N

N

Peripheral State Persistence and Interrupt Management
For Transiently Powered Systems
Gautier Berthou, Tristan Delizy, Kevin Marquet, Tanguy Risset, Guillaume

Salagnac

» To cite this version:

Gautier Berthou, Tristan Delizy, Kevin Marquet, Tanguy Risset, Guillaume Salagnac. Peripheral
State Persistence and Interrupt Management For Transiently Powered Systems. NVMW 2018 - 9th
Annual Non-Volatile Memories Workshop, Mar 2018, San Diego, United States. pp.1-2. hal-01943919

HAL Id: hal-01943919
https://hal.science/hal-01943919
Submitted on 4 Dec 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01943919
https://hal.archives-ouvertes.fr

Peripheral State Persistence and Interrupt Management For
Transiently Powered Systems

Gautier Berthou!, Tristan Delizy!, Kevin Marquet!, Tanguy Risset!, Guillaume Salagnac!
'Univ. Lyon, INSA-Lyon, Inria — Villeurbanne France

Abstract—Recently has emerged the concept of fransiently powered
systems powered by harvesting power and being able to retain information
between power failures using non-volatile RAM. While existing solutions
focus on purely computing systems, this article presents Sytare, a software
layer designed to allow the use of non-trivial peripherals such as timers,
serial interface or radio devices in transiently powered systems.

Index Terms—NVRAM, internet of things, energy harvesting, sensors,
ultra-low power, micro-architecture, compilers, instant on-off and tran-
sient computing systems

I. INTRODUCTION AND PROBLEM STATEMENT

Using a battery in tiny embedded systems can be undesirable or
even impractical [2]. In such cases, the system must harvest energy
from its environment but it must then cope with an unreliable power
supply. One obvious nuisance of transient power is that the system
will lose every volatile state at each power failure. Recent advances
in non-volatile memories allow to envision tiny systems that do not
lose their data in case of power outage. However, naively replacing
RAM with NVRAM has undesirable side-effects. To remedy this
problem, recent works propose to detect when a power failure is
about to happen, and then save processor state to NVRAM before
halting execution. This mechanism is called checkpointing, and data
structures that contain such data are called checkpoints. However,
these studies tend to focus on the computational angle and ignore
peripheral accesses.

The problem we address is to make hardware peripherals persistent
across reboots so that the application does not notice power failures.

The first issue is to cope with the volatility of peripheral state.
Capturing and restoring the internal state of peripherals require more
complex techniques than doing so for application state. Existing works
on transiently powered systems either ignore peripherals completely,
or use hard-coded workarounds [3] to configure the hardware before
restoring application state. We propose a technique to address this
problem in the general case. Our approach is completely transparent
for the application, and requires little modification of driver code.

The second issue is to cope with power failures occurring in the
middle of a hardware request being serviced. Even if the state of a
peripheral is non-volatile (either using non-volatile memory, or some
software technique) a power failure may not be transparent for the
user program. For instance, consider an application sending a radio
packet using a send_message () function call. Now a power failure
happens, in the middle of the transmission. At next boot, it would not
make sense to “send half of the packet”. Not only because the receiver
may be gone, but also because the hardware has no concept of “half
packet”. This kind of problem arises even with simple peripherals
such as an ADC (Analog-to-digital converter). If the power failure is
to get unnoticed by application code, then the whole hardware access
must be retried. We will refer to this issue as the peripheral access
atomicity problem. The peripheral access atomicity problem has also
been referred to as the Broken Time Machine problem [4].

The third issue is to deal with interrupts. When an interrupt signals
that an event has occurred, the software stack must handle it, since

interrupt handling may require to modify data and peripherals state
shared with the (interrupted) application. Thus, interrupts must be
handled carefully or they can lead the application to consistency
issues.

Existing works do not address these three problems in a satisfactory
fashion.

II. THE SYTARE KERNEL

In this Section, we first consider that the execution flow can only
be interrupted by powerloss detection interrupt, then we describe how
we deal with other interrupts, finally the complete execution flow of
Sytare is described.

A. Sequential execution

Our approach to provide peripheral state persistence revolves
around the interface between application code and driver code. We
interpose a so-called kernel layer between the two, so as to intercept
requests and responses. The Sytare kernel is responsible for persistence
management, which includes saving and restoring application state
to and from non-volatile memory. Driver code contains all functions
which provide access to hardware features. In Sytare, if an application
needs to invoke a driver function, it can only do so via system call
(or syscall) mechanism implemented in the kernel. We used this
denomination by analogy with the homonymous concept in classical
kernels. In practice, a syscall is a thin wrapper around a driver function,
adding the necessary features to address the atomicity problem.

The Sytare kernel ensures that, if the application is interrupted
by a power failure, its state is saved and then at next boot it will
restored. In the same manner, the Sytare kernel ensures that, if a
syscall is interrupted by a power failure, then at next boot it will
be re-invoked in the same conditions (arguments, hardware state,
etc.). This piece of information is stored in non-volatile memory in
a data structure we refer to as a device context. The device contexts
are saved to persistent memory not upon power failures, but upon
entering/exiting syscalls. Also, system calls are executed in a volatile
fashion, i.e. nothing a syscall does is made persistent until execution
returns to the application. For instance, we forbid application code
to directly use memory-mapped registers to communicate with a
hardware device. Instead, we require this service to be encapsulated
in a driver function and invoked explicitly from the application. A
driver may call primitives from other drivers, for instance our radio
chip driver is built on top of the SPI driver, which itself requires
digital I/O.

Restoring the state of a hardware device typically requires non-
trivial operations like configuring some I/O pins, communicating over
a serial bus (which itself should be initialized first), respecting certain
timing constraints etc. While it may be conceivable for a persistence
kernel to perform all these operations transparently, in Sytare we
require some cooperation from the drivers developer: storing state in a
device context, implementing a restore () function and a save ()
function for each driver.



A complete state machine of Sytare’s control flow is given in the
next Section.

B. Interrupt handling

A standard approach for interrupt handling in operating systems
consists in splitting interrupt handlers into two parts [1]. When an
interrupt occurs, it is immediately handled by the operating system
that executes a so-called fop-half routine with IRQs disabled. This
routine typically acknowledges the interrupt, and registers a deferrable
bottom-half in charge of handling the lengthy operations associated
with the interrupt. In Sytare, bottom halves are at the moment designed
to be non-nestable, i.e., no other bottom half can be run when a bottom
half is interrupted, but interrupts are left enabled in order to be able
to react upon powerloss occurrence.

While an interrupt top-half takes care of very low-level operations,
the application developer is likely to request peripheral access from a
bottom half. For instance if the application developer wants to read
a radio packet upon radio reception interrupt, it might be natural to
call relevant syscalls in the dedicated user-written interrupt handling
procedures. To this extent bottom halves are allowed to use syscalls
in the exact same way as application code would.

C. Sytare’s complete control flow

Figure 1 depicts as a state machine Sytare’s control flow. Sytare
always starts in Boot state, runs the corresponding code and switches
to either Init state or Restore state depending on the presence of
a former valid checkpoint. Init state initializes kernel variables and
user application environment, then switches to App state. Restore
state restores user context and device contexts and switches to a state
depending on the powerloss detection that caused the checkpoint
being restored happened respectively during the App state or the
Syscall state. Whenever the application calls a syscall, control flow
switches from App state to Syscall state. When a syscall returns,
control flow switches back into App state. When powerloss detection
occurs, control flow switches to Checkpoint state which performs the
necessary memory transfers and waits for the hardware to shutdown.

Not,
1st boot I

1 Restore
Boot ‘
| .
Init 1st boot
Interrupt
App D
| App
Empty queue
sytxxx() Ret and app running
. Interrupt
Syscall D!
M»‘ Syscall
G Pow loss
Interruptec R s Kernel (Hardware
during Interrupt rebgot)
Interrupt or bot. (top half)
Bot. halff half completion
o | Bottom half
ot. half queued or
top half completion
sytxxx()) Ret
Interrupt
Bot. h IBot. half syscall
syscall op half completion|

> Checkpoint '7

Kernel

Power loss detection

User + syscalls
Fig. 1. Complete state machine of Sytare.

When an interrupt occurs in either state App or Syscall, the control
flow transitions to state Kernel Interrupt top half in charge of per-
forming interrupt acknowledgment and scheduling the corresponding

Interrupt source ‘ Top half execution time (us)
GPIO 20
Radio packet reception | 1603

Fig. 2. Median top half execution times for common interrupt sources.

bottom half. When a bottom half is scheduled, the control flow goes
to state Bottom half. The state machine formed by the subset of states
Bottom half and Bottom half syscall behaves exactly the same as the
state machine formed by states App and Syscall.

When an interrupt other than powerloss detection occurs during
App or Syscall state, code goes to state Kernel Interrupt top half.
If the user has registered a bottom-half for the given interrupt, the
top half schedules the bottom-half to be run before resuming the
interrupted application or syscall. So when the top-half is done, code
goes to state Bottom half. When the bottom-half is done, code goes
back to Kernel Interrupt top half and then back to either App or
Syscall depending on the state when the interrupt occurred. Interrupts
are enabled in Bottom half and Bottom half syscall.

III. EXPERIMENTAL RESULTS

We use a handful of benchmark applications with various levels of
interaction with peripheral devices.
Basically, our experimental results show that:

o Sytare successfully saves and restores peripherals states even if
powerloss happened during the execution of complex hardware
services involving several drivers (radio frontend accessed
through SPI bus).

o Sytare has low impact on performance: the execution time of
application on top of Sytare is increased by 1-3% depending
on applications. These results do not take into account the time
spent saving/restoring contexts.

« The time spent to restore contexts because of powerlosses is
heavily dependent on the devices used.

« Latency between interrupt occurrence and bottom half execution
is rather small and acceptable even if the platform is powered
only during a few milliseconds. Examples of latency, or top half
execution time, are given in Figure 2.

IV. CONCLUSION

We described Sytare, an operating system kernel that allows an
application to execute without noticing power failures on a tiny
embedded systems harvesting energy from its environment. We
addressed especially the problem of making hardware peripherals
persistent across reboots.

REFERENCES

[1] W.Dong, C. Chen, X. Liu, Y. Liu, J. Bu, and K. Zheng. “SenSpire
OS: A Predictable, Flexible, and Efficient Operating System for
Wireless Sensor Networks”. In: IEEE Trans. on Comp. (2011).

[2] Hrishikesh Jayakumar, Kangwoo Lee, Woo Suk Lee, Arnab Raha,
Younghyun Kim, and Vijay Raghunathan. “Powering the Internet
of Things”. In: ISPLED’14: International Symposium on Low
Power Electronics and Design. 2014.

[3] B. Lucia and B. Ransford. “A simpler, safer programming and
execution model for intermittent systems”. In: PLDI 2015: 36th
ACM SIGPLAN Conference on Programming Language Design
and Implementation. 2015.

[4] B. Ransford and B. Lucia. “Nonvolatile Memory is a Broken
Time Machine”. In: MSPC 2014: ACM SIGPLAN Workshop on
Memory Systems Performance and Correctness. 2014.



	Introduction and problem statement
	The Sytare kernel
	Sequential execution
	Interrupt handling
	Sytare's complete control flow

	Experimental results
	Conclusion

