
HAL Id: hal-01943893
https://hal.science/hal-01943893

Submitted on 4 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA-based Real Time Embedded Hough Transform
Architecture for circles detection

Orlando Chuquimia, Andrea Pinna, Christophe Marsala, Xavier Dray,
Bertrand Granado

To cite this version:
Orlando Chuquimia, Andrea Pinna, Christophe Marsala, Xavier Dray, Bertrand Granado. FPGA-
based Real Time Embedded Hough Transform Architecture for circles detection. DASIP 2018 - Con-
ference on Design and Architectures for Signal and Image Processing, Oct 2018, Porto, Portugal.
�hal-01943893�

https://hal.science/hal-01943893
https://hal.archives-ouvertes.fr

FPGA-based Real Time Embedded Hough Transform Architecture for
circles detection

CHUQUIMIA Orlando1, PINNA Andrea1, MARSALA Christophe1, DRAY Xavier2, BERTRAND Granado1

Abstract— Hough Transform is a widely used shape-
based algorithm for object detection and localization [6],
this technique can be generalized to parametric curves
as circles. For a real time execution and embedded
integration, several optimizations are necessary due to
the large memory and computational requirements. This
paper presents an efficient real-time pipelined archi-
tecture with a FPGA implementation of our Hough
Transform for multi-circles detection. The computation of
center candidates was improved. A three stages pipeline
architecture was designed in order to reduce the pro-
cessing latency and cadence. The architecture has been
integrated into a Xilinx Zynq-7000 XC7Z020 containing
a FPGA Artix-7. The global system uses 78.5 BRAMs,
153 DSP slices, 21638 LUTs. Our global system can
support a maximum clock frequency of 128.89 MHz.
We validate our architecture using a 125MHz clock
frequency and we obtain a latency of 33.214 ms and an
interval between two images of 16,607 ms for a 1920x1080
pixels image. According to our results, our architecture
offer a throughput more than 4 times better than the
faster state of the art architecture.

I. INTRODUCTION

Most of 95%[4] of colorectal cancers begin as a growth
on the inner lining of the colon or rectum called as polyp.

To reduce the incidence of Colorectal cancer, authors
in [14], [17] proposed a new paradigm of Wireless Capsule
Endoscopy [7] that can automaticaly recognize polyp in situ.

They have proposed a specific processing chain embedded
in a System on Chip integrated inside a capsule.

In this chain they use the Hough transform to detect circles
in HD images as Regions candidates to contain a polyp. It is a
widely used technique, for object localization since 1962 [6],
that can be generalized to parametric curves as circles [2].
Once regions are selected they use a learning algorithm to
decide if there is a polyp in the region.

In this article, we have studied only the Hough transform
part to determine if it can be embedded in real time, this can
be a first step in order to determine if it can be embedded
in the next generation of capsule that will embed a HD
images. We focused on it because we have measured its
execution on an embedded processor, an ARM Cortex A9,
using OpenCV library and running at 667 MHz and see that
it takes 998.260 ms for an image of size 1920x1080. This

1 LIP6, CNRS UMR 7606, Sorbonne Université, Paris, France.
2APHP, Hôpital Saint-Antoine, Sorbonne Université, Paris, France.

execution time is too high, 25 times higher than the expected
goal that is to proccess images with the same video quality
of an endoscope, that acquire a 1920x1080 pixel image every
40 ms. This result excludes an optimized software embedded
implementation and obliges us to a custom digital hardware
implementation in FPGA.

II. STATE OF THE ART
A state of the art has been realized to analyse the imple-

mentation of the Hough transform in a FPGA considering
timing contraints. Here, we present the highlights found,
a survey of Hough transform methods can be read in [2]
and [13]. We can notice some facts:

1) all the FPGA implementa-
tions [1], [3], [19], [16], [8], [11] use embedded
internal memories or BRAMs (Block RAMs),

2) all the works consider only the acceleration of the
voting process of the Hough transform. In this process
the goal is to accumulate intersection points in the
Hough parameter space, corresponding to the number
of possible circles. Then a vote is done to find the
local maximum that are considered as real circle. This
process is memory and time consuming, two different
approaches emerged, the first approach uses the orig-
inal Hough transform algorithm were the parametric
equations of a circle are used to find the center and
the radius of the circles [1], [3], [16], [8], [11] and the
second approach uses a modified version of Hough
transform called One dimensional Hough transform
algorithm [19].

We describe below the works related to both approaches.

A. Original Hough transform Implementations

For the original Hough transform implementation, in [3],
authors demonstrate that using an external memory to store
the voting procedure is limited due to the data transfer
bandwidth. In this implementation an efficient internal mem-
ory structure is considered for the voting process, where
the size of the Hough space is reduced. Computations are
distributed in mathematical units, each unit has access to its
own memory module with a double buffer technique to avoid
external memory, this allows multiple parallel read/write
operations at the same time.

In [1], authors use a CORDIC algorithm to implement the
Hough transform. Specificity of this work is that it detects
only one circle owning of the target application, an iris
detection. The same approach is used in [11], where a FPGA-
based hardware accelerator for iris localization is introduced.

In [16], authors adopt the scanline-based ball detection al-
gorithm for the edge detection stage and edge-flag algorithm
for the voting process.

In [8], authors propose a Hough transform algorithm
combined with a graph clustering algorithm for FPGA-based
multi-circle detection.

B. 1D Hough transform algorithm Implementation

Goneid et al. introduce a modified version of Hough
transform dedicated to detect multi-circles [5] in 1997. This
method, called 1D Hough Transform multi-circles detection
can successfully extract non-overlapping circles and ellipses
in binary images, even in the presence of random noise.
This method is easy to implement since each of the object’s
parameters is accumulated in its own one-dimensional pa-
rameter space. Zhou and al. [19] implement it on a FPGA.

This modified version of Hough Transform algorithm can
be represented by the simplified pseudocode in Algorithm 1
and can be summarized as follow:

1) From a contour image, first, to create a histogram of
the middle of the segments constituted by the points
of contours. At first, for the horizontal segments, we
create histogram Vx (steps [1-7] of algorithm 1 and
in a second time for the vertical segments, we create
histogram Vy (Steps [8-14] of algorithm 1. We obtain
the center candidates (i, j) from combination of local
maximums of line and column histograms.

2) We build a 3D histogram Vr of the distances between
all the point of contour and the center candidates.
Steps [15-24] of algorithm 1, the more voted distance
r become the radius of the center candidate (i, j);

3) If the value Vr(i, j, r) is greater than f ∗ 4
√
2r then

||(x, y) − (i, j)|| = r becomes a circle. Steps [20-22]
of algorithm 1. f can be adapted as the sensitivity
threshold to detect circles.

In [19], authors propose an architecture based on FPGA
implementation of algorithm 1. They choose a 9-bit integer
words for the data in histogram Vx and histogram Vy and
a 17-bit integer words for the histogram Vr. They use
multiple BRAMs to implement these histograms by 100
voting modules in parallel. The number of x-coordinate or
y-coordinates of center candidates is set to 10, therefore, 100
center candidates are constructed. Finally the radius is coded
with 13-bit integer.

C. Analysis of the state of the art

The implementations performance are shown in table I.
As we can see in table I, there is no FPGA work using

larger image sizes as 1920x1080. In table I we have extrapo-
lated for each referenced work, using a simple size factor, the
latency for a 1920x1080 image size. We can see that none
of these state of the art method reach a latency less than
40 ms for this image size. Then it is necessary to design
a new digital hardware architecture to accelerate the Hough
transform computation.

Polyps can be show as protrusions and detected using
the local curvature of the edge-image searching circular

Algorithm 1 Original 1D Hough Transform algorithm
Require: edge image I of [W,H] size

1: for each row i from 1 to H do
2: for each edge I(i, j) with j from 1 to W − 1 do
3: for each edge I(i, k) with k from j + 1 to W do
4: Vx(

j+k
2) = Vx(

j+k
2) + 1

5: end for
6: end for
7: end for
8: for each column i from 1 to W do
9: for each edge I(j, i) with j from 1 to H − 1 do

10: for each edge I(k, i) with k from j + 1 to H do
11: Vy(

j+k
2) = Vy(

j+k
2) + 1

12: end for
13: end for
14: end for
15: for each local maximum Vx(i) in Vx do
16: for each local maximum Vy(j) in Vy do
17: for all edge I(k,m) in image do
18: Vr(i,j,||I(k,m)−(i,j)||) = Vr(i,j,||I(k,m)−(i,j)||) + 1
19: end for
20: if maximum value of Vr(i, j, r) > f ∗(4

√
2r) then

21: ||(x, y)− (i, j)|| = r is a circle
22: end if
23: end for
24: end for

or elliptical shapes [9], [12]. Based on analyses of polyps
images from colon examination [15], it was observed that
polyps do not always have a regular circular or elliptical
shape, it depend of the noisy level, quality and resolution
of the image. In addition, in [19] the key technique for
accelerating Goneid algorithm is an efficient usage of DSP
slices and block RAMs. Based on these constatations we
have choose to investigate Goneid algorithm to realize an
optimized version that can compute Hough Transform in less
than 40 ms for a 1080x1920 image size.

III. PROPOSED METHOD
Our FPGA based architecture for a real-time implemen-

tation of the 1D Hough transform multi-circles detection is
focused on the acceleration of the construction of histograms
V x and V y, [1 -7] and [8-14] respectively to the algorithm 1.
Our solution significantly reduces the use of memory and the
latency execution. First, we propose an equivalent algorithm,
algorithm 2, which gives the same results, that is to say the
same x-coordinate and y-coordinate histograms as in steps
[1 -7] and [8-14] of the algorithm 1.

Algorithm 2 is obtained first by rewriting the steps [1-7] of
the algorithm 1 as shown in algorithm 3, taking into account
all the points of the image instead of just taking the contour
points.

In second, we change the order of the for-loops and obtain
a new formulation of the steps [1-7] shown in algorithm 4.

Finally, we can rewrite the i-loop as a sum, and rewrite
the steps [1-7] as proposed in steps [1-5] of the algorithm 2.

TABLE I
STATE OF THE ART OF HOUGH TRANSFORM HARDWARE IMPLEMENTATION.

Authors FPGA Resources Image Latency [ms] / Throughput Latency [ms] extrapoled
used resolution [pixel] frequency [MHz] [Mpixel/s] for 1920x1080 resolution

Ferhat et al, 2012 [1] Virtex 2 578 slices, 8 BRAM one circle - / 66.9 - -
Elhossini et al, 2012 [3] Virtex 4 256Kb of BRAM 800x600 33.33 / - 14.40 144

Zhou et al, 2014 [19] Virtex-7 5562Kb of BRAM, 398 DSP48 400x400 5.338 / 181.812 29.974 69.18
Seo et al, 2015 [16] Kintex 7 internal memory 640x480 10 / 250 30.720 67.5

1024x1024 scaled
Irwansyah et al, 2015 [8] Virtex 4 512Kb of BRAM by factor 2 (512x512) 7.8125 / 135 33.554 61.8
Kumar et al, 2017 [11] Artix 7 52 BRAMs of 36Kb 320x240 3.46 / 203 22.197 93.42

Algorithm 2 Our Modified 1D Hough Transform multi-
circles detection algorithm to compute histograms Vx and
Vy

1: for each column j from 1 to W − 1 do
2: for each column k from j + 1 to W do
3: Vx(

j+k
2) = Vx(

j+k
2) +

∑H
i=1 I(i, j) ∗ I(i, k)

4: end for
5: end for
6: for each row j from 1 to H − 1 do
7: for each row k from j + 1 to H do
8: Vy(

j+k
2) = Vy(

j+k
2) +

∑W
i=1 I(j, i) ∗ I(k, i)

9: end for
10: end for
11: for each local maximum Vx(i) in V x do
12: for each local maximum Vy(j) in V y do
13: for all edge I(k,m) in image do
14: Vr(i,j,||I(k,m)−(i,j)||) = Vr(i,j,||I(k,m)−(i,j)||) + 1
15: end for
16: if max value of Vr(i, j, r) > f ∗ (4

√
2r) then

17: ||(x, y)− (i, j)|| = r is a circle
18: end if
19: end for
20: end for

Algorithm 3 1D Hough Transform multi-circles detection
algorithm detail modification: optimization of the edge point

1: for each row i from 1 to H do
2: for each point I(i, j) with j from 1 to W − 1 do
3: for each point I(i, k) with k from j+1 to W do
4: Vx(

j+k
2) = Vx(

j+k
2) + I(i, j) ∗ I(i, k)

5: end for
6: end for
7: end for

Algorithm 4 1D Hough Transform multi-circles detection
algorithm detail modification: change the order of the for-
loops

1: for each column j from 1 to W − 1 do
2: for each column k from j + 1 to W do
3: for each row i from 1 to H do
4: Vx(

j+k
2) = Vx(

j+k
2) + I(i, j) ∗ I(i, k)

5: end for
6: end for
7: end for

The advantage of our histogram construction process show
in algorithm 2 is that we obtain the accumulation value for
each coordinate of the x-coordinate each two j-loops, that
means that we obtain an x-coordinate accumulation value
every two columns read and a y-coordinate accumulation
value every two rows read. It has a singnificant impact in
latency computation and resources consommation as it is
explained in section IV-A.

We have validated our algorithm on image of closed
contour as show in figure 1. In this image f correspond to the
sensitivity threshold visible in step [16] of our algorithm 2. A
green circle indicates that we have localized a closed contour.

Fig. 1. Algorithm validation with different value of the sensitivity threshold
f

In the next section we describe our digital hardware
architecture that implement our algorithm.

IV. CHT ARCHITECTURE

In figure 2, we introduce our architecture to implement
the algorithm 2. The overall architecture is composed by
five modules described below:
• x-coordinate and y-coordinate computation modules,

these modules compute Nc x-coordinates and Nc y-
coordinates. They produce Nc

2 center candidates from
combination of each x-coordinates and y-coordinates;

• radius computation, this module builds for each center
candidate a histogram using Euclidean distance between
this center candidate and each edge point. Once the
histogram is built, this module assigns the most accu-
mulated Euclidean distance as the radius. This module
selects as a real circle the center candidates and radius
where the accumulation value is > f ∗ 4

√
2r ;

• Registers module, this module register the Nc x-
coordinates and the Nc y-coordinates of centers can-
didates and the Nc

2 circles in parallel.
In the next sections we describe each module of our

architecture.

Fig. 2. Our digital architecture.

A. x-coordinate and y-coordinate computation module

Fig. 3. x-coordinate computation architecture.

This module is fully pipelined and shown in figure 3. It
computes Nc x-coordinates for a maximum circle diameter
Dm, Dm > 1. in the first stage, for an image of size WxH,
each column of H bits is shifted by a FIFO memory. We
use here one 36Kb Block RAM that can shift 36K

H columns
at the same time and a total of Dm∗H

36K BRAMs of 36 Kb
are used in parallel to compare one input column with Dm

others columns. Dm

2 DSP48 slices are used to add the votes
between the input column and every two columns. The total
votes are accumulated in the blue registers to be added each
H cycles (when the input column is totally read). With
this architecture, we compute a x-coordinate histogram value
every column read.

In the second stage, the vote values are filtered in order
to find the local maximum. A sliding window of size F ,
that corresponds to minimum Euclidian-distance between
two centers candidates, is used to compare a vote value
with the F

2 previous values and with the F
2 posterior values.

The output is the vote corresponding to the largest histogram
value for a x-coordinate. If there are two circles with centers

separated by an Euclidean-distance less than F pixels in the
image, only the circle with more edge points will be detected.

Finally, in the third stage, all the local maximum histogram
values are stored in registers Ri and Ci following the next
rules:
• if Ri > Ci then the register Ri+1 = R1 else Ri+1 = 0;
• if Ri > Ci+1 andRi > Ci then the register Ci = Ci+1

else if Ri > Ci+1 andRi < Ci then the register Ci =
Ri else Ci = Ci.

Hence, the larger values will be gradually transferred to the
right side through the registers Ci. This process is executed
until all the columns in the image are read. Finally the largest
local maximum histogram values are stored in Ci and their
respective coordinates correspond to the Nc x-coordinates
of the circles candidates. Using a similar architecture, Nc

y-coordinates are calculated.
For an image of WxH size, Dm(W+H)

36K BRAMs of
36Kbits and Dm DSP48 slices are necessary to calculate the
x-and y-coordinates in W ∗H + 2 + Dm

2 + F
2 +Nc cycles.

Each one x- and y-coordinates are combined to obtain Nc
2

center candidates.

B. Radius computation module
In figure 4, we present our fully pipelined module pro-

posed for the radius computation. In this module, in the first
stage, an Euclidean-distance histogram is built in parallel for
each center candidate. This stage computes the Euclidean-
distance between one center candidate and all edge points.
Each add and substract computations are performed in 2
cycles, the multiplication computation is performed in 3
cycles. Each operation is executed using one DSP slice. We
use the Xilinx CORDIC IP core [18] to compute the square
root of the Euclidean-distance with a 16 bits integer number
in 8 cycles. To vote the Euclidean-distance we use a memory,
we propose the architecture illustrated in figure 5, in this
architecture each memory is implemented in one BRAM of
18Kbits that enables a simultaneous read and write in one
cycle and avoid the collisions.

Once all edge points of the image are read, in the second
stage, for each center candidate, all the values of the memory
are read in order to find the most voted Euclidean-distance in
N
2 cycles. This Euclidean-distance r becomes the radius of

this center candidate. We compare this radius r to a threshold
of 4
√
2r [10] to determine if it corresponds to a true circle.

It is possible to modify this threshold in order to make the
verification more sensitive.

Each radius that corresponds to a true circle and the
corresponding center become inputs to the shift registers.

In total, 4Nc + Nc
2 DSP slices and Nc

2

2 BRAMs of 36
Kbits are necessay to perform the radius voting process for
Nc

2 center candidates and obtain their radius in W ∗ H +
18 + Dm

2 cycles.

V. SOC IMPLEMENTATION
To validate our architecture, we prototype it on a

SoC-based system, the Digilent ZedBoard Zynq-7000
ARM/FPGA XC7Z020 SoC Development Board. Zynq is

Fig. 4. Radius computation module architecture.

Fig. 5. Proposed radius histogram memory architecture.

not the final platform, as it cannot be integrated inside a
capsule, we plan to integrate it in a new Artix7 from Xilinx,
compatible with a capsule, that was not available at the time
we make the experiments. Our first goal was to validate our
Hough Transform IP and measure its execution time on a
real SoC not to far to the final device.

In figure 6, we illustrate the integration of our architecture,
the Circle Hough Transform (CHT) IP in this SoC.

We have realised a pipeline of three operations that are:
first, write an image into the DRAM memory and read
computed circles, second, center computation and third,
radius computation. The pipeline execution in the global
system is shown in figure 7.

As we can see, we use two address in DRAM (@1,@2) in
order to read and write an image at the same time. The CHT
IP uses one HP master AXI ports to read images to compute
centers candidates and calculate the radius in parallel.

To store the image in a block memory we use BRAMs
of 36 Kb that can shift 36K

W rows at the same time, as we
already shift Dm rows in y-coordinate computation module,

Fig. 6. System diagram of our AXI CHT IP core integrated on a Zynq
architecture.

Fig. 7. System Pipeline

we need shift only H−N rows so we need add (H−Dm)∗W
36K

BRAMs of 36 Kb.
The center candidate coordiantes computation stage take

W ∗H+2+Dm

2 + F
2 +Nc cycles and the radius computation

stage take W ∗ H + 18 + Dm

2 cycles. The total AXI CHP
IP latency to computate the circles will take 2 times the
center candidate coordinates computation because is the
bigest latency stage in the pipeline.

So, to implement our proposed Hough Transform archi-
tecture we need (H−Dm)∗W

36K + Dm(W+H)
36K + Nc

2

2 BRAMs of
36Ks and Dm + 4Nc + Nc

2 DSP slices in order to detect
Nc

2 circles with a maximum circle diameter of Dm and
separated at least F pixels in an image of WxH size with
2(W ∗ H + 2 + Dm

2 + F
2 + Nc) cycles of latency and

W ∗ H + 2 + Dm

2 + F
2 + Nc cycles of interval between

two images. As we see, the latency and interval is directly
linked to the image size. The bottleneck increasing the image
resolution is limited by the number of BRAM that we have.
The maximum circle diameter Dm and the number of circles
to detect Nc

2 is limited by the number of BRAM and DSP48
that we have.

We have realised an implementation to detect Nc
2 = 25

circles with a maximum circle diameter of Dm = 108

and a sliding window F = 40. We consider an image of
size 1920x1080. Detail of the implementation can be see in
table II.

TABLE II
AXI CHT IP CORE IMPLEMENTATION RESULTS.

Architecture CHT AXI CHT Full
IP core System

LUT 20637 20770 21638
LUTRAM 275 278 373

FF 18629 18697 19706
BRAM (36Kb) 78.5 78.5 78.5

DSP 153 153 153
Freq. maximum[MHz] 149.16 147.99 128.89

Latency[ms] 27.805 28.025 32.178
Interval[ms] 13.902 14.012 16.089

Throughput[Mpixel/s] 149.154 147.984 128.89
fps[frame/s] 72 71 62

TABLE III
COMPARISON WITH THE STATE OF THE ART.

Our method Artix7 with a frequency of 128.89MHz
Estimated and simulated Implemented

Resolution 320 400 512 640 1920
-[pixel] x240 x400 x512 x480 x1080

BRAM of 36Kb 17.5 20.5 22.5 28.5 78.5
DSP48 slices 153 153 153 153 153
Latency [ms] 1.19 2.48 4.07 4.77 32.18
Interval [ms] 0.60 1.24 2.03 2.38 16.08
fps [frames] 1676 805 491 419 62
Throughput
-[Mpixel/s] 128.8 128.9 128.9 128.9 128.9

As we can see in table II our Hough Transform can
work with a maximum frequency of 149.16 MHz alone
and 128.885 MHz in the global system. That is due to
the distance between the furthest DSP slice and the AXI
AMBA interconnection. Our digital architecture can process
an image of 1920x1080 pixels in less thant 40 ms as it is
expected and give a 62 fps throughput.

With table III, we can compare our Hough Transform
architecture with the state of the art in table I. We calculate
the processing time, BRAM and DSP of our architecture to
realize a fair comparison with the same sizes of image. As we
notice, our architecture is the better and offer a throughput
4 times better than the faster state of the art architecture.

VI. CONCLUSIONS

In this paper we proposed a efficient real-time pipelined
architecture Hough Transform for multi-circles detection to
help to localise polyps in gastrointestinal tract images. In
the our architecture, an efficient method is implemented
to significantly reduce internal use of memory and reduce
time execution. Our architecture supports a maximum clock
frequency of 149.16 MHz alone and 128.885 MHz in a
global system to detect until 25 circles with a maximum
circle diameter of 108 pixels. Our design has been validated
on a Xilinx Zynq-7000 XC7Z020 using 78.5 BRAMs, 153
DSP slices, 21638 LUTs with a 125MHz clock. It obtains a

latency of 33.214 ms and an interval between two images of
16,607 ms for a 1920x1080 pixels image. This architecture
can process 62 images per second, and it offers a throughput
4 times better than the faster state of the art architecture.

REFERENCES

[1] ALIM, F. F.-T., MESSAOUDI, K., SEDDIKI, S., AND KERDJIDJ, O.
Modified circular hough transform using fpga. In Microelectronics
(ICM), 2012 24th International Conference on (2012), IEEE, pp. 1–4.

[2] ANTOLOVIC, D. Review of the hough transform method, with an im-
plementation of the fast hough variant for line detection. Department
of Computer Science, Indiana University (2008).

[3] ELHOSSINI, A., AND MOUSSA, M. Memory efficient fpga im-
plementation of hough transform for line and circle detection. In
Electrical & Computer Engineering (CCECE), 2012 25th IEEE
Canadian Conference on (2012), IEEE, pp. 1–5.

[4] FERLAY, J., SOERJOMATARAM, I., DIKSHIT, R., ESER, S., MATH-
ERS, C., REBELO, M., PARKIN, D. M., FORMAN, D., AND BRAY,
F. Cancer incidence and mortality worldwide: sources, methods and
major patterns in globocan 2012. International journal of cancer 136,
5 (2015), E359–E386.

[5] GONEID, A., EL-GINDI, S., AND SEWISY, A. A method for the hough
transform detection of circles and ellipses using a 1-dimensional array.
In Systems, Man, and Cybernetics, 1997. Computational Cybernetics
and Simulation., 1997 IEEE International Conference on (1997),
vol. 4, IEEE, pp. 3154–3157.

[6] HOUGH, P. V. Method and means for recognizing complex patterns,
Dec. 18 1962. US Patent 3,069,654.

[7] IDDAN, G., MERON, G., GLUKHOVSKY, A., AND SWAIN, P. Wireless
capsule endoscopy. Nature 405, 6785 (2000), 417.

[8] IRWANSYAH, A., IBRAHEEM, O. W., HAGEMEYER, J., POR-
RMANN, M., AND RÜCKERT, U. Fpga-based circular hough
transform with graph clustering for vision-based multi-robot track-
ing. In ReConFigurable Computing and FPGAs (ReConFig), 2015
International Conference on (2015), IEEE, pp. 1–8.

[9] KARARGYRIS, A., AND BOURBAKIS, N. Detection of small bowel
polyps and ulcers in wireless capsule endoscopy videos. IEEE
transactions on Biomedical Engineering 58, 10 (2011), 2777–2786.

[10] KULPA, Z. On the properties of discrete circles, rings, and disks.
Computer graphics and image processing 10, 4 (1979), 348–365.

[11] KUMAR, V., ASATI, A., AND GUPTA, A. Hardware accelerators for
iris localization. Journal of Signal Processing Systems (2017), 1–17.

[12] MAMONOV, A. V., FIGUEIREDO, I. N., FIGUEIREDO, P. N., AND
TSAI, Y.-H. R. Automated polyp detection in colon capsule en-
doscopy. IEEE transactions on medical imaging 33, 7 (2014), 1488–
1502.

[13] MUKHOPADHYAY, P., AND CHAUDHURI, B. B. A survey of hough
transform. Pattern Recognition 48, 3 (2015), 993–1010.

[14] ORLANDO, C., ANDREA, P., XAVIER, D., AND GRANADO, B. Polyps
recognition using fuzzy trees. In Biomedical & Health Informatics
(BHI), 2017 IEEE EMBS International Conference on (2017), IEEE,
pp. 9–12.

[15] ROMAIN, O., HISTACE, A., SILVA, J., AYOUB, J., GRANADO, B.,
PINNA, A., DRAY, X., AND MARTEAU, P. Towards a multimodal
wireless video capsule for detection of colonic polyps as prevention
of colorectal cancer. In Bioinformatics and Bioengineering (BIBE),
2013 IEEE 13th International Conference on (2013), IEEE, pp. 1–6.

[16] SEO, S.-W., AND KIM, M. Efficient architecture for circle detec-
tion using hough transform. In Information and Communication
Technology Convergence (ICTC), 2015 International Conference on
(2015), IEEE, pp. 570–572.

[17] SILVA, J., HISTACE, A., ROMAIN, O., DRAY, X., AND GRANADO,
B. Toward embedded detection of polyps in wce images for early
diagnosis of colorectal cancer. International Journal of Computer
Assisted Radiology and Surgery 9, 2 (2014), 283–293.

[18] WALTHER, J. S. A unified algorithm for elementary functions. In
Proceedings of the May 18-20, 1971, spring joint computer conference
(1971), ACM, pp. 379–385.

[19] ZHOU, X., ITO, Y., AND NAKANO, K. An efficient implementation
of the one-dimensional hough transform algorithm for circle detection
on the fpga. In Computing and Networking (CANDAR), 2014 Second
International Symposium on (2014), IEEE, pp. 447–452.

