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ABSTRACT

Statistical testing of trait-environment association from data is a challenge as there is
no common unit of observation: the trait is observed on species, the environment

on sites and the mediating abundance on species-site combinations. A number of

correlation-based methods, such as the community weighted trait means method

(CWM), the fourth-corner correlation method and the multivariate method RLQ,

have been proposed to estimate such trait-environment associations. In these methods,
valid statistical testing proceeds by performing two separate resampling tests, one site-
based and the other species-based and by assessing significance by the largest of the two
p-values (the pmax test). Recently, regression-based methods using generalized linear
models (GLM) have been proposed as a promising alternative with statistical inference
via site-based resampling. We investigated the performance of this new approach along
with approaches that mimicked the ppay test using GLM instead of fourth-corner. By
simulation using models with additional random variation in the species response to
the environment, the site-based resampling tests using GLM are shown to have severely
inflated type I error, of up to 90%, when the nominal level is set as 5%. In addition,
predictive modelling of such data using site-based cross-validation very often identified
trait-environment interactions that had no predictive value. The problem that we

identify is not an “omitted variable bias” problem as it occurs even when the additional

Submitted 2 September 2016 random variation is independent of the observed trait and environment data. Instead,

Accepted 8 December 2016

Published 12 January 2017 it is a problem of ignoring a random effect. In the same simulations, the GLM-based
lled th I in all 1 far in thi ,

Corresponding author Prmax test cqntro ?d the type error in a models proposed so farin this contex.t .but

Cajo J.E. ter Braak, still gave slightly inflated error in more complex models that included both missing

cajo.terbraak@wur.nl (but important) traits and missing (but important) environmental variables. For

Academic editor screening the importance of single trait-environment combinations, the fourth-corner

Maria Dornelas test is shown to give almost the same results as the GLM-based tests in far less computing

Additional Information and time.

Declarations can be found on

page 14

Subjects Ecology, Statisti
DOl 10.7717/peer;j.2885 J cology, Statistics

Keywords Generalized linear models, Poisson regression, Community composition, Fourth-
© Copyright corner problem, Compositional count data, Trait-environment association, Log-linear model,
2017 Ter Braak et al. Negative-binomial response

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

How to cite this article Ter Braak et al. (2017), A critical issue in model-based inference for studying trait-based community assembly
and a solution. Peer]J 5:¢2885; DOI 10.7717/peer;j.2885


https://peerj.com
mailto:cajo.terbraak@wur.nl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.2885
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.2885

Peer

INTRODUCTION

According to the habitat templet theory (Southwood, 1977; Townsend ¢ Hildrew, 1994),
evolution selects for species characteristics (i.e., traits) appropriate to their environment.
Such traits influence community assembly (Ackerly ¢ Cornwell, 2007) and a major goal in
contemporary ecology has become to identify among a set of traits which ones interact with
the environment and which do not. Although most traits may influence the way species
are distributed in space, not all environmental features necessarily select for these traits,
hence the need to test for trait-environmental interactions and the need to select only the
relevant trait-environment combinations in predictive models.

The first statistical methods to uncover and describe trait-environment associations
were correlation-based with as prime examples the Community Weighted trait Means
(CWM) approach (Lavorel et al., 2008) that correlates community weighted means with
environmental features, the fourth-corner correlation (Dray ¢ Legendre, 2008; Legendre,
Galzin ¢ Harmelin-Vivien, 1997) and the multivariate method RLQ (Dolédec et al., 1996;
Dray et al., 2014). See Kleyer et al. (2012) for a review of methods. Notwithstanding the
availability and wide use of these methods, it took some time to understand the behaviour of
these methods and to develop valid statistical tests to assess trait-environment associations.
Dray & Legendre (2008) showed that randomization tests based on either site or species
permutations lead to increased type I error rates. The issue of increased type I error rate was
solved by Ter Braak, Cormont ¢ Dray (2012) and Peres-Neto, Dray ¢ ter Braak (2016) who
showed that regardless of the method used to assess trait-environment relationships, valid
statistical testing requires both a site-based and a species-based analysis, each resulting
in a p-value. They showed that correct rates are achieved by assessing significance by
the largest of the two p-values (the pmax permutation test). If it is desired to account for
phylogenetic relationships among the species and/or spatial and temporal correlations
among the sites, the random permutations should be replaced by restricted permutation
or bootstrap (Lapointe ¢ Garland, 2001; Wagner ¢ Dray, 2015), but the principle of the
Pmax test remains unchanged.

More recently, regression-based methods have been proposed for studying trait-
environment relations (Brown et al., 2014; Cormont et al., 2011; Jamil et al., 2013; Pollock,
Morris & Vesk, 2012; Warton et al., 2015; Warton, Shipley ¢ Hastie, 2015). These methods
model the abundance (or presence—absence) of multiple species across sites (communities)
as a function (linear or non-linear) of species traits and environmental variables. If these are
generalized linear (mixed) models, main effects of traits and environmental variables and
their interactions are specified on a link-scale, for count data usually the log-scale giving a
log-linear model. Interaction terms represent trait-environment associations, each being a
product of a single trait with a single environmental variable. The associated (standardized)
regression coefficients provide insights regarding the strength and direction of trait-
environment associations (positive and negative associations, e.g., large-bodied species
tend to occur more often in low-temperature environments than in high-temperature
ones, known as Bergmann’s rule (Bergmann, 1847).
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The main effects in the GLM model represent the separate effects of environmental
variables and traits on species distributions. For example, traits might be used to predict
the distribution of species in an ‘average’ environment; by adding the environmental
effects and their interaction with the traits, the distribution of a given species in a specific
environment may be predicted. Also, by setting main effects to be polynomial terms
of quantitative trait and environment variables (or, simply, to factors for species and
site) the model includes the simplest model for ecological niches, which shows Gaussian
species response to the environmental variable and has equal niche breadths (Jamil et al.,
20135 Jamil &~ ter Braak, 2013; Ter Braak ¢ Looman, 1986). If the environmental optima
of species in this model are related to their traits, the trait-environment relationships are
exactly represented by the interaction terms, all being a product of a given environmental
variable and a given trait. In regression-based analyses of trait-environment relations,
neither the trait nor the environment takes the role of response variables; instead they
are predictor variables in a model in which the response variable is the abundance (or
presence—absence) of species in sites.

In this paper, we focus on the performance of statistical tests to assess the significance of
interaction terms in GLM-based methods as these represent trait-environment relations.
Different testing procedures have been used so far. Cormont et al. (2011) fit a linear
trait-environment model (LTE) with interactions to log-transformed species data and used
the pmax permutation test of Ter Braak, Cormont & Dray (2012) for statistical testing of
the interaction. Jamil ef al. (2012) implemented a mixed-model approach with fixed trait-
environment coefficients and random species-by-environment coefficients; interaction
terms were selected via a tiered forward-selection approach and their significance was
assessed by likelihood ratio tests. Pollock, Morris & Vesk (2012) and Jamil et al. (2013)
moved away from ‘least-squares after data transformation’ by using generalized linear
mixed models (GLMM) for count or presence—absence data. Brown et al. (2014) and
Warton, Shipley ¢ Hastie (2015) developed the same model under a simpler GLM
framework without the extra random terms for species, and complemented it with
resampling techniques, namely cross-validation for selection and bootstrapping of sites for
statistical testing. Their method is thus essentially a community-level analysis in that the site
(community) is the statistical unit on which the statistical inference is based. Their method
of statistical testing is implemented via the functions ‘traitglm’ and ‘anova.traitglm’ in the
R package ‘mvabund’ (Wang et al., 2012). These GLM-based methods are quite promising
because they use mainstream statistical methods, allowing model selection, prediction
and standard diagnostics for goodness-of-fit as well as greater flexibility in accounting for
additional structure in the data, compared to previous correlation-based approaches.

Conceptually, the most important difference between these GLM and GLMM approaches
isthat Brown et al. (2014) and Warton, Shipley ¢» Hastie (2015) solve the problem of residual
correlation among species in their GLM by resampling sites and ignore any species-level
random effects. Conversely, Pollock, Morris ¢ Vesk (2012) and Jamil et al. (2013) account
for randomness at the species-level in their GLMM, but have either no, or only a very
simplistic, method to account for residual correlation among species, respectively. In
practice, GLM is much quicker and numerically more stable than GLMM, so that using
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GLMM with bootstrapping is not yet very appealing, particularly when many environmental
variables need to be analyzed simultaneously.

Whereas the performance of statistical tests associated with the fourth-corner correlation
has been well evaluated in the literature (Dray ¢ Legendre, 2008; Peres-Neto, Dray ¢ ter
Braak, 2016; Ter Braak, Cormont ¢ Dray, 2012), no study has been designed to evaluate and
compare the type I error rate and power of statistical tests on trait-environment interaction
in the GLM framework. One obvious question is how the simpler GLM model performs
when the data actually follow a log-linear model with random effects, i.e., a GLMM model
(Jamil et al., 2013). Ts it then sufficient to simply resample (bootstrap or permute) sites or
residuals associated with sites, which is similar to a community-level analysis, or is there
also a need for a species-level analysis (resampling species or residuals associated with
species) as found for correlation-based approaches, and, if so, how can we then explain the
difference in outcome between the community-level and species-level analyses?

In this paper we investigate these questions by simulating data according to models
with and without trait-environment interaction and re-analysing a literature data set as an
illustrative case study. We apply four statistical tests which differ in the way resampling
is performed (resampling sites, species or both) and how the test statistic is calculated
(assuming a negative-binomial or a Poisson distribution). We report on the observed
type I error rates of these procedures in the data sets simulated without trait-environment
interactions and their power in simulated data sets with this interaction. We also apply
the predictive modelling approach of Brown et al. (2014) to see how many times trait-
environment terms were falsely judged predictive when there was in fact no interaction
between the observed traits and the environment. The simulated data were based on
Gaussian response models (Dray ¢ Legendre, 2008; Peres-Neto, Dray ¢ ter Braak, 2016)
and log-linear models with random effects (i.e., GLMM models).

THEORY AND METHODS

Statistical models for trait-environment interaction

The data required for the statistical analyses in this paper are abundance data of m species
across n sites, together with trait data on the m species, and environmental data on the n
sites. In its simplest form, there is one quantitative trait t (with m values {t;},j =1, ...,
m) and one quantitative environmental variable e (with n values {e;}, i=1, ..., n). The
abundance of species j in site 7, denoted by y;;, is assumed to be (similar to) a count that
follows a negative-binomial distribution with mean w;; and unknown overdispersion. The
statistical model that we use for detecting the trait-environment interaction is the GLM
model

log(uij) =Ri+C; + beetjei, (1)

where by, is the coefficient measuring direction and strength of the trait-environment (t-e)
interaction and R; and C; are the main effects for site i and species j, respectively. The
main effects are thus formed by factors for site and species and can thus approximate any
non-linear function of e and t, respectively. In total, the model has n+ m+2 unknown
parameters (including the unknown overdispersion).
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An alternative for the GLM model is the GLMM model, which we present here for later
reference,

log(uij) =R;+C; + Bjei with Bj =b0+b¢etj+8ﬁj (2)

with B; a species-specific slope with respect to e, modelled as a linear model of trait t, with
intercept by and slope by, and with £; a normally distributed error term with mean 0 and
variance o*é. By inserting the model for f; in the log-linear model, we see that by, is indeed
the coefficient of the interaction #e;. The term bye; can be absorbed in the row main effect
R;, and gg;e; represents additional species-specific random variation that interacts with the
observed environment.

Statistical tests on trait-environment interaction

The trait-environment interaction in Eq. (1) can be tested by fitting the model with and

without the interaction term, the latter by setting b;, = 0, calculating the likelihood ratio

(LR) statistic of the two models for the data and assessing its significance via resampling

(Warton, Shipley & Hastie, 2015). We consider four ways of carrying out the test. The first

test uses the LR based on a negative-binomial response distribution and is therefore rather

slow. To investigate whether we could improve on speed without sacrificing the type I error
rate and loosing (too much) power, we set the response distribution to Poisson in the other
three tests, as any issue due to overdispersion is accounted for by the resampling procedure.

Moreover, theory tells that Poisson likelihood is the only likelihood for non-negative data

and models that gives consistent estimates under misspecification of the distribution; the

normal likelihood/least-squares has this feature for unbounded data (Gourieroux, Monfort

& Trognon, 1984a; Gourieroux, Monfort & Trognon, 1984b; Wooldridge, 1999). In detail,

the four tests are:

1. anova.traitglm. The first test uses the ‘anova.traitglm’ function of version 3.11.5 of the
R package mvabund (Wang et al., 2012) with site-based resampling and calculation of
the LR assuming a negative-binomial distribution (as in the data-generating models
of ‘Statistical models for trait-environment interaction’ and ‘Simulation models’).
This function resamples sites by bootstrapping probability integral transform (PIT)
residuals with all residuals across species of the same site kept together. The code for
obtaining the significance of the interaction is simply:

modell <- traitglm(Y,E,T, composition=TRUE)
anova.traitglm(modell, nBoot=nBoot)

where Y, E and T contain the abundance data y;;, the environmental values e = ¢; and
the trait values t =t;, respectively. In the many-traits case, T contains the g simulated
traits. The number of bootstrap samples is set to 39. With the observed sample this
gives 40 samples and a minimum p-value of 1/40 = 0.025. This number is sufficient at
the nominal level of 5% of the test that we used, as Monte Carlo significance tests are
unbiased for any number of re-samples (Hope, 1968). We could increase the number
of bootstraps to obtain a small increase in power.
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2. sites. The second test also resamples sites, but differs from the first test in that it
permutes sites (instead of bootstrapping them) and calculates the Poisson LR (instead
of the negative-binomial LR). For statistical testing (rather than estimation), we prefer
permutation to bootstrapping. Therefore, we wrote special purpose functions in R using
glm on vectorised abundance data Y for calculating the LR statistic assuming Poisson
distributed abundance data. When permuting sites, the values in e are permuted instead
of the rows of the abundance table Y (Appendix S2). We used 39 permutations to make
the test most similar to the anova.traitglm test.

3. species. This test is similar to the previous one but permutes species (instead of sites)
and calculates the Poisson LR.

4. maxr/c. The fourth test applies both tests 2 and 3 and takes the maximum of their
p-values. It thus a GLM-based ppx test. The ‘r/c’ is a mnemonic for rows/columns
(corresponding to sites/species).

Simulation models

Abundance data on m = 30 species in n = 30 sites were generated by two simulation models,
a log-linear simulation model and a one-dimensional Gaussian response model, detailed
in Appendix S1. In summary, two traits t and z (both m values) and two environmental
variables e and x (both # values) were drawn independently from the standard normal
distribution; t and e are taken as the observed trait and the observed environment,
respectively, and z and x as unobserved. As such, variables z and x are latent variables
that are unrelated to (i.e., independent of) the observed ones; alternatively, z and x
represent simply noise, more specifically, variability among species in their response to
the environment, as in GLMM models (Jamil et al., 2013; Pollock, Morris ¢ Vesk, 2012),
and unobserved variability among sites, respectively. Either way, unobserved variation is
likely the case in most ecological data and needs to be considered more often in simulation
studies.

The statistical test procedure seeks to detect whether the observed trait t and the observed
environment e are associated (i.e., interact), without knowledge about the two latent
variables z and x, as these are unobserved/unmeasured. In the null models, abundance data
are generated without any interaction between the observed t and e, but with an interaction
between, for example, the unobserved trait z and the observed environmental variable e.

In the Gaussian response model, this is achieved by generating the expected abundance
wij of species j at site 7 as a Gaussian response function of e and z:

2

€ —Zj

I,Lz-j = hjexp —% , (3)
J

where h; is the maximum value and o; is the tolerance or niche breadth of species j that
are both constants or random, with oj independent of t. As z and o; are independent of
the observed trait t, this model by definition contains no association between t and e. This
is the ‘environmentally structured but trait random’ case, in short the ‘trait random’ case.
Similarly, we can define a ‘trait structured but environment random’ case, in short the
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‘environment random’ case, by replacing e; by x; and z; by ¢;, and a ‘both random’ case by
replacing e; by x; in Eq. (3).

The corresponding log-linear simulation model has free main effects (R; and C;) and
one interaction, namely either zje; or tjx; respectively, e.g., for the ‘trait random’ case

log(u,ij) =R;i+Cj+bze, (4)

with b, the coefficient measuring the direction and strength of the z-e interaction, and
similarly for other interactions later on. The interaction tie; is missing, so there is no
association between t and e in the model. Equation (4) is like Eq. (3), the model of a
GLMM with random species-specific slopes with respect to the environment e (Jamil et al.,
2013), but without t—e interaction (b;, =0).

The Gaussian model of Eq. (3) and log-linear model of Eq. (4) are closely related, at
least when the tolerance is constant (o; = o). First, the maximum k; does not depend on
the trait and thus log(h;) can be absorbed in the free coefficient C; in Eq. (4). Working out
the square in Eq. (3) gives squared terms in ¢; and z; that can be absorbed in the free main
effects of Eq. (4) and a product zje; with associated coefficient1/ o2, which is then equal to
b in Eq. (4). With variable niche breadths, the Gaussian response model is not an easy
GLM.

The log-linear model allows one case that is not available in the one-dimensional
Gaussian model. This case has two interaction terms: t interacts with x and e interacts with
z, but t does not interact with e,

log(uij) =R,~+Cj+bzezjei+btxtjxi. (5)

These are simple models. In the reported simulations, we also included structured and
unstructured noise in the expected abundances, respectively (Appendix S1); these are
important to make the data more realistic, but are not essential for our main results.

Abundance data y;; (i=1, ..., n;j =1, ..., m) were drawn from the negative-binomial
distribution with mean w;; and overdispersion parameter 1, giving variance function
Wij + Mlz]

To mimic a situation with many traits and a single environmental variable, ¢ in the
above equations was taken as the sum of g independent traits, normalized to a theoretical
variance of 1.

To study the power of different methods to assess parameter significance, once the type
I error had been controlled, the interaction between the observed trait and environment,
i.e., the term by, tje;, was added to the log-linear model with non-zero regression coefficient
b, and z; was replaced by ¢ in the Gaussian response model. Each model was simulated
1,000 times.

Predictive modelling by lasso

Brown et al. (2014) proposed selecting trait-environment interactions on the basis of their
predictive power using GLM with the least absolute shrinkage and selection operator
(lasso). This approach uses penalized regression and a key point is the selection of the

Ter Braak et al. (2017), PeerJ, DOI 10.7717/peerj.2885 7


https://peerj.com
http://dx.doi.org/10.7717/peerj.2885/supp-1
http://dx.doi.org/10.7717/peerj.2885

Peer

penalty parameter; if it is set very high, no predictor variable enters the model, if it is set to
0 all variables enter. The penalty is usually selected by cross-validation. Brown et al. (2014)
used a site-based cross-validation approach, treating species as fixed factors. To evaluate
this approach, we simulated 1000 data sets as in the ‘trait random’ case of the Gaussian
model with n=m =30 and 10 traits and a single environmental variable. We applied the
function traitglm of the R package mvabund with arguments method = “cv.glm1path”
and composition = TRUE, then counted the number of simulated data sets in which the
best model, i.e., that gave the “best predictive performance” (Wang ef al., 2012), contained
any non-zero trait-environment coefficients. As a control experiment, we analyzed data
from a model without any interaction of a latent trait with the observed variables. We also
applied species-based cross-validation to the same data sets to determine whether this led
to similar results.

Case study
As an illustration, we re-analysed the data of Choler (2005) who investigated the shift in
Alpine plant traits along a snow-melt gradient. This is the aravo data set in the R package
ade4 (Dray & Dufour, 2007). It has 82 species and 75 sites. Here we considered only one trait
and one environmental variable, namely Spread (maximum lateral spread of clonal plants)
and Snow (mean snowmelt date in Julian day averaged over 1997-1999). Because the
distribution of Spread is right-skewed, it was logarithmically transformed before analysis.
First, we performed statistical tests based on the squared fourth-corner correlation,
using the R package ade4 (Dray ¢& Dufour, 2007). Second, we performed regression-based
analyses as described in Brown et al. (2014) and Warton, Shipley ¢ Hastie (2015). In such
analyses, the abundance of the species is the response variable for which we must specify
a distribution. We used the default distribution of the R package mvabund (Wang et al.,
2012), the negative-binomial distribution, and checked whether this distribution is tenable
for these data. Following Warton, Shipley & Hastie (2015), we did this by plotting the
Dunn-Smith residuals of the model ‘site+species+species:Snow’ against the fitted values.
The plot (Fig. S1) does not show any clear pattern that would suggest an ill-specified
mean—variance relation. We therefore continued analysis with this default distribution.
We then applied the anova.traitglm test and the other three tests in ‘Statistical tests on
trait-environment interaction.” We used 999 resamples in each test. Third, as an alternative
to statistical testing, we applied predictive modelling as in ‘Predictive modelling by lasso.’
With a single trait-environment interaction, the choice is between a model with and a
model without the interaction.

RESULTS

Statistical testing results

In the Gaussian model simulations, the ‘trait random’ case is the only one that generates a
significantly inflated type I error rate (>0.40) in the anova.traitglm test, whereas the max
r/c test provides appropriate rates (Table 1). With six species and five or ten random traits,
the type I error rate of anova.traitglm was even more inflated (>0.75), and for twenty
species with 10-30 traits the type I error rate was even greater than 0.90.
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Table 1 Type I error rates of the anova.traitglm test (site-based bootstrap approach based on the
negative-binomial likelihood) and the max r/c test (P test based on the Poisson likelihood) for 1,000
simulated negative-binomial data sets using the Gaussian response model and n = m =30. Value in
bold represents the inflated error compared to the nominal level of 0.05.

Test procedure Scenario
Trait random Environment Both random
(zand e) random (t and x) (z and x)
anova.traitglm 0.417 0.055 0.045
max r/c 0.047 0.055 0.019

In the log-linear simulation model, similar inflation of type I error rates is found. The
type I error rate of the anova.traitglm test increases with the size of the coefficient b,, in
Egs. (4) and (5) (Fig. 1, grey lines) up to values around 0.50. The sites test results in similar
p-values. The species test results in much lower p-values than the sites test when b;, =0,
but similar p-values if b, = b,, (solid and dotted blue lines in Fig. 1, respectively). The
latter is expected as, when b, = b,., the model is perfectly symmetric in species and sites.
The max r/c test, which takes the maximum of the p-values per simulated dataset, results
in p-values around or below 0.05 if b;, = 0 but has a slightly inflated type I error rate if
bix = bz > 0.4 (solid and dotted black lines in Fig. 1, respectively). The highest type I error
rate of the p.x test is 0.08 (Fig. 1).

Figure 2 shows the power of max r/c test. Recall that power here is estimated at a higher
than 0.05 nominal level because the test does not fully control the type I error. The actual
size of the test is 0.08 (the maximum observed type I error rate for this test in Fig. 1). As
expected, power increases with the trait-environment coefficient by, but decreases with
increasing b, which represents either the interaction of e with an unmeasured trait or
noise in the model for the species-specific slopes in Eq. (2). The effect of an additional
noise component (modelled by by,) on power is not very large, except near b,, = 0, where
power is in fact type I error rate, which was inflated when b,, > 0.4, as in Fig. 1.

Predictive modelling results

In the ‘trait random’ case, site-based cross-validation to select the penalty parameter of the
lasso often resulted in models with trait-environment terms that have, in fact, no predictive
value; the number of data sets with such terms was 851 (in 1,000 simulated data sets) with
463 data sets giving one interaction coefficient that was at least 0.1 in absolute value. In the
control experiment using a model without any interaction of a latent trait with the observed
variables, we found low numbers of false positive (<20 out of 1,000). With m = 10 (instead
of 30), there were 855 false positives numbers with 710 and 403 data sets with a coefficient
larger than 0.1 and 0.3, respectively. Applying species-based cross-validation resulted for
m =30 in two data sets with nonzero trait-environment coefficients and for m = 10 in ten
such data sets.

Case study results
Statistical tests on the interaction between Spread and Snow using the fourth-corner
correlation resulted in p-values of 0.002 and 0.361 for the site- and species-based
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Figure 1 Type I error rate of the four tests of ‘Statistical tests on trait-environment interaction’ on

the trait-environment (t—e) interaction in the log-linear simulation model of Eq. (5) in relation to the
size of the z—e nuisance interaction (of e with a latent trait z): anova.traitglm (site-based bootstrap

with negative-binomial likelihood) and sites (site-based permutation with Poisson likelihood), species
(species-based permutation with Poisson likelihood), and max r/c (GLM based p,,.x test that combines
the sites and species tests). The t—x nuisance interaction (of t with a nuisance environmental variable x)

is either absent (solid lines) or equal to the size of the z—e nuisance interaction (dashed lines). The vertical
scale is logarithmic. The data were generated using a negative-binomial distribution with variance func-
tion pu;;+ p,z The horizontal line at 0.05 indicates the nominal significance threshold; error rates above the
dotted line (at 0.064) are significantly greater than 0.05.

permutation tests, respectively (999 permutations). In the pp,y test, these p-values are
combined by taking their maximum and the final p-value was thus 0.361. The conclusion
from the fourth-corner analysis is that there is no evidence that Spread and Snow are
associated.

Using GLM-models, the site-based approaches found evidence for interaction between
Spread and Snow (p-value of 0.001 for both the anova.traitglm and sites tests). By contrast,
the species and max r/c tests did not detect evidence for this interaction (p-value of 0.376
for both).

Site-based cross-validation in lasso-based predictive modelling selected the model
with interaction, with a fourth-corner regression coefficient of 0.066 with respect to
the standardized trait and the standardized environment variable. Species-based cross-
validation selected the model without interaction.

DISCUSSION

Our simulations showed that resampling of sites is simply not sufficient to generate a valid
statistical test on trait-environment association under a GLM framework. This holds true
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Figure 2 Power of the max r/c test (GLM based p,,.x test) on the trait-environment (t—e) interaction,
added to the log-linear simulation model of Eq. (5), in relation the size of the interaction of interest
with colours for various sizes of the z—e nuisance interaction (of e with a latent trait z) and linetypes as
in Fig. 1. The vertical scale is logarithmic. The data were generated using a negative-binomial distribution
with variance function p;; + ,ufj, whereas the test statistic was based on the Poisson likelihood. The hor-
izontal line at 0.05 indicates the nominal significance threshold; rates above the dotted line (at 0.064) are
significantly greater than 0.05.

not only for advanced bootstrap methods, such as is implemented in the anova.traitglm
function of the R package mvabund (Wang et al., 2012), but also for permutation tests
using either GLM (Fig. 1) or simple methods such as CWM and fourth-corner (Peres-Neto,
Dray ¢ ter Braak, 2016). The reason is that sites are not the only random statistical units;
species are random units as well (Ives ¢ Helmus, 2011), particularly when we want to
determine which traits interact with particular environmental features in conditioning
species distributions. Species and sites form two crossed random factors and both need to
be considered in models. A GLM without resampling would account only for the residual
variation (technically, the nm independent response distributions of the nm abundance
values). A GLMM model is able to account for more levels of randomness. A GLMM model
for trait-environment association accounts for the randomness of species responses to the
environment and for how traits modulate these responses. These levels of randomness
are not considered in GLMs; therefore, these will not provide valid statistical inference
(see Appendix S3 for an explicit explanation). An escape is to mimic the randomness
and discover the relevant variation by resampling. Therefore, we propose in this paper to
resample not only sites but also species and to combine the two tests in the py,x procedure.
Note that a test using simultaneous resampling of species and sites, as originally proposed
for RLQ (Dolédec et al., 1996), does not control the type I error (Dray ¢ Legendre, 2008);
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instead resampling needs to be performed independently for sites, which fixing species,
and vice-versa for species.

All site-based analyses of the case study data found evidence for Spread-Snow interaction,
but the species-based analysis, and thus the pp,.x test, did not. Why do site-based and species-
based analyses differ with these data? An explanation is that there is an ‘unobserved’ trait,
namely Specific Leaf Area (SLA), that is almost uncorrelated with Spread (correlation
0.02) and that strongly interacts with Snow as both the site-based and species-based tests
are highly significant using either the fourth-corner correlation or the GLM tests using
Poisson log-likelihood (all p < 0.001, yielding pmax < 0.001). From this, we thus conclude
that there is evidence that SLA interacts with Snow and no evidence that Spread interacts
with Snow. The site-based resampling tests are not able to detect the large variation among
the species-specific regression coefficients in Eq. (2). In the GLM fit, Spread explains
an amount of variation that is easily explainable by chance. The conclusion is that the
GLM-based tests require not only site-based resampling but also species-based resampling.

One might think that the problem with site-based resampling is just an ‘omitted variable
bias” problem (Robins, Rotnitzky ¢» Zhao, 1994), also known as a ‘confounding variable’
problem (McDonald, 2014), which leads to biased regression coefficients and thus biased
inference. This problem identifies a well-known fundamental limitation of all regression
models and occurs when omitting a variable that is both correlated to the response and
to the predictor. Our case is different in that the omitted variable is uncorrelated to
the variables under investigation, the trait and environmental variables. In addition, the
problem we identify is not bias in the regression coefficient but a wrong (too low) standard
error of estimate. Instead of viewing it as a case of “omitted variable bias”, we consider it
as a case of “ignoring random effects,” which here means ignoring species as a random
factor.

The pmax procedure was shown via simulations to control the type I error in simple
models for trait-environment association, such as the ones used in the context of fourth-
corner correlation (Dray et al., 2014; Peres-Neto, Dray ¢ ter Braak, 2016) and GLMM
(Jamil et al., 2013; Pollock, Morris ¢ Vesk, 2012). However, the present study assessed these
models also under more complex (possibly more realistic) scenarios including multiple
latent factors. We show that if both the trait and the environmental variables interact with
an important latent environmental variable and an important latent trait, respectively, the
control over type I error is faulted. That said, in all simulations we carried out (with up
to 100 species and sites), we never observe a type I error rate above 0.10. In even more
complex scenarios, however, the inflation could possibly be more severe. At this point, as
long as nothing better is proposed, our advice is to divide the nominal level in the py,x
test by two (e.g., 0.05/2 = 0.025) for species and site numbers between 20 and 100, so
as to control empirically the type I error at a level of 0.05. This is akin to what happens
in Bonferroni-correction for multiple testing (Verhoeven, Simonsen ¢ Mclntyre, 2005).
With numbers of both species and sites below 20, based on our results, correction is not
necessary. A more precise correction factor for any specific number of species and sites
could be determined via simulation of data using models in which the interactions between
the traits and the environment are set to zero.
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The fact that the pyax test does not fully control the type I error in Eq. (5) should not
come as a surprise. The test considers only whether there is a link between the species
distributions and the environment(Y<>e) and a link between the species distributions and
the trait (Y<>t) at the nominal significance level. What these links entail is not part of the
theory behind the test (Ter Braak, Cormont ¢ Dray, 2012). For example, by taking a test
statistic that is sensitive to main effects, one could easily establish these links. For detecting
trait-environment association, the test statistic should not be sensitive to main effects and
be able to detect interactions only. There is a more fundamental issue, however. In the
GLM, trait-environment association is an interaction, but interaction is link-dependent.
An extreme example of this is that main effects in a log-linear model are products (i.e.,
interactions) in a linear model (with identity link). With binary data, a GLM is often used
with a logistic link function, generating implicitly another definition of interaction. Seldom
is a logarithmic link used as it leads to numerical issues. The complementary log—log link
function is the one that is closest to the count scale and is perhaps the most appropriate
for trait-environment modelling. In Eq. (5), trait t and the environmental variable e are
both important in the species-site interaction space of the log-linear model. One could
argue that this model shows some form of t—e association, namely when analyzed with
any other link function than the logarithmic one. The same would happen the other way
round, i.e., when the logarithm in the generating model is replaced by a slightly different
function (reality being not precisely log-linear), but the analysis uses the log-link. Hence,
model misspecification could lead to different (and possibly wrong) interpretations of
trait-environment interactions.

We made the computation quicker by changing the negative-binomial likelihood to the
Poisson likelihood. This did not appear to affect the power of the test much, as observed in
the comparison of the anova.glm and sites tests in Fig. 1. We used random permutations in
our tests. In future applications, this may need further adaptation as sites may be structured
in space (spatial autocorrelation) and time (temporal autocorrelation) and species form
a phylogeny (phylogenetic autocorrelation), so that neither sites nor species are really
completely independent or exchangeable units. The net effect will be that the effective
number of units (i.e., degrees of freedom) is actually smaller than the number observed
in the data, likely generating a liberal test when random permutations are used. Possible
alternatives for random permutations are restricted permutations (Lapointe ¢ Garland,
2001) or data simulation that keeps the original spatial or phylogenetic structure in data
(Wagner ¢ Dray, 2015). Note also that the need of resampling for statistical inference
also implies that the standard errors of the coefficients representing trait-environment
interaction as estimated by GLM are likely far too small.

Along with the GLM-based tests for association between a single trait and a single
environmental variable, we also carried out the tests using the fourth-corner correlation.
They resulted in almost identical p-values per data set. This finding has led to a companion
paper that shows that the squared fourth-corner correlation times the abundance total is a
Rao score test statistic on the interaction term in a Poisson log-linear model (Ter Braak, in
press). This finding was not totally unexpected because Appendix S1 of Brown et al. (2014)
contains a proof of the equivalence between the fourth-corner correlation and GLM when
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trait and environment are factors (although the test statistics are still different, chi-square
in fourth-corner and deviance in GLM). The near-equivalence with quantitative trait and
environment can be understood mathematically. Under resampling, the term by tje; is
small, so that the expected abundance in the log-linear model

Wij = RTC]* exXp (btetjei) %RTCJ*(l +btetjei) (6)

where the latter can be recognised as the reconstitution formula of a (doubly constrained)
correspondence analysis (Ter Braak, 2014), which, for a quantitative trait and a quantitative
environment variable, is in fact equivalent to the fourth-corner analysis. The test using
the fourth-corner correlation is 140 times quicker to compute than the GLM-based test in
our R implementation and 1,400 times quicker than the anova.traitglm test. Peres-Neto,
Dray & ter Braak (2016) already showed that the fourth-corner test is not sensitive to
log-linear main effects, thus having power to detect interactions in log-linear models. In
the case of single correlations (i.e., pairwise combinations between each trait and each
environmental factor), the fourth-corner py.y test is convenient and reliable (Peres-Neto,
Dray ¢ ter Braak, 2016). The GLM-based models were designed for multiple traits and
multiple environmental variables. Their advantage and disadvantage relative to rivals such
as RLQ, doubly constrained correspondence analysis (Kleyer et al., 2012; Lavorel et al.,
1998) and the combination of site-based and species-based redundancy analyses (Kleyer et
al., 2012; Peres-Neto ¢ Kembel, 2015; Smilauer & Leps, 2014) need to be investigated.
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