Ahmed Bouajjani

Constantin Enea
email: cenea@irif.fr

Shuvendu Lahiri
email: shuvendu@microsoft.com

Semantic Diffing of Evolving Concurrent Programs

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The lifetime of a software module includes multiple changes that range from refactoring, addition of new features to bug or performance fixes. Such changes may introduce regressions which in general are hard to detect and may reveal themselves much later in the software's life-cycle. Dealing with this issue is particularly difficult in the context of concurrent programs, where the bugs are characterized by subtle interleaving patterns that tend to manifest in the field while passing an extensive testing phase.

Checking whether a change in a program is regression-free reduces to a standard, single-program, verification problem assuming a specification of the possible regressions is provided, for instance, using assertions. However, such specifications are rarely present in practice.

A different perspective, which avoids the need for specifications, would be to compare the two versions of a program (before and after the change) under a certain abstraction, which is precise enough to distinguish common specifications. Typical examples involve (bi)simulations, sets of reachable configurations 3 , and equality between input-output relations. Simulations define a partial order over the set of all programs (bisimulations define an equivalence relation), which in practice, relates very few programs across refactoring, bug-fixes, or adding new features. For instance, a transformation that is widely used in bug-fixing consists in reordering program statements within the same thread. For realistic programs, there exists no simulation relation between a program obtained by applying such a transformation and the initial version, or vice-versa. Therefore, using simulations as an indicator of regression-freeness, i.e., the new version is considered regression-free when it is simulated by the old version, would lead to too many false negatives. The same holds when comparing two programs with respect to their reachable sets of configurations. Comparing input-output relations is also not suitable in our context, because of the concurrency. Such relations are hard to compute and also, hard to use for checking regression-freeness, because of the non-determinism introduced by the thread scheduler.

In this paper we propose a new approach for comparing two closely related concurrent programs (subsequent versions of programs), which allows to relate more programs than simulations, for instance. The goal of this approach is to give feedback about interesting differences as opposed to noise from any change, without relying on user-provided assertions. From the perspective of concurrency, interesting differences concern, for instance, enabling new interferences from other threads (e.g., reading new values written by other threads), or new violations of atomicity (for some decomposition of the program in atomic blocks, which is implicit in the mind of the programmer).

The starting point of our approach is a program semantics based on traces [START_REF] Shasha | Efficient and correct execution of parallel programs that share memory[END_REF], which are compact representations of sets of interleavings. A trace is a graph where nodes represent read and write actions, and edges represent the program order, which relates every two actions executed by the same thread, and data-flow dependencies, i.e., which action writes the value read by a read action, and in which order values are written to the memory. A trace represents all the interleavings which are consistent with the program order and the data-flow dependencies. The traces of two programs can be compared assuming a matching relation between variables and statements in the two programs, such that matching statements read and respectively, write the same set of variables (modulo the variable matching). Roughly, if this matching relation is an isomorphism between two traces of different programs, then the sets of configurations reachable in the interleavings represented by these two traces are the same (modulo the constants used in the statements).

We define a partial order relation between programs based on abstract representations of sets of traces. We use abstract representations instead of sets of (concrete) traces because ordering programs with respect to the latter has the same disadvantages as the use of simulation relations or sets of reachable configurations (see Section 2 for an example). For instance, bug fixes based on statement reordering or modifying the placement of the synchronization primitives lead straightaway to incomparable sets of traces -the set of actions or the program order are different.

As a first abstraction step, we consider "projected" traces, where roughly, the program order and all the synchronization statements are omitted 4 . This allows us to expose differences that concern only the data-flow in the program and not, for instance, the order in which different variables are assigned, or the synchronization mechanisms used to constrain the interference between threads. Replacing lock/unlock primitives with wait/nofity or semaphores induces no difference with respect to sets of projected traces provided that the set of possible schedules remains the same.

Then, we define abstractions of sets of projected traces, called abstract traces. Every abstract trace contains a graph structure describing the union of the projected traces it represents. The nodes of this graph correspond to program statements and the edges correspond to data-flow dependencies present in some projected trace. We restrict ourselves to loop-free programs which implies that these graphs are of bounded size. Handling loops will require some predefined equivalence relation between statements, a node in the graph representing an equivalence class with respect to this relation. Adding information about which sets of dependencies are present together in the same projected trace allows to refine a given abstract trace. Abstract traces are parametrized by an integer k which bounds the size of the sets of dependencies that are tracked (whether they occur in the same trace). We define a partial order between abstract traces which essentially corresponds to the fact that every set of dependencies in one abstract trace occurs in the other one as well. An abstract trace not being "smaller" than another one implies that the set of concrete traces corresponding to the first one is not included in the set of concrete traces corresponding to the second one (and thus reveals a difference in thread interference). However, on the opposite side, the "smaller than" relation does not imply trace set inclusion unless k is big enough (roughly, the square of the program size). Instead, it can be thought of as an indicator for not introducing undesired behaviors, whose precision increases as bigger values of k are considered.

This abstraction framework enables a succinct representation of the difference between two programs. For a fixed k, the size of the abstract trace is polynomial in the size of the input program while the size of a complete set of traces is in general of exponential size. Small values of k allow to explain the difference between two programs in terms of small sets of dependencies that occur in the same execution, instead of a complete trace or interleaving.

We show that the problem of deciding the difference with respect to abstract traces of a fixed rank k between two versions of a loop-free program 5 (before and after a program transformation) can be reduced to a set of assertion checking queries. This reduction holds for programs manipulating arbitrary, possibly unbounded, data. The assertion checking queries can be discharged using the existing verification technology. In the context of loop-free boolean programs, we show that this problem has a lower asymptotic complexity than the problem of deciding the difference with respect to concrete sets of traces. More precisely, we prove that the first problem can be reduced to a polynomial number of assertion checking queries and that it is ∆ P 2 -complete, while the second problem is Σ P 2 -complete. (We recall that ∆ P 2 , resp., Σ P 2 , is the class of decision problems solvable by a polynomial time, resp., NP time, Turing machine augmented by an oracle for an NP-complete problem.) This complexity gap shows that the latter problem cannot be reduced to a polynomial number of assertion checking queries unless P=NP.

As a proof of concept, we have applied our framework to a benchmark used for the ConcurrencySwapper synthesis tool [START_REF] Cerný | Efficient synthesis for concurrency by semanticspreserving transformations[END_REF]. This benchmark consists of pairs of programs, before and after a bug fix, that model real concurrency bug fixes reported in the Linux kernel development archive (www.kernel.org). The reachability queries have been discharged using the LazyCseq tool [START_REF] Inverso | Bounded model checking of multi-threaded C programs via lazy sequentialization[END_REF][START_REF] Inverso | Lazy-cseq: A context-bounded model checking tool for multi-threaded c-programs[END_REF] (with backend CBMC [START_REF] Clarke | A tool for checking ANSI-C programs[END_REF]). These experiments show that comparing abstract traces for small values of k, i.e., k ∈ {1, 2}, suffices to detect interesting semantic changes while ignoring the irrelevant ones. Moreover, the semantic changes are presented succinctly as a small set of data-flow dependencies between program statements, instead of a complex interleaving. This facilitates the task of spotting bugs by allowing the programmer to focus on small fragments of the program's behavior.

Motivating examples

We provide several examples to illustrate the abstract semantic diffing framework proposed in this paper and its potential use in verifying concurrency bug fixes.

The program on the left of Fig. 1 is a typical concurrency bug found in device drivers [START_REF] Cerný | Efficient synthesis for concurrency by semanticspreserving transformations[END_REF], where the second thread may read an uninitialized value of x (initially, all variables are 0). Since the second thread runs only when flag is set to 1, fixing such a bug consists in permuting the two instructions in the first thread such that x is initialized before flag is set to 1. The modified version is listed on the right of Fig. 1. Note that the two versions (before and after the fix) have incomparable sets of reachable configurations: the configuration (flag = 1, x = 0) is reachable in the first program but not in the second, and (flag = 0, x = 1) is reachable in the second but not in the first one. This also implies that there exists no simulation relation from the fixed version to the buggy one, or vice-versa.

Our approach compares abstract representations of data-flow dependencies [START_REF] Shasha | Efficient and correct execution of parallel programs that share memory[END_REF] in the two programs. These dependencies come in two forms:

read-from dependencies from actions writing to a variable to actions reading that variable (specifying the write that a read receives its value from), and store-order dependencies which specify the order in which writes to the same variable are executed in the memory.

The bottom part of Fig. 1 pictures an abstract trace for each of the two programs where only individual dependencies are tracked (whether they occur in some trace), i.e., of rank 1. We can notice that the set of dependencies in the fixed version is a strict subset of the set of dependencies in the original (buggy) version. This fact suggests that the bug fix has removed some behaviors but introduced none. This is not a theoretical guarantee but its likelihood can be increased by considering abstract traces of bigger ranks. Moreover, the difference between the abstract trace of the buggy version and the one of the fixed version consists of one read-from dependency, from a fictitious write which assigns initial values to the variables, to the read of x in y = x. This dependency is a succinct description of all the interleavings containing the bug, which read an uninitialized value of x. The fact that this dependency doesn't occur anymore in the fixed version implies that the buggy behaviors have been removed. In general, exposing the difference between the data-flow in two programs may require computing sets of data-flow dependencies occurring in the same execution of one program and not the other one, i.e., abstract traces of rank k > 1. Fig. 2 lists two programs doing two parallel increments of a shared variable x, without synchronization on the left and protected by locks on the right. In this case, there exists no data-flow dependency admitted only by the first program or only by the second, i.e., the abstract traces of rank 1 are identical. However, there exists a pair of data-flow dependencies which occur in the same execution of the buggy program (that has no synchronization) and not in the corrected one (that uses locks): the two reads of x (from the assignments to temp1 and temp2) can both take their value from the initial state. Our framework allows to witness such differences for fixed values of the rank k.

Multi-Threaded Programs

We consider a simple multi-threaded programming model in which each thread executes a bounded sequence of steps corresponding to assignments, boolean Buggy program:

temp1 = x; x = temp1 + 1; || temp2 = x; x = temp2 + 1; Corrected program: lock; temp1 = x; x = temp1 + 1; unlock; || lock; temp2 = x; x = temp2 + 1; unlock temp1 = temp2 = x = 0 temp1 = x x = temp1 + 1 temp2 = x x = temp2 + 1 rf rf rf rf so so rf rf temp1 = temp2 = x = 0 temp1 = x x = temp1 + 1 temp2 = x x = temp2 + 1 rf rf rf rf so so rf rf
Fig. 2. Two programs doing two parallel increments of x. The bottom part of the figure pictures their abstract traces of rank 1. For readability, the so dependencies starting from the assignment representing initial values are omitted. Considering abstract traces of rank 2, the pair of red rf dependencies belongs to the abstract trace of the buggy program but not to that of the correct version. The second program is a refinement of rank 2 of the first one because it has less (pairs of) dependencies which occur in some execution. The reverse doesn't hold. tests, and synchronization primitives. The semantics of a program is defined as a set of traces [START_REF] Shasha | Efficient and correct execution of parallel programs that share memory[END_REF], which are partially-ordered sets of read or write actions.

Let Vars be a set of variables. The grammar of Fig. 3 describes our language of multi-threaded programs. For generality, we leave the syntax of expressions e in assignments and assume statements unspecified. We allow expressions e = * where * is the (nullary) non-deterministic choice operator. Note that if-then-else conditionals can be modeled using assume statements and the non-deterministic choice. To simplify the exposition, we assume that the same variable doesn't appear in both the left and the right part of an assignment (e.g., we forbid assignments of the form x := x + 1). This simplifies the trace semantics given hereafter, and it could be removed assuming that the program is first rewritten to static single assignment form. Also, we consider a minimal set of synchronization statements, lock/unlock over a unique lock object. However, our approach easily extends to any class of synchronization primitives. The set of variables in a statement s, resp., a program P , denoted by Vars(s), resp., Vars(P), is defined as usual. The set of statements s over a set of variables V ⊆ Vars is denoted by Stmts(V). The set of statements of a program P is denoted by Stmts(P). When all the variables range over the booleans, the program is called a boolean program.

Program configurations are variable valuations, and program executions are defined as usual, as interleavings of statements (we assume a sequentially consistent semantics). In the following, we define representations of program executions called traces. For a variable x, W(x) is the set of assignments to x and R(x) is the set of assume e statements where e contains x together with the set of assignments reading the variable x (i.e., x occurs in the right part). We assume that Stmts(P) contains a fictitious statement init assigning initial values to all the program variables. We have that init ∈ W(x) for every x. The synchronization primitives lock and unlock are interpreted as both a read and a write of a distinguished variable l. Thus, W(l) = R(l) = {lock, unlock}.

Essentially, a trace consists of three relations over the program statements, which represent the data and control dependencies from a program execution. The store order so represents the ordering of write accesses to each variable, and the read-from relation rf (from writes to reads) indicates the assignment that a read receives its value from. The program order po represents the ordering of events issued by the same thread. These relations represent a sequentially consistent execution when their union is consistent with the composition of rf and so (known also as the conflict relation).

Definition 1 (Trace).

A trace of program P is a tuple t = (S, po, so, rf) where S ⊆ Stmts(P), init ∈ S, and po, so, and rf are binary relations over S such that:

1. po relates statements included in the same thread, 2. so relates statements writing to the same variable, i.e., so ⊆ x ((S ∩ W(x)) 2 , and for each variable x, it defines a total order between the writes to x where init is ordered before all the other writes, 3. rf relates writes and reads to the same variable, i.e., rf ⊆ x (S ∩ W(x)) × (S ∩ R(x)), and associates to every read of a variable x a write to x, i.e., the inverse of rf is a total function from S ∩ R(x) to S ∩ W(x), and 4. the union of po, so, rf , and rf • so, is acyclic.

For a program P , let Traces(P) be its set of traces. Figure 4 lists two programs and their sets of traces.

Abstracting Traces

We are interested in comparing the set of behaviors of two programs according to abstract representations of traces. These representations are defined in two steps. We first define a projection operator that removes a given set of statements (defined by a set of variables), e.g., synchronization primitives, and the program order from all the traces of a given program 6 . Such a projection operator focuses on the differences in cross-thread data-flow interferences, and ignores details that are irrelevant for standard safety specifications (which are agnostic for instance to the state of the synchronization objects). Then, we define an abstract domain for representing sets of traces obtained through projection, which is based on a graph structure describing the union of all the traces in a given set. For a program P , a set V of variables is called closed when P doesn't include a statement s that uses both a variable in V and a variable outside of V , i.e., Vars(s) ⊆ V or Vars(s) ∩ V = ∅ for each s ∈ Stmts(P). For example, in the case of the programs in Fig. 4, the set of variables {x, y, z} is closed, and {x, y} is not closed because of the statement z := x + y. For a closed set of variables V , a V -trace of P is a tuple t = (Stmts(V) ∩ S, so, rf) obtained from a standard trace t = (S, po , so , rf) of P by preserving only the statements over the variables in V and removing the program order, i.e., so = so ∩ (Stmts(V) ∩ S) 2 and rf = rf ∩ (Stmts(V) ∩ S) 2 . Since V is closed, the relations so and rf in t satisfy the properties (2) and (3) in Definition 1.

The set of all V -traces of a program P is denoted by Traces[V](P). For example, the programs in Fig. 4 have the same set of V -traces where V = {x, y, z}. This holds because V -traces don't contain the lock/unlock statements and the program order.

We define a parametrized abstraction for a set of V -traces that contains all the statements in those traces, the union of the store order, resp., read-from, relations, and for a parameter k, all the non-singleton sets of so or rf dependencies of size at most k that occur together in the same V -trace. As the parameter k increases, the abstraction is more precise. For two sets A and B, and

k ≥ 2, P k (A, B) is the set of pairs (A , B) where A ⊆ A, B ⊆ B, and 2 ≤ |A ∪ B | ≤ k.
Definition 2 (Abstract trace). For k ≥ 1, an abstract trace of rank k is a tuple t = (S, so, rf , sets) where S is a set of statements with init ∈ S and so and rf are two relations over statements in S such that so ⊆ x (S ∩ W(x)) 2 , rf ⊆ x (S ∩ W(x)) × (S ∩ R(x)), and for every variable x,

• so contains (s 1 , s 2) or (s 2 , s 1), for every two assignments s 1 , s 2 ∈ S ∩ W(x), and • every read on x is related by rf to at least one assignment to x sets = ∅ if k = 1, and sets ⊆ P k (so, rf), otherwise. When k ≥ 2, we assume that

A 1 ∪ B 1 ⊆ A 2 ∪ B 2 for all (A 1 , B 1), (A 2 , B 2) ∈ sets.
The elements of sets are called k-clusters.

The relations so and rf represent the union of the store order and read-from relations in a given set of V -traces, respectively. Therefore, so is not necessarily a total order, and the inverse of rf is not necessarily a total function, when considering statements that assign or read the same variable (i.e., they don't satisfy the properties (2) and (3) in Definition 1). Also, to avoid redundancy, we assume that the elements of sets are incomparable. Fig. 1 and Fig. 2 contain examples of abstract traces.

The concretization of an abstract trace t of rank k, denoted by γ(t), is the set of traces formed of some dependencies in t and which contain at least one set of dependencies in sets, if k ≥ 2. Formally, γ(t) for an abstract trace t = (S, so, rf , sets) of rank k is the set of V -traces t = (S , so, rf) where S ⊆ S, so ⊆ so, rf ⊆ rf , and if k ≥ 2, then u| 1 ⊆ so and u| 2 ⊆ rf for some u ∈ sets. We use u| i to denote the i-th component of the tuple u. Note that a trace in the concretization of t may not necessarily use all the statements in t.

We define an order relation ≤ between abstract traces, which requires that they contain the same set of statements and the "smaller" trace contains less dependencies or sets of dependencies.

Definition 3 (Order relation).

For k ≥ 1 and two abstract traces t 1 = (S, so 1 , rf 1 , sets 1) and t 2 = (S, so 2 , rf 2 , sets 2) of rank k, t 1 ≤ t 2 iff so 1 ⊆ so 2 , rf 1 ⊆ rf 2 , and sets 1 ⊆ sets 2 .

Lemma 1. The order relation ≤ defines a lattice over the set of abstract traces.

Interference Refinement

We define a notion of refinement between two programs, called interference refinement (or refinement for short), which holds under the assumption that the two programs are structurally similar. Essentially, we assume that there exists a mapping between variables in the two programs, and a mapping between statements, such that every two related statements read and respectively, write the same set of variables (modulo the variable mapping). Then, interference refinement is defined as the inclusion of V -trace sets for some set of variables V (modulo the statement mapping). We then give an abstract notion of interference refinement that uses abstract traces instead of sets of V -traces.

Let P 1 and P 2 be two programs, and V 1 and V 2 closed sets of variables of P 1 and P 2 , respectively. A pair (ν, σ) is called a statement matching when ν : V 1 →V 2 is a bijection and σ :

Stmts(P 1) ∩ Stmts(V 1) → Stmts(P 2) ∩ Stmts(V 2) is a bijection such that s ∈ W(x) iff σ(s) ∈ W(ν(x)) and s ∈ R(x) iff σ(s) ∈ R(ν(x)) for each s ∈ Stmts(P 1) ∩ Stmts(V 1) and x ∈ V 1 .
To simplify the exposition, in the rest of the paper, we consider statement matchings where ν and σ are the identity. Extending our notions to the general case is straightforward.

Let P 1 and P 2 be two programs, and V a set of variables which is closed for both P 1 and P 2 .

Definition 4 (V -Refinement). A program P 1 is a V -interference refinement (or V -refinement for short) of another program P 2 iff Traces[V](P 1) ⊆ Traces[V](P 2). Also, P 1 and P 2 are V -interference equivalent (or V -equivalent for short) iff P 1 is a V -interference refinement of P 2 and vice-versa.

We define an approximation of V -refinement, called (V, k)-refinement, that compares abstract traces of rank k instead of concrete sets of V -traces. More precisely, (V, k)-refinement compares abstract traces that represent the V -traces of a program in the following sense: the sets of dependencies in the abstract trace are not spurious, i.e., they do occur together in a concrete V -trace, and the abstract trace contains all the sets of dependencies up to size k that occur in the same V -trace. Forbidding spurious (sets of) dependencies guarantees that V -refinement doesn't hold when the approximated version doesn't hold, while completeness allows to prove that the approximated version does imply V -refinement for big enough values of k. Definition 5. An abstract trace t = (S, so, rf , sets) of rank k represents a program P for a closed set of variables V when for every two statements s 1 , s 2 ∈ S, (s 1 , s 2) ∈ so, resp., (s 1 , s 2) ∈ rf , iff there exists a V -trace t = (S , so, rf) ∈ Traces[V](P) such that (s 1 , s 2) ∈ so, resp., (s 1 , s 2) ∈ rf , and if k ≥ 2, then for each u ∈ P k (so, rf), u ∈ sets iff there exists a V -trace t = (S , so, rf) ∈ Traces[V](P) such that u ∈ P k (so, rf).

For any abstract trace t representing a program P for a closed set of variables V , we have that Traces[V](P) ⊆ γ(t).

Definition 6 ((V, k)-Refinement/Equivalence). A program P 1 is a (V, k)refinement of another program P 2 iff there exist t 1 and t 2 two abstract traces of rank k representing P 1 and P 2 for the set of variables V , respectively, such that t 1 ≤ t 2 . Also, P 1 and P 2 are (V, k)-equivalent iff P 1 is a (V, k)-refinement of P 2 and vice-versa.

When V is understood from the context, we may use refinement of rank k instead of (V, k)-refinement.

Example 1. Distinguishing two programs with respect to the notion of (V, k)equivalence may require arbitrarily-large values of k (these values are however polynomially bounded by the size of the programs). Indeed, we show that there exist two programs which are (V, k -1)-equivalent but not (V, k)-equivalent, for each k ≥ 2.

Fig. 5 lists two programs that make k parallel increments to a variable x, for an arbitrary k ≥ 2. The increments are non-atomic in the first program, and protected by a semaphore s initialized with k -1 permits in the second program (acquire acquires a permit from the semaphore, blocking until one is available, while release returns one permit to the semaphore) 7 . The first program admits all the executions of the second one and one more execution where all the k threads read the initial value of x. Therefore, the first program has a trace that contains the set of read-from dependencies from init to each assignment temp1 = x,. . .,tempk = x (the k read-from dependencies marked in red in Fig. 5). This is not true for the second program where the semaphore synchronization disallows such a trace.

Let us consider the closed set of variables V = {x, temp1, . . . , tempk}. Every set of at most k -1 so or rf dependencies occur together in the same V -trace of one program iff this holds for the other program as well. Therefore, the two programs are (V, k -1)-equivalent. However, the two programs are not (V, k)equivalent, more precisely, the first program is not a (V, k)-refinement of the second one. The abstract trace representing the first program contains a k-cluster which is the set of read-from dependencies from init to each assignment temp1 = x,. . .,tempk = x.

A direct consequence of the definitions is that V -refinement and (V, k)refinement coincide for big enough values of k. The number of read-from and respectively, store-order dependencies, in a V -trace is bounded by |Stmts(P) ∩ Stmts(V)| 2 . Therefore, there exist at most 2 2•|Stmts(P)∩Stmts(V)| 2 V -traces, which implies that V -refinement and (V, k)-refinement coincide when k reaches this bound. Otherwise, we have only that V -refinement implies (V, k)-refinement.

Theorem 1. For every k ≥ 1, P 1 is a (V, k)-refinement of P 2 when P 1 is a V -refinement of P 2 . Moreover, there exists k ≤ 2 2•|Stmts(P)∩Stmts(V)| 2 such that P 1 is a V -refinement of P 2 iff P 1 is a (V, k)-refinement of P 2 .

Checking Interference Refinement

We show that checking whether a program is not a (V, k)-refinement of another one, for some closed set of variables V and some k ≥ 1, is polynomial time reducible to assertion checking. This reduction holds for programs manipulating data coming from arbitrary, not necessarily bounded, domains. Instantiating this reduction to the case of boolean programs, we get that this problem is in ∆ P 2 when k is fixed, and in Σ P 2 , otherwise. We show that these upper complexity bounds match the lower bounds. As a corollary, we get that deciding whether a program is not a V -refinement of another one is also Σ P 2 -complete. we omit some of the so dependencies for readability. The abstract trace of rank k of the first program contains a k-cluster which is the set of read-from dependencies marked in red (they occur in the same trace) while this is not true for the second program.

The following intermediary result shows that checking whether a fixed set of data-flow dependencies occur together in some V -trace of a program P is reducible to assertion checking in an instrumentation of P . The instrumentation uses a set of boolean flags to witness the order between two assignments on the same variable, in the case of store order dependencies, or that an assignment on a variable x is the last such assignment before a statement reading the value of x, in the case of read-from dependencies. For instance, let us consider a fragment with three threads of the first program in Fig. 5.

temp1 = x; [x = temp1 + 1; rf_saw_first = true;] || temp2 = x; [x = temp2 + 1; if (rf_saw_first && !rf_saw_second) rf_saw_write = true;] || [temp3 = x; if (rf_saw_first && !rf_saw_write) rf_saw_second = true;] x = temp3 + 1;
The read-from dependency from the write to x in the first thread to the read of x in the third thread can be witnessed using three boolean flags rf saw first, rf saw write, and rf saw second, which are initially false and which are updated atomically with the program's statements. The flag rf saw second is true for all executions whose trace contains this read-from dependency (and only for these executions) 8 . For readability, we use brackets instead of synchronization primitives to delimit atomic sections.

The flag rf saw first is set to true when the write in the first thread happens, rf saw write is set to true when any other write to x, i.e., the write to x in the second thread, happens after the one in the first thread, and rf saw second is set to true when the read of x in the last thread happens, provided that the write in the first thread was the last write to x before this read (which is equivalent to rf saw write being false). Dealing with store-order dependencies is simpler, it requires only two flags so saw first and so saw second to witness that a write happens before another one. Then, witnessing a set of data-flow dependencies can be done by adding such flags for each dependency, independently. Note that the placement of the instructions that set or check these flags is only based on syntax and their addition is easy to automate.

In formal terms, let

D rf ⊆ x (Stmts(V) ∩ W(x)) × (Stmts(V) ∩ R(x))
and

D so ⊆ x (Stmts(V) ∩ W(x)) × (Stmts(V) ∩ W(x))
be two sets of read-from, resp., store-order dependencies, and let D = D rf ∪ D so . For each (s For a fixed k, checking (V, k)-refinement needs to consider only fixed size sets of dependencies. Therefore, the following holds.

Theorem 2. Let P 1 and P 2 be two programs. Checking whether P 1 is not a (V, k)-refinement of P 2 is polynomial time reducible to assertion checking.

Proof. The program P 1 is not a (V, k)-refinement of P 2 iff there exists a set of dependencies D (of size at most k) such that D occur together in some V -trace of P 1 , but no V -trace of P 2 . Since the number of possible sets D is polynomial backend CBMC [START_REF] Clarke | A tool for checking ANSI-C programs[END_REF]) for checking the assertions. LazyCseq is a bounded model checker that explores round-robin schedules up to a given bound on the number of rounds. We have used a bound of 4 for the number of rounds, which was enough to compute abstract traces that represent the considered programs (according to Definition 5). We have checked manually that these abstract traces are complete, i.e., that they contain all the sets of dependencies which occur in the same V -trace (up to the given bound). The fact that they don't contain spurious sets of dependencies is implied by the completeness of the bounded model checker.

All the bug fixes except i2c-hid and i2c-hid-noA that consist in adding locks, are based on statement reordering 11 . This allowed us to consider closed sets of variables that consist of all variables except variables of type lock, and statement matchings (ν, σ) where ν and σ are the identity.

The results are reported in Table 1. Each line corresponds to a pair of programs, the version before and after a bug fix or a set of bug fixes implemented during the evolution of a Linux driver, r8169, i2c-hid, or rtl8169. We list the number of lines of code (loc) and the number of threads of the original version (before the bug fix). Checking refinement of rank 1 requires enumerating all pairs of statements accessing the same variable, at least one being a write, called possible dependencies, and verifying whether they occur in some execution of the original or the fixed version. To indicate the difficultly of the benchmark we give the number of such possible dependencies, or sets of possible dependencies of size at most k, when k > 1. Note that the number of possible dependencies is usually much smaller than the square of the number of statements. All measurements were made on a MacBook Pro 2.5GHz Intel Core i7 machine.

We consider several values of k for each example and in all cases we get that the fixed version is a refinement of rank k of the buggy version. Also, except for i2c-hid-noA with k = 1, the abstract trace of the correct version is strictly smaller than the one of the buggy version. The i2c-hid example contains some assertions that fail only in the buggy version. These assertions participate in read-from dependencies which allow to distinguish the buggy from the corrected version with abstract traces of rank 1. Removing these assertions requires abstract traces of rank 2 to distinguish the two versions. This fact is demonstrated in the i2c-hid-noA example which is exactly i2c-hid without those assertions.

These results indicate that comparing abstract traces of small ranks is enough to reveal interesting behaviors, in particular bugs (the abstract trace of the buggy version is always different from the one of the corrected version). Therefore, (V, k)-refinement for small values of k is a relevant indicator of regression-freeness. Note however that there is no theoretical connection between abstract trace difference and the presence of bugs. Moreover, (V, k)-refinement continues to hold when k is increased, as shown by the results in Table 1.

The difference between the abstract traces of the original and the fixed version, respectively, consists of few (sets of) dependencies. For the first three examples and k = 1, the difference consists of a single read-from dependency showing that a particular variable gets an uninitialized or undesired value (like in the example from Figure 1). In the case of the fourth example when assertions are present, the difference between abstract traces of rank 1 consists of 2 read-from dependencies which correspond to two failing assertions. When assertions are removed, i.e., in the example i2c-hid-noA, the difference between the abstract traces of rank 2 consists of few pairs of dependencies similar to the example in Figure 2. The buggy version of the example rtl8169 contains 3 bugs that are repaired in the correct version. The difference between the abstract traces contains an explanation for each bug.

The running time increases with the number of threads and possible dependencies. However, since the presence of a set of dependencies (in some execution) reduces to an independently-checkable assertion, the verification process is easily parallelizable. Also, we didn't use assertion checking to exclude some dependencies that are obviously not feasible because of thread creation/join (i.e., reading from a write that belongs to a thread not yet created). As future work, we plan to investigate static analyses for filtering out such dependencies.

Related work

The work on refinement checking [START_REF] Abadi | The existence of refinement mappings[END_REF] provides a general framework for comparing traces of two programs. However, in most instances one of the programs serves as a specification with very limited concurrency.

Joshi et al. [START_REF] Joshi | Underspecified harnesses and interleaved bugs[END_REF] checks if a given concurrent program fails an assertion more often on an input compared to another concurrent program -the second program is usually limited to sequential interleavings only. Our approach does not require the presence of assertions to compare the two concurrent programs as it exploits the structural similarity between the two programs. The work closest to ours is the work on regression verification for multi-threaded programs [START_REF] Chaki | Regression verification for multi-threaded programs (with extensions to locks and dynamic thread creation)[END_REF]. This paper proposes a proof rule to prove that the input-output relations for two multithreaded programs are the same. This approach cannot distinguish between two transformations that introduce and respectively, remove a bug. In both cases, the proof rule will fail to establish equivalence w.r.t. the input-output relation.

Generalizations of good or bad program executions using partial orders have been previously used in the context of assertion checking or program synthesis [START_REF] Cerný | Efficient synthesis for concurrency by semanticspreserving transformations[END_REF][START_REF] Cerný | Regression-free synthesis for concurrency[END_REF][START_REF] Farzan | Inductive data flow graphs[END_REF]. The notion of trace robustness proposed in the context of weak memory models [START_REF] Bouajjani | Robustness against relaxed memory models[END_REF][START_REF] Burckhardt | Effective program verification for relaxed memory models[END_REF] compares a program running under a weak memory model with the same program running under Sequential Consistency (SC). The focus there is to check if a program admits behaviors which are not possible under SC while our goal is to compare two programs running under SC.

There has been interest in applying program analysis towards the problem of comparing two versions of a program, in the context of sequential programs. Jackson and Ladd [START_REF] Jackson | Semantic diff: A tool for summarizing the effects of modifications[END_REF] used the term semantic diff to compare two sequential programs in terms of the dependency between input and output variables. For most concurrency related transformations, such a metric is unlikely to yield any difference. There has been work on equivalence checking of sequential executions across program versions using uninterpreted function abstraction and program verifiers [START_REF] Godlin | Inference rules for proving the equivalence of recursive procedures[END_REF][START_REF] Shuvendu | Symdiff: A language-agnostic semantic diff tool for imperative programs[END_REF]. Verification Modulo Versions [START_REF] Shuvendu | Differential assertion checking[END_REF][START_REF] Logozzo | Manuel Fähndrich, and Sam Blackshear. Verification modulo versions: towards usable verification[END_REF] compares two sequential programs w.r.t. a set of assertions. Differential symbolic execution [START_REF] Person | Differential symbolic execution[END_REF] summarizes differences in summaries of two procedures, and Marinescu et al. [START_REF] Paul | KATCH: high-coverage testing of software patches[END_REF] use symbolic execution for generating tests over program differences.

Conclusions

We have presented an approach for comparing two closely related concurrent programs whose goal is to give feedback about interesting differences, without relying on user-provided assertions. This approach is based on comparing abstract representations of the data-flow dependencies admitted by two subsequent versions of the same program. This comparison is reducible to assertion checking which enables the reuse of the existing verification technology.

As future work, we plan to investigate static analyses for discarding dataflow dependencies which are not interesting or not feasible. This can be also used to minimize the number of assertion checking queries when checking (V, k)refinement. Moreover, we consider extending our theory to programs that contain loops where the main difficulty is that traces contain an unbounded number of copies of the same statement (when inside a loop). The idea would be define a new abstraction of traces that collapses together occurrences of the same statement from multiple iterations of a loop. On the practical side, we aim at a more thorough experimental evaluation of this approach in the context of other program transformations. On one side, we plan to consider more general program edits than reordering statements or modifying synchronization primitives which need to consider more general statement matchings than the identity. Also, we plan to investigate other classes of program transformations besides bug-fixing, such as refactoring, addition of new features or performance fixes. For instance, in the context of performance fixes, the new version of the program may allow more behaviors (interleavings). Our approach would produce a succinct representation of the new behaviors (in terms of small sets of dependencies), which may help in validating their correctness.

Fig. 1 .

 1 Fig.1. The program on the left is considered buggy since there exists an execution where y takes an uninitialized value of x. The second program fixes this bug by permuting the statements in the first thread. The bottom part of the figure pictures their abstract traces of rank 1. Read-from, resp., store-order, dependencies are represented by edges labeled with rf , resp., so. The second program is a refinement of rank 1 of the first one, but the reverse is not true.

sFig. 3 .

 3 Fig.3. The syntax of our language. Each program P is the parallel composition of a fixed number of threads -; denotes the sequential composition and [] the non-deterministic choice between two control-flow paths. Also, x ∈ Vars and e is an expression over Vars.

Fig. 4 .

 4 Fig.4. Two programs over the same set of statements but with different program orders, and different sets of traces. For readability, we write x=y=z=0 instead of init for the statement that assigns initial values to variables, and we omit lock/unlock statements.

Fig. 5 .

 5 Fig.5. Two programs doing k parallel increments of x. The two programs have the same abstract trace of rank 1 which is partially given in the bottom part of the figure; we omit some of the so dependencies for readability. The abstract trace of rank k of the first program contains a k-cluster which is the set of read-from dependencies marked in red (they occur in the same trace) while this is not true for the second program.

 1 , s 2) ∈ D, P is instrumented with two boolean variables saw first[s 1 , s 2] and saw second[s 1 , s 2] such that saw first[s 1 , s 2] is atomically set to true when s 1 is executed, and saw second[s 1 , s 2] is atomically set to true when s 2 is executed, provided that saw first[s 1 , s 2] is already true. Additionally, when (s 1 , s 2) ∈ D rf , a variable saw write[s 1 , s 2] is set to true whenever saw first[s 1 , s 2] is true, saw second[s 1 , s 2] is false, and a statement writing to the same variable as s 1 is executed. Also, saw second[s 1 , s 2] is set to true when additionally, saw write[s 1 , s 2] is false (this is to ensure that s 1 is the last write before s 2). The instrumented program is denoted by P [D]. There exists a V -trace t = (S, so, rf) of P such that D r f ⊆ rf and D so ⊆ so iff P [D] reaches a program configuration where saw second[s 1 , s 2] is true for all (s 1 , s 2) ∈ D.

	Lemma 2.

Table 1 .

 1 Experimental data for checking (V, k)-refinement. The size of the difference between the abstract trace of the original (buggy) and the fixed version, respectively, is the number of (sets of) dependencies occurring in one and not the other.

	Name	#loc	#threads	k	# (sets of)	size of the	Time
					possible de-	difference	
					pendencies		
	r8169-1	24	2	1/2/3	6/21/41	1/5/11	6.35s/12.93s/20.27s
	r8169-2	25	2	1/2/3	6/21/41	1/5/11	4.93s/10.22s/16.44s
	r8169-3	33	3	1/2/3	3/6/7	1/3/3	2.74s/5.43s/8.03s
	i2c-hid	27	2	1	27	2	45.65s
	i2c-hid-noA	27	2	1/2	27/237	0/4	42.34s/24.3m
	rtl8169	256	7	1	94	3	37.27m

Our framework is not bound to a specific set of program order constraints and statements to be preserved in the projected traces -they can be chosen arbitrarily.

This reduction can be applied to arbitrary programs assuming a bounded unrolling of loops.

Our framework can be extended such that the projection operator removes only a user-specified fragment of the program order.

The simple syntax we considered in Section 3 doesn't include acquire/release actions, but they can be easily modeled using lock/unlock.

Equivalently, the assignment rf saw second = true can be replaced by assert false. Then, this assertion fails whenever this read-from dependency occurs in some trace of the program.

Studies of concurrency errors, e.g.,[START_REF] Cerný | Efficient synthesis for concurrency by semanticspreserving transformations[END_REF][START_REF] Lu | Learning from mistakes: a comprehensive study on real world concurrency bug characteristics[END_REF], have reported that reordering statements for fixing bugs is very frequent (around 30% of the fixes are based on reorderings).

This work is supported in part by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 678177). together with the state of the shared memory.

in the size of P 1 and P 2 , a polynomial reduction to assertion checking consists in enumerating all the possible instances of D and checking whether D occurs in the same V -trace of P 1 or P 2 using the result in Lemma 2.

The algorithm proposed in the proof of Theorem 2 reduces the problem of checking non (V, k)-refinement, for a fixed k, to a polynomial set of assertion checking queries and leads the way to the reuse of the existing safety verification technology. This will be demonstrated in Section 7.

For boolean programs, assertion checking is NP-complete 9 , so checking (V, k)-refinement for any k is in Σ P 2 . We show that it is also Σ P 2 -hard. Theorem 3. Let P 1 and P 2 be two boolean programs. Checking whether

2 algorithm for deciding non (V, k)-refinement starts by guessing a set of dependencies D (of size at most 2 • |Stmts(P) ∩ Stmts(V)| 2), and then proceeds by checking that the dependencies in D occur in the same V -trace of P 1 (which by Lemma 2 can be decided in NP) and in none of the traces of P 2 (which again by Lemma 2 is in co-NP).

To prove Σ P 2 -hardness we show that deciding the satisfiability of an ∃ * ∀ * boolean formula can be reduced to checking (V, k)-refinement for some k which depends on the number of existential variables in the boolean formula. Let ∃ x ∀ y. ϕ be a boolean formula in prenex normal form (without free variables), where x = (x 1 , . . . , x n) and y are vectors of boolean variables. Also, let P 1 and P 2 be the following programs: We assume that all variables are 0 in the initial state. Let D x be a set of read-from dependencies that includes either (x i = 0,

Since the assignment b = a in P 1 is executed in every complete interleaving, there exists a trace of P 1 that contains all the read-from dependencies from D. This set of dependencies occurs in a trace of P 2 only if there exists some valuation for y such that ϕ is false. This implies that P 1 is not a (V, n + 1)-refinement of P 2 where V is the set of all variables of P 1 iff ∃ x ∀ y. ϕ is satisfiable.

Following the same lines of Theorem 3, we can show that the problem of checking non (V, k)-refinement becomes ∆ P 2 -complete when k is fixed. Essentially, the set of dependencies that need to be tracked are now of fixed size and they can be enumerated explicitly (as stated in Theorem 2). 9 Recall that we consider programs without looping constructs and procedure calls.

Theorem 4. Let P 1 and P 2 be two boolean programs. For a fixed but arbitrary k ≥ 1, checking whether P 1 is not a (V, k)-refinement of P 2 is ∆ P 2 -complete. Proof. The problem can be decided using a similar algorithm as in Theorem 3. Instead of non-deterministically guessing the set of dependencies D, we enumerate all such sets of dependencies of size k which are at most O(|Stmts(P) ∩ Stmts(V)| 2•k) many.

To prove ∆ P 2 -hardness we show that deciding the satisfiability of an ∃ * ∧ ∀ * boolean formula can be reduced to checking (V, 1)-refinement. Let ∃ x. ϕ 1 ∧ ∀ y. ϕ 2 be a boolean formula (without free variables), where x and y are vectors of boolean variables. Also, let P 1 and P 2 be the following programs: We assume that all variables are 0 in the initial state. Let V = {a, b} and D = {(a = 1, b = a)} be a singleton set of read-from dependencies.

The assignment b = a in P 1 is executed if and only if there exists some valuation for x such that ϕ 1 holds, i.e., the formula ∃ x. ϕ 1 is satisfiable. Therefore, the dependency (a = 1, b = a) occurs in a trace of P 1 iff ∃ x. ϕ 1 is satisfiable. By the definition of V , this is the only dependency possible in P 1 , which may imply non (V, 1)-refinement. Furthermore, this dependency doesn't occur in a trace of P 2 if and only if the formula ϕ 2 holds for all valuations of y, i.e., the formula ∀ y. ϕ 2 is satisfiable. Consequently, P 1 is not a (V, 1)-refinement of P 2 iff ∃ x. ϕ 1 ∧ ∀ y. ϕ 2 is satisfiable.

Experimental Evaluation

To demonstrate the practical value of our approach, we argue that our notion of (V, k)-refinement:

can be checked using the existing verification technology, witnesses for semantic differences (bug introduction) with small values of k, enables succinct representations for the semantic difference, is a relevant indicator of regression-freeness.

To argue these points, we consider a set of bug fixes produced by the Con-currencySwapper synthesis tool [START_REF] Cerný | Efficient synthesis for concurrency by semanticspreserving transformations[END_REF] which model concurrency bug fixes for Linux device drivers reported at www.kernel.org 10 . We check whether the fixed version is a (V, k)-refinement of the original one and vice-versa. We use this benchmark without modifications, except the use of the pthread library for managing threads (otherwise, the programs are written in C), and unfolding loops once.

We have added the annotation that reduces (V, k)-refinement checking to assertion checking (explained in Theorem 2) and used LazyCseq [START_REF] Inverso | Bounded model checking of multi-threaded C programs via lazy sequentialization[END_REF][START_REF] Inverso | Lazy-cseq: A context-bounded model checking tool for multi-threaded c-programs[END_REF] (with