when the network is the bottleneck.

We also compared the number of core-hours needed for the fast decommission and
the standard decommission mechanisms. In the case of a network bottleneck, using
fast decommission always leads to a reduction in core-hour usage. The gain in core-
hours increases with the number of decommissioned nodes. In the case of a storage
bottleneck, however, no gain in the usage of core-hours is realized unless many nodes
are decommissioned at once.

Overall, fast decommission can be an interesting trade-off for the designer of dis-
tributed storage systems when the network is the bottleneck: the consumption of core-
hours is reduced compared with that of standard decommission while the duration stays
the same for the distributed storage system. Moreover, depending on the network band-
width, the stabilization phase, during which the fault tolerance is weakened, can be
short. However, the trade-off is less relevant in the case of a storage bottleneck: the
whole operation is longer than the duration of the standard decommission, and there
is no gain in core-hours unless many nodes are decommissioned at once. Fast decom-
mission may even be detrimental depending on the bandwidth of the storage devices.
If the storage is slow, such as a hard drive, the fault tolerance will be weakened for the
duration of the long stabilization phase, increasing the probability of losing data.

This paper is organized as follows. Related work is presented in Section 2. Hy-
potheses detailed in Section 3 are used to build the lower bounds in Section 4. In
Section 5, we compare the experimental run times of an implementation of fast decom-
mission with the lower bounds. We discuss the results in Section 6 and present our
conclusions in Section 7.

2 Related Works
Many distributed and parallel file systems, such as Ceph [9] and HDFS [10], include
a decommission mechanism. However, it is available primarily for maintenance pur-
poses. Hence it is understandably optimized to reduce the performance impact of the
decommission on other jobs. It is not meant to be fast.

Inria

Lower bounds for the commission time 7

Some distributed storage systems enable some form of malleability: some of the
machines of the cluster on which they are deployed can be shut down to save energy.
Rabbit [11], Sierra [12], and SpringFS [13] are examples of such a system. They have
two main limitations. First, the shutdown nodes still store data and may be turned back
on at any time; thus they cannot be given back to the resource manager for use by
another job. Second, the nodes that can be shut down are determined by the distributed
storage system and not by the resource manager.

Some resource managers are able to manage malleable distributed storage systems.
The SCADS Director [14], for example, is a resource manager designed to ensure
service-level objectives. It can add or remove storage nodes and move the data, as well
as the number of replicas needed for each file. The SCADS Director adds malleability
to the SCADS file system [15]. Its authors focus their evaluation on the ability of the
system to maintain its service-level objective, however, and not on the performance of
the rescaling operations themselves.

Lim, Babu, and Chase [16] propose a resource manager based on HDFS. This re-
source manager chooses when to add and remove nodes and the parameters of the
rebalancing operations. However, it simply uses HDFS as is and does not focus on
efficiency. Both Trushkowsky et al. [14] and Lim et al. [16] focus on ways to leverage
malleability rather that on improving it. Therefore their work is complementary to this
paper.

In a previous work [6], we provided lower bounds for the time of a standard decom-
mission in replication-based storage systems. This standard decommission required
that the requested number of replicas for each object be maintained throughout the
decommission operation. In this paper, we relax this constraint. We accept that the
number of replicas of the stored objects drops below its normal value during the de-
commission. Of course, we still require that no data be lost and that the replication
factor be brought back to its normal value at the end of the operation. This method of
decommission trades better resource utilization for temporarily higher vulnerability to
faults. Indeed, a storage node can be given back to the resource manager as soon as
at least one replica of each of its data objects exists on remaining nodes. Until new
replicas are created, however, a crash may lead to data loss. While this trade-off is not
new, this paper aims to model it precisely.

3 Hypotheses
In this section, we start by stating what the targeted storage systems are. We then define
the fast decommission operation and the hypotheses used in order to compute the lower
bounds of its duration.

3.1 Targeted distributed storage systems
Many similarities exist between the fast decommission mechanism and the crash of
a node followed by the recovery of the system. In both cases, some storage nodes
become unavailable, and some data has to be recreated on the remaining nodes.

While several methods exist to recreate the missing data, in this paper we consider
only the distributed storage systems that use data replication. This crash recovery

RR n° 9229

8 Cheriere & Dorier & Antoniu

mechanism is popular: it is used in HDFS [10], Rabbit [11], and Sierra [12], among
others. It has the advantages of being simple and highly parallel: most of the remaining
nodes share some replicas with the crashed nodes and thus can quickly restore the
replication level to its initial value. Moreover, little CPU power is required for this
technique.

We do not consider full-node replication, in which sets of nodes host exactly the
replicas of the same objects, since the recovery mechanism is fundamentally different.
Erasure coding, used in systems such as Pelican [17], is not considered either. With
erasure coding, CPU power is needed to recreate missing data. Thus a mathematical
model of the CPU would be required in order to compute a lower bound on the duration
of such operations.

Another major recovery mechanism, lineage, also requires CPU power. Its princi-
ples greatly differ from those of data replication. When a node crashes, the data that
is lost is recreated by executing again the jobs that generated it. Modeling the lower
bounds of such an operation would require knowledge of the jobs that generate data,
however, and we therefore do not consider this recovery mechanism in this paper. Lin-
eage is used in Tachyon [18] and is tightly coupled to Spark [19] in order to regenerate
the data.

Despite the similarities between fault tolerance mechanisms and fast decommis-
sion, the fault tolerance mechanism cannot be used directly to decommission nodes.
The fault tolerance mechanism of a distributed storage system has an upper limit on
the number of nodes that can crash simultaneously. The fast decommission mecha-
nism is an intentional operation. Hence, even if more nodes are decommissioned than
then number of replicas, this decommission mechanism will prevent the loss of data by
first making sure that at least one replica of each object exists in the remaining nodes.

3.2 Problem definition
We consider a replication-based distributed storage system deployed on a cluster of N
nodes. Each node initially hosts an amount of data D. Each of the objects stored in
the system is replicated r times. The resource manager requests the decommission of
x arbitrarily chosen nodes.

A fast decommission is done in three main steps.

1. Data-safekeeping: During the data-safekeeping phase, the objects that are stored
only on the leaving nodes have a replica transferred to remaining nodes to ensure
that no data is lost during the operation.

2. Nodes release: The leaving nodes are given back to the resource manager. They
no longer participate in the distributed storage.

3. System stabilization: The missing replicas are recreated by the remaining nodes
to recreate the target replication degree.

We define the time to availability tavail. as the lower bound of the time needed to
execute the first step of the decommission. The stabilization time tstab. is the lower
bound on the duration of the whole process; tstab. is obtained assuming that the leaving
nodes participated only in the data-safekeeping phase and were all removed from the
cluster at time tavail..

Inria

Lower bounds for the commission time 9

3.3 Hypotheses on the cluster infrastructure
We make three hypotheses concerning the hardware of the cluster to provide compre-
hensive lower bounds.

Hypothesis 1: Homogeneous cluster
All nodes have the same characteristics, in particular the same network throughput

(SNet) and storage write and read throughputs (SWrite, SRead).

Hypothesis 2: Ideal network
The network is full duplex, data can be sent and received with a throughput of SNet

at any time, and there is no interference.

Hypothesis 3: Ideal storage system
The writing speed is not higher than the reading speed (SWrite ≤ SRead). The stor-

age device must share its I/O time between reads and writes and thus cannot sustain
simultaneous reads and writes at maximum speed (during any span of time t, if a time
tRead ≤ t is spent reading, the storage cannot write for more than t− tRead , and con-
versely).

Hypothesis 3 holds for most modern storage devices.
Moreover, we assume that all resources are available to the decommission and that

either the network or the storage is the bottleneck.

3.4 Hypotheses on the initial data distribution
The initial data distribution is important for the performance of the decommission.
Thus we make some hypotheses in this respect.

Hypothesis 4: Even data distribution
All N nodes initially host the same amount of data D.

Hypothesis 5: Uniform data replication
Each object stored in the storage system is replicated on r ≥ 2 distinct nodes. The

probability of finding a given object on a node is uniform and independent.

Hypothesis 6: Uniform data distribution
The probability of finding a given object on all the nodes in a set of r distinct nodes

is uniform and independent of the chosen set.
These hypotheses reflect the ideals of the load-balancing policies implemented in

many state-of-the-art distributed file systems such as HDFS [10] and RAMCloud [20].
We assume that the data is initially in an ideal load-balanced state.

3.5 Formalizing the problem
At the end of the decommission operation, the data distribution on the remaining nodes
should satisfy the following objectives.

Objective 1: No data loss
No data can be lost during the decommission.

RR n° 9229

10 Cheriere & Dorier & Antoniu

Objective 2: Maintenance of an even data distribution
All nodes host the same amount of data D′.

Objective 3: Maintenance of a uniform data distribution
All sets of r distinct nodes host the same amount of exclusive data, independently

of the choice of the r nodes.
These objectives ensure that the load balancing is ideal at the end of the decommis-

sion.
All the listed hypotheses and objectives are common with standard decommission.

The difference between both decommission strategies comes from Objective 4.

Objective 4: Maintenance of the replication factor
Each object stored on the storage system is replicated on r distinct nodes.

The fault tolerance requirements are relaxed during the execution of the decom-
mission. Instead of ensuring the replication factor of the objects at any time during
decommission, the replication factor is required to be at its initial level only at the end
of the decommission. This relaxation is the main difference between the hypotheses of
this work and the ones for the lower bounds of the standard decommission established
in our previous work [6]. The purpose of this paper is to quantify theoretically how
many resources are saved by relaxing this constraint and how fast such a decommis-
sion process can be, compared with a standard decommission operation.

4 Lower Bound
In this section, we establish the lower bounds for the duration of the data-safekeeping
and stabilization phases (the node release phase is assumed to be instantaneous).

4.1 Data to move
Because data should not be lost during a decommission (Objective 1), a minimum
amount of data has to be moved from the leaving nodes to the remaining ones. The
objects to move are the ones that have all their replicas on the leaving nodes and that
would have been lost had these nodes all been removed at the same time. Thus, we first
compute the probability for an object to have exactly i replicas on the leaving nodes.
From it, we deduce the minimum amount of data to transfer to remaining nodes Davail..

pi =

0 if i > r,
(r

i)(
N−r
x−i)

(N
x)

for i≤ r.
(Def. 1)

Davail. =

{
NDpr/r if x≥ r
0 in other cases.

(Def. 2)

Dstab. is the amount of data to move in order to recreate all replicas from the leaving
nodes onto the remaining nodes. It is the amount of data that was initially present on
the leaving nodes and includes Davail..

Dstab. = xD = ∑
r
i=1 ipi

ND
r (Def. 3)

Inria

Lower bounds for the commission time 11

4.2 Case 1: Bottleneck at network level
In this section we assume that the network is the bottleneck for the data transfers re-
quired by the data-safekeeping and stabilization phases. The network is the bottleneck
if it limits the storage in any situation (SNet < SRead).

4.2.1 Time to availability

During the data-safekeeping phase, only the leaving nodes send data to the remaining
ones. As defined by Hypothesis 2, the network is ideal without interference, and each
node can send and receive data with a bandwidth SNet at the same time. Two possi-
ble bottlenecks may appear, however: either sending data from the leaving nodes or
receiving the data on the remaining nodes.

Thus, the time to availability tavail. depends on the number of nodes leaving the
cluster x, the amount of data to move Davail., and the bandwidth of the network SNet .
We express tavail. as follows.

tavail. =

{
prND
rxSNet

if x≤ N/2
prND

r(N−x)SNet
in other cases.

(Prop. 1)

Demonstration:
If the sending nodes are the bottleneck, their throughput is Savail.

Send = xSNet .
In this case the time to availability is tavail. =

prND
rxSNet

.
If the receiving nodes are the bottleneck, their throughput is Savail.

Receiving = (N−
x)SNet

In this case the time to availability is tavail. =
prND

r(N−x)SNet
.

Overall, tavail. =

{
prND
rxSNet

if x≤ N/2
prND

r(N−x)SNet
in other cases.

QED

4.2.2 Stabilization time

When the leaving nodes sending data are the bottleneck of the data-safekeeping phase,
the remaining nodes may not have their network bandwidth saturated by the reception
of the data. Thus, data exchanges needed to stabilize the storage can start before the
end of the preservation without slowing the preservation itself.

We denote as toverlap the time available per remaining node during the data-safekeeping
phase to exchange data for the stabilization.

toverlap =

{
0 if x > N/2
(N−2x)prND
rx(N−x)SNet

in other cases.
(Prop. 2)

Demonstration:
In case the data sent by the leaving nodes cannot saturate the network of the re-

maining nodes, the remaining nodes can exchange data before the data-safekeeping
phase is over.

Let SRecv be throughput at which the remaining nodes can receive the data.

RR n° 9229

12 Cheriere & Dorier & Antoniu

toverlap = tavail.−Davail./SRecv

=
prND
rxSNet

− prND
r(N− x)SNet

=
(N−2x)prND
rx(N− x)SNet

QED

From this, we obtain the time needed to stabilize the distributed storage system
tstab..

tstab. =
xD

(N−x)SNet
. (Prop. 3)

Demonstration:
Let SRecv be throughput at which the remaining nodes can receive the data. SRecv

is also the rate at which data can be exchanged during the stabilization phase as
nodes can send and receive data at the same time.

tstab. = tavail.+
Dstab.−Davail.

SRecv
− toverlap

= tavail.+
Dstab.−Davail.

SRecv
− tavail.+

Davail.

SRecv

=
Dstab.

SRecv

=
xD

(N− x)SNet

QED

4.2.3 Observations

The lower bound for the whole operation (tstab.) is exactly the lower bound for the
standard decommission established in our previous work [6] (in which the replication
factor is maintained). Thus, one can relax the fault tolerance to release nodes faster
(the fewer the‘ core-hours used,the better the overall platform utilization) without any
difference in the length of the operation compared with standard decommission.

We also infer that keeping the leaving nodes after they have transferred the data
needed for the fast decommission does not speed the duration of the operation: in all
cases, receiving data on the remaining nodes is the bottleneck. It would, however,
have an impact on the ability of the cluster to service read requests. The network is
completely saturated by the stabilization, servicing any request would slow it.

In Figure 1, we observe the differences between a standard decommission and a
fast decommission; with the fast decommission, the nodes are released in a fraction of
the time needed to decommission nodes while maintaining the replication factor.

Inria

Lower bounds for the commission time 13

5 10 15

0
20

40
60

80
10

0

Decommissioned nodes (out of a 20−nodes cluster)

T
im

e
to

 d
ec

om
m

is
si

on
 (

s)

● ● ●
●

●
●

●
●

●

●

●

●

●

●
●

Network bottleneck

Standard decommission
Data safekeeping
Stabilization

Figure 1: Lower bounds for the duration of the data-safekeeping and stabilization
phases compared with the lower bounds for the standard decommission in case of
a network bottleneck. Each node initially hosts 50 GiB of data; the network has a
throughput of 1.25 GiB/s (10 Gib/s).

4.3 Case 2: Bottleneck at storage level
When the storage is the bottleneck, the situation is different because of the limitations
of the storage devices (Hypothesis 3): data cannot be read and written at the same time.
The storage is a bottleneck if it cannot read and write all the data received and sent on
the network during the same period of time (SReadSWrite

SRead+SWrite
< SNet).

4.3.1 Time to availability

The limitations on the storage, however, do not have any impact on the time to avail-
ability since leaving nodes only have to read data, and remaining nodes only have to
write it. Thus, the time to availability depends on the data to move during the data-
safekeeping phase Davail. and the reading and writing speeds of the storage devices
SRead and SWrite.

tavail. =

{
NDpr

rxSRead
if x≤ NSRead

SRead+SWrite
NDpr

r(N−x)SWrite
in other cases.

(Prop. 4)

Demonstration:
In the case of a reading bottleneck,

tavail. =
Davail.

xSRead

In case of a writing bottleneck,

RR n° 9229

14 Cheriere & Dorier & Antoniu

tavail. =
Davail.

(N− x)SWrite

A reading bottleneck occurs if

Davail.

xSRead
>

Davail.

(N− x)SWrite

(N− x)SWrite > xSRead

x <
NSRead

SRead +SWrite

QED

4.3.2 Stabilization time

Similar to the first case, when the bottleneck of the operation is reading data from the
leaving nodes, the storage of the remaining nodes is not saturated: these nodes can
read or write more data without slowing down the data-safekeeping process. Thus, the
remaining nodes can exchange data to start the stabilization before the data-safekeeping
finishes and without impact on the time to availability.

Each remaining node has some time toverlap to exchange data with other remaining
nodes in the data-safekeeping phase.

toverlap =

{
(N−x)SWrite−xSRead
x(N−x)SReadSWrite

if x≤ NSRead
SRead+SWrite

0 in other cases.
(Prop. 5)

Demonstration:
The available time to exchange data during the data-safekeeping phase is the

time to availability nodes minus the time needed to write the data onto storage.
In the case of a reading bottleneck:

toverlap = tavail.−Davail./(SWrite ∗ (N− x))

=
NSWrite− x(SWrite +SRead)

x(N− x)SReadSWrite
.

QED

We determine Se f f , the effective writing speed on the cluster when the remaining
nodes exchange data among themselves. Se f f is not simply the product of the number
of remaining nodes by their individual writing speed. Indeed, to exchange data among
themselves, remaining nodes also must read data.

Let R be the ratio of data read to data written during the stabilization. This ratio is
not equal to 1 in most cases because of the possibility of buffering data. When the data
is read, it can be buffered in memory and thus sent to multiple destinations with only
one read operation. The buffering relies on the bandwidth of the memory being a few
times higher than the bandwidth of the storage device. Thus, if the storage is in memory
and is the bottleneck, the ratio R is equal to 1 because the buffering is inefficient.

Inria

Lower bounds for the commission time 15

R =

1 in case of in-memory storage,
∑

r−1
i=1 pi

(r−1)pr+∑
r−1
i=1 ipi

in other cases.
(Prop. 6)

Demonstration:
The data that must be read is a replica from each of the objects that will be lost

when the leaving nodes leave except for the ones that have been transferred by the
leaving nodes (when objects have all their replicas on leaving nodes); those replicas
can be buffered upon reception from leaving nodes.

The data that must be written is all the data that was on the leaving nodes except
for the data that was written during the data-safekeeping phase: one replica for each
of the objects that were entirely stored on leaving nodes. QED

With the ratio R we deduce Se f f . Storage devices have their operation time divided
between reads and writes (they cannot read and write at the same time). The cluster
must also avoid imbalances between the data read and written. If too much data is
read compared with the data written, the amount of memory needed to store it before
writing it will increase. On the contrary, if too little data is read, the system will slow
since storage devices will have to wait for data to write. Thus, the ratio of data read on
data written during any given duration should be equal to R. From this we deduce Se f f .

Se f f =
(N−x)SWriteSRead

SRead+RSWrite
(Prop. 7)

Demonstration:
During a time t, data is read and written with a ratio R.
Let t = tRead + tWrite.

R =
tRead(N− x)SRead

tWrite(N− x)SWrite

tRead = t
RSWrite

SRead +RSWrite

S(e f f) is the amount of data written during t divided by t.

Se f f =
tWrite(N− x)SWrite

t

=
(N− x)SWriteSRead

SRead +RSWrite

QED

From the speed at which data is effectively exchanged on the cluster during the
stabilization (Prop. 7), the amount of data to write (Def. 2 and 3), the duration of the
overlap of data-safekeeping and stabilization (Prop. 5), and the time to availability
(Prop. 4), we deduce the stabilization time tstab..

tstab. =
D

N−x

(
R

SRead
+ 1

SWrite

)(
x− N pr

r

)
+ NDpr

r(N−x)Sw (Prop. 8)

RR n° 9229

16 Cheriere & Dorier & Antoniu

Demonstration:

tstab. = tavail.+
Dstab.−Davail.

Se f f
− toverlap

= tavail.+
Dstab.−Davail.

Se f f
− tavail.+

Davail.

(N− x)SWrite

=
D

N− x

(
R

SRead
+

1
SWrite

)
(x− N pr

r
)+

NDpr

r(N− x)Sw

QED

4.3.3 Observations

In the case of a storage bottleneck, the data-safekeeping phase and thus the effective
decommission of the leaving nodes can be completed a lot faster than with the standard
decommission. It is done, however, at the cost of a long stabilization phase: the leaving
nodes were reading data in the case of a standard decommission, reading that must be
done by remaining nodes in the case of a fast decommission. This situation implies
that, contrary to the case of a network bottleneck, the longer the leaving nodes stay in
the cluster, the faster the stabilization is. The stabilization cannot be faster than the
standard decommission since the standard decommission is the extreme case in which
the leaving nodes stay until the end of the stabilization.

During a fast decommission, the storage devices are fully saturated. Thus, servicing
any request can only slow the decommission.

In Figure 2, we show the lower bounds for the duration of a standard decommission
and of the data-safekeeping and stabilization phases of a fast decommission. Decom-
missioned nodes are available in a fraction of the time needed for a standard decom-
mission. However, it comes at the cost of having the distributed storage system unable
to operate for a longer time.

4.4 Core-hour usage

In Figure 3 we compare the usage of core-hours for the standard decommission and
the fast decommission in the case of a network bottleneck. Since the numbers are
based on the lower bounds for the duration of the operations, the figure represents the
lower bound for the core-hour consumption. We observe that using the fast decommis-
sion mechanism always reduces the core-hours consumption when the network is the
bottleneck. Moreover, the gain increases greatly with the number of decommissioned
nodes, and more than 50% of the core-hours consumption can be saved when many
nodes are decommissioned at once.

In Figure 4 we compare the core-hours needed for the decommission in the case of
a storage bottleneck. When few nodes are decommissioned at once (less than 8 in this
case), there are no benefits in using the fast decommission compared with the standard
decommission. When many nodes are decommissioned simultaneously, however, the
core-hours consumption can be reduced by more than 50%.

Inria

Lower bounds for the commission time 17

5 10 15

0
20

40
60

80
10

0

Decommissioned nodes (out of a 20−nodes cluster)

T
im

e
to

 d
ec

om
m

is
si

on
 (

s)

●
●

●
●

●
●

● ●
●

●

●

●

●

●
●

Storage bottleneck

Standard decommission
Data safekeeping
Stabilization

Figure 2: Lower bounds for the duration of the data-safekeeping and stabilization
phases compared with the lower bounds for the standard decommission in case of a
storage bottleneck. Each node initially hosts 50 GiB of data, and the reading and writ-
ing speed of the storage is set to 1.25 GiB/s.

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Decommissioned nodes (out of a 20−nodes cluster)

C
or

e
ho

ur
s

Core−hours

Fast decommission
Standard decommission

Figure 3: Lower bounds for the number of core-hours used during the data-safekeeping
and stabilization phases compared with the standard decommission in the case of a net-
work bottleneck. Each node initially hosts 50 GiB of data, and the network bandwidth
is set to 10 Gb/s to match the values observed on the hardware used for the experiments
in Section 5.

RR n° 9229

18 Cheriere & Dorier & Antoniu

5 10 15

0
1

2
3

4
5

Decommissioned nodes (out of a 20−nodes cluster)

C
or

e
ho

ur
s

Core−hours

Fast decommission
Standard decommission

Figure 4: Lower bounds for the number of core-hours used during the data-safekeeping
and stabilization phases compared with the standard decommission in the case of a stor-
age bottleneck. Each node initially hosts 50 GiB of data, and the storage bandwidths
are set to 207 MiB/s reading and 199 MiB/s writing to match the values observed on
the hardware used for the experiments in Section 5.

5 Experimental Validation

In this section, we use Pufferbench to study the fast decommission mechanism in prac-
tice.

5.1 Implementing fast decommission in Pufferbench

Pufferbench [7] is a modular benchmark designed to evaluate how fast one can rescale
a distributed storage system on a given infrastructure. We implemented the fast de-
commission mechanism in Pufferbench. Pufferbench computes and recreates on the
hardware all the I/O that are requiered for a rescaling operation. It emulates a dis-
tributed storage system for the duration of a rescaling operation.

The leaving nodes transfer to the remaining ones only the data that is exclusively
on them with high priority. The remaining nodes have to recreate the missing replicas;
however, the operation is done with a lower priority. The leaving nodes can leave the
cluster only after the data is on the storage device; they cannot leave if the data is only
buffered in memory.

We also made sure that the implementation of the fast decommission matches the
hypotheses presented in Section 3 in order to be able to safely compare the lower
bounds and the practical results.

Inria

Lower bounds for the commission time 19

2 4 6 8 10 12 14

0
50

10
0

15
0

Decommissioned nodes (out of a 20−nodes cluster)

D
ur

at
io

n(
s)

0
50

10
0

15
0

0
50

10
0

15
0

0
50

10
0

15
0

Lower bounds

Standard decommission
Data safekeeping
Stabilization

Results

Standard decommission
Data safekeeping
Stabilization

Figure 5: Data-safekeeping and stabilization times obtained with Pufferbench com-
pared with the lower bounds, in the case of a network bottleneck. Each node initially
hosted 50 GiB of data.

5.2 Experimental setup

All measurements were done on the French Grid’5000 [21] experimental testbed. Ex-
periments were done on the grisou cluster in Nancy. The cluster is composed of
51 nodes: Dell PowerEdge R630 with Intel Xeon E5-2630 v3 Haswell 2.40 GHz (2
CPUs/node, 8 cores/CPU), 128 GiB of RAM, and two 558 GiB HDD. The nodes are
all connected with a 10 Gb/s Ethernet network to a common Cisco Nexus 9508.

Pufferbench emulates a DSS that initially hosts 50 GiB per node. Ten measure-
ments per configuration of Pufferbench were done. The results are represented by
using box plots showing the minimum, the first quartile, the median, the third quartile,
and the maximum duration of the phases.

In order to create a network bottleneck, the data was stored in memory because
it has a bandwidth (6 GiB/s reading, 3 GiB/s writing) significantly higher than the
network’s bandwidth. Similarly, in order to generate a storage bottleneck, the data was
stored on the drives of the nodes (207 MiB/s reading, 199 MiB/s writing).

For each configuration (bottleneck and number of decommissioned nodes), ten
measures of decommission times were done for fast decommission and for standard
decommission.

5.3 Decommission when the network is the bottleneck

Figure 5 shows the duration of the data-safekeeping and stabilization phases when the
network is the bottleneck. The duration of the standard decommission has been added
for comparison.

RR n° 9229

20 Cheriere & Dorier & Antoniu

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Decommissioned nodes (out of a 20−nodes cluster)

C
or

e
ho

ur
s

no
rm

al
iz

ed

Fast decommission − Network
Fast decommission − Storage
Standard decommission

Figure 6: Core-hours needed to do a fast decommission on a cluster of 20 nodes nor-
malized by the standard decommission with the same bottleneck. The standard devia-
tion has been added.

2 4 6 8 10 12 14

0
20

0
40

0
60

0
80

0

Decommissioned nodes (out of a 20−nodes cluster)

D
ur

at
io

n(
s)

0
20

0
40

0
60

0
80

0
0

20
0

40
0

60
0

80
0

0
20

0
40

0
60

0
80

0 Lower bounds

Standard decommission
Data safekeeping
Stabilization

Results

Standard decommission
Data safekeeping
Stabilization

Figure 7: Data-safekeeping and stabilization times obtained with Pufferbench com-
pared with the lower bounds in the case of a storage bottleneck. Each node initially
hosted 50 GiB of data.

Inria

Lower bounds for the commission time 21

Compared with the lower bounds, the time to availability is on average 37% slower,
while the stabilization time is 32% slower. For the same configurations, the standard
decommission is, on average, 22% slower than its lower bound.

When few nodes are decommissioned (less than 6), the difference in duration be-
tween the two strategies is negligible. When many nodes are decommissioned at once,
however, there is a large difference between the standard decommission and the time
to stabilization. For example, the fast decommission is 12% slower than the standard
decommission when 14 nodes are decommissioned. The reason for this difference is
the stress on the network induced by the fast decommission. Indeed, during the fast
decommission, the remaining nodes have to send and receive data at the maximum
bandwidth speed in order to stabilize the system quickly. During the standard decom-
mission, however, the sending load is distributed not only on the remaining nodes but
also on the leaving nodes, reducing the overall load on each node. This difference does
not appear on the lower bounds because we assume that the network is ideal (Hyp. 2).

Figure 6 shows the number of core-hours consumed by decommission normalized
by standard decommission. In most cases, using the fast decommission reduce the us-
age in the number of core-hours. The gain in core-hours increases with the number
of decommissioned nodes. When most of the nodes are decommissioned at once, the
fast decommission uses only 50% of the core-hours required by the standard decom-
mission. The predictions about the core-hour usage (see Section 4.4) are confirmed by
these results.

When the network is the bottleneck, using fast decommission is a relevant
choice. Even if fault tolerance is temporarily reduced, the overall operation is
slightly slower, but there is a substantial gain in core-hours saved. This gain in-
creases with the number of decommissioned nodes.

5.4 Decommission when the storage is the bottleneck

The time to availability and the stabilization time obtained with Pufferbench in the
case of a storage bottleneck are presented in Figure 7. The duration of the standard
decommission has been added for reference.

On average, the time to availability is within 10% of the lower bounds, while the
stabilization time is within 9% of its lower bound. In comparison, the standard decom-
mission is within 17% of its lower bound. From these results, we deduce that the lower
bounds are sound and can almost be reached in practice.

Figure 6 shows the number of core-hours needed for the whole operation normal-
ized by the core-hours needed for a standard decommission. Using a fast decommission
offers no benefit in core-hours when the number of decommissioned nodes is low. In
this case, the core-hours needed to stabilize the system are canceling the benefits of
releasing the decommissioned nodes earlier. When a large number of nodes are de-
commissioned at once, however, the gain in core-hours can reach 50%. These results
are in line with the core-hours that lower bounds established in Section 4.4.

RR n° 9229

22 Cheriere & Dorier & Antoniu

Depending on the scenario, using fast decommission when there is a storage
bottleneck can be detrimental or risky. If most of the decommission concerns just
a few nodes, the fast decommission is detrimental: the fault tolerance is affected,
the whole operation is slower than a standard decommission, and there are no
gains in core-hours usage.

If many nodes are decommissioned at once, the gains in core-hours may be
worth the longer operation and the risk taken. However, the whole operation takes
a long time, during which the fault tolerance is not ensured; thus there is a greater
risk of losing data due to a crash.

6 Discussion
In this section, we discuss multiple aspects of the lower bounds.

6.1 Limiting the bandwidth
One can limit the bandwidth usage dedicated to the operation in order for the distributed
storage system to be able to still service client requests during the decommission. In
this case, SRead , SWrite, and SNet must be set to the allowed upper limit for the respective
bandwidth in order to obtain the corresponding lower bounds.

This limitation, however, increases the duration of the stabilization during which
fault tolerance is not ensured. Thus, the risk of losing data to crashes increases.

6.2 Using the lower bound as a model
As shown in Section 5, an efficient implementation of fast decommission exhibits a per-
formance that varies with the number of decommissioned nodes in a way similar to the
lower bounds. Thus, we can use the lower bound as a model for the fast decommission
to predict the duration of the different phases. For instance, in the case of the network
bottleneck, the lower bounds can be used as models with a coefficient of determination
of 0.979 for the time to preservation and 0.995 for the time to stabilization.

Once fitted to the decommission mechanism of a distributed storage system, the
model can be useful for resource managers to estimate the duration of a decommission
and evaluate whether it is interesting to decommission nodes, when to do so, and which
nodes to decommission.

6.3 Determining where the bottleneck is
The network is the bottleneck if it limits the storage in any situation: SNet < SRead .
Conversely, the storage is the bottleneck if it cannot read and write the data received
and sent on the network: SReadSWrite

SRead+SWrite
< SNet . From the two formulas, a situation exists

in which the network and the storage can be bottlenecks at the same time: storage
devices being the bottleneck for some nodes, while the network is the bottleneck for

Inria

Lower bounds for the commission time 23

some other nodes. Building a lower bound for such situations can be difficult. In this
case, using a tool such as Pufferbench can give accurate, practical results.

6.4 Preserving k > 1 replicas
For the lower bounds presented in Section 4, the fault tolerance is simply ignored dur-
ing the decommission: only one replica of each object is required. However, one may
want to be able to tolerate 0 < k−1 < r faults during the decommission. In this case,
at least k > 1 replicas of each object must be preserved on the remaining nodes before
the leaving nodes are released.

Lower bounds for this situation can be defined. In the case of a network bottleneck
(Prop. 9 and Fig. 8), the time to stabilization is the same as the standard decommission
which is also the time to stabilization when maintaining only one replica. For the time
to availability, we notice that receiving the data is always the bottleneck, indeed, due to
the uniform data distribution (Hypothesis 6), each and every node hosts some objects
that are also stored by leaving nodes, and they can replicate them among themselves.

tavail. =
k

∑
i=1

ipr−k+i
ND

r(N− x)SNet

tstab. =
xD

(N− x)SNet

(Prop. 9)

Demonstration:
Since the data is distributed uniformly on all nodes, all nodes host some data

that must be replicated during the data-safekeeping phase. The bottleneck is the
reception of the data (it holds as long as r ≥ 2). From this, we deduce tavail..

The rest of the data to transfer for the stabilization can be sent and received
with the same throughput by the remaining nodes. From this, we can deduce tstab..

QED

In the case of a storage bottleneck (Prop. 10 and 11, and Figure 9) the time to
availability is longer than when keeping only one replica. On the other hand, the time
to stabilization is shorter. Indeed, since the leaving nodes stay for a longer time, their
drives are used to read data during a longer duration, eventually reducing the reading
load on the drives of the remaining nodes. Note, however, that reaching the lower
bound of the stabilization time when k > 1 is hardly possible in practice since all the
data transferred during the preservation would have to be kept in a buffer to reduce the
reading overhead during the stabilization, which induces very large memory buffers.

Let Ravail. be the ratio of the amount of data to read on the amount of data to
write during the data-safekeeping phase.

Ravail. =

1 for in-memory storage
∑

k
i=1 pr−k+i

∑
k
i=1 pr−k+i

in other cases.

RR n° 9229

24 Cheriere & Dorier & Antoniu

5 10 15

0
20

40
60

80
10

0

Decommissioned nodes (out of a 20−nodes cluster)

T
im

e
to

 d
ec

om
m

is
si

on
 (

s)

● ● ●
●

●
●

●
●

●

●

●

●

●

●
●

Network bottleneck

Standard decommission
Data safekeeping with k=1
Stabilization with k=1
Data safekeeping with k=2
Stabilization with k=2

Figure 8: Lower bounds for the duration of the data-safekeeping and stabilization
phases compared with the lower bounds for the standard decommission in case of a
network bottleneck for k = 1 and k = 2. Each node initially hosts 50 GiB of data, and
the network bandwidth is set to 1.25 GiB/s.

tavail. =

{
∑

k
i=1 ipr−k+i

D
r

SRead+Ravail.SWrite
SWriteSRead

if x < Ravail.(N−x)SWrite
SRead

∑
k
i=1 ipr−k+i

ND
r(N−x)SWrite

in other cases.

(Prop. 10)

Demonstration:
The ratio of data read on the amount of data to be written is determined with pr:

if an object does not have enough replicas on the remaining nodes, a comparable
number of replicas must be moved. Thanks to buffering, however, each object can
be read once.

Then, the transfer rate in the cluster can be determined with Ravail. and with the
fact that the drives cannot read and write at the same time. Moreover, leaving nodes
do not have to write, so they can read data all the time. tavail. is deduced from these.

QED

Let Rstab. be the ratio of the amount of data to read on the amount of data to
write during the stabilization phase.

Rstab. =

0 in case of storage in-memory
∑

r−k
i=1 pi

∑
r
i=1 ipi−∑

k
i=1 ipr−k+i

in other cases.

Inria

Lower bounds for the commission time 25

5 10 15

0
20

40
60

80
10

0

Decommissioned nodes (out of a 20−nodes cluster)

T
im

e
to

 d
ec

om
m

is
si

on
 (

s)

●
●

●
●

●
●

● ●
●

●

●

●

●

●
●

Storage bottleneck

Classic decommission
Data safekeeping with k=1
Stabilization with k=1
Data safekeeping with k=2
Stabilization with k=2

Figure 9: Lower bounds for the duration of the data-safekeeping and stabilization
phases compared with the lower bounds for the standard decommission in case of a
storage bottleneck for k = 1 and k = 2. Each node initially hosts 50 GiB of data, and
the reading and writing speed of the storage is set to 1.25 GiB/s.

tstab. = tavail.+

(
r

∑
i=1

ipi−
k

∑
i=1

ipr−k+i

)
ND

r
Rstab.SWrite +SRead

(N− x)SReadSWrite

(Prop. 11)

Demonstration:
Similar to the demonstration of Prop. 10, the ratio of data read on the amount of

data written is determined with the pr. However, the data that has been read during
the data-safekeeping phase is assumed to have been buffered and does not need to
be read a second time.

Then, the transfer rate in the cluster can be determined with Rstab., and the fact
that the drives cannot read and write at the same time. tstab. is deduced from these
and tavail.. QED

7 Conclusion
Efficient decommission is needed to leverage malleability in distributed storage sys-
tems. In this work, we study fast decommission, a decommission mechanism that
makes the released nodes available to the resource manager as soon as possible by
relaxing the fault tolerance. We provide lower bounds for the various steps required

RR n° 9229

26 Cheriere & Dorier & Antoniu

for this decommission, and we validate them using a prototype implemented in Puffer-
bench.

We demonstrate that fast decommission allows to return the decommissioned nodes
to the resource manager in a fraction of the time required by standard decommission.
We show that in case of a network bottleneck, the duration of the whole operation
is only slightly longer than for a standard decommission, while the core-hour usage
is significantly reduced. In this situation, the choice of using fast decommission is
relevant and can be considered by distributed storage system designers.

In the case of a storage bottleneck, however, using a fast decommission to release
few nodes is detrimental to resource usage. The whole operation lasts longer than
standard decommission; and although the decommissioned nodes are returned faster to
the resource manager, there is no overall gain in core-hours.

In both cases, the more nodes are decommissioned at once, the higher the gain in
core-hours. However, this also leads to higher risks since the fault tolerance is weak-
ened for a longer period of time.

Using these lower bounds in order to design a resource manager fully aware of
distributed storage system malleability is a challenge left for future work.

Acknowledgment
The work presented in this paper is the result of a collaboration between the Ker-
Data project team at Inria and Argonne National Laboratory, in the framework of the
Data@Exascale Associate team, within the Joint Laboratory for Extreme-Scale Com-
puting (JLESC, https://jlesc.github.io).

Experiments presented in this paper were carried out on the Grid’5000 testbed, sup-
ported by a scientific interest group hosted by Inria and including CNRS, RENATER,
and several universities as well as other organizations (see https://www.grid5000.
fr).

This material is based upon work supported by the U.S. Department of Energy,
Office of Science under contract DE-AC02-06CH11357.

References
[1] A. Kuzmanovska, R. H. Mak, and D. Epema, “KOALA-F: A Resource Manager

for Scheduling Frameworks in Clusters,” IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, pp. 592–595, 2016.

[2] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov,
J. Yaniv, R. Mavlyutov, Í. Goiri, S. Krishnan, J. Kulkarni, and S. Roa, “Mor-
pheus: Towards Automated SLOs for Enterprise Clusters,” USENIX Symposium
on Operating Systems Design and Implementation, pp. 117–134, 2016.

[3] S. S. Vadhiyar and J. J. Dongarra, “SRS: A Framework for Developing Malleable
and Migratable Parallel Applications For Distributed Systems,” Parallel Process-
ing Letters, vol. 13, no. 2, pp. 291–312, 2003.

Inria

Lower bounds for the commission time 27

[4] L. V. Kale, S. Kumar, and J. Desouza, “A Malleable-Job System for Timeshared
Parallel Machines,” IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2002.

[5] J. Buisson, F. André, and J. Pazat, “A Framework for Dynamic Adaptation of Par-
allel Components,” International Conference Parallel Computing, pp. 1–8, 2005.

[6] N. Cheriere and G. Antoniu, “How Fast Can One Scale Down a Distributed File
System?” in BigData 2017, 2017.

[7] “Pufferbench,” gitlab.inria.fr/Pufferbench/Pufferbench, Accessed 18/07/18.

[8] N. Cheriere, M. Dorier, and G. Antoniu, “Pufferbench: Evaluating and Optimiz-
ing Malleability of Distributed Storage,” in Proceedings of the 3rd Joint Interna-
tional Workshop on Parallel Data Storage & Data Intensive Scalable Computing
Systems, 2018, to appear.

[9] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, “Ceph:
A Scalable, High-Performance Distributed File System,” in 7th Symposium on
Operating Systems Design and Implementation. USENIX Association, 2006,
pp. 307–320.

[10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File
System,” IEEE Symposium on Mass Storage Systems and Technologies, pp. 1–10,
2010.

[11] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and K. Schwan, “Ro-
bust and Flexible Power-Proportional Storage,” ACM Symposium on Cloud Com-
puting, pp. 217–228, 2010.

[12] E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: Practical Power-
Proportionality for Data center Storage,” Conference on Computer Systems, p.
169, 2011.

[13] X. Lianghong, C. James, K. Elie, T. Alexey, G. Nitin, K. Michael, and G. Gre-
gory, “SpringFS: Bridging Agility and Performance in Elastic Distributed Stor-
age,” USENIX Conference on File and Storage Technologies, pp. 243–255, 2014.

[14] B. Trushkowsky, P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Pat-
terson, “The SCADS Director: Scaling a Distributed Storage System under Strin-
gent Performance Requirements,” USENIX Conference on File and Storage Tech-
nologies, pp. 163–176, 2011.

[15] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham, B. Trushkowsky, J. Trutna,
and H. Oh, “SCADS: Scale-Independent Storage for Social Computing Applica-
tions,” in CIDR 2009, Fourth Biennial Conference on Innovative Data Systems
Research, 2009.

[16] H. C. Lim, S. Babu, and J. S. Chase, “Automated Control for Elastic Storage,”
International Conference on Autonomic Computing, pp. 1–10, 2010.

RR n° 9229

28 Cheriere & Dorier & Antoniu

[17] S. Balakrishnan, R. Black, A. Donnelly, P. England, A. Glass, D. Harper,
S. Legtchenko, A. Ogus, E. Peterson, A. Rowstron, P. England, R. Black, A. Don-
nelly, A. Glass, D. Harper, A. Ogus, E. Peterson, and A. Rowstron, “Pelican: A
Building Block for Exascale Cold Data Storage,” in Operating Systems Design
and Implementation, 2014, pp. 351–365.

[18] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Reliable, Memory Speed
Storage for Cluster Computing Frameworks,” in ACM Symposium on Cloud Com-
puting, 2014, pp. 1–15.

[19] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:
Cluster Computing with Working Sets,” HotCloud, vol. 10, no. 10, p. 95, 2010.

[20] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières,
S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, S. M. Rumble, E. Strat-
mann, and R. Stutsman, “The Case for RAMClouds: Scalable High-Performance
Storage Entirely in DRAM,” ACM SIGOPS Operating Systems Review, vol. 43,
no. 4, pp. 92–105, 2010.

[21] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jean-
voine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum, O. Richard, C. Pérez,
F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding Virtualization Capabilities to the
Grid’5000 Testbed,” in Cloud Computing and Services Science, 2013, vol. 367,
pp. 3–20.

The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. De-
partment of Energy Office of Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Government retains for itself, and oth-
ers acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in
said article to reproduce, prepare derivative works, distribute copies to the pub-
lic, and perform publicly and display publicly, by or on behalf of the Govern-
ment. The Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan.
http://energy.gov/downloads/doe-public-access-plan.

Inria

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

